1
|
Park YS, Oh H, Sung KW. Atypical antidepressant mirtazapine inhibits 5-hydroxytryptamine3 receptor currents in NCB-20 cells. J Pharmacol Sci 2023; 151:63-71. [PMID: 36707180 DOI: 10.1016/j.jphs.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Mirtazapine, an atypical antidepressant, is known to enhance serotonergic transmission by inhibiting the 5-hydroxytryptamine (5-HT)1A, 5-HT2C, and 5-HT3 receptors. However, the mechanism of action on the 5-HT3 receptor remains unclear. We investigated the inhibitory mechanisms of mirtazapine on 5-HT3 receptors of NCB20 neuroblastoma cells using the whole-cell voltage-clamp method. Mirtazapine inhibited the 5-HT3 receptor currents in a concentration-dependent manner, and the inhibitory effect was influenced by the concentration of 5-HT. When mirtazapine was co-applied to 5-HT, the maximal response of the 5-HT3 receptor current was reduced and EC50 was increased, suggesting that mirtazapine might act as a non-competitive inhibitor. Inhibition of 5-HT3 current by mirtazapine was stronger in pre-application than in co-application, which suggests that mirtazapine might act as a closed state inhibitor. This finding was further supported by no use-dependency of the mirtazapine for 5-HT3 receptor inhibition. Finally, mirtazapine accelerated the desensitization and deactivation process in a concentration-dependent manner. The difference in recovery time showed that mirtazapine drastically influences the desensitization process than the deactivation process. These mechanistic characteristics of mirtazapine support the understanding of the relationship between the 5-HT3 receptor and atypical antidepressants.
Collapse
Affiliation(s)
- Yong Soo Park
- Department of Anatomy, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, South Korea.
| | - Haejung Oh
- Department of Pharmacology, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, South Korea.
| | - Ki-Wug Sung
- Department of Pharmacology, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, South Korea.
| |
Collapse
|
2
|
Bergh C, Heusser SA, Howard R, Lindahl E. Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel. eLife 2021; 10:68369. [PMID: 34652272 PMCID: PMC8635979 DOI: 10.7554/elife.68369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.
Collapse
Affiliation(s)
- Cathrine Bergh
- Science for Life Laboratory and Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Stephanie A Heusser
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Rebecca Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Science for Life Laboratory and Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| |
Collapse
|
3
|
Gibbs E, Chakrapani S. Structure, Function and Physiology of 5-Hydroxytryptamine Receptors Subtype 3. Subcell Biochem 2021; 96:373-408. [PMID: 33252737 DOI: 10.1007/978-3-030-58971-4_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-hydroxytryptamine receptor subtype 3 (5-HT3R) is a pentameric ligand-gated ion channel (pLGIC) involved in neuronal signaling. It is best known for its prominent role in gut-CNS signaling though there is growing interest in its other functions, particularly in modulating non-serotonergic synaptic activity. Recent advances in structural biology have provided mechanistic understanding of 5-HT3R function and present new opportunities for the field. This chapter gives a broad overview of 5-HT3R from a physiological and structural perspective and then discusses the specific details of ion permeation, ligand binding and allosteric coupling between these two events. Biochemical evidence is summarized and placed within a physiological context. This perspective underscores the progress that has been made as well as outstanding challenges and opportunities for future 5-HT3R research.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA. .,Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
4
|
Rodriguez Araujo N, Fabiani C, Mazzarini Dimarco A, Bouzat C, Corradi J. Orthosteric and Allosteric Activation of Human 5-HT 3A Receptors. Biophys J 2020; 119:1670-1682. [PMID: 32946769 DOI: 10.1016/j.bpj.2020.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/18/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The serotonin type 3 receptor (5-HT3) is a ligand-gated ion channel that converts the binding of the neurotransmitter serotonin (5-HT) into a transient cation current that mediates fast excitatory responses in peripheral and central nervous systems. Information regarding the activation and modulation of the human 5-HT3 type A receptor has been based only on macroscopic current measurements because of its low ion conductance. By constructing a high-conductance human 5-HT3A receptor, we here revealed mechanistic information regarding the orthosteric activation by 5-HT and by the partial agonist tryptamine, and the allosteric activation by the terpenoids, carvacrol, and thymol. Terpenoids potentiated macroscopic currents elicited by the orthosteric agonist and directly elicited currents with slow-rising phases and submaximal amplitudes. At the single-channel level, activation by orthosteric and allosteric agonists appeared as openings in quick succession (bursts) that showed no ligand concentration dependence. Bursts were grouped into long-duration clusters in the presence of 5-HT and even longer in the presence of terpenoids, whereas they remained isolated in the presence of tryptamine. Kinetic analysis revealed that allosteric and orthosteric activation mechanisms can be described by the same scheme that includes transitions of the agonist-bound receptor to closed intermediate states before opening (priming). Reduced priming explained the partial agonism of tryptamine; however, equilibrium constants for gating and priming were similar for 5-HT and terpenoid activation. Thus, our kinetic analysis revealed that terpenoids are efficacious agonists for 5-HT3A receptors. These findings not only extend our knowledge about the human 5-HT3A molecular function but also provide novel insights into the mechanisms of action of allosteric ligands, which are of increasing interest as therapeutic drugs in all the superfamily.
Collapse
Affiliation(s)
- Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Albano Mazzarini Dimarco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
5
|
Park YS, Myeong SH, Kim IB, Sung KW. Tricyclic antidepressant amitriptyline inhibits 5-hydroxytryptamine 3 receptor currents in NCB-20 cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:585-595. [PMID: 30181705 PMCID: PMC6115347 DOI: 10.4196/kjpp.2018.22.5.585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022]
Abstract
Amitriptyline, a tricyclic antidepressant, is commonly used to treat depression and neuropathic pain, but its mechanism is still unclear. We tested the effect of amitriptyline on 5-hydroxytryptamine 3 (5-HT3) receptor currents and studied its blocking mechanism because the clinical applications of amitriptyline overlapped with 5-HT3 receptor therapeutic potentials. Using a whole-cell voltage clamp method, we recorded the currents of the 5-HT3 receptor when 5-HT was applied alone or co-applied with amitriptyline in cultured NCB-20 neuroblastoma cells known to express 5-HT3 receptors. To elucidate the mechanism of amitriptyline, we simulated the 5-HT3 receptor currents using Berkeley Madonna® software and calculated the rate constants of the agonist binding and receptor transition steps. The 5-HT3 receptor currents were inhibited by amitriptyline in a concentration-dependent, voltage-independent manner, and a competitive mode. Amitriptyline accelerated the desensitization of the 5-HT3 receptor. When amitriptyline was applied before 5-HT treatment, the currents rose slowly until the end of 5-HT treatment. When amitriptyline was co-applied with 5-HT, currents rose and decayed rapidly. Peak current amplitudes were decreased in both applications. All macroscopic currents recorded in whole cell voltage clamping experiments were reproduced by simulation and the changes of rate constants by amitriptyline were correlated with macroscopic current recording data. These results suggest that amitriptyline blocks the 5-HT3 receptor by close and open state blocking mechanisms, in a competitive manner. We could expand an understanding of pharmacological mechanisms of amitriptyline related to the modulation of a 5-HT3 receptor, a potential target of neurologic and psychiatric diseases through this study.
