1
|
Hu S, Wang L, Zheng M, Wang M, Chen B, Lin L. LY333531 attenuates contraction of tumor necrosis factor-α-sensitized human airway smooth muscle cells. J Asthma 2024; 61:1514-1522. [PMID: 38833524 DOI: 10.1080/02770903.2024.2364810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Protein kinase C (PKC) has been implicated in the increased contraction of human airway smooth muscle cells (HASMCs) in asthma. Using the three-dimensional collagen gel contraction system, the study aimed to determine the effects of LY333531, a specific inhibitor of the PKC-β isoform, on the contraction of tumor necrosis factor (TNF)-α-sensitized HASMCs. METHODS Cultured HASMCs were divided into five groups: the control group received no treatment, and the cells in the TNF-α group were sensitized with 10 ng/mL TNF-α for 48 h, while TNF-α was administered to sensitize HASMCs in the presence of 0.1, 0.2, and 0.5 μM LY333531 for 48 h in the 0.1LY, 0.2LY, and 0.5LY groups, respectively. Following this, HASMCs contraction was stimulated with 1 mM acetylcholine (ACh) for up to 24 h in each group and assessed using a three-dimensional collagen gel contraction assay. Furthermore, western blot and immunofluorescence analysis were performed. RESULTS The collagen gel contraction assay revealed that TNF-α increased the protein expression of phosphorylated PKC-β2, CPI-17, and MLC while exacerbating ACh-induced HASMCs contraction. LY333531 significantly attenuated HASMCs contraction and downregulated the protein expression of both p-CPI-17 and p-MLC. CONCLUSIONS At least in part by regulating CPI-17 and MLC phosphorylation, LY333531 attenuates augmented contraction of TNF-α-sensitized HASMCs in a collagen gel contraction system.
Collapse
Affiliation(s)
- Shuyu Hu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liangrong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miaomiao Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengjia Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Baihui Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lina Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Ikeda H, Ihara E, Takeya K, Mukai K, Onimaru M, Ouchida K, Hata Y, Bai X, Tanaka Y, Sasaki T, Saito F, Eto M, Nakayama J, Oda Y, Nakamura M, Inoue H, Ogawa Y. The interplay between alterations in esophageal microbiota associated with Th17 immune response and impaired LC20 phosphorylation in achalasia. J Gastroenterol 2024; 59:361-375. [PMID: 38472375 DOI: 10.1007/s00535-024-02088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/04/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Achalasia is an esophageal motility disorder with an unknown etiology. We aimed to determine the pathogenesis of achalasia by studying alterations in esophageal smooth muscle contraction and the associated inflammatory response, and evaluate the role of esophageal microbiota in achalasia development. METHODS We analyzed esophageal mucosa and lower esophageal sphincter (LES) samples, obtained from patients with type II achalasia who underwent peroral endoscopic myotomy. Esophageal conditioned media obtained from patients were transferred into the mouse esophagus to determine whether the esophageal intraluminal environment is associated with achalasia. RESULTS Approximately 30% of 20-kDa myosin light chains (LC20) was phosphorylated in LES from the control group under resting and stimulated conditions, whereas less than 10% of LC20 phosphorylation was detected in achalasia under all conditions. The hypophosphorylation of LC20 in achalasia was associated with the downregulation of the myosin phosphatase-inhibitor protein CPI-17. Th17-related cytokines, including IL-17A, IL-17F, IL-22, and IL-23A, were significantly upregulated in achalasia. α-Diversity index of esophageal microbiota and the proportion of several microbes, including Actinomyces and Dialister, increased in achalasia. Actinomyces levels positively correlated with IL-23A levels, whereas Dialister levels were positively associated with IL-17A, IL-17F, and IL-22 levels. Esophageal IL-17F levels increased in mice after oral administration of the conditioned media. CONCLUSIONS In LES of patients with achalasia, hypophosphorylation of LC20, a possible cause of impaired contractility, was associated with CPI-17 downregulation and an increased Th17-related immune response. The esophageal intraluminal environment, represented by the esophageal microbiota, could be associated with the development and exacerbation of achalasia.
Collapse
Affiliation(s)
- Hiroko Ikeda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan.
| | - Kosuke Takeya
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Koji Mukai
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Manabu Onimaru
- Digestive Diseases Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Kenoki Ouchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Hata
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Xiaopeng Bai
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Yoshimasa Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Taisuke Sasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumiyo Saito
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Masumi Eto
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruhiro Inoue
- Digestive Diseases Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| |
Collapse
|
3
|
Dong Y, Wang J, Yang C, Bao J, Liu X, Chen H, Zhang X, Shi W, Zhang L, Qi Q, Li Y, Wang S, Ma R, Cong B, Zhang G. Phosphorylated CPI-17 and MLC2 as Biomarkers of Coronary Artery Spasm-Induced Sudden Cardiac Death. Int J Mol Sci 2024; 25:2941. [PMID: 38474189 PMCID: PMC10932290 DOI: 10.3390/ijms25052941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Coronary artery spasm (CAS) plays an important role in the pathogeneses of various ischemic heart diseases and has gradually become a common cause of life-threatening arrhythmia. The specific molecular mechanism of CAS has not been fully elucidated, nor are there any specific diagnostic markers for the condition. Therefore, this study aimed to examine the specific molecular mechanism underlying CAS, and screen for potential diagnostic markers. To this end, we successfully constructed a rat CAS model and achieved in vitro culture of a human coronary-artery smooth-muscle cell (hCASMC) contraction model. Possible molecular mechanisms by which protein kinase C (PKC) regulated CAS through the C kinase-potentiated protein phosphatase 1 inhibitor of 17 kDa (CPI-17)/myosin II regulatory light chain (MLC2) pathway were studied in vivo and in vitro to screen for potential molecular markers of CAS. We performed hematoxylin and eosin staining, myocardial zymogram, and transmission electron microscopy to determine myocardial and coronary artery injury in CAS rats. Then, using immunohistochemical staining, immunofluorescence staining, and Western blotting, we further demonstrated a potential molecular mechanism by which PKC regulated CAS via the CPI-17/MLC2 pathway. The results showed that membrane translocation of PKCα occurred in the coronary arteries of CAS rats. CPI-17/MLC2 signaling was observably activated in coronary arteries undergoing CAS. In addition, in vitro treatment of hCASMCs with angiotensin II (Ang II) increased PKCα membrane translocation while consistently activating CPI-17/MLC2 signaling. Conversely, GF-109203X and calphostin C, specific inhibitors of PKC, inactivated CPI-17/MLC2 signaling. We also collected the coronary artery tissues from deceased subjects suspected to have died of CAS and measured their levels of phosphorylated CPI-17 (p-CPI-17) and MLC2 (p-MLC2). Immunohistochemical staining was positive for p-CPI-17 and p-MLC2 in the tissues of these subjects. These findings suggest that PKCα induced CAS through the CPI-17/MLC2 pathway; therefore, p-CPI-17 and p-MLC2 could be used as potential markers for CAS. Our data provide novel evidence that therapeutic strategies against PKC or CPI-17/MLC2 signaling might be promising in the treatment of CAS.
Collapse
Affiliation(s)
- Yiming Dong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Jianfeng Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Chenteng Yang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Junxia Bao
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Xia Liu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Hao Chen
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Xiaojing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Weibo Shi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Lihua Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Qian Qi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Songjun Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Rufei Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
| | - Guozhong Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (Y.D.); (J.W.); (C.Y.); (J.B.); (X.L.); (H.C.); (X.Z.); (W.S.); (L.Z.); (Q.Q.); (Y.L.); (S.W.); (R.M.); (B.C.)
- Hebei Province Laboratory of Experimental Animal, Shijiazhuang 050017, China
| |
Collapse
|
4
|
Nelson MR, Zhang X, Podgaetz E, Wang X, Zhang Q, Pan Z, Spechler SJ, Souza RF. Th2 cytokine signaling through IL-4Rα increases eotaxin-3 secretion and tension in human esophageal smooth muscle. Am J Physiol Gastrointest Liver Physiol 2024; 326:G38-G52. [PMID: 37933466 DOI: 10.1152/ajpgi.00155.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
In esophageal epithelial cells in eosinophilic esophagitis (EoE), Th2 cytokines (IL-4, IL-13) signal through IL-4Rα, activating JAK to increase eotaxin-3 secretion, which draws eosinophils into the mucosa. We explored whether Th2 cytokines also might stimulate eotaxin-3 secretion and increase tension in esophageal smooth muscle (ESM), which might impair esophageal distensibility, and whether those events could be blocked by proton pump inhibitors (PPIs) or agents that disrupt IL-4Rα signaling. We established human ESM cell cultures from organ donors, characterizing Th2 cytokine receptor and P-type ATPase expression by qPCR. We measured Th2 cytokine-stimulated eotaxin-3 secretion by enzyme-linked immunosorbent assay (ELISA) and ESM cell tension by gel contraction assay, before and after treatment with omeprazole, ruxolitinib (JAK inhibitor), or IL-4Rα blocking antibody. CPI-17 (inhibitor of a muscle-relaxing enzyme) effects were studied with CPI-17 knockdown by siRNA or CPI-17 phospho(T38A)-mutant overexpression. ESM cells expressed IL-4Rα and IL-13Rα1 but only minimal H+-K+-ATPase mRNA. Th2 cytokines increased ESM eotaxin-3 secretion and tension, effects blocked by ruxolitinib and IL-4Rα blocking antibody but not consistently blocked by omeprazole. IL-13 increased ESM tension by increasing CPI-17 expression and phosphorylation, effects blocked by CPI-17 knockdown. Blocking IL-4Rα decreased IL-13-stimulated eotaxin-3 secretion, CPI-17 expression, and tension in ESM. Th2 cytokines increase ESM eotaxin-3 secretion and tension via IL-4Rα signaling that activates CPI-17. Omeprazole does not reliably inhibit this process, but IL-4Rα blocking antibody does. This suggests that ESM eosinophilia and impaired esophageal distensibility might persist despite elimination of mucosal eosinophils by PPIs, and IL-4Rα blocking agents might be especially useful in this circumstance.NEW & NOTEWORTHY We have found that Th2 cytokines increase eotaxin-3 secretion and tension in esophageal smooth muscle (ESM) cells via IL-4Rα signaling. Unlike esophageal epithelial cells, ESM cells do not express H+-K+-ATPase, and omeprazole does not inhibit their cytokine-stimulated eotaxin-3 secretion or tension. An IL-4Rα blocking antibody reduces both eotaxin-3 secretion and tension induced by Th2 cytokines in ESM cells, suggesting that an agent such as dupilumab might be preferred for patients with EoE with esophageal muscle involvement.
