1
|
Motomura K, Sugi N, Takeda A, Yamaoka S, Maruyama D. Possible molecular mechanisms of persistent pollen tube growth without de novo transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:1020306. [PMID: 36507386 PMCID: PMC9729840 DOI: 10.3389/fpls.2022.1020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The vegetative cell nucleus proceeds ahead of a pair of sperm cells located beneath the pollen tube tip during germination. The tip-localized vegetative nucleus had been considered to play a pivotal role in the control of directional pollen tube growth and double fertilization. However, we recently reported the female-targeting behavior of pollen tubes from mutant plants, of which the vegetative nucleus and sperm nuclei were artificially immotile. We showed that the apical region of the mutant pollen tubes became physiologically enucleated after the first callose plug formation, indicating the autonomously growing nature of pollen tubes without the vegetative nucleus and sperm cells. Thus, in this study, we further analyzed another Arabidopsis thaliana mutant producing physiologically enucleated pollen tubes and discussed the mechanism by which a pollen tube can grow without de novo transcription from the vegetative nucleus. We propose several possible molecular mechanisms for persistent pollen tube growth, such as the contribution of transcripts before and immediately after germination and the use of persistent transcripts, which may be important for a competitive race among pollen tubes.
Collapse
Affiliation(s)
- Kazuki Motomura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Japanese Science and Technology Agency, PRESTO, Kawaguchi, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Naoya Sugi
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Atsushi Takeda
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
2
|
Jia J, Lu W, Liu B, Fang H, Yu Y, Mo W, Zhang H, Jin X, Shu Y, Long Y, Pei Y, Zhai J. An atlas of plant full-length RNA reveals tissue-specific and monocots-dicots conserved regulation of poly(A) tail length. NATURE PLANTS 2022; 8:1118-1126. [PMID: 35982302 DOI: 10.1038/s41477-022-01224-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Poly(A) tail is a hallmark of eukaryotic messenger RNA and its length plays an essential role in regulating mRNA metabolism. However, a comprehensive resource for plant poly(A) tail length has yet to be established. Here, we applied a poly(A)-enrichment-free, nanopore-based method to profile full-length RNA with poly(A) tail information in plants. Our atlas contains over 120 million polyadenylated mRNA molecules from seven different tissues of Arabidopsis, as well as the shoot tissue of maize, soybean and rice. In most tissues, the size of plant poly(A) tails shows peaks at approximately 20 and 45 nucleotides, while the poly(A) tails in pollen exhibit a distinct pattern with strong peaks centred at 55 and 80 nucleotides. Moreover, poly(A) tail length is regulated in a gene-specific manner-mRNAs with short half-lives in general have long poly(A) tails, while mRNAs with long half-lives are featured with relatively short poly(A) tails that peak at ~45 nucleotides. Across species, poly(A) tails in the nucleus are almost twice as long as in the cytoplasm. Our comprehensive dataset lays the groundwork for future functional and evolutionary studies on poly(A) tail length regulation in plants.
Collapse
Affiliation(s)
- Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Wenqin Lu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Huihui Fang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Yiming Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Weipeng Mo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Xianhao Jin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yi Shu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yanxi Pei
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Poidevin L, Forment J, Unal D, Ferrando A. Transcriptome and translatome changes in germinated pollen under heat stress uncover roles of transporter genes involved in pollen tube growth. PLANT, CELL & ENVIRONMENT 2021. [PMID: 33289138 DOI: 10.1101/2020.05.29.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant reproduction is one key biological process that is very sensitive to heat stress and, as a result, enhanced global warming becomes a serious threat to agriculture. In this work, we have studied the effects of heat on germinated pollen of Arabidopsis thaliana both at the transcriptional and translational level. We have used a high-resolution ribosome profiling technology to provide a comprehensive study of the transcriptome and the translatome of germinated pollen at permissive and restrictive temperatures. We have found significant down-regulation of key membrane transporters required for pollen tube growth by heat, thus uncovering heat-sensitive targets. A subset of the heat-repressed transporters showed coordinated up-regulation with canonical heat-shock genes at permissive conditions. We also found specific regulations at the translational level and we have uncovered the presence of ribosomes on sequences annotated as non-coding. Our results demonstrate that heat impacts mostly on membrane transporters thus explaining the deleterious effects of heat stress on pollen growth. The specific regulations at the translational level and the presence of ribosomes on non-coding RNAs highlights novel regulatory aspects on plant fertilization.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Dilek Unal
- Biotechnology Application and Research Center, and Department of Molecular Biology, Faculty of Science and Letter, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
4
|
Stephan OOH. Implications of ionizing radiation on pollen performance in comparison with diverse models of polar cell growth. PLANT, CELL & ENVIRONMENT 2021; 44:665-691. [PMID: 33124689 DOI: 10.1111/pce.13929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Research concerning the effects of ionizing radiation (IR) on plant systems is essential for numerous aspects of human society, as for instance, in terms of agriculture and plant breeding, but additionally for elucidating consequences of radioactive contamination of the ecosphere. This comprehensive survey analyses effects of x- and γ-irradiation on male gametophytes comprising primarily in vitro but also in vivo data of diverse plant species. The IR-dose range for pollen performance was compiled and 50% inhibition doses (ID50 ) for germination and tube growth were comparatively related to physiological characteristics of the microgametophyte. Factors influencing IR-susceptibility of mature pollen and polarized tube growth were evaluated, such as dose-rate, environmental conditions, or species-related variations. In addition, all available reports suggesting bio-positive IR-effects particularly on pollen performance were examined. Most importantly, for the first time influences of IR specifically on diverse phylogenetic models of polar cell growth were comparatively analysed, and thus demonstrated that the gametophytic system of pollen is extremely resistant to IR, more than plant sporophytes and especially much more than comparable animal cells. Beyond that, this study develops hypotheses regarding a molecular basis for the extreme IR-resistance of the plant microgametophyte and highlights its unique rank among organismal systems.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
5
|
Çetinbaş-Genç A, Vardar F. Effect of methyl jasmonate on in-vitro pollen germination and tube elongation of Pinus nigra. PROTOPLASMA 2020; 257:1655-1665. [PMID: 32734410 DOI: 10.1007/s00709-020-01539-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The purpose of the main research was to investigate the effects of methyl jasmonate (MeJA) (0.05, 0.25, 0.5, and 2.5 mM) on the pollen germination and tube elongation of Pinus nigra. Total pollen germination rate increased after MeJA treatments while the most enhancement was observed at 0.05-mM MeJA. No germination was observed at 2.5-mM MeJA. Although the unipolar and bipolar germination were observed in all groups, no significant changes were observed in unipolar and bipolar pollen germination rates after MeJA treatments. Tube length increased only at 0.05-mM MeJA. Although branched tubes were observed in all groups, branched tube rate increased only at 0.05-mM MeJA. Although two branched, three branched, and consecutive branched tubes were observed in all groups, the most common branching type was two branched type in all groups. Although anisotropy of actin filaments in the shank and apex of unbranched tubes decreased after MeJA treatments, the most decrease was observed at 0.05-mM MeJA. Also, anisotropy of actin filaments in the shank and in pre-branching region of branched tubes decreased only at 0.25-mM MeJA. Anisotropy of both two apexes of a branched tube changed only at 0.25- and 0.5-mM MeJA. Callose accumulation in the apex of unbranched and branched tubes increased in parallel with the increase in MeJA concentration. However, more callose is accumulated in one apex than the other apex of a branched tube. In conclusion, MeJA affected the actin organization, changed the callose distribution, and altered the pollen tube growth of Pinus nigra.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey.