Collapse
Affiliation(s)
- Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seok Ho Myeong
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ki-Wug Sung
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
6
|
Powell AD, Grafton G, Roberts A, Larkin S, O'Neill N, Palandri J, Otvos R, Cooper AJ, Ulens C, Barnes NM. Novel mechanism of modulation at a ligand-gated ion channel; action of 5-Cl-indole at the 5-HT 3 A receptor. Br J Pharmacol 2016; 173:3467-3479. [PMID: 27677804 DOI: 10.1111/bph.13638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The 5-HT3 receptor is a prototypical member of the Cys-loop ligand-gated ion channel (LGIC) superfamily and an established therapeutic target. In addition to activation via the orthosteric site, receptor function can be modulated by allosteric ligands. We have investigated the pharmacological action of Cl-indole upon the 5-HT3 A receptor and identified that this positive allosteric modulator possesses a novel mechanism of action for LGICs. EXPERIMENTAL APPROACH The impact of Cl-indole upon the 5-HT3 receptor was assessed using single cell electrophysiological recordings and [3 H]-granisetron binding in HEK293 cells stably expressing the 5-HT3 receptor. KEY RESULTS Cl-indole failed to evoke 5-HT3 A receptor-mediated responses (up to 30 μM) or display affinity for the [3 H]-granisetron binding site. However, in the presence of Cl-indole, termination of 5-HT application revealed tail currents mediated via the 5-HT3 A receptor that were independent of the preceding 5-HT concentration but were antagonized by the 5-HT3 receptor antagonist, ondansetron. These tail currents were absent in the 5-HT3 AB receptor. Furthermore, the presence of 5-HT revealed a concentration-dependent increase in the affinity of Cl-indole for the orthosteric binding site of the human 5-HT3 A receptor. CONCLUSIONS AND IMPLICATIONS Cl-indole acts as both an orthosteric agonist and an allosteric modulator, but the presence of an orthosteric agonist (e.g. 5-HT) is a prerequisite to reveal both actions. Precedent for ago-allosteric action is available, yet the essential additional presence of an orthosteric agonist is now reported for the first time. This widening of the pharmacological mechanisms to modulate LGICs may offer further therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew D Powell
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,School of Nursing Midwifery and Social Work, Birmingham City University, Edgbaston, UK
| | - Gillian Grafton
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexander Roberts
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Shannon Larkin
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nathanael O'Neill
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Josephine Palandri
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Reka Otvos
- Department of Molecular and Cellular Neurobiology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Alison J Cooper
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Chris Ulens
- Laboratory of Structural Neurobiology, KU Leuven, Leuven, Belgium
| | - Nicholas M Barnes
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Gonzalez-Gutierrez G, Grosman C. The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold. J Gen Physiol 2015; 146:15-36. [PMID: 26078054 PMCID: PMC4485021 DOI: 10.1085/jgp.201411333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/14/2015] [Indexed: 01/07/2023] Open
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) is unique among ionotropic receptors in that the same overall structure has evolved to generate multiple members with different combinations of agonist specificities and permeant-ion charge selectivities. However, aside from these differences, pLGICs have been typically regarded as having several invariant functional properties. These include pore blockade by extracellular quaternary-ammonium cations in the micromolar-to-millimolar concentration range (in the case of the cation-selective members), and a gain-of-function phenotype, which manifests as a slower deactivation time course, as a result of mutations that reduce the hydrophobicity of the transmembrane pore lining. Here, we tested this notion on three distantly related cation-selective members of the pLGIC superfamily: the mouse muscle nicotinic acetylcholine receptor (nAChR), and the bacterial GLIC and ELIC channels. Remarkably, we found that, whereas low millimolar concentrations of TMA(+) and TEA(+) block the nAChR and GLIC, neither of these two quaternary-ammonium cations blocks ELIC at such concentrations; instead, both carry measurable inward currents when present as the only cations on the extracellular side. Also, we found that, whereas lidocaine binding speeds up the current-decay time courses of the nAChR and GLIC in the presence of saturating concentrations of agonists, the binding of lidocaine to ELIC slows this time course down. Furthermore, whereas mutations that reduce the hydrophobicity of the side chains at position 9' of the M2 α-helices greatly slowed the deactivation time course of the nAChR and GLIC, these mutations had little effect--or even sped up deactivation--when engineered in ELIC. Our data indicate that caution should be exercised when generalizing results obtained with ELIC to the rest of the pLGICs, but more intriguingly, they hint at the possibility that ELIC is a representative of a novel branch of the superfamily with markedly divergent pore properties despite a well-conserved three-dimensional architecture.
Collapse
Affiliation(s)
- Giovanni Gonzalez-Gutierrez
- Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Claudio Grosman
- Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
8
|
Decker AM, Witten S, Barann M, Urban BW. Fast and slow interactions of n-alkanols with human 5-HT3A receptors: Implications for anesthetic mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1524-35. [PMID: 25863270 DOI: 10.1016/j.bbamem.2015.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 11/29/2022]
Abstract
This is part of a continuing patch-clamp study exploring molecular actions of anesthetics and systematically varied related substances on 5-HT3A receptors as prototypes of ligand-gated ion channels. Specifically, n-alkanols, related to but simpler in structure than propofol, were studied to explore the complex actions of this leading intravenous anesthetic. Outside-out patches excised from HEK 293 cells heterologously expressing human 5-HT3A receptors were superfused with even-numbered n-alkanols (ethanol through n-tetradecanol) of different concentrations. Fast solution exchange for varying durations allowed separation of drug actions by their kinetics. Compared with propofol the electrophysiological responses to n-alkanols were not much simpler. n-Alkanols produced fast and slow inhibition or potentiation of current amplitudes, and acceleration of current rise and decay time constants, depending on exposure time, concentration, and chain-length of the drug. Inhibition dominated, characterized by fast and slow processes with time constants separated by two orders of magnitude which were similar for different n-alkanols and for propofol. Absolute interaction energies for ethanol to n-dodecanol (relative to xenon) ranged from -10.8 to -37.3kJmol(-1). No two n-alkanols act completely alike. Potency increases with chain length (until cutoff) mainly because of methylene groups interacting with protein sites rather than because of their tendency to escape from the aqueous phase. Similar wash-in time constants for n-alkanols and propofol suggest similar mechanisms, dominated by the kinetics of conformational state changes rather than by binding reactions.
Collapse
Affiliation(s)
- A-M Decker
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Germany.
| | - S Witten
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Germany.
| | - M Barann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Germany.
| | - B W Urban
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Germany.
| |
Collapse
|
9
|
Corradi J, Bouzat C. Unraveling mechanisms underlying partial agonism in 5-HT3A receptors. J Neurosci 2014; 34:16865-76. [PMID: 25505338 PMCID: PMC6608499 DOI: 10.1523/jneurosci.1970-14.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/12/2022] Open
Abstract
Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Argentina
| |
Collapse
|
10
|
Khatri A, Burger PB, Swanger SA, Hansen KB, Zimmerman S, Karakas E, Liotta DC, Furukawa H, Snyder JP, Traynelis SF. Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol Pharmacol 2014; 86:548-60. [PMID: 25205677 DOI: 10.1124/mol.114.094516] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NMDA receptors are tetrameric complexes of GluN1, GluN2A-D, and GluN3A-B subunits and are involved in normal brain function and neurologic disorders. We identified a novel class of stereoselective pyrrolidinone (PYD) positive allosteric modulators for GluN2C-containing NMDA receptors, exemplified by methyl 4-(3-acetyl-4-hydroxy-1-[2-(2-methyl-1H-indol-3-yl)ethyl]-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)benzoate. Here we explore the site and mechanism of action of a prototypical analog, PYD-106, which at 30 μM does not alter responses of NMDA receptors containing GluN2A, GluN2B, and GluN2D and has no effect on AMPA [α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid] and kainate receptors. Coapplication of 50 μM PYD-106 with a maximally effective concentration of glutamate and glycine increases the response of GluN1/GluN2C NMDA receptors in HEK-293 cells to 221% of that obtained in the absence of PYD (taken as 100%). Evaluation of the concentration dependence of this enhancement revealed an EC50 value for PYD of 13 μM. PYD-106 increased opening frequency and open time of single channel currents activated by maximally effective concentrations of agonist but only had modest effects on glutamate and glycine EC50. PYD-106 selectively enhanced the responses of diheteromeric GluN1/GluN2C receptors but not triheteromeric GluN1/GluN2A/GluN2C receptors. Inclusion of residues encoded by GluN1-exon 5 attenuated the effects of PYD. Three GluN2C residues (Arg194, Ser470, Lys470), at which mutagenesis virtually eliminated PYD function, line a cavity at the interface of the ligand binding and the amino terminal domains in a homology model of GluN1/GluN2C built from crystallographic data on GluN1/GluN2B. We propose that this domain interface constitutes a new allosteric modulatory site on the NMDA receptor.