Collapse
Affiliation(s)
- Melissa R Nelson
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas, United States
| | - Xi Zhang
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas, United States
| | - Eitan Podgaetz
- Center for Thoracic Surgery, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas, United States
| | - Xuan Wang
- Biostatistics Core, Baylor Scott and White Research Institute, Dallas, Texas, United States
| | - Qiuyang Zhang
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas, United States
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, Texas, United States
| | - Stuart Jon Spechler
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas, United States
| | - Rhonda F Souza
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, Texas, United States
| |
Collapse
|
5
|
Xiao Q, Wang D, Li D, Huang J, Ma F, Zhang H, Sheng Y, Zhang C, Ha X. Protein kinase C: A potential therapeutic target for endothelial dysfunction in diabetes. J Diabetes Complications 2023; 37:108565. [PMID: 37540984 DOI: 10.1016/j.jdiacomp.2023.108565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases that play an important role in many organs and systems and whose activation contributes significantly to endothelial dysfunction in diabetes. The increase in diacylglycerol (DAG) under high glucose conditions mediates PKC activation and synthesis, which stimulates oxidative stress and inflammation, resulting in impaired endothelial cell function. This article reviews the contribution of PKC to the development of diabetes-related endothelial dysfunction and summarizes the drugs that inhibit PKC activation, with the aim of exploring therapeutic modalities that may alleviate endothelial dysfunction in diabetic patients.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Dan Wang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Danyang Li
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jing Huang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Feifei Ma
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, Gansu, China
| | - Haocheng Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yingda Sheng
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Caimei Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaoqin Ha
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
6
|
Tian Y, Guan L, Qian Y, Wu Y, Gu Z. Effect of PPP1R14D gene high expression in lung adenocarcinoma knocked out on proliferation and apoptosis of DMS53 cell. Clin Transl Oncol 2022; 24:1914-1923. [PMID: 35579727 DOI: 10.1007/s12094-022-02842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Globally, lung cancer remains the most commonly diagnosed cancer and the leading cause of cancer-related mortality. Lung adenocarcinoma (LUAD) is a common subtype of lung cancer and carries a poor prognosis. Treatment outcomes biomarkers in LUAD are critical, and there is currently a paucity of data; therefore, there is a need for novel biomarkers and newer therapeutic targets. METHODS Bayesian analysis was used to obtain the whole-genome t value of LUAD. Gene set enrichment analysis (GSEA) was conducted to obtain the normalized enrichment scores (NES) of the whole genome, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was analyzed using the Gene Set Analysis Toolkit. Herein, we investigated the PPP1R14D expression level at the protein level in LUAD and the impact of PPP1R14D knockdown on the proliferation and apoptosis of LUAD cells in vitro. RESULTS A total of 483 LUAD samples and 59 normal control samples were included, and 904 differentially expressed genes (DEGs) and 504 LUAD-related genes reported in the literature were obtained. The DEGs showed that PPP1R14D was the most significantly up-regulated gene. Western blot of 30 cases of LUAD tissue and adjacent normal tissue also found that PPP1R14D was significantly highly expressed in cancer tissues. Lentivirus-mediated shRNA strategy effectively inhibited PPP1R14D expression in human LUAD cells DMS53, while PPP1R14D knockdown induced apoptosis and cell proliferation in DMS53 cells. CONCLUSION Abnormally up-regulated PPP1R14D promotes the survival and proliferation of tumor cells in human LUAD and may serve as a therapeutic and diagnostic target for LUAD.
Collapse
Affiliation(s)
- Ye Tian
- Ward 2, Department of Respiratory Medicine, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Liguo Guan
- Department of Traditional Chinese Medicine, Jianhua District Hospital of Traditional Chinese Medicine, Qiqihar, 161000, China
| | - Yuting Qian
- Ward 2, Department of Respiratory Medicine, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Yue Wu
- Ward 2, Department of Respiratory Medicine, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Zexin Gu
- Ward 2, Department of Respiratory Medicine, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China.
| |
Collapse
|
7
|
Eto M, Katsuki S, Ohashi M, Miyagawa Y, Tanaka Y, Takeya K, Kitazawa T. Possible roles of N- and C-terminal unstructured tails of CPI-17 in regulating Ca<sup>2+</sup> sensitization force of smooth muscle. J Smooth Muscle Res 2022; 58:22-33. [PMID: 35418530 PMCID: PMC9006046 DOI: 10.1540/jsmr.58.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CPI-17 regulates the myosin phosphatase and mediates the agonist-induced contraction of
smooth muscle. PKC and ROCK phosphorylate CPI-17 at Thr38 leading to a conformational
change of the central inhibitory domain (PHIN domain). The N- and C-terminal tails of
CPI-17 are predicted as unstructured loops and their sequences are conserved among
mammals. Here we characterized CPI-17 N- and C-terminal unstructured tails using
recombinant proteins that lack the potions. Recombinant CPI-17 proteins at a physiologic
level (10 µM) were doped into beta-escin-permeabilized smooth muscle strips for
Ca2+ sensitization force measurement. The ectopic full-length CPI-17
augmented the PDBu-induced Ca2+ sensitization force at pCa6.3, indicating
myosin phosphatase inhibition. Deletion of N- and C-terminal tails of CPI-17 attenuated
the extent of PDBu-induced Ca2+-sensitization force. The N-terminal deletion
dampened phosphorylation at Thr38 by protein kinase C (PKC), and the C-terminal truncation
lowered the affinity to the myosin phosphatase. Under the physiologic conditions, PKC and
myosin phosphatase may recognize CPI-17 N-/C-terminal unstructured tails inducing
Ca2+ sensitization force in smooth muscle cells.
Collapse
Affiliation(s)
- Masumi Eto
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Shuichi Katsuki
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Minami Ohashi
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Yui Miyagawa
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Yoshinori Tanaka
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Kosuke Takeya
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Toshio Kitazawa
- Department of Mol Physiol & Biophysics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
8
|
Oliveira-Paula GH, Pereira DA, Pinheiro LC, Ferreira GC, Paula-Garcia WN, Garcia LV, Lacchini R, Luizon MR, Tanus-Santos JE. Gene-gene interactions in the protein kinase C/endothelial nitric oxide synthase axis impact the hypotensive effects of propofol. Basic Clin Pharmacol Toxicol 2021; 130:277-287. [PMID: 34825477 DOI: 10.1111/bcpt.13691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Anaesthesia with propofol is frequently associated with hypotension, which is at least partially attributable to increased nitric oxide (NO) formation derived from the activation of protein kinase C (PKC)/endothelial NO synthase (NOS3) axis. In this cross-sectional study, we tested whether PRKCA (which encodes PKCα) polymorphisms, or haplotypes, and interactions among PRKCA and NOS3 polymorphisms affect the hypotensive responses to propofol. We collected venous blood samples from 164 patients before and 10 min after propofol administration. Genotypes were determined by PCR and haplotype frequencies were estimated. Nitrite and NOx (nitrites+nitrates) levels were measured by using an ozone-based chemiluminescence assay and the Griess reaction, respectively. We used multifactor dimensionality reduction to test interactions among PRKCA and NOS3 polymorphisms. Propofol promoted enhanced blood pressure-lowering effects and increased nitrite levels in subjects carrying GA + AA genotypes for the rs16960228 and TC + CC genotypes for the rs1010544 PRKCA polymorphisms, and the CCG haplotype. Moreover, genotypes for the rs1010544 PRKCA polymorphism were associated with higher or lower blood pressure decreases in response to propofol depending on the genotypes for the rs2070744 NOS3 polymorphism. Our findings suggest that PRKCA genotypes and haplotypes impact the hypotensive responses to propofol, possibly by modifying NO bioavailability, and that PRKCA-NOS3 interactions modify the blood pressure-lowering effects of propofol.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Wilf Family Cardiovascular Research Institute, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, New York, New York, USA
| | - Daniela A Pereira
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Waynice N Paula-Garcia
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luis V Garcia
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcelo R Luizon
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
9
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Wei X, Lan T, Zhou Y, Cheng J, Li P, Zeng X, Yang Y. Mechanism of α1-Adrenergic Receptor-Induced Increased Contraction of Rat Mesenteric Artery in Aging Hypertension Rats. Gerontology 2021; 67:323-337. [PMID: 33752204 DOI: 10.1159/000511911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Vasoconstriction is triggered by an increase in intracellular-free calcium concentration. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase (ROCK), protein kinase C (PKC), and so on. In this study, we studied the changes of vascular reactivity as well as the underlying signaling pathways in aging spontaneously hypertensive rats (SHRs). METHODS The artery tension induced by α1-adrenergic receptor activator (α1-AR) phenylephrine (PE) was measured in the absence or presence of myosin light chain kinase (MLCK), PKC, and ROCK inhibitors. The α1-AR, PKC, ROCK, phosphorylation of myosin light chain (MLC), and PKC-potentiated phosphatase inhibitors of 17 kDa (CPI-17) of rat mesenteric arteries were analyzed at the mRNA level or protein level. RESULTS The vascular tension measurements showed that there was a significant increase in the mesenteric artery contraction induced by PE in old SHR. MLCK inhibitor ML-7 can similarly inhibit PE-induced vasoconstriction. PKC inhibitor GF109203X has the weakest inhibitory effect on PE-induced contraction in old SHR. At the presence of ROCK inhibitor H1152, PE-induced contraction was significantly reduced in young Wistar-Kyoto (WKY) rats, but this phenomenon disappeared in other rats. Furthermore, in old SHR the protein expression of α1-AR decreased and phosphorylation of MLC and CPI-17 were upregulated and MLC phosphatase (MLCP) activity was significantly lower. The expressions of PKC were upregulated in SHR and old rats. In addition, the expression of ROCK-1 was decreased and ROCK-2 was significantly upregulated with age in SHR. CONCLUSION In aging hypertension, the expression/activity of PKC or ROCK-2/CPI-17 excessively increased, MLCP activity decreased and MLC phosphorylation enhanced, leading to increased α1-AR-induced vasoconstriction.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ting Lan
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuanqun Zhou
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaorong Zeng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,
| |
Collapse
|
11
|
Semiz AT, Teker AB, Yapar K, Doğan BSU, Takır S. Hydrogen sulfide dilates the isolated retinal artery mainly via the activation of myosin phosphatase. Life Sci 2020; 255:117834. [PMID: 32454158 DOI: 10.1016/j.lfs.2020.117834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
AIMS Hydrogen sulfide (H2S) is shown in ocular tissues and suggested to involve in the regulation of retinal circulation. However, the mechanism of H2S-induced relaxation on retinal artery is not clarified yet. Herein, we aimed to evaluate the role of several calcium (Ca2+) signaling and Ca2+ sensitization mechanisms in the relaxing effect of H2S donor, NaHS, on retinal arteries. MATERIALS AND METHODS Relaxing effects of NaHS (10-5-3 × 10-3M) were determined on precontracted retinal arteries in Ca2+ free medium as well as in the presence of the inhibitors of Ca2+ signaling and Ca2+ sensitization mechanisms. Additively, Ca2+ sensitivity of the contractile apparatus were evaluated by CaCl2-induced contractions in the presence of NaHS (3 × 10-3M). Functional experiments were furtherly assessed by protein and/or mRNA expressions, as appropriate. KEY FINDINGS The relaxations to NaHS were preserved in Ca2+ free medium while NaHS pretreatment decreased the responsiveness to CaCl2. The inhibitors of plasmalemmal Ca2+-ATPase, sarcoplasmic-endoplasmic reticulum Ca2+-ATPase, Na+-Ca2+ ion-exchanger and myosin light chain kinase (MLCK) unchanged the relaxations to NaHS. Likewise, Ca2+ sensitization mechanisms including, rho kinase, protein kinase C and tyrosine kinase were unlikely to mediate the relaxation to NaHS in retinal artery. Whereas, a marked reduction was determined in NaHS-induced relaxations in the presence of MLCP inhibitor, calyculin A. Supportively, NaHS pretreatment significantly reduced phosphorylation of MYPT1-subunit of MLCP. SIGNIFICANCE The relaxing effect of NaHS in retinal artery is likely to be related to the activation of MLCP and partly, to decrement in Ca2+ sensitivity of contractile apparatus.