| | - Filiz Vardar
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey
| |
Collapse
|
6
|
Three-dimensional reconstruction of Picea wilsonii Mast. pollen grains using automated electron microscopy. SCIENCE CHINA-LIFE SCIENCES 2019; 63:171-179. [PMID: 31625022 DOI: 10.1007/s11427-019-9820-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023]
Abstract
Three-dimensional electron microscopy (3D-EM) has attracted considerable attention because of its ability to provide detailed information with respect to developmental analysis. However, large-scale high-resolution 3D reconstruction of biological samples remains challenging. Herein, we present a 3D view of a Picea wilsonii Mast. pollen grain with 100 nm axial and 38.57 nm lateral resolution using AutoCUTS-SEM (automatic collector of ultrathin sections-scanning electron microscopy). We established a library of 3,127 100 nm thick serial sections of pollen grains for preservation and observation, demonstrating that the protocol can be used to analyze large-volume samples. After obtaining the SEM images, we reconstructed an entire pollen grain comprising 734 serial sections. The images produced by 3D reconstruction clearly revealed the main components of the P. wilsonii pollen grain, i.e., two sacci and pollen corpus, tube cell, generative cell, and two degenerated prothallial cells, and their internal organization. In addition, we performed a quantitative analysis of the different pollen grain cells, including sacci, and found that there were 202 connections within a saccus SEM image. Thus, for the first time, this study provided a global 3D view of the entire pollen grain, which will be useful for analyzing pollen development and growth.
Collapse
|
7
|
Wang CX, Qi CY, Luo JH, Liu L, He Y, Chen LQ. Characterization of LRL5 as a key regulator of root hair growth in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:71-82. [PMID: 30556198 DOI: 10.1111/tpj.14200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/05/2018] [Accepted: 11/21/2018] [Indexed: 05/27/2023]
Abstract
Root hair, a special type of tubular-shaped cell, outgrows from the root epidermal cell and plays important roles in the acquisition of nutrients and water, as well as interactions with biotic and abiotic stresses. Studies in the model plant Arabidopsis have revealed that root-hair initiation and elongation are hierarchically regulated by a group of basic helix-loop-helix (bHLH) transcription factors (TFs). However, knowledge regarding the regulatory pathways of these bHLH TFs in controlling root hair growth remains limited. In this study, RNA-seq analysis was conducted to profile the transcriptome in the elongating maize root hair and >1000 genes with preferential expression in root hair were identified. A consensus cis-element previously featured as the potential bHLH-TF binding sites was present in the regulatory regions for the majority of the root hair-preferentially expressed genes. In addition, an individual change in ZmLRL5, the highest-expressed bHLH-TF in maize root hair resulted in a dramatic reduction in the elongation of root hair, and rendered the growth of root hair hypersensitive to translational inhibition. Moreover, RNA-seq, yeast-one-hybrid and ribosome profile analysis suggested that ZmLRL5 may function as a key player in orchestrating the translational process by directly regulating the expression of translational processes/ribosomal genes during maize root hair growth.
Collapse
Affiliation(s)
- Chun-Xia Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuang-Ye Qi
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jin-Hong Luo
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Lin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan He
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Vannini C, Marsoni M, Scoccianti V, Ceccarini C, Domingo G, Bracale M, Crinelli R. Proteasome-mediated remodeling of the proteome and phosphoproteome during kiwifruit pollen germination. J Proteomics 2019; 192:334-345. [DOI: 10.1016/j.jprot.2018.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 01/19/2023]
|
9
|
Flores-Rentería L, Whipple AV, Benally GJ, Patterson A, Canyon B, Gehring CA. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:536. [PMID: 29760715 PMCID: PMC5936790 DOI: 10.3389/fpls.2018.00536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/06/2018] [Indexed: 05/27/2023]
Abstract
High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1) higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2) high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3) pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis, a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that even high pollen production may not result in successful fertilization due to low germination. Acquired thermotolerance might not limit these impacts, but pinyon could avoid heat stress by phenological adjustment of pollen development. Higher pollen viability at the core of the distribution could be explained by an optimal combination of biotic and abiotic environmental factors. The disconnect between measures of growth and pollen production suggests that vigor metrics may not accurately estimate reproduction.