Collapse
Affiliation(s)
- Alpa Khatri
- Pharmacology Department (A.K., S.A.S., S.F.T.) and Chemistry Department (S.Z., P.B.B., D.C.L., J.P.S.), Emory University, Atlanta, Georgia; Department of Biomedical and Pharmaceutical Sciences, and Center for Biomolecular Structure and Dynamics (K.B.H.), University of Montana, Missoula, Montana; and Cold Spring Harbor Laboratories (E.K., H.F.), Cold Spring Harbor, New York
| | - Pieter B Burger
- Pharmacology Department (A.K., S.A.S., S.F.T.) and Chemistry Department (S.Z., P.B.B., D.C.L., J.P.S.), Emory University, Atlanta, Georgia; Department of Biomedical and Pharmaceutical Sciences, and Center for Biomolecular Structure and Dynamics (K.B.H.), University of Montana, Missoula, Montana; and Cold Spring Harbor Laboratories (E.K., H.F.), Cold Spring Harbor, New York
| | - Sharon A Swanger
- Pharmacology Department (A.K., S.A.S., S.F.T.) and Chemistry Department (S.Z., P.B.B., D.C.L., J.P.S.), Emory University, Atlanta, Georgia; Department of Biomedical and Pharmaceutical Sciences, and Center for Biomolecular Structure and Dynamics (K.B.H.), University of Montana, Missoula, Montana; and Cold Spring Harbor Laboratories (E.K., H.F.), Cold Spring Harbor, New York
| | - Kasper B Hansen
- Pharmacology Department (A.K., S.A.S., S.F.T.) and Chemistry Department (S.Z., P.B.B., D.C.L., J.P.S.), Emory University, Atlanta, Georgia; Department of Biomedical and Pharmaceutical Sciences, and Center for Biomolecular Structure and Dynamics (K.B.H.), University of Montana, Missoula, Montana; and Cold Spring Harbor Laboratories (E.K., H.F.), Cold Spring Harbor, New York
| | - Sommer Zimmerman
- Pharmacology Department (A.K., S.A.S., S.F.T.) and Chemistry Department (S.Z., P.B.B., D.C.L., J.P.S.), Emory University, Atlanta, Georgia; Department of Biomedical and Pharmaceutical Sciences, and Center for Biomolecular Structure and Dynamics (K.B.H.), University of Montana, Missoula, Montana; and Cold Spring Harbor Laboratories (E.K., H.F.), Cold Spring Harbor, New York
| | - Erkan Karakas
- Pharmacology Department (A.K., S.A.S., S.F.T.) and Chemistry Department (S.Z., P.B.B., D.C.L., J.P.S.), Emory University, Atlanta, Georgia; Department of Biomedical and Pharmaceutical Sciences, and Center for Biomolecular Structure and Dynamics (K.B.H.), University of Montana, Missoula, Montana; and Cold Spring Harbor Laboratories (E.K., H.F.), Cold Spring Harbor, New York
| | - Dennis C Liotta
- Pharmacology Department (A.K., S.A.S., S.F.T.) and Chemistry Department (S.Z., P.B.B., D.C.L., J.P.S.), Emory University, Atlanta, Georgia; Department of Biomedical and Pharmaceutical Sciences, and Center for Biomolecular Structure and Dynamics (K.B.H.), University of Montana, Missoula, Montana; and Cold Spring Harbor Laboratories (E.K., H.F.), Cold Spring Harbor, New York
| | - Hiro Furukawa
- Pharmacology Department (A.K., S.A.S., S.F.T.) and Chemistry Department (S.Z., P.B.B., D.C.L., J.P.S.), Emory University, Atlanta, Georgia; Department of Biomedical and Pharmaceutical Sciences, and Center for Biomolecular Structure and Dynamics (K.B.H.), University of Montana, Missoula, Montana; and Cold Spring Harbor Laboratories (E.K., H.F.), Cold Spring Harbor, New York
| | - James P Snyder
- Pharmacology Department (A.K., S.A.S., S.F.T.) and Chemistry Department (S.Z., P.B.B., D.C.L., J.P.S.), Emory University, Atlanta, Georgia; Department of Biomedical and Pharmaceutical Sciences, and Center for Biomolecular Structure and Dynamics (K.B.H.), University of Montana, Missoula, Montana; and Cold Spring Harbor Laboratories (E.K., H.F.), Cold Spring Harbor, New York
| | - Stephen F Traynelis
- Pharmacology Department (A.K., S.A.S., S.F.T.) and Chemistry Department (S.Z., P.B.B., D.C.L., J.P.S.), Emory University, Atlanta, Georgia; Department of Biomedical and Pharmaceutical Sciences, and Center for Biomolecular Structure and Dynamics (K.B.H.), University of Montana, Missoula, Montana; and Cold Spring Harbor Laboratories (E.K., H.F.), Cold Spring Harbor, New York
| |
Collapse
|
11
|
Laha KT, Ghosh B, Czajkowski C. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel. PLoS One 2013; 8:e80322. [PMID: 24260369 PMCID: PMC3833957 DOI: 10.1371/journal.pone.0080322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/10/2013] [Indexed: 11/23/2022] Open
Abstract
Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs). Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus (GLIC) in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively) were relatively fast with time constants of 24.9±5.1 ms and 1.2±0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3±0.3 s and deactivated even slower with a time constant of 4.6±1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover mechanisms underlying pLGIC gating transitions.
Collapse
Affiliation(s)
- Kurt T. Laha
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Borna Ghosh
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- Biophysics Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cynthia Czajkowski
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- Biophysics Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
12
|
Which agonist properties are important for the activation of 5-HT3A receptors? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2564-73. [PMID: 23792067 DOI: 10.1016/j.bbamem.2013.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/04/2013] [Accepted: 06/11/2013] [Indexed: 11/21/2022]
Abstract
PURPOSE Why do anesthetics not activate excitatory ligand-gated ion channels such as 5-HT3 receptors in contrast to inhibitory ligand-gated ion channels? This study examines the actions of structural closely-related 5-HT derivatives and 5-HT constituent parts on 5-HT3A receptors with the aim of finding simpler if not minimal agonists and thus determining requirements for successful agonist action. EXPERIMENTAL APPROACH Responses to 5-HT derivatives of human 5-HT3A receptors stably expressed in HEK 293 cells have been examined with the patch-clamp technique in the outside-out configuration combined with a fast solution exchange system. RESULTS Phenol, pyrrole and alkyl amines, constituents of 5-HT, even at high concentrations, cannot activate 5-HT3A receptors but they can inhibit them. To date, tyramines are the smallest known agonists. However, an aromatic ring is not required for activation as acetylcholine is also an agonist of similar strength. CONCLUSION Simultaneous interactions of adequate strength at two separate subsites within the 5-HT binding domain appear to be essential for successful agonist function. Anesthetics either fail to achieve this or the activation they produce is so weak that it is masked by a comparatively very strong inhibition.
Collapse
|
13
|
Stelmashenko O, Lalo U, Yang Y, Bragg L, North RA, Compan V. Activation of trimeric P2X2 receptors by fewer than three ATP molecules. Mol Pharmacol 2012; 82:760-6. [PMID: 22828800 DOI: 10.1124/mol.112.080903] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P2X receptors are trimeric membrane proteins. When they bind extracellular ATP, a conformational change occurs that opens a transmembrane ion channel. The ATP-binding pocket is formed in a cleft between two subunits, and a critical amino acid residue for ATP contact is Lys⁶⁹ (P2X2 numbering). In the present work, we sought to determine whether the binding of fewer than three ATP molecules could open the ion channel. We expressed eight concatenated cDNAs in human embryonic kidney cells, which encoded three serially joined, epitope-tagged, subunits with either Lys or Ala at position 69 (denoted as KKK, KKA, KAK, AKK, KAA, AKA, AAK, and AAA). Western blotting of surface-biotinylated proteins indicated that breakdown of concatemers to individual subunits was minimal. Recording of membrane currents in response to ATP (whole cell and excised outside-out patch) showed that all formed functional channels except AAK, AKA, and AAA. There was no difference in the kinetics of activation and deactivation among KKK, KKA, KAK, and AKK channels, and amplitude of the unitary conductances was in all cases not different from that found after expression of a single wild-type subunit. Currents through KKA and KAK receptors were larger than those observed for AKK receptors. The results indicate that trimeric P2X receptors containing only two intact binding sites can be readily activated by ATP.
Collapse
Affiliation(s)
- Olga Stelmashenko
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Mutations that stabilize the open state of the Erwinia chrisanthemi ligand-gated ion channel fail to change the conformation of the pore domain in crystals. Proc Natl Acad Sci U S A 2012; 109:6331-6. [PMID: 22474383 DOI: 10.1073/pnas.1119268109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The determination of structural models of the various stable states of an ion channel is a key step toward the characterization of its conformational dynamics. In the case of nicotinic-type receptors, different structures have been solved but, thus far, these different models have been obtained from different members of the superfamily. In the case of the bacterial member ELIC, a cysteamine-gated channel from Erwinia chrisanthemi, a structural model of the protein in the absence of activating ligand (and thus, conceivably corresponding to the closed state of this channel) has been previously generated. In this article, electrophysiological characterization of ELIC mutants allowed us to identify pore mutations that slow down the time course of desensitization to the extent that the channel seems not to desensitize at all for the duration of the agonist applications (>20 min). Thus, it seems reasonable to conclude that the probability of ELIC occupying the closed state is much lower for the ligand-bound mutants than for the unliganded wild-type channel. To gain insight into the conformation adopted by ELIC under these conditions, we solved the crystal structures of two of these mutants in the presence of a concentration of cysteamine that elicits an intracluster open probability of >0.9. Curiously, the obtained structural models turned out to be nearly indistinguishable from the model of the wild-type channel in the absence of bound agonist. Overall, our findings bring to light the limited power of functional studies in intact membranes when it comes to inferring the functional state of a channel in a crystal, at least in the case of the nicotinic-receptor superfamily.