Collapse
Affiliation(s)
- Ayça Toprak Semiz
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey; Istanbul University, Graduate School of Health Sciences, Istanbul, Turkey
| | - Ayşegül Başak Teker
- Department of Medical Genetics, Faculty of Medicine, Giresun University, Giresun 28200, Turkey
| | - Kürşad Yapar
- Department of Medical Pharmacology, Faculty of Medicine, Giresun University, Giresun 28200, Turkey
| | | | - Selçuk Takır
- Department of Medical Pharmacology, Faculty of Medicine, Giresun University, Giresun 28200, Turkey.
| |
Collapse
|
12
|
Lang I, Virk G, Zheng DC, Young J, Nguyen MJ, Amiri R, Fong M, Arata A, Chadaideh KS, Walsh S, Weiser DC. The Evolution of Duplicated Genes of the Cpi-17/Phi-1 ( ppp1r14) Family of Protein Phosphatase 1 Inhibitors in Teleosts. Int J Mol Sci 2020; 21:ijms21165709. [PMID: 32784920 PMCID: PMC7460850 DOI: 10.3390/ijms21165709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022] Open
Abstract
The Cpi-17 (ppp1r14) gene family is an evolutionarily conserved, vertebrate specific group of protein phosphatase 1 (PP1) inhibitors. When phosphorylated, Cpi-17 is a potent inhibitor of myosin phosphatase (MP), a holoenzyme complex of the regulatory subunit Mypt1 and the catalytic subunit PP1. Myosin phosphatase dephosphorylates the regulatory myosin light chain (Mlc2) and promotes actomyosin relaxation, which in turn, regulates numerous cellular processes including smooth muscle contraction, cytokinesis, cell motility, and tumor cell invasion. We analyzed zebrafish homologs of the Cpi-17 family, to better understand the mechanisms of myosin phosphatase regulation. We found single homologs of both Kepi (ppp1r14c) and Gbpi (ppp1r14d) in silico, but we detected no expression of these genes during early embryonic development. Cpi-17 (ppp1r14a) and Phi-1 (ppp1r14b) each had two duplicate paralogs, (ppp1r14aa and ppp1r14ab) and (ppp1r14ba and ppp1r14bb), which were each expressed during early development. The spatial expression pattern of these genes has diverged, with ppp1r14aa and ppp1r14bb expressed primarily in smooth muscle and skeletal muscle, respectively, while ppp1r14ab and ppp1r14ba are primarily expressed in neural tissue. We observed that, in in vitro and heterologous cellular systems, the Cpi-17 paralogs both acted as potent myosin phosphatase inhibitors, and were indistinguishable from one another. In contrast, the two Phi-1 paralogs displayed weak myosin phosphatase inhibitory activity in vitro, and did not alter myosin phosphorylation in cells. Through deletion and chimeric analysis, we identified that the difference in specificity for myosin phosphatase between Cpi-17 and Phi-1 was encoded by the highly conserved PHIN (phosphatase holoenzyme inhibitory) domain, and not the more divergent N- and C- termini. We also showed that either Cpi-17 paralog can rescue the knockdown phenotype, but neither Phi-1 paralog could do so. Thus, we provide new evidence about the biochemical and developmental distinctions of the zebrafish Cpi-17 protein family.
Collapse
Affiliation(s)
- Irene Lang
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Guneet Virk
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Dale C. Zheng
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Jason Young
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Michael J. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Rojin Amiri
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Michelle Fong
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Alisa Arata
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Katia S. Chadaideh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Susan Walsh
- Life Sciences, Soka University of America, Aliso Viejo, CA 92656, USA;
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
- Correspondence: ; Tel.: +1-209-946-2955
| |
Collapse
|
13
|
Usui-Kawanishi F, Takahashi M, Sakai H, Suto W, Kai Y, Chiba Y, Hiraishi K, Kurahara LH, Hori M, Inoue R. Implications of immune-inflammatory responses in smooth muscle dysfunction and disease. J Smooth Muscle Res 2020; 55:81-107. [PMID: 32023567 PMCID: PMC6997890 DOI: 10.1540/jsmr.55.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the past few decades, solid evidence has been accumulated for the pivotal significance
of immunoinflammatory processes in the initiation, progression, and exacerbation of many
diseases and disorders. This groundbreaking view came from original works by Ross who
first described that excessive inflammatory-fibroproliferative response to various forms
of insult to the endothelium and smooth muscle of the artery wall is essential for the
pathogenesis of atherosclerosis (Ross, Nature 1993; 362(6423): 801–9). It is now widely
recognized that both innate and adaptive immune reactions are avidly involved in the
inflammation-related remodeling of many tissues and organs. When this state persists,
irreversible fibrogenic changes would occur often culminating in fatal insufficiencies of
many vital parenchymal organs such as liver, lung, heart, kidney and intestines. Thus,
inflammatory diseases are becoming the common life-threatening risk for and urgent concern
about the public health in developed countries (Wynn et al., Nature Medicine 2012; 18(7):
1028–40). Considering this timeliness, we organized a special symposium entitled
“Implications of immune/inflammatory responses in smooth muscle dysfunction and disease”
in the 58th annual meeting of the Japan Society of Smooth Muscle Research. This symposium
report will provide detailed synopses of topics presented in this symposium; (1) the role
of inflammasome in atherosclerosis and abdominal aortic aneurysms by Fumitake
Usui-Kawanishi and Masafumi Takahashi; (2) Mechanisms underlying the pathogenesis of
hyper-contractility of bronchial smooth muscle in allergic asthma by Hiroyasu Sakai,
Wataru Suto, Yuki Kai and Yoshihiko Chiba; (3) Vascular remodeling in pulmonary arterial
hypertension by Keizo Hiraishi, Lin Hai Kurahara and Ryuji Inoue.
Collapse
Affiliation(s)
- Fumitake Usui-Kawanishi
- Division of Biopharmaceutical Engineering, Department of Pharmaceutical Engineering, Toyoma Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan.,Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, 3311-159 Yakushiji, Shimono-shi, Tochigi 329-0498, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, 3311-159 Yakushiji, Shimono-shi, Tochigi 329-0498, Japan
| | - Hiroyasu Sakai
- Department of Analytical Pathophysiology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuki Kai
- Department of Analytical Pathophysiology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Lin Hai Kurahara
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.,Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ido, Miki-machi, Kida-gun, Kagawa 761-0793, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
14
|
Aerobic exercise-induced inhibition of PKCα/CaV1.2 pathway enhances the vasodilation of mesenteric arteries in hypertension. Arch Biochem Biophys 2019; 678:108191. [DOI: 10.1016/j.abb.2019.108191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023]
|
15
|
Zhao W, Wang P, He W, Tao T, Li H, Li Y, Jiang W, Sun J, Ge X, Chen X, Zheng Y, Wei L, Chen C, Wang Y, Li C, Chen H, Yao B, Tang W, Zhu M. MYPT1 Down-regulation by Lipopolysaccharide-SIAH1/2 E3 Ligase-Ubiquitin-Proteasomal Degradation Contributes to Colonic Obstruction of Hirschsprung Disease. Cell Mol Gastroenterol Hepatol 2019; 9:345-347.e6. [PMID: 31759145 PMCID: PMC6997446 DOI: 10.1016/j.jcmgh.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Key Words
- anova, analysis of variance
- cir, circular
- d, dilated
- haec, hirschsprung-associated enterocolitis
- hd, hirschsprung disease
- long, longitudinal
- lps, lipopolysaccharide
- n, narrow
- rlc, regulatory light chain
- snp, sodium nitroprusside
Collapse
Affiliation(s)
- W Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China; Reproductive Medical Center, Jinling Hospital Affiliated Medical School of Nanjing University, Nanjing, China
| | - P Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - W He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Soochow University, Suzhou, China
| | - T Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - H Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Y Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - W Jiang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - J Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - X Ge
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated Medical College of Zhejiang University, Hangzhou, China
| | - X Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - Y Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - L Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - C Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - Y Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - C Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China
| | - H Chen
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - B Yao
- Reproductive Medical Center, Jinling Hospital Affiliated Medical School of Nanjing University, Nanjing, China.