Collapse
Affiliation(s)
| | - Amy V. Whipple
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Gilbert J. Benally
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Adair Patterson
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Brandon Canyon
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Catherine A. Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
10
|
Moon S, Oo MM, Kim B, Koh HJ, Oh SA, Yi G, An G, Park SK, Jung KH. Genome-wide analyses of late pollen-preferred genes conserved in various rice cultivars and functional identification of a gene involved in the key processes of late pollen development. RICE (NEW YORK, N.Y.) 2018; 11:28. [PMID: 29687350 PMCID: PMC5913055 DOI: 10.1186/s12284-018-0219-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Understanding late pollen development, including the maturation and pollination process, is a key component in maintaining crop yields. Transcriptome data obtained through microarray or RNA-seq technologies can provide useful insight into those developmental processes. Six series of microarray data from a public transcriptome database, the Gene Expression Omnibus of the National Center for Biotechnology Information, are related to anther and pollen development. RESULTS We performed a systematic and functional study across the rice genome of genes that are preferentially expressed in the late stages of pollen development, including maturation and germination. By comparing the transcriptomes of sporophytes and male gametes over time, we identified 627 late pollen-preferred genes that are conserved among japonica and indica rice cultivars. Functional classification analysis with a MapMan tool kit revealed a significant association between cell wall organization/metabolism and mature pollen grains. Comparative analysis of rice and Arabidopsis demonstrated that genes involved in cell wall modifications and the metabolism of major carbohydrates are unique to rice. We used the GUS reporter system to monitor the expression of eight of those genes. In addition, we evaluated the significance of our candidate genes, using T-DNA insertional mutant population and the CRISPR/Cas9 system. Mutants from T-DNA insertion and CRISPR/Cas9 systems of a rice gene encoding glycerophosphoryl diester phosphodiesterase are defective in their male gamete transfer. CONCLUSION Through the global analyses of the late pollen-preferred genes from rice, we found several biological features of these genes. First, biological process related to cell wall organization and modification is over-represented in these genes to support rapid tube growth. Second, comparative analysis of late pollen preferred genes between rice and Arabidopsis provide a significant insight on the evolutional disparateness in cell wall biogenesis and storage reserves of pollen. In addition, these candidates might be useful targets for future examinations of late pollen development, and will be a valuable resource for accelerating the understanding of molecular mechanisms for pollen maturation and germination processes in rice.
Collapse
Affiliation(s)
- Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Moe Moe Oo
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Backki Kim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, South Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Gihwan Yi
- College of Agriculture and Life Science, Daegu, 702-701, South Korea
| | - Gynheung An
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea.
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea.
| |
Collapse
|
11
|
Flores-Rentería L, Whipple AV, Benally GJ, Patterson A, Canyon B, Gehring CA. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 29760715 DOI: 10.3389/fpls.2018.00536/full] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1) higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2) high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3) pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis, a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that even high pollen production may not result in successful fertilization due to low germination. Acquired thermotolerance might not limit these impacts, but pinyon could avoid heat stress by phenological adjustment of pollen development. Higher pollen viability at the core of the distribution could be explained by an optimal combination of biotic and abiotic environmental factors. The disconnect between measures of growth and pollen production suggests that vigor metrics may not accurately estimate reproduction.
Collapse
Affiliation(s)
| | - Amy V Whipple
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Gilbert J Benally
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Adair Patterson
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Brandon Canyon
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Catherine A Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
12
|
Scarpin MR, Sigaut L, Temprana SG, Boccaccio GL, Pietrasanta LI, Muschietti JP. Two Arabidopsis late pollen transcripts are detected in cytoplasmic granules. PLANT DIRECT 2017; 1:e00012. [PMID: 31245661 PMCID: PMC6508577 DOI: 10.1002/pld3.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 05/19/2023]
Abstract
Many of mRNAs synthesized during pollen development are translated after germination, and we hypothesize that they are stored in cytoplasmic granules. We analyzed the cellular localization of the SKS14 and AT59 Arabidopsis mRNAs, which are orthologues of the tobacco NTP303 and tomato LAT59 pollen mRNAs, respectively, by artificially labeling the transcripts with a MS2-GFP chimera. A MATLAB-automated image analysis helped to identify the presence of cytoplasmic SKS14 and AT59 mRNA granules in mature pollen grains. These mRNA granules partially colocalized with VCS and DCP1, two processing body (PB) proteins. Finally, we found a temporal correlation between SKS14 protein accumulation and the disappearance of SKS14 mRNA granules during pollen germination. These results contribute to unveil a mechanism for translational regulation in Arabidopsis thaliana pollen.