Collapse
|
15
|
A novel mechanism of modulation of 5-HT₃A receptors by hydrocortisone. Biophys J 2011; 100:42-51. [PMID: 21190655 DOI: 10.1016/j.bpj.2010.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/19/2010] [Accepted: 10/27/2010] [Indexed: 11/24/2022] Open
Abstract
Modulation of Cys-loop receptors by steroids is of physiological and therapeutical relevance. Nonetheless, its molecular mechanism has not been elucidated for serotonin (5-HT) type 3 receptors. We deciphered the mechanism of action of hydrocortisone (HC) at 5-HT type 3A receptors. Single-channel currents from the high-conductance form (∼4.7 pA, -70 mV) appear as a series of long opening events forming bursts, which group into long clusters. Although they are very infrequent, subconductance events (∼2.4 pA) are detected within clusters. HC produces a significant concentration-dependent reduction in open and burst durations, demonstrating open-channel block. In addition, it increases the appearance of subconductance levels in a concentration- and slightly voltage-dependent manner. The amplitude of the subconductance level does not change with HC concentration and its open duration is briefer than that of full amplitude events, indicating lower open-channel stability. Dual effects are distinguished from macroscopic responses: HC reduces amplitude by acting from either open or closed states, and it increases decay rates from the open state. Thus, HC acts as a negative modulator of 5-HT type 3A receptors by different mechanisms: It acts as an open-channel blocker and it favors opening to a preexisting subconductance level. The latter constitutes a novel, to our knowledge, mechanism of channel modulation, which might be applicable to other steroids and channels.
Collapse
|
16
|
Williams DK, Stokes C, Horenstein NA, Papke RL. The effective opening of nicotinic acetylcholine receptors with single agonist binding sites. J Gen Physiol 2011; 137:369-84. [PMID: 21444659 PMCID: PMC3068282 DOI: 10.1085/jgp.201010587] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/17/2011] [Indexed: 11/20/2022] Open
Abstract
We have identified a means by which agonist-evoked responses of nicotinic receptors can be conditionally eliminated. Modification of α7L119C mutants by the sulfhydryl reagent 2-aminoethyl methanethiosulfonate (MTSEA) reduces responses to acetylcholine (ACh) by more than 97%, whereas corresponding mutations in muscle-type receptors produce effects that depend on the specific subunits mutated and ACh concentration. We coexpressed α7L119C subunits with pseudo wild-type α7C116S subunits, as well as ACh-insensitive α7Y188F subunits with wild-type α7 subunits in Xenopus laevis oocytes using varying ratios of cRNA. When mutant α7 cRNA was coinjected at a 5:1 ratio with wild-type cRNA, net charge responses to 300 µM ACh were retained by α7L119C-containing mutants after MTSEA modification and by the ACh-insensitive Y188F-containing mutants, even though the expected number of ACh-sensitive wild-type binding sites would on average be fewer than two per receptor. Responses of muscle-type receptors with one MTSEA-sensitive subunit were reduced at low ACh concentrations, but much less of an effect was observed when ACh concentrations were high (1 mM), indicating that saturation of a single binding site with agonist can evoke strong activation of nicotinic ACh receptors. Single-channel patch clamp analysis revealed that the burst durations of fetal wild-type and α1β1γδL121C receptors were equivalent until the α1β1γδL121C mutants were exposed to MTSEA, after which the majority (81%) of bursts were brief (≤2 ms). The longest duration events of the receptors modified at only one binding site were similar to the long bursts of native receptors traditionally associated with the activation of receptors with two sites containing bound agonists.
Collapse
Affiliation(s)
- Dustin K. Williams
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Nicole A. Horenstein
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, and Department of Chemistry, University of Florida, Gainesville, FL 32610
| |
Collapse
|
17
|
Papke D, Gonzalez-Gutierrez G, Grosman C. Desensitization of neurotransmitter-gated ion channels during high-frequency stimulation: a comparative study of Cys-loop, AMPA and purinergic receptors. J Physiol 2011; 589:1571-85. [PMID: 21300749 DOI: 10.1113/jphysiol.2010.203315] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Changes in synaptic strength allow synapses to regulate the flow of information in the neural circuits in which they operate. In particular, changes lasting from milliseconds to minutes (‘short-term changes') underlie a variety of computational operations and, ultimately, behaviours. Most studies thus far have attributed the short-term type of plasticity to activity-dependent changes in the dynamics of neurotransmitter release (a presynaptic mechanism) while largely dismissing the role of the loss of responsiveness of postsynaptic receptor channels to neurotransmitter owing to entry into desensitization. To better define the response of the different neurotransmitter-gated ion channels (NGICs) to repetitive stimulation without interference from presynaptic variables, we studied eight representative members of all three known superfamilies of NGICs in fast-perfused outside-out patches of membrane. We found that the responsiveness of all tested channels (two nicotinic acetylcholine receptors, two glycine receptors, one GABA receptor, two AMPA-type glutamate receptors and one purinergic receptor) declines along trains of brief neurotransmitter pulses delivered at physiologically relevant frequencies to an extent that suggests that the role of desensitization in the synaptic control of action-potential transmission may be more general than previously thought. Furthermore, our results indicate that a sizable fraction (and, for some NGICs, most) of this desensitization occurs during the neurotransmitter-free interpulse intervals. Clearly, an incomplete clearance of neurotransmitter from the synaptic cleft between vesicle-fusion events need not be invoked to account for NGIC desensitization upon repetitive stimulation.
Collapse
Affiliation(s)
- David Papke
- Neuroscience Program, University of Illinois at Urbana-Champaign, 407 S. Goodwin Ave. 524 Burrill Hall, Urbana, IL 61801, USA
| | | | | |
Collapse
|
18
|
Walstab J, Rappold G, Niesler B. 5-HT(3) receptors: role in disease and target of drugs. Pharmacol Ther 2010; 128:146-69. [PMID: 20621123 DOI: 10.1016/j.pharmthera.2010.07.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 12/19/2022]
Abstract
Serotonin type 3 (5-HT(3)) receptors are pentameric ion channels belonging to the superfamily of Cys-loop receptors. Receptor activation either leads to fast excitatory responses or modulation of neurotransmitter release depending on their neuronal localisation. 5-HT(3) receptors are known to be expressed in the central nervous system in regions involved in the vomiting reflex, processing of pain, the reward system, cognition and anxiety control. In the periphery they are present on a variety of neurons and immune cells. 5-HT(3) receptors are known to be involved in emesis, pain disorders, drug addiction, psychiatric and GI disorders. Progress in molecular genetics gives direction to personalised medical strategies for treating complex diseases such as psychiatric and functional GI disorders and unravelling individual drug responses in pharmacogenetic approaches. Here we discuss the molecular basis of 5-HT(3) receptor diversity at the DNA and protein level, of which our knowledge has greatly extended in the last decade. We also evaluate their role in health and disease and describe specific case-control studies addressing the involvement of polymorphisms of 5-HT3 subunit genes in complex disorders and responses to drugs. Furthermore, we focus on the actual state of the pharmacological knowledge concerning not only classical 5-HT(3) antagonists--the setrons--but also compounds of various substance classes targeting 5-HT(3) receptors such as anaesthetics, opioids, cannabinoids, steroids, antidepressants and antipsychotics as well as natural compounds derived from plants. This shall point to alternative treatment options modulating the 5-HT(3) receptor system and open new possibilities for drug development in the future.
Collapse
Affiliation(s)
- Jutta Walstab
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
19
|
Corradi J, Gumilar F, Bouzat C. Single-channel kinetic analysis for activation and desensitization of homomeric 5-HT(3)A receptors. Biophys J 2009; 97:1335-45. [PMID: 19720021 DOI: 10.1016/j.bpj.2009.06.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 10/25/2022] Open
Abstract
The 5-HT(3)A receptor is a member of the Cys-loop family of ligand-gated ion channels. To perform kinetic analysis, we mutated the 5-HT3A subunit to obtain a high-conductance form so that single-channel currents can be detected. At all 5-HT concentrations (> 0.1 microM), channel activity appears as openings in quick succession that form bursts, which coalesce into clusters. By combining single-channel and macroscopic data, we generated a kinetic model that perfectly describes activation, deactivation, and desensitization. The model shows that full activation arises from receptors with three molecules of agonist bound. It reveals an earlier conformational change of the fully liganded receptor that occurs while the channel is still closed. From this pre-open closed state, the receptor enters into an open-closed cycle involving three open states, which form the cluster whose duration parallels the time constant of desensitization. A similar model lacking the pre-open closed state can describe the data only if the opening rates are fixed to account for the slow activation rate. The application of the model to M4 mutant receptors shows that position 10' contributes to channel opening and closing rates. Thus, our kinetic model provides a foundation for understanding structural bases of activation and drug action.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur/Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | |
Collapse
|
20
|
Peitz I, Fromherza P. Electrical interfacing of neurotransmitter receptor and field effect transistor. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 30:223-231. [PMID: 19513770 DOI: 10.1140/epje/i2009-10461-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 04/07/2009] [Indexed: 05/27/2023]
Abstract
The interfacing of a ligand-gated ion channel to a transistor is studied. It relies on the transduction of ion current to a voltage in a cell-transistor junction. For the first time, a genetically modified cell is used without external driving voltage as applied by a patch-pipette. Using a core-coat conductor model, we show that an autonomous dynamics gives rise to a signal if a driving voltage is provided by potassium channels, and if current compensation is avoided by an inhomogeneous activation of channels. In a proof-of-principle experiment, we transfect HEK293 cells with the serotonin receptor 5-HT3A and the potassium channel Kv1.3. The interfacing is characterized under voltage-clamp with a negative transistor signal for activated 5-HT3A and a positive signal for activated Kv1.3. Without patch-pipette, a biphasic transient is induced by serotonin. The positive wave is assigned to 5-HT3A receptors in the free membrane that drive a potassium outward current through the adherent membrane. The negative wave is attributed to 5-HT3A receptors in the adherent membrane that are activated with a delay due to serotonin diffusion. The implementation of a receptor-cell-transistor device is a fundamental step in the development of biosensors that combine high specificity and universal microelectronic readout.