| | - W Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - M Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study and the Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
16
|
Zhang C, He X, Murphy SR, Zhang H, Wang S, Ge Y, Gao W, Williams JM, Geurts AM, Roman RJ, Fan F. Knockout of Dual-Specificity Protein Phosphatase 5 Protects Against Hypertension-Induced Renal Injury. J Pharmacol Exp Ther 2019; 370:206-217. [PMID: 31118214 PMCID: PMC6636243 DOI: 10.1124/jpet.119.258954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Dual-specificity protein phosphatase 5 (DUSP5) is a member of the tyrosine-threonine phosphatase family with the ability to dephosphorylate and inactivate extracellular signal-related kinase (ERK). The present study investigates whether knockout (KO) of Dusp5 improves renal hemodynamics and protects against hypertension-induced renal injury. The renal expression of DUSP5 was reduced, and the levels of phosphorylated (p) ERK1/2 and p-protein kinase C (PKC) α were elevated in the KO rats. KO of Dusp5 enhanced the myogenic tone of the renal afferent arteriole and interlobular artery in vitro with or without induction of deoxycorticosterone acetate-salt hypertension. Inhibition of ERK1/2 and PKC diminished the myogenic response to a greater extent in Dusp5 KO rats. Autoregulation of renal blood flow was significantly impaired in hypertensive wild-type (WT) rats but remained intact in Dusp5 KO animals. Proteinuria was markedly decreased in hypertensive KO versus WT rats. The degree of glomerular injury was reduced, and the expression of nephrin in the glomerulus was higher in hypertensive Dusp5 KO rats. Renal fibrosis and medullary protein cast formation were attenuated in hypertensive Dusp5 KO rats in association with decreased expression of monocyte chemoattractant protein 1, transforming growth factor-β1, matrix metalloproteinase (MMP) 2, and MMP9. These results indicate that KO of Dusp5 protects against hypertension-induced renal injury, at least in part, by maintaining the myogenic tone of the renal vasculature and extending the range of renal blood flow autoregulation to higher pressures, which diminish glomerular injury, protein cast formation, macrophage infiltration, and epithelial-mesenchymal transformation in the kidney. SIGNIFICANCE STATEMENT: Dual-specificity protein phosphatase 5 (DUSP5) is a tyrosine-threonine phosphatase that inactivates extracellular signal-related kinase (ERK). We previously reported that knockout (KO) of Dusp5 enhanced the myogenic response and autoregulation in the cerebral circulation. The present study investigates whether KO of DUSP5 improves renal hemodynamics and protects against hypertension-induced renal injury. Downregulation of DUSP5 enhanced the myogenic tone of renal arteriole and artery and autoregulation of renal blood flow in association with reduced proteinuria, glomerular injury, and interstitial fibrosis after the induction of hypertension. Inhibition of ERK1/2 and protein kinase C diminished the myogenic response to a greater extent in Dusp5 KO rats. These results suggest that DUSP5 might be a viable drug target for the treatment of hypertension nephropathy.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Sydney R Murphy
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Aron M Geurts
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center. Jackson, Mississippi (C.Z., X.H., S.R.M., H.Z., S.W., Y.G., W.G., J.M.W., R.J.R., F.F.); Department of Urology, Zhongshan Hospital, Fudan University. Shanghai, China (C.Z., W.G.); and Department of Physiology, Medical College of Wisconsin. Milwaukee, Wisconsin (A.M.G.)
| |
Collapse
|
17
|
Generation of Spontaneous Tone by Gastrointestinal Sphincters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31183822 DOI: 10.1007/978-981-13-5895-1_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
An important feature of the gastrointestinal (GI) muscularis externa is its ability to generate phasic contractile activity. However, in some GI regions, a more sustained contraction, referred to as "tone," also occurs. Sphincters are muscles oriented in an annular manner that raise intraluminal pressure, thereby reducing or blocking the movement of luminal contents from one compartment to another. Spontaneous tone generation is often a feature of these muscles. Four distinct smooth muscle sphincters are present in the GI tract: the lower esophageal sphincter (LES), the pyloric sphincter (PS), the ileocecal sphincter (ICS), and the internal anal sphincter (IAS). This chapter examines how tone generation contributes to the functional behavior of these sphincters. Historically, tone was attributed to contractile activity arising directly from the properties of the smooth muscle cells. However, there is increasing evidence that interstitial cells of Cajal (ICC) play a significant role in tone generation in GI muscles. Indeed, ICC are present in each of the sphincters listed above. In this chapter, we explore various mechanisms that may contribute to tone generation in sphincters including: (1) summation of asynchronous phasic activity, (2) partial tetanus, (3) window current, and (4) myofilament sensitization. Importantly, the first two mechanisms involve tone generation through summation of phasic events. Thus, the historical distinction between "phasic" versus "tonic" smooth muscles in the GI tract requires revision. As described in this chapter, it is clear that the unique functional role of each sphincter in the GI tract is accompanied by a unique combination of contractile mechanisms.
Collapse
|
18
|
Chen YL, Ren Y, Xu W, Rosa RH, Kuo L, Hein TW. Constriction of Retinal Venules to Endothelin-1: Obligatory Roles of ETA Receptors, Extracellular Calcium Entry, and Rho Kinase. Invest Ophthalmol Vis Sci 2019; 59:5167-5175. [PMID: 30372743 PMCID: PMC6203175 DOI: 10.1167/iovs.18-25369] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Endothelin-1 (ET-1) is a potent vasoconstrictor peptide implicated in retinal venous pathologies such as diabetic retinopathy and retinal vein occlusion. However, underlying mechanisms contributing to venular constriction remain unknown. Thus, we examined the roles of ET-1 receptors, extracellular calcium (Ca2+), L-type voltage-operated calcium channels (L-VOCCs), Rho kinase (ROCK), and protein kinase C (PKC) in ET-1-induced constriction of retinal venules. Methods Porcine retinal venules were isolated and pressurized for vasoreactivity study using videomicroscopic techniques. Protein and mRNA were analyzed using molecular tools. Results Retinal venules developed basal tone and constricted concentration-dependently to ET-1. The ETA receptor (ETAR) antagonist BQ123 abolished venular constriction to ET-1, but ETB receptor (ETBR) antagonist BQ788 had no effect on vasoconstriction. The ETBR agonist sarafotoxin S6c did not elicit vasomotor activity. In the absence of extracellular Ca2+, venules lost basal tone and ET-1–induced constriction was nearly abolished. Although L-VOCC inhibitor nifedipine also reduced basal tone and blocked vasoconstriction to L-VOCC activator Bay K8644, constriction of venules to ET-1 remained. The ROCK inhibitor H-1152 but not PKC inhibitor Gö 6983 prevented ET-1-induced vasoconstriction. Protein and mRNA expressions of ETARs and ETBRs, along with ROCK1 and ROCK2 isoforms, were detected in retinal venules. Conclusions Extracellular Ca2+ entry via L-VOCCs is essential for developing and maintaining basal tone of porcine retinal venules. ET-1 causes significant constriction of retinal venules by activating ETARs and extracellular Ca2+ entry independent of L-VOCCs. Activation of ROCK signaling, without involvement of PKC, appears to mediate venular constriction to ET-1 in the porcine retina.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States
| | - Yi Ren
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States
| | - Wenjuan Xu
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States
| | - Robert H Rosa
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States.,Ophthalmic Vascular Research Program, Department of Ophthalmology, Scott & White Eye Institute, Baylor Scott & White Health, Temple, Texas, United States
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States.,Ophthalmic Vascular Research Program, Department of Ophthalmology, Scott & White Eye Institute, Baylor Scott & White Health, Temple, Texas, United States
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States.,Ophthalmic Vascular Research Program, Department of Ophthalmology, Scott & White Eye Institute, Baylor Scott & White Health, Temple, Texas, United States
| |
Collapse
|
19
|
Abstract
AIM Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. METHODS Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. RESULTS PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. CONCLUSION Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.
Collapse
|
20
|
CPI-17-mediated contraction of vascular smooth muscle is essential for the development of hypertension in obese mice. J Genet Genomics 2019; 46:109-118. [PMID: 30948334 DOI: 10.1016/j.jgg.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Several factors have been implicated in obesity-related hypertension, but the genesis of the hypertension is largely unknown. In this study, we found a significantly upregulated expression of CPI-17 (C-kinase-potentiated protein phosphatase 1 inhibitor of 17 kDa) and protein kinase C (PKC) isoforms in the vascular smooth muscles of high-fat diet (HFD)-fed obese mice. The obese wild-type mice showed a significant elevation of blood pressure and enhanced calcium-sensitized contraction of vascular smooth muscles. However, the obese CPI-17-deficient mice showed a normotensive blood pressure, and the calcium-sensitized contraction was consistently reduced. In addition, the mutant muscle displayed an abolished responsive force to a PKC activator and a 30%-50% reduction in both the initial peak force and sustained force in response to various G protein-coupled receptor (GPCR) agonists. Our observations showed that CPI-17-mediated calcium sensitization is mediated through a GPCR/PKC/CPI-17/MLCP/RLC signaling pathway. We therefore propose that the upregulation of CPI-17-mediated calcium-sensitized vasocontraction by obesity contributes to the development of obesity-related hypertension.
Collapse
|
21
|
Smoothelin-like 1 deletion enhances myogenic reactivity of mesenteric arteries with alterations in PKC and myosin phosphatase signaling. Sci Rep 2019; 9:481. [PMID: 30679490 PMCID: PMC6346088 DOI: 10.1038/s41598-018-36564-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
The role of the smoothelin-like 1 (SMTNL1) protein in mediating vascular smooth muscle contractile responses to intraluminal pressure was examined in resistance vessels. Mesenteric arterioles from wild type (WT) and SMTNL1 global knock-out (KO) mice were examined with pressure myography. SMTNL1 deletion was associated with enhanced myogenic tone in vessels isolated from male, but not female, mice. Intraluminal pressures greater than 40 mmHg generated statistically significant differences in myogenic reactivity between WT and KO vessels. No overt morphological differences were recorded for vessels dissected from KO animals, but SMTNL1 deletion was associated with loss of myosin phosphatase-targeting protein MYPT1 and increase in the myosin phosphatase inhibitor protein CPI-17. Additionally, we observed altered contractile responses of isolated arteries from SMTNL1 KO mice to phenylephrine, KCl-dependent membrane depolarization and phorbol 12,13-dibutyrate (PDBu). Using pharmacological approaches, myogenic responses of both WT and KO vessels were equally affected by Rho-associated kinase (ROCK) inhibition; however, augmented protein kinase C (PKC) signaling was found to contribute to the increased myogenic reactivity of SMTNL1 KO vessels across the 60–120 mmHg pressure range. Based on these findings, we conclude that deletion of SMTNL1 contributes to enhancement of pressure-induced contractility of mesenteric resistance vessels by influencing the activity of myosin phosphatase.