Collapse
Affiliation(s)
- María R. Scarpin
- Instituto de Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI‐CONICET)Buenos AiresArgentina
| | - Lorena Sigaut
- Instituto de Física de Buenos Aires (IFIBA‐CONICET)Departamento de FísicaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad UniversitariaBuenos AiresArgentina
| | - Silvio G. Temprana
- Fundación Instituto LeloirIIBBA‐CONICETFacultad de Ciencias Exactas y NaturalesDepartamento de Fisiología y Biología Molecular y CelularUniversidad de Buenos AiresCiudad UniversitariaBuenos AiresArgentina
| | - Graciela L. Boccaccio
- Fundación Instituto LeloirIIBBA‐CONICETFacultad de Ciencias Exactas y NaturalesDepartamento de Fisiología y Biología Molecular y CelularUniversidad de Buenos AiresCiudad UniversitariaBuenos AiresArgentina
| | - Lía I. Pietrasanta
- Instituto de Física de Buenos Aires (IFIBA‐CONICET)Departamento de FísicaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad UniversitariaBuenos AiresArgentina
- Centro de Microscopías AvanzadasFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad UniversitariaBuenos AiresArgentina
| | - Jorge P. Muschietti
- Instituto de Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI‐CONICET)Buenos AiresArgentina
- Departamento de Biodiversidad y Biología ExperimentalFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad UniversitariaBuenos AiresArgentina
| |
Collapse
|
13
|
Conze LL, Berlin S, Le Bail A, Kost B. Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes. BMC Genomics 2017; 18:581. [PMID: 28784084 PMCID: PMC5545845 DOI: 10.1186/s12864-017-3972-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 07/31/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pollen tube growth is essential for plant reproduction and represents a widely employed model to investigate polarized cell expansion, a process important for plant morphogenesis and development. Cellular and regulatory mechanisms underlying pollen tube elongation are under intense investigation, which stands to greatly benefit from a comprehensive understanding of global gene expression profiles in pollen and pollen tubes. Here, RNA sequencing technology was applied to de novo assemble a Nicotiana tabacum male gametophytic transcriptome and to compare transcriptome profiles at two different stages of gametophyte development: mature pollen grains (MPG) and pollen tubes grown for six hours in vitro (PT6). RESULTS De novo assembly of data obtained by 454 sequencing of a normalized cDNA library representing tobacco pollen and pollen tube mRNA (pooled mRNA isolated from mature pollen grains [MPG] and from pollen tubes grown in vitro for 3 [PT3] or 6 [PT6] hours) resulted in the identification of 78,364 unigenes. Among these unigenes, which mapped to 24,933 entries in the Sol Genomics Network (SGN) N. tabacum unigene database, 24,672 were predicted to represent full length cDNAs. In addition, quantitative analyses of data obtained by Illumina sequencing of two separate non-normalized MPG and PT6 cDNA libraries showed that 8979 unigenes were differentially expressed (differentially expressed unigenes: DEGs) between these two developmental stages at a FDR q-value of <0.0001. Interestingly, whereas most of these DEGs were downregulated in PT6, the minor fraction of DEGs upregulated in PT6 was enriched for GO (gene ontology) functions in pollen tube growth or fertilization. CONCLUSIONS A major output of our study is the development of two different high-quality databases representing the tobacco male gametophytic transcriptome and containing encompassing information about global changes in gene expression after pollen germination. Quantitative analyses of these databases 1) indicated that roughly 30% of all tobacco genes are expressed in the male gametophyte, and 2) support previous observations suggesting a global reduction of transcription after pollen germination. Interestingly, a small number of genes, many of which predicted to function in pollen tube growth or fertilization, were found to be upregulated in elongating pollen tubes despite globally reduced transcription.
Collapse
Affiliation(s)
- Lei Liu Conze
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Aude Le Bail
- Cell Biology Division, Department of Biology, Friedrich Alexander University, Erlangen/Nuremberg, Germany
| | - Benedikt Kost
- Cell Biology Division, Department of Biology, Friedrich Alexander University, Erlangen/Nuremberg, Germany
| |
Collapse
|
14
|
Zhao LJ, Yuan HM, Guo WD, Yang CP. Digital Gene Expression Analysis of Populus simonii × P. nigra Pollen Germination and Tube Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:825. [PMID: 27379121 PMCID: PMC4908133 DOI: 10.3389/fpls.2016.00825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/26/2016] [Indexed: 05/27/2023]
Abstract
Pollen tubes are an ideal model for the study of cell growth and morphogenesis because of their extreme elongation without cell division; however, the genetic basis of pollen germination and tube growth remains largely unknown. Using the Illumina/Solexa digital gene expression system, we identified 13,017 genes (representing 28.3% of the unigenes on the reference genes) at three stages, including mature pollen, hydrated pollen, and pollen tubes of Populus simonii × P. nigra. Comprehensive analysis of P. simonii × P. nigra pollen revealed dynamic changes in the transcriptome during pollen germination and pollen tube growth (PTG). Gene ontology analysis of differentially expressed genes showed that genes involved in functional categories such as catalytic activity, binding, transporter activity, and enzyme regulator activity were overrepresented during pollen germination and PTG. Some highly dynamic genes involved in pollen germination and PTG were detected by clustering analysis. Genes related to some key pathways such as the mitogen-activated protein kinase signaling pathway, regulation of the actin cytoskeleton, calcium signaling, and ubiquitin-mediated proteolysis were significantly changed during pollen germination and PTG. These data provide comprehensive molecular information toward further understanding molecular mechanisms underlying pollen germination and PTG.
Collapse
Affiliation(s)
- Li-Juan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
- Department of Crop Molecular Breeding, Crop Breeding Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Hong-Mei Yuan
- Medical Plant Research Center, Economic Crop Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Wen-Dong Guo
- Biotechnology Research Center, Institute of Natural Resources and Ecology, Heilongjiang Academy of SciencesHarbin, China
| | - Chuan-Ping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
15
|
Cui Y, Ling Y, Zhou J, Li X. Interference of the Histone Deacetylase Inhibits Pollen Germination and Pollen Tube Growth in Picea wilsonii Mast. PLoS One 2015; 10:e0145661. [PMID: 26710276 PMCID: PMC4692408 DOI: 10.1371/journal.pone.0145661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase (HDAC) is a crucial component in the regulation of gene expression in various cellular processes in animal and plant cells. HDAC has been reported to play a role in embryogenesis. However, the effect of HDAC on androgamete development remains unclear, especially in gymnosperms. In this study, we used the HDAC inhibitors trichostatin A (TSA) and sodium butyrate (NaB) to examine the role of HDAC in Picea wilsonii pollen germination and pollen tube elongation. Measurements of the tip-focused Ca2+ gradient revealed that TSA and NaB influenced this gradient. Immunofluorescence showed that actin filaments were disrupted into disorganized fragments. As a result, the vesicle trafficking was disturbed, as determined by FM4-64 labeling. Moreover, the distribution of pectins and callose in cell walls was significantly altered in response to TSA and NaB. Our results suggest that HDAC affects pollen germination and polarized pollen tube growth in Picea wilsonii by affecting the intracellular Ca2+ concentration gradient, actin organization patterns, vesicle trafficking, as well as the deposition and configuration of cell wall components.