Collapse
Affiliation(s)
- I Peitz
- Department of Membrane and Neurophysics, Max Planck Institute for Biochemistry, D 82152 Martinsried/Munich, Germany
| | | |
Collapse
|
21
|
Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors. J Neurosci 2009; 29:6022-32. [PMID: 19420269 DOI: 10.1523/jneurosci.0627-09.2009] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homo-pentameric Cys-loop receptors contain five identical agonist binding sites, each formed at a subunit interface. To determine the number and locations of binding sites required to generate a stable active state, we constructed a receptor subunit with a mutation that disables the agonist binding site and a reporter mutation that alters unitary conductance and coexpressed mutant and nonmutant subunits. Although receptors with a range of different subunit compositions are produced, patch-clamp recordings reveal that the amplitude of each single-channel opening event reports the number and, for certain subunit combinations, the locations of subunits with intact binding sites. We find that receptors with three binding sites at nonconsecutive subunit interfaces exhibit maximal mean channel open time, receptors with binding sites at three consecutive or two nonconsecutive interfaces exhibit intermediate open time, and receptors with binding sites at two consecutive or one interface exhibit brief open time. Macroscopic recordings after rapid application of agonist reveal that channel activation slows and the extent of desensitization decreases as the number of binding sites per receptor decreases. The overall results provide a framework for defining mechanisms of activation and drug modulation for homo-pentameric Cys-loop receptors.
Collapse
|
22
|
Barnes NM, Hales TG, Lummis SC, Peters JA. The 5-HT3 receptor--the relationship between structure and function. Neuropharmacology 2009; 56:273-84. [PMID: 18761359 PMCID: PMC6485434 DOI: 10.1016/j.neuropharm.2008.08.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 12/15/2022]
Abstract
The 5-hydroxytryptamine type-3 (5-HT3) receptor is a cation-selective ion channel of the Cys-loop superfamily. 5-HT3 receptor activation in the central and peripheral nervous systems evokes neuronal excitation and neurotransmitter release. Here, we review the relationship between the structure and the function of the 5-HT3 receptor. 5-HT3A and 5-HT3B subunits are well established components of 5-HT3 receptors but additional HTR3C, HTR3D and HTR3E genes expand the potential for molecular diversity within the family. Studies upon the relationship between subunit structure and the ionic selectivity and single channel conductances of 5-HT3 receptors have identified a novel domain (the intracellular MA-stretch) that contributes to ion permeation and selectivity. Conventional and unnatural amino acid mutagenesis of the extracellular domain of the receptor has revealed residues, within the principle (A-C) and complementary (D-F) loops, which are crucial to ligand binding. An area requiring much further investigation is the subunit composition of 5-HT3 receptors that are endogenous to neurones, and their regional expression within the central nervous system. We conclude by describing recent studies that have identified numerous HTR3A and HTR3B gene polymorphisms that impact upon 5-HT3 receptor function, or expression, and consider their relevance to (patho)physiology.
Collapse
Affiliation(s)
- Nicholas M. Barnes
- Cellular and Molecular Neuropharmacology Research Group, Department of Pharmacology, Division of Neuroscience, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim G. Hales
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | - Sarah C.R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - John A. Peters
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, The University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
23
|
The interface between extracellular and transmembrane domains of homomeric Cys-loop receptors governs open-channel lifetime and rate of desensitization. J Neurosci 2008; 28:7808-19. [PMID: 18667613 DOI: 10.1523/jneurosci.0448-08.2008] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lifetimes of activated postsynaptic receptor channels contribute to the efficiency of synaptic transmission. Here we show that structural differences within the interface dividing extracellular and transmembrane domains of homomeric alpha7 and 5-HT(3A) receptors account for the large differences in open-channel lifetime and time of desensitization onset between these contrasting members of the Cys-loop receptor superfamily. For alpha7 receptors, agonist-evoked single-channel currents appear mainly as isolated brief openings (tau(o) = 0.35 ms), whereas macroscopic currents after a step pulse of agonist desensitize rapidly (tau(d) = 0.4 ms). In contrast for 5-HT(3A) receptors, agonist-evoked single-channel currents appear as clusters of many long openings in quick succession (tau(cluster) = 1.2 s), whereas macroscopic currents desensitize slowly (tau(d) = 1.1 s). A chimeric alpha7-5HT(3A) receptor exhibits functional properties intermediate between those of the parent receptors, but the functional signatures of each parent are reconstituted after substituting the major loops within the interface of the extracellular and transmembrane domains from the corresponding parent receptor. Furthermore, these structural loops contribute to open-channel lifetime and time of desensitization onset in a nonadditive manner. The results suggest that desensitization is the major determinant of the lifetimes of activated alpha7 and 5-HT(3A) receptors and that functional differences between the two receptors arise primarily through structural differences at the interface between extracellular and transmembrane domains.
Collapse
|
24
|
Tricyclic antidepressants inhibit homomeric Cys-loop receptors by acting at different conformational states. Eur J Pharmacol 2008; 584:30-9. [DOI: 10.1016/j.ejphar.2008.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/03/2008] [Accepted: 01/22/2008] [Indexed: 11/19/2022]
|
25
|
Differential effects of serotonin and dopamine on human 5-HT3A receptor kinetics: interpretation within an allosteric kinetic model. J Neurosci 2008; 27:13151-60. [PMID: 18045909 DOI: 10.1523/jneurosci.3772-07.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin type 3 (5-HT3) receptors are members of the pentameric Cys-loop superfamily of receptors that modulate synaptic neurotransmission. In response to agonist binding and unbinding, members of this superfamily undergo a series of conformational transitions that define their functional properties. In this study, we report the results of electrophysiological studies using rapid solution exchange designed to characterize and compare the actions of the high-efficacy agonist serotonin and the low-efficacy agonist dopamine on human 5-HT3A receptors expressed in human embryonic kidney HEK293 cells. In the case of serotonin, receptor activation rates varied with agonist concentration, and deactivation occurred as a single-exponential process with a rate that was similar to the maximal rate of desensitization. Receptors recovered slowly from long desensitizing pulses of serotonin with a sigmoidal time course. In the case of dopamine, receptor activation rates were independent of agonist concentration, receptor deactivation occurred as a complex process that was significantly faster than the maximal rate of desensitization, and recovery from desensitization occurred more quickly than with 5-HT and its time course was not sigmoidal. We developed an allosteric kinetic model for 5-HT3A receptor activation, deactivation, desensitization, and resensitization. Interpretation of our results within the context of this model indicated that the distinct modulatory actions of serotonin versus dopamine are largely attributable to the vastly different rates with which these two agonists induce channel opening and dissociate from open and desensitized states.