Collapse
|
22
|
Mahavadi S, Nalli AD, Wang H, Kendig DM, Crowe MS, Lyall V, Grider JR, Murthy KS. Regulation of gastric smooth muscle contraction via Ca2+-dependent and Ca2+-independent actin polymerization. PLoS One 2018; 13:e0209359. [PMID: 30571746 PMCID: PMC6301582 DOI: 10.1371/journal.pone.0209359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
In gastrointestinal smooth muscle, acetylcholine induced muscle contraction is biphasic, initial peak followed by sustained contraction. Contraction is regulated by phosphorylation of 20 kDa myosin light chain (MLC) at Ser19, interaction of actin and myosin, and actin polymerization. The present study characterized the signaling mechanisms involved in actin polymerization during initial and sustained muscle contraction in response to muscarinic M3 receptor activation in gastric smooth muscle cells by targeting the effectors of initial (phospholipase C (PLC)-β/Ca2+ pathway) and sustained (RhoA/focal adhesion kinase (FAK)/Rho kinase pathway) contraction. The initial Ca2+ dependent contraction and actin polymerization is mediated by sequential activation of PLC-β1 via Gαq, IP3 formation, Ca2+ release and Ca2+ dependent phosphorylation of proline-rich-tyrosine kinase 2 (Pyk2) at Tyr402. The sustained Ca2+ independent contraction and actin polymerization is mediated by activation of RhoA, and phosphorylation of FAK at Tyr397. Both phosphorylation of Pyk2 and FAK leads to phosphorylation of paxillin at Tyr118 and association of phosphorylated paxillin with the GEF proteins p21-activated kinase (PAK) interacting exchange factor α, β (α and β PIX) and DOCK 180. These GEF proteins stimulate Cdc42 leading to the activation of nucleation promoting factor N-WASP (neuronal Wiskott-Aldrich syndrome protein), which interacts with actin related protein complex 2/3 (Arp2/3) to induce actin polymerization and muscle contraction. Acetylcholine induced muscle contraction is inhibited by actin polymerization inhibitors. Thus, our results suggest that a novel mechanism for the regulation of smooth muscle contraction is mediated by actin polymerization in gastrointestinal smooth muscle which is independent of MLC20 phosphorylation.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| | - Ancy D. Nalli
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hongxia Wang
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Derek M. Kendig
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Molly S. Crowe
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vijay Lyall
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John R. Grider
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Karnam S. Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
23
|
Liao Q, Yan J, Zhou Z, Luo J, Han Q, Zhang Q, Chen R. Relationship between uterine smooth muscular CPI-17-signal pathway-mediated Ca 2+ sensitivity changes and uterine atony-induced postpartum haemorrhage. J OBSTET GYNAECOL 2018; 39:302-307. [PMID: 30428734 DOI: 10.1080/01443615.2018.1504206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study aimed to investigate the changes of protein kinase C (PKC)-potentiated phosphatase inhibitor of 17 ku (CPI-17) expression, PKC activity and Rho kinase activity in the maternal uterine smooth muscle (USM), and their roles in the occurrence of uterine atony-induced postpartum haemorrhage (UAI-PPH). Sixty primiparaes who had a caesarean section performed were divided into the case group (with UAI-PPH) and the control group (the uterine contraction was good, without the PPH). The USM-p-CPI-17 (Thr38) protein levels, the activities of PKC and Rho kinase in the case group and the control group were 0.43 ± 0.20, 4.30 ± 0.91, 10.85 ± 1.70 and 0.67 ± 0.32, 0.099 ± 0.028, 0.20 ± 0.071, respectively (p < .05). The down-regulated expression of CPI-17 phosphorylated proteins might be one of the important factors of UAI-PPH, while the activity reduction of PKC and Rho kinase might be the reason that led to the phosphorylation level reduction of USM-CPI-17 in UAI-PPH. Impact Statement What is already known on this subject? The studies have shown that in the late pregnancy period, the total protein and phosphorylated protein of myometrial CPI-17 are significantly higher than in the non-pregnancy state, and they were all involved in regulating and enhancing the Ca2+ sensitivity of USMC during the pregnancy. The data regarding the CPI-17-signal pathway-mediated Ca2+ sensitivity in UAI-PPH is sparse. What do the results of this study add? We have shown that the down-regulated expression of CPI-17 phosphorylated proteins might be one of the important factors of UAI-PPH, while the activity reduction of PKC and Rho kinase might be the reason that led to the phosphorylation level reduction of USM-CPI-17 in UAI-PPH. What are the implications of these findings for clinical practice and/or further research? Further studies are needed to confirm the pathogenesis of CPI-17-signal pathway-mediated Ca2+ sensitivity in UAI-PPH.
Collapse
Affiliation(s)
- Qiuping Liao
- a Department of Gynaecology and Obstetrics, Fujian Provincial Maternity and Children's Hospital , Affiliated Hospital of Fujian Medical University , Fuzhou , PR China
| | - Jianying Yan
- a Department of Gynaecology and Obstetrics, Fujian Provincial Maternity and Children's Hospital , Affiliated Hospital of Fujian Medical University , Fuzhou , PR China
| | - Zhimei Zhou
- b Second Affiliated Hospital of Fujian Medical University , Quanzhou , PR China
| | - Jinying Luo
- a Department of Gynaecology and Obstetrics, Fujian Provincial Maternity and Children's Hospital , Affiliated Hospital of Fujian Medical University , Fuzhou , PR China
| | - Qing Han
- a Department of Gynaecology and Obstetrics, Fujian Provincial Maternity and Children's Hospital , Affiliated Hospital of Fujian Medical University , Fuzhou , PR China
| | - Qinjian Zhang
- a Department of Gynaecology and Obstetrics, Fujian Provincial Maternity and Children's Hospital , Affiliated Hospital of Fujian Medical University , Fuzhou , PR China
| | - Rongxin Chen
- a Department of Gynaecology and Obstetrics, Fujian Provincial Maternity and Children's Hospital , Affiliated Hospital of Fujian Medical University , Fuzhou , PR China
| |
Collapse
|
24
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Anjum I. Calcium sensitization mechanisms in detrusor smooth muscles. J Basic Clin Physiol Pharmacol 2018; 29:227-235. [PMID: 29306925 DOI: 10.1515/jbcpp-2017-0071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
The contraction of detrusor smooth muscles depends on the increase in intracellular calcium. The influx of calcium from the plasma membrane calcium channels and calcium release from the sarcoplasmic reticulum give rise to intracellular calcium. Under the pathophysiological conditions, the increased sensitivity of regulatory and contractile proteins to calcium also plays an important role in maintaining the spontaneous detrusor smooth muscle activity. Many proteins have been identified to play a role in calcium sensitization. Both the protein kinase C (PKC) and Rho-kinase (ROCK) signaling pathways are responsible for the induction of calcium sensitization in the detrusor smooth muscles. The balance between the myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) regulates the intracellular calcium-contractile force relationship. The inhibition of MLCP by PKC-mediated phosphatase inhibitor (CPI-17) and myosin phosphatase target subunit (MYPT-1) phosphorylation by both the PKC and ROCK are responsible for calcium sensitization in the detrusor smooth muscles. However, the ROCK pathway predominantly participates in the calcium sensitization induction under pathophysiological situations. Many kinases are well known nowadays to play a role in calcium sensitization. This review aims to enlighten the current understanding of the regulatory mechanisms of calcium sensitization with special reference to the PKC and ROCK pathways in the detrusor smooth muscles. It will also aid in the development of new pharmacological strategies to prevent and treat bladder diseases.
Collapse
Affiliation(s)
- Irfan Anjum
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| |
Collapse
|
26
|
Eto M, Kitazawa T. Diversity and plasticity in signaling pathways that regulate smooth muscle responsiveness: Paradigms and paradoxes for the myosin phosphatase, the master regulator of smooth muscle contraction. J Smooth Muscle Res 2018; 53:1-19. [PMID: 28260704 PMCID: PMC5364378 DOI: 10.1540/jsmr.53.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A hallmark of smooth muscle cells is their ability to adapt their functions to meet temporal and chronic fluctuations in their demands. These functions include force development and growth. Understanding the mechanisms underlying the functional plasticity of smooth muscles, the major constituent of organ walls, is fundamental to elucidating pathophysiological rationales of failures of organ functions. Also, the knowledge is expected to facilitate devising innovative strategies that more precisely monitor and normalize organ functions by targeting individual smooth muscles. Evidence has established a current paradigm that the myosin light chain phosphatase (MLCP) is a master regulator of smooth muscle responsiveness to stimuli. Cellular MLCP activity is negatively and positively regulated in response to G-protein activation and cAMP/cGMP production, respectively, through the MYPT1 regulatory subunit and an endogenous inhibitor protein named CPI-17. In this article we review the outcomes from two decade of research on the CPI-17 signaling and discuss emerging paradoxes in the view of signaling pathways regulating smooth muscle functions through MLCP.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University and Sidney Kimmel Cancer Center, 1020 Locust Street, Philadelphia, PA19107, USA
| | | |
Collapse
|
27
|
Sakai H, Suto W, Kai Y, Chiba Y. Mechanisms underlying the pathogenesis of hyper-contractility of bronchial smooth muscle in allergic asthma. J Smooth Muscle Res 2018; 53:37-47. [PMID: 28484126 PMCID: PMC5411784 DOI: 10.1540/jsmr.53.37] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Airway hyperresponsiveness (AHR) and inflammation are key pathophysiological
features of asthma. Enhanced contraction of bronchial smooth muscle (BSM) is one
of the causes of the AHR. It is thus important for development of asthma therapy
to understand the change in the contractile signaling of airway smooth muscle
cells associated with the AHR. In addition to the Ca2+-mediated
phosphorylation of myosin light chain (MLC), contractile agonists also enhance
MLC phosphorylation level, Ca2+-independently, by inactivating MLC
phosphatase (MLCP), called Ca2+ sensitization of contraction, in
smooth muscle cells including airways. To date, involvements of RhoA/ROCKs and
PKC/Ppp1r14a (also called as CPI-17) pathways in the Ca2+
sensitization have been identified. Our previous studies revealed that the
agonist-induced Ca2+ sensitization of contraction is markedly
augmented in BSMs of animal models of allergen-induced AHR. In BSMs of these
animal models, the expression of RhoA and CPI-17 proteins were significantly
increased, indicating that both the Ca2+ sensitizing pathways are
augmented. Interestingly, incubation of BSM cells with asthma-associated
cytokines, such as interleukin-13 (IL-13), IL-17, and tumor necrosis factor-α
(TNF-α), caused up-regulations of RhoA and CPI-17 in BSM cells of naive animals
and cultured human BSM cells. In addition to the transcription factors such as
STAT6 and NF-κB activated by these inflammatory cytokines, an involvement of
down-regulation of miR-133a, a microRNA that negatively regulates RhoA
translation, has also been suggested in the IL-13- and IL-17-induced
up-regulation of RhoA. Thus, the Ca2+ sensitizing pathways and the
cytokine-mediated signaling including microRNAs in BSMs might be potential
targets for treatment of allergic asthma, especially the AHR.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Department of Analytical Pathophysiology, Hoshi University
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University
| | - Yuki Kai
- Department of Analytical Pathophysiology, Hoshi University
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University
| |
Collapse
|
28
|
Boberg L, Szekeres FLM, Arner A. Signaling and metabolic properties of fast and slow smooth muscle types from mice. Pflugers Arch 2018; 470:681-691. [PMID: 29380055 PMCID: PMC5854729 DOI: 10.1007/s00424-017-2096-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023]
Abstract
This study aims to improve the classification of smooth muscle types to better understand their normal and pathological functional phenotypes. Four different smooth muscle tissues (aorta, muscular arteries, intestine, urinary bladder) with a 5-fold difference in maximal shortening velocity were obtained from mice and classified according to expression of the inserted myosin heavy chain (SMHC-B). Western blotting and quantitative PCR analyses were used to determine 15 metabolic and 8 cell signaling key components in each tissue. The slow muscle type (aorta) with a 12 times lower SMHC-B had 6-fold lower expression of the phosphatase subunit MYPT1, a 7-fold higher expression of Rhokinase 1, and a 3-fold higher expression of the PKC target CPI17, compared to the faster (urinary bladder) smooth muscle. The slow muscle had higher expression of components involved in glucose uptake and glycolysis (type 1 glucose transporter, 3 times; hexokinase, 13 times) and in gluconeogenesis (phosphoenolpyruvate carboxykinase, 43 times), but lower expression of the metabolic sensing AMP-activated kinase, alpha 2 isoform (5 times). The slow type also had higher expression of enzymes involved in lipid metabolism (hormone-sensitive lipase, 10 times; lipoprotein lipase, 13 times; fatty acid synthase, 6 times; type 2 acetyl-coenzyme A carboxylase, 8 times). We present a refined division of smooth muscle into muscle types based on the analysis of contractile, metabolic, and signaling components. Slow compared to fast smooth muscle has a lower expression of the deactivating phosphatase and upregulated Ca2+ sensitizing pathways and is more adapted for sustained glucose and lipid metabolism.