Collapse
Affiliation(s)
- Yaning Cui
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yu Ling
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Junhui Zhou
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Prado N, De Linares C, Sanz ML, Gamboa P, Villalba M, Rodríguez R, Batanero E. Pollensomes as Natural Vehicles for Pollen Allergens. THE JOURNAL OF IMMUNOLOGY 2015; 195:445-9. [DOI: 10.4049/jimmunol.1500452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/12/2015] [Indexed: 01/12/2023]
|
17
|
Egorova AM, Tarchevsky IA. Antipathogenic phenomenon of cycloheximide. DOKL BIOCHEM BIOPHYS 2015; 461:98-101. [PMID: 25937224 DOI: 10.1134/s160767291502009x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 11/23/2022]
Affiliation(s)
- A M Egorova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, ul. Lobachevskogo 2/31, Kazan, 420111, Tatarstan, Russia
| | | |
Collapse
|
18
|
Wang L, Lv X, Li H, Zhang M, Wang H, Jin B, Chen T. Inhibition of apoplastic calmodulin impairs calcium homeostasis and cell wall modeling during Cedrus deodara pollen tube growth. PLoS One 2013; 8:e55411. [PMID: 23405148 PMCID: PMC3566176 DOI: 10.1371/journal.pone.0055411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 12/21/2012] [Indexed: 12/14/2022] Open
Abstract
Calmodulin (CaM) is one of the most well-studied Ca(2+) transducers in eukaryotic cells. It is known to regulate the activity of numerous proteins with diverse cellular functions; however, the functions of apoplastic CaM in plant cells are still poorly understood. By combining pharmacological analysis and microscopic techniques, we investigated the involvement of apoplastic CaM in pollen tube growth of Cedrus deodara (Roxb.) Loud. It was found that the tip-focused calcium gradient was rapidly disturbed as one of the early events after application of pharmacological agents, while the cytoplasmic organization was not significantly affected. The deposition and distribution of acidic pectins and esterified pectins were also dramatically changed, further perturbing the normal modeling of the cell wall. Several protein candidates from different functional categories may be involved in the responses to inhibition of apoplastic CaM. These results revealed that apoplastic CaM functions to maintain the tip-focused calcium gradient and to modulate the distribution/transformation of pectins during pollen tube growth.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xueqin Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Biological Science and Technology, Yangzhou University, Yangzhou, China
| | - Hong Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Biological Science and Technology, Yangzhou University, Yangzhou, China
| | - Min Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tong Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Agrawal GK, Job D, Zivy M, Agrawal VP, Bradshaw RA, Dunn MJ, Haynes PA, van Wijk KJ, Kikuchi S, Renaut J, Weckwerth W, Rakwal R. Time to articulate a vision for the future of plant proteomics - A global perspective: An initiative for establishing the International Plant Proteomics Organization (INPPO). Proteomics 2011; 11:1559-68. [DOI: 10.1002/pmic.201000608] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 11/23/2010] [Accepted: 12/27/2010] [Indexed: 01/11/2023]
|
20
|
Sheng XY, Dong XL, Zhang SS, Jiang LP, Zhu J, Wang L. Mitochondrial dynamics and its responds to proteasome defection during Picea wilsonii pollen tube development. Cell Biochem Funct 2010; 28:420-5. [PMID: 20589737 DOI: 10.1002/cbf.1672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tip growth of pollen tubes is essential for higher plant sexual reproduction and has been proposed to be highly regulated by the ubiquitin/proteasome pathway (UPP). The dynamics of mitochondria and the functions of the UPP on mitochondrial dynamics during pollen tube development are still poorly understood. In the present study, using real-time laser scanning and transmission electron microscope, it was revealed that mitochondria in Picea wilsonii, are either ellipsoid or filamentous with various lengths. Time-lapse images indicated that the two forms of mitochondria interconvert frequently through opposite process of fusion and fission. Examination of mitochondrial morphology during four key stages of in vitro pollen tube development revealed a link between mitochondrial remodeling and the process of pollen tube elongation. We also report that MG132, a specific proteasome inhibitor, not only strongly disturbed the mitochondrial remodeling but also significantly reduced mitochondrial membrane potential during pollen tube development. This finding provides new insight into the function of the proteasome in tip growth of pollen tubes.
Collapse
Affiliation(s)
- Xian-Yong Sheng
- College of Life Science, Capital Normal University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
21
|
Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 2010; 11:338. [PMID: 20507633 PMCID: PMC2895629 DOI: 10.1186/1471-2164-11-338] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 05/28/2010] [Indexed: 11/24/2022] Open
Abstract
Background Pollen development from the microspore involves a series of coordinated cellular events, and the resulting mature pollen has a specialized function to quickly germinate, produce a polar-growth pollen tube derived from the vegetative cell, and deliver two sperm cells into the embryo sac for double fertilization. The gene expression profiles of developing and germinated pollen have been characterised by use of the eudicot model plant Arabidopsis. Rice, one of the most important cereal crops, has been used as an excellent monocot model. A comprehensive analysis of transcriptome profiles of developing and germinated pollen in rice is important to understand the conserved and diverse mechanism underlying pollen development and germination in eudicots and monocots. Results We used Affymetrix GeneChip® Rice Genome Array to comprehensively analyzed the dynamic changes in the transcriptomes of rice pollen at five sequential developmental stages from microspores to germinated pollen. Among the 51,279 transcripts on the array, we found 25,062 pollen-preferential transcripts, among which 2,203 were development stage-enriched. The diversity of transcripts decreased greatly from microspores to mature and germinated pollen, whereas the number of stage-enriched transcripts displayed a "U-type" change, with the lowest at the bicellular pollen stage; and a transition of overrepresented stage-enriched transcript groups associated with different functional categories, which indicates a shift in gene expression program at the bicellular pollen stage. About 54% of the now-annotated rice F-box protein genes were expressed preferentially in pollen. The transcriptome profile of germinated pollen was significantly and positively correlated with that of mature pollen. Analysis of expression profiles and coexpressed features of the pollen-preferential transcripts related to cell cycle, transcription, the ubiquitin/26S proteasome system, phytohormone signalling, the kinase system and defense/stress response revealed five expression patterns, which are compatible with changes in major cellular events during pollen development and germination. A comparison of pollen transcriptomes between rice and Arabidopsis revealed that 56.6% of the rice pollen preferential genes had homologs in Arabidopsis genome, but 63.4% of these homologs were expressed, with a small proportion being expressed preferentially, in Arabidopsis pollen. Rice and Arabidopsis pollen had non-conservative transcription factors each. Conclusions Our results demonstrated that rice pollen expressed a set of reduced but specific transcripts in comparison with vegetative tissues, and the number of stage-enriched transcripts displayed a "U-type" change during pollen development, with the lowest at the bicellular pollen stage. These features are conserved in rice and Arabidopsis. The shift in gene expression program at the bicellular pollen stage may be important to the transition from earlier cell division to later pollen maturity. Pollen at maturity pre-synthesized transcripts needed for germination and early pollen tube growth. The transcription regulation associated with pollen development would have divergence between the two species. Our results also provide novel insights into the molecular program and key components of the regulatory network regulating pollen development and germination.