Collapse
|
26
|
Gee VJ, Kracun S, Cooper ST, Gibb AJ, Millar NS. Identification of domains influencing assembly and ion channel properties in alpha 7 nicotinic receptor and 5-HT3 receptor subunit chimaeras. Br J Pharmacol 2007; 152:501-12. [PMID: 17721553 PMCID: PMC2050819 DOI: 10.1038/sj.bjp.0707429] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/26/2007] [Accepted: 07/02/2007] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic acetylcholine receptors (nAChRs) and 5-hydroxytryptamine type 3 receptors (5-HT(3)Rs) are members of the superfamily of neurotransmitter-gated ion channels. Both contain five subunits which assemble to form either homomeric or heteromeric subunit complexes. With the aim of identifying the influence of subunit domains upon receptor assembly and function, a series of chimaeras have been constructed containing regions of the neuronal nAChR alpha 7 subunit and the 5-HT(3) receptor (3A) subunit. EXPERIMENTAL APPROACH A series of subunit chimaeras containing alpha 7 and 5-HT(3A) subunit domains have been constructed and expressed in cultured mammalian cells. Properties of the expressed receptors have been examined by means of radioligand binding, agonist-induced changes in intracellular calcium and patch-clamp electrophysiology. KEY RESULTS Subunit domains which influence properties such as rectification, desensitization and conductance have been identified. In addition, the influence of subunit domains upon subunit folding, receptor assembly and cell-surface expression has been identified. Co-expression studies with the nAChR-associated protein RIC-3 revealed that, in contrast to the potentiating effect of RIC-3 on alpha 7 nAChRs, RIC-3 caused reduced levels of cell-surface expression of some alpha 7/5-HT(3A) chimaeras. CONCLUSIONS AND IMPLICATIONS Evidence has been obtained which demonstrates that subunit transmembrane domains are critical for efficient subunit folding and assembly. In addition, functional characterization of subunit chimaeras revealed that both extracellular and cytoplasmic domains exert a dramatic and significant influence upon single-channel conductance. These data support a role for regions other than hydrophobic transmembrane domains in determining ion channel properties.
Collapse
MESH Headings
- Animals
- Binding Sites
- Binding, Competitive
- Bungarotoxins/metabolism
- Calcium/metabolism
- Cell Line
- Cell Membrane/metabolism
- Humans
- Intracellular Fluid/chemistry
- Intracellular Fluid/metabolism
- Iodine Radioisotopes
- Ion Channels/genetics
- Ion Channels/metabolism
- Ion Channels/physiology
- Membrane Potentials/physiology
- Patch-Clamp Techniques
- Protein Structure, Tertiary
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Radioligand Assay
- Rats
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Receptors, Nicotinic/physiology
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/metabolism
- Receptors, Serotonin, 5-HT3/physiology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/physiology
- Transfection
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
- V J Gee
- Department of Pharmacology, University College London London, UK
| | - S Kracun
- Department of Pharmacology, University College London London, UK
| | - S T Cooper
- Department of Pharmacology, University College London London, UK
| | - A J Gibb
- Department of Pharmacology, University College London London, UK
| | - N S Millar
- Department of Pharmacology, University College London London, UK
| |
Collapse
|
27
|
Hu XQ, Hayrapetyan V, Gadhiya JJ, Rhubottom HE, Lovinger DM, Machu TK. Mutations of L293 in transmembrane two of the mouse 5-hydroxytryptamine3A receptor alter gating and alcohol modulatory actions. Br J Pharmacol 2007; 148:88-101. [PMID: 16520747 PMCID: PMC1617044 DOI: 10.1038/sj.bjp.0706685] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 The goal of this study was to determine whether mutations of L293 at the 15' position of TM2 in the 5-HT(3A) receptor alter macroscopic current kinetics, and if these changes could account for alterations in alcohol modulation. Receptor function was assessed in Xenopus oocytes under voltage-clamp and in HEK293 cells with whole-cell patch-clamp recording and rapid drug application. 2 Examination of responses of L293C and L293S receptors to agonist alone revealed enhanced activation, deactivation, and desensitization rates relative to the wild-type receptor. The L293G mutation produced marked slowing of deactivation and desensitization rates. Increased potency of 5-HT and increased efficacy of the partial agonist, DA, was also observed in these mutant receptors. 3 Ethanol and trichloroethanol (TCEt) enhancement of receptor function was reduced or eliminated in receptors containing L293 mutations to C, G, or S. The L293I mutant receptor retained ethanol and TCEt sensitivity. Ethanol and TCEt enhanced activation rate in the wild-type, but not the L293G and L293S receptors. No relationship was observed between any physicochemical property of the substituted amino acids and the change in alcohol potentiation of function. 4 The changes in receptor-channel properties in the mutant receptors support the idea that the L293 residue has important roles in channel gating. Our findings indicate that loss of allosteric modulation by alcohols is not related in any simple way to changes in channel kinetic properties brought about by L293 mutants. We did not observe any evidence that L293 is part of an alcohol binding site.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Laboratory for Integrative Neuroscience, National Institute of Alcohol Abuse and Alcoholism, Rockville, MD 20852, U.S.A
| | - Volodya Hayrapetyan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, U.S.A
| | - Jay J Gadhiya
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, U.S.A
| | - Heather E Rhubottom
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, U.S.A
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute of Alcohol Abuse and Alcoholism, Rockville, MD 20852, U.S.A
| | - Tina K Machu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, U.S.A
- Author for correspondence: E-mail:
| |
Collapse
|
28
|
Peitz I, Voelker M, Fromherz P. Recombinant Serotonin Receptor on a Transistor as a Prototype for Cell-Based Biosensors. Angew Chem Int Ed Engl 2007; 46:5787-90. [PMID: 17577907 DOI: 10.1002/anie.200700726] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ingmar Peitz
- Department of Membrane and Neurophysics, Max Planck Institute for Biochemistry, 82152 Martinsried/München, Germany
| | | | | |
Collapse
|
29
|
Peitz I, Voelker M, Fromherz P. Ein rekombinanter Serotonin-Rezeptor auf einem Transistor als Prototyp für zellbasierte Biosensoren. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Dravid SM, Erreger K, Yuan H, Nicholson K, Le P, Lyuboslavsky P, Almonte A, Murray E, Mosely C, Barber J, French A, Balster R, Murray TF, Traynelis SF. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. J Physiol 2007; 581:107-28. [PMID: 17303642 PMCID: PMC2075223 DOI: 10.1113/jphysiol.2006.124958] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have compared the potencies of structurally distinct channel blockers at recombinant NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptors. The IC50 values varied with stereochemistry and subunit composition, suggesting that it may be possible to design subunit-selective channel blockers. For dizocilpine (MK-801), the differential potency of MK-801 stereoisomers determined at recombinant NMDA receptors was confirmed at native receptors in vitro and in vivo. Since the proton sensor is tightly linked both structurally and functionally to channel gating, we examined whether blocking molecules that interact in the channel pore with the gating machinery can differentially sense protonation of the receptor. Blockers capable of remaining trapped in the pore during agonist unbinding showed the strongest dependence on extracellular pH, appearing more potent at acidic pH values that promote channel closure. Determination of pK(a) values for channel blockers suggests that the ionization of ketamine but not of other blockers can influence its pH-dependent potency. Kinetic modelling and single channel studies suggest that the pH-dependent block of NR1/NR2A by (-)MK-801 but not (+)MK-801 reflects an increase in the MK-801 association rate even though protons reduce channel open probability and thus MK-801 access to its binding site. Allosteric modulators that alter pH sensitivity alter the potency of MK-801, supporting the interpretation that the pH sensitivity of MK-801 binding reflects the changes at the proton sensor rather than a secondary effect of pH. These data suggest a tight coupling between the proton sensor and the ion channel gate as well as unique subunit-specific mechanisms of channel block.
Collapse
Affiliation(s)
- Shashank M Dravid
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Centre, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hu XQ, Sun H, Peoples RW, Hong R, Zhang L. An interaction involving an arginine residue in the cytoplasmic domain of the 5-HT3A receptor contributes to receptor desensitization mechanism. J Biol Chem 2006; 281:21781-21788. [PMID: 16754678 DOI: 10.1074/jbc.m600676200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large cytoplasmic domain accounts for approximately one-third of the entire protein of one superfamily of ligand-gated membrane ion channels, which includes nicotinic acetylcholine (nACh), gamma-aminobutyric acid type A (GABA(A)), serotonin type 3 (5-HT3), and glycine receptors. Desensitization is one functional feature shared by these receptors. Because most molecular studies of receptor desensitization have focused on the agonist binding and channel pore domains, relatively little is known about the role of the large cytoplasmic domain (LCD) in this process. To address this issue, we sequentially deleted segments of the LCD of the 5-HT3A receptor and examined the function of the mutant receptors. Deletion of a small segment that contains three amino acid residues (425-427) significantly slowed the desensitization kinetics of the 5-HT3A receptor. Both deletion and point mutation of arginine 427 altered desensitization kinetics in a manner similar to that of the (425-427) deletion without significantly changing the apparent agonist affinity. The extent of receptor desensitization was positively correlated with the polarity of the amino acid residue at 427: the desensitization accelerates with increasing polarity. Whereas the R427L mutation produced the slowest desensitization, it did not significantly alter single channel conductance of 5-HT3A receptor. Thus, the arginine 427 residue in the LCD contributes to 5-HT3A receptor desensitization, possibly through forming an electrostatic interaction with its neighboring residues. Because the polarity of the amino acid residue at 427 is highly conserved, such a desensitization mechanism may occur in other members of the Cys-loop family of ligand-gated ion channels.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-8115
| | - Hui Sun
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-8115
| | - Robert W Peoples
- Department of Biomedical Sciences, College of Health Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Ren Hong
- Department of Biomedical Sciences, College of Health Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-8115.