Collapse
Affiliation(s)
- Lena Boberg
- Department of Physiology and Pharmacology, Karolinska Institutet, v Eulers v 8, 171 77, Stockholm, SE, Sweden
| | | | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, v Eulers v 8, 171 77, Stockholm, SE, Sweden.
| |
Collapse
|
29
|
Regional Heterogeneity in the Regulation of Vasoconstriction in Arteries and Its Role in Vascular Mechanics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:105-128. [PMID: 30315542 DOI: 10.1007/978-3-319-96445-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vasoconstriction and vasodilation play important roles in the circulatory system and can be regulated through different pathways that depend on myriad biomolecules. These different pathways reflect the various functions of smooth muscle cell (SMC) contractility within the different regions of the arterial tree and how they contribute to both the mechanics and the mechanobiology. Here, we review the primary regulatory pathways involved in SMC contractility and highlight their regional differences in elastic, muscular, and resistance arteries. In this way, one can begin to assess how these properties affect important biomechanical and mechanobiological functions in the circulatory system in health and disease.
Collapse
|
30
|
Protein phosphatases 1 and 2A and their naturally occurring inhibitors: current topics in smooth muscle physiology and chemical biology. J Physiol Sci 2017; 68:1-17. [PMID: 28681362 PMCID: PMC5754374 DOI: 10.1007/s12576-017-0556-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
Abstract
Protein phosphatases 1 and 2A (PP1 and PP2A) are the most ubiquitous and abundant serine/threonine phosphatases in eukaryotic cells. They play fundamental roles in the regulation of various cellular functions. This review focuses on recent advances in the functional studies of these enzymes in the field of smooth muscle physiology. Many naturally occurring protein phosphatase inhibitors with different relative PP1/PP2A affinities have been discovered and are widely used as powerful research tools. Current topics in the chemical biology of PP1/PP2A inhibitors are introduced and discussed, highlighting the identification of the gene cluster responsible for the biosynthesis of calyculin A in a symbiont microorganism of a marine sponge.
Collapse
|
31
|
Cheng HH, Chou CT, Liang WZ, Kuo CC, Shieh P, Wang JL, Jan CR. Effects of puerarin on intracellular Ca 2+ and cell viability of MDCK renal tubular cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:83-89. [PMID: 28384516 DOI: 10.1016/j.etap.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Puerarin is a natural compound and has been used as herb medication in a number of countries, especially in Asia. The effect of puerarin on Ca2+ signaling is unknown in renal cells. This study examined whether puerarin affected Ca2+ physiology in MDCK renal tubular cells. Cytosolic free Ca2+ levels ([Ca2+]i) were measured using the fluorescent dye fura-2. Cell viability was examined by using WST-1 assay. Puerarin induced [Ca2+]i rises and the response was reduced by removing extracellular Ca2+. Puerarin-induced Ca2+ entry was not altered by protein kinase C (PKC) activity, but was inhibited by nifedipine. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) or thapsigargin partly inhibited puerarin-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 did not change puerarin-induced [Ca2+]i rises. Puerarin at 25-50μM caused cytotoxicity, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, in MDCK cells, puerarin induced [Ca2+]i rises by evoking PLC-independent Ca2+ release from the endoplasmic reticulum and other unknown stores, and Ca2+ entry via nifedipine-sensitive, PKC-insensitive Ca2+ entry pathways. Puerarin also caused Ca2+-independent cell death.
Collapse
Affiliation(s)
- He-Hsiung Cheng
- Department of Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua County 50544, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 92641, Taiwan
| | - Pochuan Shieh
- Department of Pharmacy, Tajen University, Pingtung 90741, Taiwan.
| | - Jue-Long Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital Tainan Branch, Tainan 71051, Taiwan.
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| |
Collapse
|
32
|
Wang Y, Zhou Q, Wu B, Zhou H, Zhang X, Jiang W, Wang L, Wang A. Propofol induces excessive vasodilation of aortic rings by inhibiting protein kinase Cβ2 and θ in spontaneously hypertensive rats. Br J Pharmacol 2017; 174:1984-2000. [PMID: 28369981 DOI: 10.1111/bph.13797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/21/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Exaggerated hypotension following administration of propofol is strongly predicted in patients with hypertension. Increased PKCs play a crucial role in regulating vascular tone. We studied whether propofol induces vasodilation by inhibiting increased PKC activity in spontaneously hypertensive rats (SHRs) and, if so, whether contractile Ca2+ sensitization pathways and filamentous-globular (F/G) actin dynamics were involved. EXPERIMENTAL APPROACH Rings of thoracic aorta, denuded of endothelium, from normotensive Wistar-Kyoto (WKY) rats and SHR were prepared for functional studies. Expression and activity of PKCs in vascular smooth muscle (VSM) cells were determined by Western blot analysis and elisa respectively. Phosphorylation of the key proteins in PKC Ca2+ sensitization pathways was also examined. Actin polymerization was evaluated by differential centrifugation to probe G- and F-actin content. KEY RESULTS Basal expression and activity of PKCβ2 and PKCθ were increased in aortic VSMs of SHR, compared with those from WKY rats. Vasorelaxation of SHR aortas by propofol was markedly attenuated by LY333531 (a specific PKCβ inhibitor) or the PKCθ pseudo-substrate inhibitor. Furthermore, noradrenaline-enhanced phosphorylation, and the translocation of PKCβ2 and PKCθ, was inhibited by propofol, with decreased actin polymerization and PKCβ2-mediated Ca2+ sensitization pathway in SHR aortas. CONCLUSION AND IMPLICATIONS Propofol suppressed increased PKCβ2 and PKCθ activity, which was partly responsible for exaggerated vasodilation in SHR. This suppression results in inhibition of actin polymerization, as well as that of the PKCβ2- but not PKCθ-mediated, Ca2+ sensitization pathway. These data provide a novel explanation for the unwanted side effects of propofol.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Quanhong Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bin Wu
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huixuan Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Li Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
33
|
Filter JJ, Williams BC, Eto M, Shalloway D, Goldberg ML. Unfair competition governs the interaction of pCPI-17 with myosin phosphatase (PP1-MYPT1). eLife 2017; 6. [PMID: 28387646 PMCID: PMC5441869 DOI: 10.7554/elife.24665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/31/2017] [Indexed: 11/30/2022] Open
Abstract
The small phosphoprotein pCPI-17 inhibits myosin light-chain phosphatase (MLCP). Current models postulate that during muscle relaxation, phosphatases other than MLCP dephosphorylate and inactivate pCPI-17 to restore MLCP activity. We show here that such hypotheses are insufficient to account for the observed rapidity of pCPI-17 inactivation in mammalian smooth muscles. Instead, MLCP itself is the critical enzyme for pCPI-17 dephosphorylation. We call the mutual sequestration mechanism through which pCPI-17 and MLCP interact inhibition by unfair competition: MLCP protects pCPI-17 from other phosphatases, while pCPI-17 blocks other substrates from MLCP’s active site. MLCP dephosphorylates pCPI-17 at a slow rate that is, nonetheless, both sufficient and necessary to explain the speed of pCPI-17 dephosphorylation and the consequent MLCP activation during muscle relaxation. DOI:http://dx.doi.org/10.7554/eLife.24665.001
Collapse
Affiliation(s)
- Joshua J Filter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Byron C Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, United States
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
34
|
Smooth Muscle Phenotypic Diversity: Effect on Vascular Function and Drug Responses. ADVANCES IN PHARMACOLOGY 2017. [PMID: 28212802 DOI: 10.1016/bs.apha.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
At its simplest resistance to blood flow is regulated by changes in the state of contraction of the vascular smooth muscle (VSM), a function of the competing activities of the myosin kinase and phosphatase determining the phosphorylation and activity of the myosin ATPase motor protein. In contrast, the vascular system of humans and other mammals is incredibly complex and highly regulated. Much of this complexity derives from phenotypic diversity within the smooth muscle, reflected in very differing power outputs and responses to signaling pathways that regulate vessel tone, presumably having evolved over the millennia to optimize vascular function and its control. The highly regulated nature of VSM tone, described as pharmacomechanical coupling, likely underlies the many classes of drugs in clinical use to alter vascular tone through activation or inhibition of these signaling pathways. This review will first describe the phenotypic diversity within VSM, followed by presentation of specific examples of how molecular diversity in signaling, myofilament, and calcium cycling proteins impacts arterial smooth muscle function and drug responses.