Collapse
Affiliation(s)
- Li Q Wei
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
22
|
Zheng M, Wang Q, Teng Y, Wang X, Wang F, Chen T, Samaj J, Lin J, Logan DC. The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. PLANTA 2010; 231:779-91. [PMID: 20033230 DOI: 10.1007/s00425-009-1086-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/04/2009] [Indexed: 05/23/2023]
Abstract
Strategic control of mitochondrial movements and cellular distribution is essential for correct cell function and survival. However, despite being a vital process, mitochondrial movement in plant cells is a poorly documented phenomenon. To investigate the roles of actin filaments and microtubules on mitochondrial movements, Picea wilsonii pollen tubes were treated with two microtubule-disrupting drugs, two actin-disrupting drugs and a myosin inhibitor. Following these treatments, mitochondrial movements were characterized by multiangle evanescent wave microscopy and laser-scanning confocal microscopy. The results showed that individual mitochondria underwent three classes of linear movement: high-speed movement (instantaneous velocities >5.0 microm/s), low-speed movement (instantaneous velocities <5.0 microm/s) and variable-speed movement (instantaneous velocities ranging from 0.16 to 10.35 microm/s). 10 nM latrunculin B induced fragmentation of actin filaments and completely inhibited mitochondrial vectorial movement. Jasplakinolide treatment induced a 28% reduction in chondriome motility, and dramatically inhibition of high-speed and variable-speed movements. Treatment with 2,3-butanedione 2-monoxime caused a 61% reduction of chondriome motility, and the complete inhibition of high-speed and low-speed movements. In contrast to actin-disrupting drugs, microtubule-disrupting drugs caused mild effects on mitochondrial movement. Taxol increased the speed of mitochondrial movement in cortical cytoplasm. Oryzalin induced curved mitochondrial trajectories with similar velocities as in the control pollen tubes. These results suggest that mitochondrial movement at low speeds in pollen tubes is driven by myosin, while high-speed and variable-speed movements are powered both by actin filament dynamics and myosin. In addition, microtubule dynamics has profound effects on mitochondrial velocity, trajectory and positioning via its role in directing the arrangement of actin filaments.
Collapse
Affiliation(s)
- Maozhong Zheng
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, 100093, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen T, Wu X, Chen Y, Li X, Huang M, Zheng M, Baluska F, Samaj J, Lin J. Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. PLANT PHYSIOLOGY 2009; 149:1111-26. [PMID: 19011005 PMCID: PMC2633844 DOI: 10.1104/pp.108.127514] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 11/11/2008] [Indexed: 05/22/2023]
Abstract
Ca2+-calmodulin (Ca2+-CaM) is a critical molecule that mediates cellular functions by interacting with various metabolic and signaling pathways. However, the protein expression patterns and accompanying serial cytological responses in Ca2+-CaM signaling deficiency remain enigmatic. Here, we provide a global analysis of the cytological responses and significant alterations in protein expression profiles after trifluoperazine treatment in Picea meyeri, which abrogates Ca2+-CaM signaling. Ninety-three differentially displayed proteins were identified by comparative proteomics at different development stages and were assigned to different functional categories closely related to tip growth machinery. The inhibition of Ca2+-CaM signaling rapidly induced an increase in extracellular Ca2+ influx, resulting in dramatically increased cytosolic Ca2+ concentrations and ultrastructural abnormalities in organelles as the primary responses. Secondary and tertiary alterations included actin filament depolymerization, disrupted patterns of endocytosis and exocytosis, and cell wall remodeling, ultimately resulting in perturbed pollen tube extension. In parallel with these cytological events, time-course experiments revealed that most differentially expressed proteins showed time-dependent quantitative changes (i.e. some signaling proteins and proteins involved in organelle functions and energy production changed first, followed by alterations in proteins related to cytoskeletal organization, secretory pathways, and polysaccharide synthesis). Taken together, Ca2+-CaM dysfunction induced serial cytological responses and temporal changes in protein expression profiles, indicating the pivotal role of Ca2+-CaM in the regulation of tip growth machinery.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yu Y, Li Y, Li L, Lin J, Zheng C, Zhang L. Overexpression of PwTUA1, a pollen-specific tubulin gene, increases pollen tube elongation by altering the distribution of alpha-tubulin and promoting vesicle transport. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2737-49. [PMID: 19454597 PMCID: PMC2692020 DOI: 10.1093/jxb/erp143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 05/19/2023]
Abstract
Tubulin genes are intimately associated with cell division and cell elongation, which are central to plant secondary cell wall development. However, their roles in pollen tube polar growth remain elusive. Here, a TUA1 gene from Picea wilsonii, which is specifically expressed in pollen, was isolated. Semi-quantitative RT-PCR analysis showed that the amount of PwTUA1 transcript varied at each stage of growth of the pollen tube and was induced by calcium ions and boron. Transient expression analysis in P. wilsonii pollen indicated that PwTUA1 improved pollen germination and pollen tube growth. The pollen of transgenic Arabidopsis overexpressing PwTUA1 also showed a higher percentage of germination and faster growth than wild-type plants not only in optimal germination medium, but also in medium supplemented with elevated levels of exogenous calcium ions or boron. Immunofluorescence and electron microscopy showed alpha-tubulin to be enriched and more vesicles accumulated in the apex region in germinating transgenic Arabidopsis pollen compared with wild-type plants. These results demonstrate that PwTUA1 up-regulated by calcium ions and boron contributes to pollen tube elongation by altering the distribution of alpha-tubulin and regulating the deposition of pollen cell wall components during the process of tube growth. The possible role of PwTUA1 in microtubule dynamics and organization was discussed.