| |
Collapse
|
32
|
Reeves DC, Jansen M, Bali M, Lemster T, Akabas MH. A role for the beta 1-beta 2 loop in the gating of 5-HT3 receptors. J Neurosci 2006; 25:9358-66. [PMID: 16221844 PMCID: PMC6725699 DOI: 10.1523/jneurosci.1045-05.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Based on the Torpedo acetylcholine receptor structure, Unwin and colleagues (Miyazawa et al., 2003; Unwin, 2005) hypothesized that the transduction of agonist binding to channel gate opening involves a "pin-into-socket" interaction between alphaV46 at the tip of the extracellular beta1-beta2 loop and the transmembrane M2 segment and M2-M3 loop. We mutated to cysteine the aligned positions in the 5-HT3A and 5-HT3B subunit beta1-beta2 loops K81 and Q70, respectively. The maximal 5-HT-activated currents in receptors containing 5-HT3A/K81C or 5-HT3B/Q70C were markedly reduced compared with wild type. Desensitization of wild-type currents involved fast and slow components. Mutant currents desensitized with only the fast time constant. Reaction with several methanethiosulfonate reagents potentiated currents to wild-type levels, but reaction with other more rigid thiol-reactive reagents caused inhibition. Single-channel conductances of wild type, K81C, and K81C after modification were similar. We tested the proximity of K81C to the M2-M3 loop by mutating M2-M3 loop residues to cysteine in the K81C background. Disulfide bonds formed in 5-HT3A/K81C/A304C and 5-HT3A/K81C/I305C when coexpressed with 5-HT3B. We conclude that in the resting state, K81 is not in a hydrophobic pocket as suggested by the pin-into-socket hypothesis. K81 interacts with the extracellular end of M2 and plays a critical role in channel opening and in the return from fast desensitization. We suggest that during channel activation, beta1-beta2 loop movement moves M2 and the M2-M3 loop so that the M2 segments rotate/translate away from the channel axis, thereby opening the lumen. Recovery from fast desensitization requires the interaction between K81 and the extracellular end of M2.
Collapse
Affiliation(s)
- David C Reeves
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
33
|
Erreger K, Traynelis SF. Allosteric interaction between zinc and glutamate binding domains on NR2A causes desensitization of NMDA receptors. J Physiol 2005; 569:381-93. [PMID: 16166158 PMCID: PMC1464251 DOI: 10.1113/jphysiol.2005.095497] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fast desensitization is an important regulatory mechanism of neuronal NMDA receptor function. Previous work suggests that fast desensitization of NR1/NR2A receptors is caused by ambient zinc, and that a positive allosteric interaction occurs between the extracellular zinc-binding amino terminal domain and the glutamate-binding domain of NR2A. The relaxation of macroscopic currents in the presence of zinc reflects a shift to a new equilibrium due to increased zinc affinity following the binding of glutamate. Here we demonstrate that this allosteric coupling reflects interactions within the NR2A subunit, and that the affinity of zinc for its binding site is regulated by glutamate binding and not by glycine binding nor by channel pore opening. We fit an explicit model to experimental data over a wide range of parameters, demonstrating that allosteric theory can quantitatively account for the fast zinc-dependent component of desensitization for NR1/NR2A NMDA receptors. We subsequently use this model to evaluate the effects of extracellular zinc on NR1/NR2A excitatory postsynaptic currents (EPSCs) by simulating the response to a brief synaptic-like pulse of glutamate. Modelling results show that zinc at a steady-state concentration of at least 100 nm has a significant effect on the amplitude of NMDA EPSCs but that concurrent release of 10 microm zinc with synaptic glutamate release has little effect on the amplitude of a single NR1/NR2A NMDA EPSC. These data suggest that while steady-state zinc can regulate the amplitude of synaptic NMDA currents, zinc co-released with glutamate will only have significant impact under conditions of high frequency activity or at concentrations high enough to cause voltage-dependent channel block.
Collapse
Affiliation(s)
- Kevin Erreger
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322-3090, USA.
| | | |
Collapse
|
34
|
Rayes D, Spitzmaul G, Sine SM, Bouzat C. Single-channel kinetic analysis of chimeric alpha7-5HT3A receptors. Mol Pharmacol 2005; 68:1475-83. [PMID: 16118362 DOI: 10.1124/mol.105.015438] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The receptor chimera alpha7-5HT3A has served as a prototype for understanding the pharmacology of alpha7 neuronal nicotinic receptors, yet its low single channel conductance has prevented studies of the activation kinetics of single receptor channels. In this study, we show that introducing mutations in the M3-M4 cytoplasmic linker of the chimera alters neither the apparent affinity for the agonist nor the EC50 but increases the amplitude of agonist-evoked single channel currents to enable kinetic analysis. Channel events appear as single brief openings flanked by long closings or as bursts of several openings in quick succession. Both the open and closed time distributions are described as the sum of multiple exponential components, but these do not change over a wide range of acetylcholine (ACh), nicotine, or choline concentrations. Bursts elicited by a saturating concentration of ACh contain brief and long openings and closings, and a cyclic scheme containing two open and two closed states is found to adequately describe the data. The analysis indicates that once fully occupied, the receptor opens rapidly and efficiently, and closes and reopens several times before it desensitizes. Channel closing and desensitization occur at similar rates and account for the invariant open and closed time distributions.
Collapse
Affiliation(s)
- Diego Rayes
- Instituto de Investigaciones Bioquímicas, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina.
| | | | | | | |
Collapse
|
35
|
Henchman RH, Wang HL, Sine SM, Taylor P, McCammon JA. Ligand-induced conformational change in the alpha7 nicotinic receptor ligand binding domain. Biophys J 2005; 88:2564-76. [PMID: 15665135 PMCID: PMC1305353 DOI: 10.1529/biophysj.104.053934] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Molecular dynamics simulations of a homology model of the ligand binding domain of the alpha7 nicotinic receptor are conducted with a range of bound ligands to induce different conformational states. Four simulations of 15 ns each are run with no ligand, antagonist d-tubocurarine (dTC), agonist acetylcholine (ACh), and agonist ACh with potentiator Ca(2+), to give insight into the conformations of the active and inactive states of the receptor and suggest the mechanism for conformational change. The main structural factor distinguishing the active and inactive states is that a more open, symmetric arrangement of the five subunits arises for the two agonist simulations, whereas a more closed and asymmetric arrangement results for the apo and dTC cases. Most of the difference arises in the lower portion of the ligand binding domain near its connection to the adjacent transmembrane domain. The transfer of the more open state to the transmembrane domain could then promote ion flow through the channel. Variation in how subunits pack together with no ligand bound appears to give rise to asymmetry in the apo case. The presence of dTC expands the receptor but induces rotations in alternate directions in adjacent subunits that lead to an asymmetric arrangement as in the apo case. Ca(2+) appears to promote a slightly greater expansion in the subunits than ACh alone by stabilizing the C-loop and ACh positions. Although the simulations are unlikely to be long enough to view the full conformational changes between open and closed states, a collection of different motions at a range of length scales are observed that are likely to participate in the conformational change.
Collapse
Affiliation(s)
- Richard H Henchman
- Howard Hughes Medical Institute, NSF Center for Theoretical Biophysics, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | |
Collapse
|
36
|
Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG. The activation mechanism of alpha1 homomeric glycine receptors. J Neurosci 2004; 24:895-906. [PMID: 14749434 PMCID: PMC6729805 DOI: 10.1523/jneurosci.4420-03.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 11/04/2003] [Accepted: 11/04/2003] [Indexed: 11/21/2022] Open
Abstract
The glycine receptor mediates fast synaptic inhibition in the spinal cord and brainstem. Its activation mechanism is not known, despite the physiological importance of this receptor and the fact that it can serve as a prototype for other homopentameric channels. We analyzed single-channel recordings from rat recombinant alpha1 glycine receptors by fitting different mechanisms simultaneously to sets of sequences of openings at four glycine concentrations (10-1000 microm). The adequacy of the mechanism and the rate constants thus fitted was judged by examining how well these described the observed dwell-time distributions, open-shut correlation, and single-channel P(open) dose-response curve. We found that gating efficacy increased as more glycine molecules bind to the channel, but maximum efficacy was reached when only three (of five) potential binding sites are occupied. Successive binding steps are not identical, implying that binding sites can interact while the channel is shut. These interactions can be interpreted in the light of the topology of the binding sites within a homopentamer.