Collapse
|
35
|
Oliveira-Paula GH, Luizon MR, Lacchini R, Fontana V, Silva PS, Biagi C, Tanus-Santos JE. Gene-Gene Interactions Among PRKCA, NOS3 and BDKRB2 Polymorphisms Affect the Antihypertensive Effects of Enalapril. Basic Clin Pharmacol Toxicol 2016; 120:284-291. [PMID: 27696692 DOI: 10.1111/bcpt.12682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023]
Abstract
Protein kinase C (PKC) signalling is critically involved in the control of blood pressure. Angiotensin-converting enzyme inhibitors (ACEi) affect PKC expression and activity, which are partially associated with the responses to ACEi. We examined whether PRKCA (protein kinase C, alpha) polymorphisms (rs887797 C>T, rs1010544 T>C and rs16960228 G>A), or haplotypes, and gene-gene interactions within the ACEi pathway affect the antihypertensive responses in 104 hypertensive patients treated with enalapril as monotherapy. Patients were classified as poor responders (PR) or good responders (GR) to enalapril if their changes in mean arterial pressure were lower or higher than the median value, respectively. Multi-factor dimensionality reduction was used to characterize interactions among PRKCA, NOS3 (nitric oxide synthase 3) and BDKRB2 (bradykinin receptor B2) polymorphisms. The TC+CC genotypes for the rs1010544 polymorphism were more frequent in GR than in PR (p = 0.037). Conversely, the GA+AA genotypes for the rs16960228 polymorphism, and the CTA haplotype, were more frequent in PR than in GR (p = 0.040 and p = 0.008, respectively). Moreover, the GG genotype for the PRKCA rs16960228 polymorphism was associated with PR or GR depending on the genotypes for the rs2070744 (NOS3) and rs1799722 (BDKRB2) polymorphisms (p = 0.012). Our results suggest that PRKCA polymorphisms and gene-gene interactions within the ACEi pathway affect the antihypertensive responses to enalapril.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Marcelo R Luizon
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Vanessa Fontana
- Department of Pharmacology, State University of Campinas, Campinas, SP, Brazil
| | - Pamela S Silva
- Department of Pharmacology, State University of Campinas, Campinas, SP, Brazil
| | - Celso Biagi
- Santa Casa of Araçatuba, Araçatuba, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
36
|
Szasz T, Webb RC. Rho-Mancing to Sensitize Calcium Signaling for Contraction in the Vasculature: Role of Rho Kinase. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:303-322. [PMID: 28212799 DOI: 10.1016/bs.apha.2016.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular smooth muscle contraction is an important physiological process contributing to cardiovascular homeostasis. The principal determinant of smooth muscle contraction is the intracellular free Ca2+ concentration, and phosphorylation of myosin light chain (MLC) by activated myosin light chain kinase (MLCK) in response to increased Ca2+ is the main pathway by which vasoconstrictor stimuli induce crossbridge cycling of myosin and actin filaments. A secondary pathway for vascular smooth muscle contraction that is not directly dependent on Ca2+ concentration, but rather mediating Ca2+ sensitization, is the RhoA/Rho kinase pathway. In response to contractile stimuli, the small GTPase RhoA activates its downstream effector Rho kinase which, in turn, promotes contraction via myosin light chain phosphatase (MLCP) inhibition. RhoA/Rho kinase-mediated MLCP inhibition occurs mainly by phosphorylation and inhibition of MYPT1, the regulatory subunit of MLCP, or by CPI-17-mediated inhibition of the catalytic subunit of MLCP. In this review, we describe the molecular mechanisms underlying the pivotal role exerted by Rho kinase on vascular smooth muscle contraction and discuss the main regulatory pathways for its activity.
Collapse
Affiliation(s)
- T Szasz
- Augusta University, Augusta, GA, United States.
| | - R C Webb
- Augusta University, Augusta, GA, United States
| |
Collapse
|
37
|
Yang S, Wu Q, Huang S, Wang Z, Qi F. Sevoflurane and isoflurane inhibit KCl-induced Class II phosphoinositide 3-kinase α subunit mediated vasoconstriction in rat aorta. BMC Anesthesiol 2016; 16:63. [PMID: 27538808 PMCID: PMC4991059 DOI: 10.1186/s12871-016-0227-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Class II phosphoinositide 3-kinase α-isoform (PI3K-C2α) is involved in regulating KCl-induced vascular smooth muscle contraction. The current study was to investigate the effects of sevoflurane (SEVO) and isoflurane (ISO) on KCl-elicited PI3KC2α mediated vasoconstriction in rat aortic smooth muscle. METHODS Isometric force, in the absence or presence of SEVO or ISO (1 ~ 3 minimum alveolar concentration, MAC), PI3K inhibitor LY294002, Rho kinase inhibitor Y27632, and membrane translocation of PI3K-p85, PI3K-C2α, Rho kinase (Rock II), or phosphorylation of MYPT1/Thr853, MYPT1/Thr696, CPI-17/Thr38 and MLC in response to KCl (60 mM) was measured by using isometric force transducer and western blotting analysis, respectively. RESULTS KCl elicited a rapid and sustained contraction of rat aortic smooth muscle that was inhibited by both SEVO and ISO in a concentration-dependent manner, and also suppressed by LY294002 (1 mM) and Y27632 (1 uM). LY294002 (1 mM) and Y27632 (1 uM) also inhibited KCl-induced MLC phosphorylation. LY294002 (1 mM) inhibited KCl-induced PI3K-p85, PI3K-C2α membrane translocation in response to KCl (p <0.05, p < 0.01, respectively). Not only Y27632 (1 uM), but also LY294002 (1 mM), inhibited KCl-induced Rock-II membrane translocation (p < 0.01). SEVO and ISO inhibited KCl-stimulated MLC phosphorylation, PI3K-C2α and Rock-II,not PI3K p85 membrane translocation in a concentration-dependent manner in rat aorta. Both SEVO and ISO suppressed the MYPT1/Thr853, not MYPT1/Thr696 and CPI-17/Thr38, MLC phosphorylation in response to KCl. CONCLUSION PI3K-C2α mediates part of SEVO and ISO-mediated vasodilation in rat aorta. The cellular mechanisms underlying the inhibitory effect of volatile anesthetics might be mediated by KCl/PI3K-C2α/Rho kinase/MYPT1/MLC pathway.
Collapse
Affiliation(s)
- Shaozhong Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Qi Wu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shanshan Huang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zi Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
38
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
39
|
Trappanese DM, Sivilich S, Ets HK, Kako F, Autieri MV, Moreland RS. Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle. Am J Physiol Cell Physiol 2016; 310:C921-30. [PMID: 27053523 DOI: 10.1152/ajpcell.00311.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Vascular smooth muscle contraction is primarily regulated by phosphorylation of myosin light chain. There are also modulatory pathways that control the final level of force development. We tested the hypothesis that protein kinase C (PKC) and mitogen-activated protein (MAP) kinase modulate vascular smooth muscle activity via effects on MAP kinase phosphatase-1 (MKP-1). Swine carotid arteries were mounted for isometric force recording and subjected to histamine stimulation in the presence and absence of inhibitors of PKC [bisindolylmaleimide-1 (Bis)], MAP kinase kinase (MEK) (U0126), and MKP-1 (sanguinarine) and flash frozen for measurement of MAP kinase, PKC-potentiated myosin phosphatase inhibitor 17 (CPI-17), and caldesmon phosphorylation levels. CPI-17 was phosphorylated in response to histamine and was inhibited in the presence of Bis. Caldesmon phosphorylation levels increased in response to histamine stimulation and were decreased in response to MEK inhibition but were not affected by the addition of Bis. Inhibition of PKC significantly increased p42 MAP kinase, but not p44 MAP kinase. Inhibition of MEK with U0126 inhibited both p42 and p44 MAP kinase activity. Inhibition of MKP-1 with sanguinarine blocked the Bis-dependent increase of MAP kinase activity. Sanguinarine alone increased MAP kinase activity due to its effects on MKP-1. Sanguinarine increased MKP-1 phosphorylation, which was inhibited by inhibition of MAP kinase. This suggests that MAP kinase has a negative feedback role in inhibiting MKP-1 activity. Therefore, PKC catalyzes MKP-1 phosphorylation, which is reversed by MAP kinase. Thus the fine tuning of vascular contraction is due to the concerted effort of PKC, MAP kinase, and MKP-1.
Collapse
Affiliation(s)
- Danielle M Trappanese
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Sarah Sivilich
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hillevi K Ets
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Farah Kako
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Michael V Autieri
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; and
| | - Robert S Moreland
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
41
|
Perrino BA. Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles. J Neurogastroenterol Motil 2016; 22:213-25. [PMID: 26701920 PMCID: PMC4819859 DOI: 10.5056/jnm15186] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/22/2014] [Indexed: 01/05/2023] Open
Abstract
An increase in intracellular Ca2+ is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca2+ sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca2+ sensitization. The relative importance of Ca2+ sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca2+ sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca2+ sensitization pathways are activated. The signaling pathways regulating Ca2+ sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca2+ sensitization, while also discussing the functional importance to different smooth muscles of the GI tract.
Collapse
Affiliation(s)
- Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
42
|
Hattori Y, Hattori K, Matsuda N. Regulation of the Cardiovascular System by Histamine. Handb Exp Pharmacol 2016; 241:239-258. [PMID: 27838850 DOI: 10.1007/164_2016_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H1- and H2-receptors has become recognized adequately. Besides the recognized H1- and H2-receptor-mediated cardiovascular responses, novel roles of H3- and H4-receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H3- and H4-receptors, their potential mechanisms of action, and their pathological significance.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
43
|
Reho JJ, Zheng X, Benjamin JE, Fisher SA. Neural programming of mesenteric and renal arteries. Am J Physiol Heart Circ Physiol 2015; 307:H563-73. [PMID: 24929853 DOI: 10.1152/ajpheart.00250.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is evidence for developmental origins of vascular dysfunction yet little understanding of maturation of vascular smooth muscle (VSM) of regional circulations. We measured maturational changes in expression of myosin phosphatase (MP) and the broader VSM gene program in relation to mesenteric small resistance artery (SRA) function. We then tested the role of the sympathetic nervous system (SNS) in programming of SRAs and used genetically engineered mice to define the role of MP isoforms in the functional maturation of the mesenteric circulation. Maturation of rat mesenteric SRAs as measured by qPCR and immunoblotting begins after the second postnatal week and is not complete until maturity. It is characterized by induction of markers of VSM differentiation (smMHC, γ-, α-actin), CPI-17, an inhibitory subunit of MP and a key target of α-adrenergic vasoconstriction, α1-adrenergic, purinergic X1, and neuropeptide Y1 receptors of sympathetic signaling. Functional correlates include maturational increases in α-adrenergic-mediated force and calcium sensitization of force production (MP inhibition) measured in first-order mesenteric arteries ex vivo. The MP regulatory subunit Mypt1 E24+/LZ- isoform is specifically upregulated in SRAs during maturation. Conditional deletion of mouse Mypt1 E24 demonstrates that splicing of E24 causes the maturational reduction in sensitivity to cGMP-mediated vasorelaxation (MP activation). Neonatal chemical sympathectomy (6-hydroxydopamine) suppresses maturation of SRAs with minimal effect on a conduit artery. Mechanical denervation of the mature rat renal artery causes a reversion to the immature gene program. We conclude that the SNS captures control of the mesenteric circulation by programming maturation of the SRA smooth muscle.
Collapse
|
44
|
Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol Rev 2015; 67:103-17. [PMID: 25395505 DOI: 10.1124/pr.114.009381] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung scarring, short median survival, and limited therapeutic options, creating great need for new pharmacologic therapies. IPF is thought to result from repetitive environmental injury to the lung epithelium, in the context of aberrant host wound healing responses. Tissue responses to injury fundamentally involve reorganization of the actin cytoskeleton of participating cells, including epithelial cells, fibroblasts, endothelial cells, and macrophages. Actin filament assembly and actomyosin contraction are directed by the Rho-associated coiled-coil forming protein kinase (ROCK) family of serine/threonine kinases (ROCK1 and ROCK2). As would therefore be expected, lung ROCK activation has been demonstrated in humans with IPF and in animal models of this disease. ROCK inhibitors can prevent fibrosis in these models, and more importantly, induce the regression of already established fibrosis. Here we review ROCK structure and function, upstream activators and downstream targets of ROCKs in pulmonary fibrosis, contributions of ROCKs to profibrotic cellular responses to lung injury, ROCK inhibitors and their efficacy in animal models of pulmonary fibrosis, and potential toxicities of ROCK inhibitors in humans, as well as involvement of ROCKs in fibrosis in other organs. As we discuss, ROCK activation is required for multiple profibrotic responses, in the lung and multiple other organs, suggesting ROCK participation in fundamental pathways that contribute to the pathogenesis of a broad array of fibrotic diseases. Multiple lines of evidence therefore indicate that ROCK inhibition has great potential to be a powerful therapeutic tool in the treatment of fibrosis, both in the lung and beyond.