Collapse
Affiliation(s)
- YanLi Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - YanZe Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - LingLi Li
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - JinXing Lin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
- To whom correspondence should be addressed. E-mail: or
| | - LingYun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
25
|
Wu X, Chen T, Zheng M, Chen Y, Teng N, Samaj J, Baluska F, Lin J. Integrative proteomic and cytological analysis of the effects of extracellular Ca(2+) influx on Pinus bungeana pollen tube development. J Proteome Res 2008; 7:4299-312. [PMID: 18715029 DOI: 10.1021/pr800241u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ca (2+) is an essential ion in the control of pollen germination and tube growth. However, the control of pollen tube development by Ca (2+) signaling and its interactions with cytoskeletal components, energy-providing pathways, and cell-expansion machinery remain elusive. Here, we used nifedipine (Nif) to study Ca (2+) functions in differential protein expression and other cellular processes in Pinus bungeana pollen tube growth. Proteomics analysis indicated that 50 proteins showed differential expression with varying doses of Nif. Thirty-four of these were homologous to previously reported proteins and were classified into different functional categories closely related to tip-growth machinery. Blocking the L-type Ca (2+) channel with Nif in the pollen tube membrane induced several early alterations within a short time, including a reduction of extracellular Ca (2+) influx and a subsequently dramatic decrease in cytosolic free Ca (2+) concentration ([Ca (2+)] c), concomitant with ultrastructural abnormalities and changes in the abundance of proteins involved in energy production and signaling. Secondary alterations included actin filament depolymerization, disrupted patterns of endocytosis/exocytosis, and cell wall remodeling, along with changes in the proteins involved in these processes. These results suggested that extracellular Ca (2+) influx was necessary for the maintenance of the typical tip-focused [Ca (2+)] c gradient in the P. bungeana pollen tube, and that reduced adenosine triphosphate production (ATP), depolymerization of the cytoskeleton, and abnormal endocytosis/exocytosis, together with enhanced rigidity of cell walls, were responsible for the growth arrest observed in pollen tubes treated with Nif.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen KM, Wu GL, Wang YH, Tian CT, Samaj J, Baluska F, Lin JX. The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components. PROTOPLASMA 2008; 233:39-49. [PMID: 18726547 DOI: 10.1007/s00709-008-0310-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 02/23/2008] [Indexed: 05/07/2023]
Abstract
Two potent drugs, neomycin and TMB-8, which can block intracellular calcium release, were used to investigate their influence on pollen tube growth and cell wall deposition in Picea wilsonii. Apart from inhibiting pollen germination and pollen tube growth, the two drugs largely influenced tube morphology. The drugs not only obviously disturbed the generation and maintenance of the tip-localized Ca(2+) gradient but also led to a heavy accumulation of callose at the tip region of P. wilsonii pollen tubes. Fourier transform infrared (FTIR) spectroscopy analysis showed that the deposition of cell wall components, such as carboxylic acid, pectins, and other polysaccharides, in pollen tubes was changed by the two drugs. The results obtained from immunolabeling with different pectin and arabinogalactan protein antibodies agreed well with the FTIR results and further demonstrated that the generation and maintenance of the gradient of cross-linked pectins, as well as the proportional distribution of arabinogalactan proteins in tube cell walls, are essential for pollen tube growth. These results strongly suggest that intracellular calcium release mediates the processes of pollen germination and pollen tube growth in P. wilsonii and its inhibition can lead to abnormal growth by disturbing the deposition of cell wall components in pollen tube tips.
Collapse
Affiliation(s)
- Kun-Ming Chen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou
| | | | | | | | | | | | | |
Collapse
|
27
|
Sheng X, Hu Z, Lü H, Wang X, Baluska F, Samaj J, Lin J. Roles of the ubiquitin/proteasome pathway in pollen tube growth with emphasis on MG132-induced alterations in ultrastructure, cytoskeleton, and cell wall components. PLANT PHYSIOLOGY 2006; 141:1578-90. [PMID: 16778013 PMCID: PMC1533934 DOI: 10.1104/pp.106.081703] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The ubiquitin/proteasome pathway represents one of the most important proteolytic systems in eukaryotes and has been proposed as being involved in pollen tube growth, but the mechanism of this involvement is still unclear. Here, we report that proteasome inhibitors MG132 and epoxomicin significantly prevented Picea wilsonii pollen tube development and markedly altered tube morphology in a dose- and time-dependent manner, while hardly similar effects were detected when cysteine-protease inhibitor E-64 was used. Fluorogenic kinetic assays using fluorogenic substrate sLLVY-AMC confirmed MG132-induced inhibition of proteasome activity. The inhibitor-induced accumulation of ubiquitinated proteins (UbPs) was also observed using immunoblotting. Transmission electron microscopy revealed that MG132 induces endoplasmic reticulum (ER)-derived cytoplasmic vacuolization. Immunogold-labeling analysis demonstrated a significant accumulation of UbPs in degraded cytosol and dilated ER in MG132-treated pollen tubes. Fluorescence labeling with fluorescein isothiocyanate-phalloidin and beta-tubulin antibody revealed that MG132 disrupts the organization of F-actin and microtubules and consequently affects cytoplasmic streaming in pollen tubes. However, tip-focused Ca2+ gradient, albeit reduced, seemingly persists after MG132 treatment. Finally, fluorescence labeling with antipectin antibodies and calcofluor indicated that MG132 treatment induces a sharp decline in pectins and cellulose. This result was confirmed by Fourier transform infrared analysis, thus demonstrating for the first time the inhibitor-induced weakening of tube walls. Taken together, these findings suggest that MG132 treatment promotes the accumulation of UbPs in pollen tubes, which induces ER-derived cytoplasmic vacuolization and depolymerization of cytoskeleton and consequently strongly affects the deposition of cell wall components, providing a mechanistic framework for the functions of proteasome in the tip growth of pollen tubes.
