1
|
Murawska-Wlodarczyk K, van der Ent A, Wlodarczyk T, Słomka A, Paterson DJ, Brueckner D, Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Ryan CC, Maier RM, Babst-Kostecka A. Habitat-specific allocations of elements in Atriplex lentiformis seeds indicate adaptation to metal toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5076-5090. [PMID: 38761108 DOI: 10.1093/jxb/erae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Self-sustaining vegetation in metal-contaminated areas is essential for rebuilding ecological resilience and community stability in degraded lands. Metal-tolerant plants originating from contaminated post-mining areas may hold the key to successful plant establishment and growth. Yet, little is known about the impact of metal toxicity on reproductive strategies, metal accumulation, and allocation patterns at the seed stage. Our research focused on the metal tolerant Atriplex lentiformis. Specifically, we examined the effects of toxic metal(loid) concentration in soils on variability in its reproductive strategies, including germination patterns, elemental uptake, and allocation within the seeds. We employed advanced imaging techniques like synchrotron X-ray fluorescence microscopy (2D scans and 3D tomograms) combined with inductively coupled plasma mass spectrometry to reveal significant differences in metal(loid) concentration and distribution within the seed structures of A. lentiformis from contrasting habitats. Exclusive Zn hotspots of high concentrations were found in the seeds of the metallicolous accession, primarily in the sensitive tissues of shoot apical meristems and root zones of the seed embryos. Our findings offer novel insights into phenotypic variability and metal tolerance and accumulation in plants from extreme environments. This knowledge can be applied to enhance plant survival and performance in land restoration efforts.
Collapse
Affiliation(s)
| | - Antony van der Ent
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland, Australia
- Laboratoire Sols et Environnement, INRAE, Université de Lorraine, Nancy, France
| | - Tomasz Wlodarczyk
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | | | | | - Wojciech J Przybyłowicz
- AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Krakow, Poland
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Chris C Ryan
- CSIRO, Mineral Resources, Clayton, Victoria, Australia
| | - Raina M Maier
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
2
|
Jiang R, Wang M, Xie T, Chen W. Site-specific ecological effect assessment at community level for polymetallic contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130531. [PMID: 36495636 DOI: 10.1016/j.jhazmat.2022.130531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Current ecological risk assessment (ERA) is based more on book-keeping than on science especially for terrestrial ecosystems due to the lack of relevance to real field. Accordingly, site-specific ecological effect assessment is critical for ERA, especially at high tiers. This study developed procedures to assess ecological effect at community level based on field data. As a case study, we assessed ecological effect of polymetallic contamination in soil in the surrounding of an abandoned mining and smelting site in Hunan, China. Firstly, Zn was identified as the dominant contaminant in soil and slope gradient (SG) and pH as environmental impact factors using distance-based redundancy analysis(db-RDA). Secondly, sensitive endpoints were screened using correlation analysis between Zn and parameters of plant community composition and functional traits. Thirdly, exposure-effect curves between Zn and screened endpoints were developed by taking SG and pH as covariates using Bayesian kernel machine regression analysis (BKMR), based on which half-effect concentrations (EC50s) and 10 %-effect concentrations (EC10s) of soil Zn for each endpoint were calculated. Finally, site-specific hazardous concentrations (HC50s) of Zn were estimated. It was revealed site-specific EC50s and EC10s for soil Zn ranged 80.5-201 mg kg-1 and 342-893 mgkg-1, respectively, and HC50s based on EC10s and EC50s ranged 104-110 mg kg-1 and 595-612 mg kg-1, respectively, which are more specific and inclusive than those obtained based on crop and vegetable seed germination and seedling growth toxicity experiments.
Collapse
Affiliation(s)
- Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Tian Xie
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Nowak J, Faure N, Glorieux C, Vile D, Pauwels M, Frérot H. Sublethal effects of metal toxicity and the measure of plant fitness in ecotoxicological experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119138. [PMID: 35307494 DOI: 10.1016/j.envpol.2022.119138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic pollution is a major driver of global environmental change. To be properly addressed, the study of the impact of pollutants must consider both lethal effects and sublethal effects on individual fitness. However, measuring fitness remains challenging. In plants, the total number of seeds produced, i.e. the seed set, is traditionally considered, but is not readily accessible. Instead, performance traits related to survival, e.g., vegetative biomass and reproductive success, can be measured, but their correlation with seed set has rarely been investigated. To develop accurate estimates of seed set, relationships among 15 vegetative and reproductive traits were analyzed. For this purpose, Noccaea caerulescens (Brassicaceae), a model plant to study local adaptation to metal-contaminated environments, was used. To investigate putative variation in trait relationships, sampling included several accessions cultivated in contrasting experimental conditions. To test their applicability, selected estimates were used in the first generation of a Laboratory Natural Selection (LNS) experiment exposing experimentally plants to zinc soil pollution. Principal component analyses revealed statistical independence between vegetative and reproductive traits. Traits showing the strongest positive correlation with seed set were the number of non-aborted silicles, and the product of this number and mean silicle length. They thus appeared the most appropriate to document sublethal or fitness effects of environmental contaminants in plant ecotoxicological studies. The relevance of both estimates was confirmed by using them to assess the fitness of parental plants of the first generation of an LNS experiment: the same families consistently displayed the highest or the lowest performance values in two independent experimental metal-exposed populations. Thus, both these fitness estimates could be used to determine the expected number of offspring and the composition of successive generations in further LNS experiments investigating the impact of multi-generational exposure of a plant species to environmental pollution.