Collapse
Affiliation(s)
- Rachel S Knipe
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| | - Andrew M Tager
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| | - James K Liao
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| |
Collapse
|
45
|
Dippold RP, Fisher SA. Myosin phosphatase isoforms as determinants of smooth muscle contractile function and calcium sensitivity of force production. Microcirculation 2015; 21:239-48. [PMID: 24112301 DOI: 10.1111/micc.12097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022]
Abstract
The dephosphorylation of myosin by the MP causes smooth muscle relaxation. MP is also a key target of signals that regulate vascular tone and thus blood flow and pressure. Here, we review studies from the past two decades that support the hypothesis that the regulated expression of MP subunits is a critical determinant of smooth muscle responses to constrictor and dilator signals. In particular, the highly regulated splicing of the regulatory subunit Mypt1 Exon 24 is proposed to tune sensitivity to NO/cGMP-mediated relaxation. The regulated transcription of the MP inhibitory subunit CPI-17 is proposed to determine sensitivity to agonist-mediated constriction. The expression of these subunits is specific in the microcirculation and varies in developmental and disease contexts. To date, the relationship between MP subunit expression and vascular function in these different contexts is correlative; confirmation of the hypothesis will require the generation of genetically engineered mice to test the role of MP subunits and their isoforms in the specificity of vascular smooth muscle responses to constrictor and dilator signals.
Collapse
Affiliation(s)
- Rachael P Dippold
- Department of Medicine (Cardiology), University of Maryland Baltimore, Baltimore, Maryland, USA
| | | |
Collapse
|
46
|
Rattan S, Ali M. Role of SM22 in the differential regulation of phasic vs. tonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2015; 308:G605-12. [PMID: 25617350 PMCID: PMC4385893 DOI: 10.1152/ajpgi.00360.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/16/2015] [Indexed: 01/31/2023]
Abstract
Preliminary proteomics studies between tonic vs. phasic smooth muscles identified three distinct protein spots identified to be those of transgelin (SM22). The latter was found to be distinctly downregulated in the internal anal sphincter (IAS) vs. rectal smooth muscle (RSM) SMC. The major focus of the present studies was to examine the differential molecular control mechanisms by SM22 in the functionality of truly tonic smooth muscle of the IAS vs. the adjoining phasic smooth muscle of the RSM. We monitored SMC lengths before and after incubation with pFLAG-SM22 (for SM22 overexpression), and SM22 small-interfering RNA. pFLAG-SM22 caused concentration-dependent and significantly greater relaxation in the IAS vs. the RSM SMCs. Conversely, temporary silencing of SM22 caused contraction in both types of the SMCs. Further studies revealed a significant reverse relationship between the levels of SM22 phosphorylation and the amount of SM22-actin binding in the IAS and RSM SMC. Data showed higher phospho-SM22 levels and decreased SM22-actin binding in the IAS, and reverse to be the case in the RSM SMCs. Experiments determining the mechanism for SM22 phosphorylation in these smooth muscles revealed that Y-27632 (Rho kinase inhibitor) but not Gö-6850 (protein kinase C inhibitor) caused concentration-dependent decreased phosphorylation of SM22. We speculate that SM22 plays an important role in the regulation of basal tone via Rho kinase-induced phosphorylation of SM22.
Collapse
Affiliation(s)
- Satish Rattan
- Division of Gastroenterology and Hepatology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Mehboob Ali
- 2The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
47
|
Xiao D, Dasgupta C, Li Y, Huang X, Zhang L. Perinatal nicotine exposure increases angiotensin II receptor-mediated vascular contractility in adult offspring. PLoS One 2014; 9:e108161. [PMID: 25265052 PMCID: PMC4179262 DOI: 10.1371/journal.pone.0108161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022] Open
Abstract
Previous studies have reported that perinatal nicotine exposure causes development of hypertensive phenotype in adult offspring. Aims The present study was to determine whether perinatal nicotine exposure causes an epigenetic programming of vascular Angiotensin II receptors (ATRs) and their-mediated signaling pathway leading to heightened vascular contraction in adult offspring. Main methods Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. The experiments were conducted at 5 months of age of male offspring. Key Findings Nicotine treatment enhanced Angitension II (Ang II)-induced vasoconstriction and 20-kDa myosin light chain phosphorylation (MLC20-P) levels. In addition, the ratio of Ang II-induced tension/MLC-P was also significantly increased in nicotine-treated group compared with the saline group. Nicotine-mediated enhanced constrictions were not directly dependent on the changes of [Ca2+]i concentrations but dependent on Ca2+ sensitivity. Perinatal nicotine treatment significantly enhanced vascular ATR type 1a (AT1aR) but not AT1bR mRNA levels in adult rat offspring, which was associated with selective decreases in DNA methylation at AT1aR promoter. Contrast to the effect on AT1aR, nicotine decreased the mRNA levels of vascular AT2R gene, which was associated with selective increases in DNA methylation at AT2R promoter. Significance Our results indicated that perinatal nicotine exposure caused an epigenetic programming of vascular ATRs and their-mediated signaling pathways, and suggested that differential regulation of AT1R/AT2R gene expression through DNA methylation mechanism may be involved in nicotine-induced heightened vasoconstriction and development of hypertensive phenotype in adulthood.
Collapse
Affiliation(s)
- DaLiao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- * E-mail:
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Xiaohui Huang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| |
Collapse
|
48
|
Lima VV, Lobato NS, Filgueira FP, Webb RC, Tostes RC, Giachini FR. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain. ACTA ACUST UNITED AC 2014; 47:826-33. [PMID: 25140811 PMCID: PMC4181217 DOI: 10.1590/1414-431x20144001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/09/2014] [Indexed: 01/31/2024]
Abstract
O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.
Collapse
Affiliation(s)
- V V Lima
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT, Brasil
| | - N S Lobato
- Curso de Medicina, Setor de Fisiologia Humana, Universidade Federal de Goiás, Jataí, GO, Brasil
| | - F P Filgueira
- Curso de Medicina, Setor de Fisiologia Humana, Universidade Federal de Goiás, Jataí, GO, Brasil
| | - R C Webb
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - R C Tostes
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - F R Giachini
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT, Brasil
| |
Collapse
|
49
|
Dippold RP, Fisher SA. A bioinformatic and computational study of myosin phosphatase subunit diversity. Am J Physiol Regul Integr Comp Physiol 2014; 307:R256-70. [PMID: 24898838 PMCID: PMC4121627 DOI: 10.1152/ajpregu.00145.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/25/2014] [Indexed: 01/01/2023]
Abstract
Variability in myosin phosphatase (MP) subunits may provide specificity in signaling pathways that regulate muscle tone. We utilized public databases and computational algorithms to investigate the phylogenetic diversity of MP regulatory (PPP1R12A-C) and inhibitory (PPP1R14A-D) subunits. The comparison of exonic coding sequences and expression data confirmed or refuted the existence of isoforms and their tissue-specific expression in different model organisms. The comparison of intronic and exonic sequences identified potential expressional regulatory elements. As examples, smooth muscle MP regulatory subunit (PPP1R12A) is highly conserved through evolution. Its alternative exon E24 is present in fish through mammals with two invariant features: 1) a reading frame shift generating a premature termination codon and 2) a hexanucleotide sequence adjacent to the 3' splice site hypothesized to be a novel suppressor of exon splicing. A characteristic of the striated muscle MP regulatory subunit (PPP1R12B) locus is numerous and phylogenetically variable transcriptional start sites. In fish this locus only codes for the small (M21) subunit, suggesting the primordial function of this gene. Inhibitory subunits show little intragenic variability; their diversity is thought to have arisen by expansion and tissue-specific expression of different gene family members. We demonstrate differences in the regulatory landscape between smooth muscle enriched (PPP1R14A) and more ubiquitously expressed (PPP1R14B) family members and identify deeply conserved intronic sequence and predicted transcriptional cis-regulatory elements. This bioinformatic and computational study has uncovered a number of attributes of MP subunits that supports selection of ideal model organisms and testing of hypotheses regarding their physiological significance and regulated expression.
Collapse
Affiliation(s)
- Rachael P Dippold
- Department of Medicine, Cardiology, University of Maryland Baltimore, Baltimore, Maryland
| | - Steven A Fisher
- Department of Medicine, Cardiology, University of Maryland Baltimore, Baltimore, Maryland
| |
Collapse
|
50
|
Boopathi E, Gomes C, Zderic SA, Malkowicz B, Chakrabarti R, Patel DP, Wein AJ, Chacko S. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy. Am J Physiol Cell Physiol 2014; 307:C542-53. [PMID: 25031021 DOI: 10.1152/ajpcell.00033.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Partial bladder outlet obstruction (pBOO)-induced remodeling of bladder detrusor smooth muscle (DSM) is associated with the modulation of cell signals regulating contraction. We analyzed the DSM from obstructed murine urinary bladders for the temporal regulation of RhoA GTPase and Rho-activated kinase (ROCK), which are linked to Ca(2+) sensitization. In addition, the effects of equibiaxial cell stretch, a condition thought to be associated with pBOO-induced bladder wall smooth muscle hypertrophy and voiding frequency, on the expression of RhoA, ROCK, and C-kinase-activated protein phosphatase I inhibitor (CPI-17) were investigated. DSM from 1-, 3-, 7-, and 14-day obstructed male mice bladders and benign prostatic hyperplasia (BPH)-induced obstructed human bladders revealed overexpression of RhoA and ROCK-β at the mRNA and protein levels compared with control. Primary human bladder myocytes seeded onto type I collagen-coated elastic silicone membranes were subjected to cyclic equibiaxial stretch, mimicking the cellular mechanical stretch in the bladder in vivo, and analyzed for the expression of RhoA, ROCK-β, and CPI-17. Stretch caused a significant increase of RhoA, ROCKβ, and CPI-17 expression. The stretch-induced increase in CPI-17 expression occurs at the transcriptional level and is associated with CPI-17 promoter binding by GATA-6 and NF-κB, the transcription factors responsible for CPI-17 gene transcription. Cell stretch caused by bladder overdistension in pBOO is the likely mechanism for initiating overexpression of the signaling proteins regulating DSM tone.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Cristiano Gomes
- Hospital das Clinicas, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Stephen A Zderic
- Department of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Bruce Malkowicz
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Ranjita Chakrabarti
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Darshan P Patel
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Alan J Wein
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Samuel Chacko
- Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| |
Collapse
|