Collapse
Affiliation(s)
- Xianyong Sheng
- Institute of Botany, Chinese Academy of Sciences, Key Laboratory of Photosynthesis and Molecular Environment Physiology, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen Y, Chen T, Shen S, Zheng M, Guo Y, Lin J, Baluska F, Samaj J. Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:174-95. [PMID: 16771841 DOI: 10.1111/j.1365-313x.2006.02783.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To investigate roles of the actin cytoskeleton in growth of the pollen tube of Picea meyeri, we used the actin polymerization inhibitor latrunculin B (LATB) under quantitatively controlled conditions. At low concentrations, LATB inhibited polymerization of the actin cytoskeleton in the growing pollen tube, which rapidly inhibited tip growth. The proteomic approach was used to analyse protein expression-profile changes during pollen germination and subsequent pollen-tube development with disturbed organization of the actin cytoskeleton. Two-dimensional electrophoresis and staining with Coomassie Brilliant Blue revealed nearly 600 protein spots. A total of 84 of these were differentially displayed at different hours with varying doses of LATB, and 53 upregulated or downregulated proteins were identified by mass spectrometry. These proteins were grouped into distinct functional categories including signalling, actin cytoskeleton organization, cell expansion and carbohydrate metabolism. Moreover, actin disruption affected the morphology of Golgi stacks, mitochondria and amyloplasts, along with a differential expression of proteins involved in their functions. These findings provide new insights into the multifaceted mechanism of actin cytoskeleton functions and its interaction with signalling, cell-expansion machinery and energy-providing pathways.
Collapse
Affiliation(s)
- Yanmei Chen
- Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2006; 172:92-103. [PMID: 16945092 DOI: 10.1111/j.1469-8137.2006.01818.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leaves of Arabidopsis thaliana grown under elevated or ambient CO2 (700 or 370 micromol mol(-1), respectively) were examined for physiological, biochemical and structural changes. Stomatal characters, carbohydrate and mineral nutrient concentrations, leaf ultrastructure and plant hormone content were investigated using atomic absorption spectrophotometry, transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA). Elevated CO2 reduced the stomatal density and stomatal index of leaves, and also reduced stomatal conductance and transpiration rate. Elevated CO2 increased chloroplast number, width and profile area, and starch grain size and number, but reduced the number of grana thylakoid membranes. Under elevated CO2, the concentrations of carbohydrates and plant hormones, with the exception of abscisic acid, increased whereas mineral nutrient concentrations declined. These results suggest that the changes in chloroplast ultrastructure may primarily be a consequence of increased starch accumulation. Accelerated A. thaliana growth and development in elevated CO2 could in part be attributed to increased foliar concentrations of plant hormones. The reductions in mineral nutrient concentrations may be a result of dilution by increased concentrations of carbohydrates and also of decreases in stomatal conductance and transpiration rate.
Collapse
Affiliation(s)
- Nianjun Teng
- Key laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
30
|
Wang Q, Kong L, Hao H, Wang X, Lin J, Samaj J, Baluska F. Effects of brefeldin A on pollen germination and tube growth. Antagonistic effects on endocytosis and secretion. PLANT PHYSIOLOGY 2005; 139:1692-703. [PMID: 16299176 PMCID: PMC1310552 DOI: 10.1104/pp.105.069765] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We assessed the effects of brefeldin A (BFA) on pollen tube development in Picea meyeri using fluorescent marker FM4-64 as a membrane-inserted endocytic/recycling marker, together with ultrastructural studies and Fourier transform infrared analysis of cell walls. BFA inhibited pollen germination and pollen tube growth, causing morphological changes in a dose-dependent manner, and pollen tube tip growth recovered after transferring into BFA-free medium. FM4-64 labeling showed typical bright apical staining in normally growing P. meyeri pollen tubes; this apical staining pattern differed from the V-formation pattern found in angiosperm pollen tubes. Confocal microscopy revealed that exocytosis was greatly inhibited in the presence of BFA. In contrast, the overall uptake of FM4-64 dye was about 2-fold that in the control after BFA (5 microg mL(-1)) treatment, revealing that BFA stimulated endocytosis in a manner opposite to the induced changes in exocytosis. Transmission electron microscopic observation showed that the number of secretory vesicles at the apical zone dramatically decreased, together with the disappearance of paramural bodies, while the number of vacuoles and other larger organelles increased. An acid phosphatase assay confirmed that the addition of BFA significantly inhibited secretory pathways. Importantly, Fourier transform infrared microspectroscopy documented significant changes in the cell wall composition of pollen tubes growing in the presence of BFA. These results suggest that enhanced endocytosis, together with inhibited secretion, is responsible for the retarded growth of pollen tubes induced by BFA.
Collapse
Affiliation(s)
- Qinli Wang
- Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
31
|
|