Collapse
Affiliation(s)
- Marco Beato
- Department of Pharmacology, University College London, WC1E 6BT, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Abstract
Synaptic activity causes significant fluctuations in proton concentrations in the brain. Changes in pH can affect neuronal excitability by acting on ligand-gated channels, including those gated by glutamate. We show here a subunit-dependent regulation of native and recombinant kainate receptors by physiologically relevant proton concentrations. The effect of protons on kainate receptors is voltage-independent and subunit dependent, with GluR5(Q), GluR6(Q), GluR6(R), and GluR6(R)/KA2 receptors being inhibited and GluR6(R)/KA1 receptors being potentiated. Mutation of two acidic residues (E396 and E397) to neutral amino acids significantly reduces the proton sensitivity of the GluR6(Q) receptor, suggesting that these residues influence proton inhibition. The endogenous polyamine spermine potentiated GluR6(R) kainate currents in a pH-dependent manner, producing an acidic shift in the IC(50) for proton inhibition. Spermine potentiation of GluR6(R) is voltage independent, does not affect receptor desensitization, and only slightly shifts the agonist affinity of the receptor. These results suggest that, similar to its action on NMDA receptors, spermine potentiates kainate receptors by relieving proton inhibition of the receptor. Furthermore, they suggest that fluctuations in brain pH during both normal and pathological processes could regulate synaptic transmission and plasticity mediated by kainate receptors.
Collapse
|
38
|
Hapfelmeier G, Tredt C, Haseneder R, Zieglgänsberger W, Eisensamer B, Rupprecht R, Rammes G. Co-expression of the 5-HT3B serotonin receptor subunit alters the biophysics of the 5-HT3 receptor. Biophys J 2003; 84:1720-33. [PMID: 12609874 PMCID: PMC1302741 DOI: 10.1016/s0006-3495(03)74980-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Accepted: 11/22/2002] [Indexed: 11/26/2022] Open
Abstract
Homomeric complexes of 5-HT(3A) receptor subunits form a ligand-gated ion channel. This assembly does not fully reproduce the biophysical and pharmacological properties of native 5-HT(3) receptors which might contain the recently cloned 5-HT(3B) receptor subunit. In the present study, heteromeric assemblies containing human 5-HT(3A) and 5-HT(3B) subunits were expressed in HEK 293 cells to detail the functional diversity of 5-HT(3) receptors. We designed patch-clamp experiments with homomeric (5-HT(3A)) and heteromeric (5-HT(3AB)) receptors to emphasize the kinetics of channel activation and desensitization. Co-expression of the 5-HT(3B) receptor subunit reduced the sensitivity for 5-HT (5-HT(3A) receptor: EC(50) 3 micro M, Hill coefficient 1.8; 5-HT(3AB) receptor: EC(50) 25 micro M, Hill coefficient 0.9) and markedly altered receptor desensitization. Kinetic modeling suggested that homomeric receptors, but not heteromeric receptors, desensitize via an agonist-induced open-channel block. Furthermore, heteromeric 5-HT(3AB) receptor assemblies recovered much faster from desensitization than homomeric 5-HT(3A) receptor assemblies. Unexpectedly, the specific 5-HT(3) receptor agonist mCPBG induced an open-channel block at both homomeric and heteromeric receptors. Because receptor desensitization and resensitization massively affect amplitude, duration, and frequency of synaptic signaling, these findings are evidence in favor of a pivotal role of subunit composition of 5-HT(3) receptors in serotonergic transmission.
Collapse
Affiliation(s)
- G Hapfelmeier
- Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Mott DD, Washburn MS, Zhang S, Dingledine RJ. Subunit-dependent modulation of kainate receptors by extracellular protons and polyamines. J Neurosci 2003; 23:1179-88. [PMID: 12598606 PMCID: PMC6742282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Revised: 12/03/2002] [Accepted: 12/06/2002] [Indexed: 03/01/2023] Open
Abstract
Synaptic activity causes significant fluctuations in proton concentrations in the brain. Changes in pH can affect neuronal excitability by acting on ligand-gated channels, including those gated by glutamate. We show here a subunit-dependent regulation of native and recombinant kainate receptors by physiologically relevant proton concentrations. The effect of protons on kainate receptors is voltage-independent and subunit dependent, with GluR5(Q), GluR6(Q), GluR6(R), and GluR6(R)/KA2 receptors being inhibited and GluR6(R)/KA1 receptors being potentiated. Mutation of two acidic residues (E396 and E397) to neutral amino acids significantly reduces the proton sensitivity of the GluR6(Q) receptor, suggesting that these residues influence proton inhibition. The endogenous polyamine spermine potentiated GluR6(R) kainate currents in a pH-dependent manner, producing an acidic shift in the IC(50) for proton inhibition. Spermine potentiation of GluR6(R) is voltage independent, does not affect receptor desensitization, and only slightly shifts the agonist affinity of the receptor. These results suggest that, similar to its action on NMDA receptors, spermine potentiates kainate receptors by relieving proton inhibition of the receptor. Furthermore, they suggest that fluctuations in brain pH during both normal and pathological processes could regulate synaptic transmission and plasticity mediated by kainate receptors.
Collapse
Affiliation(s)
- David D Mott
- Department of Pharmacology, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
40
|
Uteshev VV, Meyer EM, Papke RL. Activation and inhibition of native neuronal alpha-bungarotoxin-sensitive nicotinic ACh receptors. Brain Res 2002; 948:33-46. [PMID: 12383953 DOI: 10.1016/s0006-8993(02)02946-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tuberomammillary histamine neurons (TM) of the posterior hypothalamus exclusively express alpha-bungarotoxin (alphaBgt) sensitive nicotinic receptors, providing a unique model system for studying physiological properties of native alpha7-like receptors. Here the properties of alphaBgt-sensitive receptors were investigated using the patch-clamp technique and rapid application of acetylcholine (ACh) or the alpha7-selective agonists, 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21), and choline. Alpha-Bgt-sensitive receptor responses to rapid application of high agonist concentrations were characterized by a transient current which rapidly decayed in a voltage-independent concentration-dependent manner to a relatively sustained slow current. Upon agonist removal, current persisted for several milliseconds (or longer) and increased above the level of the slow current (rebound). Lower agonist concentrations did not produce a rebound. Our analysis suggests that the current rebound represents a recovery phase from a low potency inhibition. This inhibition was voltage-dependent for ACh and choline but voltage-independent for 4OH-GTS-21. A slow form of desensitization was present which was relatively agonist-independent and was faster than the rate of 4OH-GTS-21 unbinding. Kinetic analysis revealed that the concentration dependence of the transient response amplitudes was compromised by solution exchange; net charge measurements over the late response phases were chosen as an alternative measure of concentration/response function. Our data suggest that low agonist concentrations can evoke a prolonged or tonic-like receptor activation. Functioning in this modality, receptors would regulate calcium homeostasis over a narrow, but therapeutically important, range of intracellular calcium concentrations. This could then provide the basis for cytoprotective effects of 4OH-GTS-21 and other nicotinic agonists, mediating trophic and neuromodulatory functions.
Collapse
Affiliation(s)
- Vladimir V Uteshev
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Box 100267 JHMHSC, 1600 SW Archer Rd, University of Florida, Gainesville 32610-0267, FL, USA
| | | | | |
Collapse
|
41
|
Papke RL, Porter Papke JK. Comparative pharmacology of rat and human alpha7 nAChR conducted with net charge analysis. Br J Pharmacol 2002; 137:49-61. [PMID: 12183330 PMCID: PMC1573461 DOI: 10.1038/sj.bjp.0704833] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Pharmacological studies of alpha7 nicotinic acetylcholine receptors are confounded by the fact that rapid desensitization to high agonist concentration causes alpha7 peak responses to occur well in advance of complete solution exchange. For this reason, peak currents are an invalid measure of response to applied agonist concentrations. We show that results comparable to those that have been corrected for instantaneous concentration are obtained if net charge is used as the measure of receptor response. 2. Dose response curves obtained with these methods indicate that alpha7 receptors are approximately 10 fold more sensitive to agonist than previously reported. The agonists, ACh, choline, cytisine, GTS-21, 4OH-GTS-21 and 4-MeO-CA have the same rank order potency for both human and rat receptors: 4-MeO-CA > 4OH-GTS-21 > GTS-21 > cytisine > ACh > choline. However, differences in efficacy exist between rat and human receptors. GTS-21 is more efficacious for rat than human alpha7 receptors and cytosine more efficacious for human than rat alpha7 receptors. 3. Choline is the least potent agonist for both human and rat alpha7, with a potency approximately 10 fold lower than that of ACh. While the EC50 for the activation of alpha7 receptors by choline (400-500 microM) is outside the normal physiological range (10-100 microM), choline can nonetheless produce detectable levels of channel activation in the physiological concentration range. Since these concentrations are relatively non-desensitizing, the contribution of choline-activated alpha7 receptor current may play a significant role in the regulation of calcium homeostasis in alpha7-expressing neurons.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, Box 100267 JHMHSC, University of Florida, Gainesville, Florida, FL 32610-0267, USA.
| | | |
Collapse
|
42
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|