Collapse
Affiliation(s)
- Julien Nowak
- Université de Lille, CNRS, UMR 8198, EEP - Laboratoire Evolution Ecologie Paléontologie, F-59000, Lille, France
| | - Nathalie Faure
- Université de Lille, CNRS, UMR 8198, EEP - Laboratoire Evolution Ecologie Paléontologie, F-59000, Lille, France
| | - Cédric Glorieux
- Université de Lille, CNRS, UMR 8198, EEP - Laboratoire Evolution Ecologie Paléontologie, F-59000, Lille, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRA, SupAgro, Montpellier, France
| | - Maxime Pauwels
- Université de Lille, CNRS, UMR 8198, EEP - Laboratoire Evolution Ecologie Paléontologie, F-59000, Lille, France; Université de Lille, CNRS, UMR 8516, LASIRE - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'Environnement, F-59000, Lille, France
| | - Hélène Frérot
- Université de Lille, CNRS, UMR 8198, EEP - Laboratoire Evolution Ecologie Paléontologie, F-59000, Lille, France; Université de Lille, CNRS, UMR 8516, LASIRE - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'Environnement, F-59000, Lille, France.
| |
Collapse
|
4
|
Murawska-Wlodarczyk K, Korzeniak U, Chlebicki A, Mazur E, Dietrich CC, Babst-Kostecka A. Metalliferous habitats and seed microbes affect the seed morphology and reproductive strategy of Arabidopsis halleri. PLANT AND SOIL 2022; 472:175-192. [PMID: 36389645 PMCID: PMC9648182 DOI: 10.1007/s11104-021-05203-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Purpose Plant reproduction in metalliferous habitats is challenged by elevated concentrations of metal trace elements in soil. As part of their survival strategy, metal-tolerant plants have adjusted reproductive traits, including seed morphology, dormancy, and germination rate. These traits are particularly relevant, yet poorly understood, in metal hyperaccumulators that are promising candidates for phytoremediation. Methods We assessed seed shape characteristics, dormancy, and germination rate in the hyperaccumulating model species Arabidopsis halleri. Seed morphological parameters were evaluated using seeds collected from two metalliferous and two non-metalliferous sites (~ 1000 seeds per location). We also addressed the potential influence of seed surface-associated microbes and endophytic fungi on germination success. Results Seeds from non-metallicolous populations were on average 18% bigger than those from metal-contaminated post-mining sites, which contrasts the general expectation about reproductive parts in metallicolous plants. Irrespective of their origin, surface-sterilized seeds had up to ~ 20% higher germination rates and germinated earlier than non-sterilized seeds, hinting at a negative effect of seed-associated microbial communities. Surface sterilization also facilitated the emergence of an endophytic fungus (Aspergillus niger) that is a known seed-borne pathogen. Interestingly, A. niger actually promoted germination in surface-sterilized seeds from some locations. Conclusion Despite species-wide metal tolerance in A. halleri, metalliferous conditions seem to differently affect reproductive traits compared to non-metalliferous environments (e.g., smaller seeds). Yet, higher germination rates in these populations hint at the potential of A. halleri to successfully colonize post-mining habitats. This process is modulated by site-specific interactions with seed microbiota.
Collapse
Affiliation(s)
| | - Urszula Korzeniak
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Andrzej Chlebicki
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Edyta Mazur
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Charlotte C Dietrich
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
5
|
Dietrich CC, Tandy S, Murawska-Wlodarczyk K, Banaś A, Korzeniak U, Seget B, Babst-Kostecka A. Phytoextraction efficiency of Arabidopsis halleri is driven by the plant and not by soil metal concentration. CHEMOSPHERE 2021; 285:131437. [PMID: 34265706 PMCID: PMC8551008 DOI: 10.1016/j.chemosphere.2021.131437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 05/14/2023]
Abstract
The hyperaccumulation trait allows some plant species to allocate remarkable amounts of trace metal elements (TME) to their foliage without suffering from toxicity. Utilizing hyperaccumulating plants to remediate TME contaminated sites could provide a sustainable alternative to industrial approaches. A major hurdle that currently hampers this approach is the complexity of the plant-soil relationship. To better anticipate the outcome of future phytoremediation efforts, we evaluated the potential for soil metal-bioavailability to predict TME accumulation in two non-metallicolous and two metallicolous populations of the Zn/Cd hyperaccumulator Arabidopsis halleri. We also examined the relationship between a population's habitat and its phytoextraction efficiency. Total Zn and Cd concentrations were quantified in soil and plant material, and bioavailable fractions in soil were quantified via Diffusive Gradients in Thin-films (DGT). We found that shoot TME accumulation varied independent from both total and bioavailable soil TME concentrations in metallicolous individuals. In fact, hyperaccumulation patterns appear more plant- and less soil-driven: one non-metallicolous population proved to be as efficient in accumulating Zn on non-polluted soil as the metallicolous populations in their highly contaminated environment. Our findings demonstrate that in-situ information on plant phytoextraction efficiency is indispensable to optimize site-specific phytoremediation measures. If successful, hyperaccumulating plant biomass may provide valuable source material for application in the emerging field of green chemistry.
Collapse
Affiliation(s)
- Charlotte C Dietrich
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Susan Tandy
- Soil Protection, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092, Zurich, Switzerland; Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, United Kingdom
| | | | - Angelika Banaś
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Urszula Korzeniak
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Barbara Seget
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA; WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
| |
Collapse
|
6
|
Delhaye G, Bauman D, Séleck M, Ilunga wa Ilunga E, Mahy G, Meerts P. Interspecific trait integration increases with environmental harshness: A case study along a metal toxicity gradient. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Guillaume Delhaye
- Laboratoire d'Ecologie Végétale et Biogéochimie Université Libre de Bruxelles Bruxelles Belgium
- Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK
| | - David Bauman
- Laboratoire d'Ecologie Végétale et Biogéochimie Université Libre de Bruxelles Bruxelles Belgium
- Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK
| | - Maxime Séleck
- Department of Forest, Nature and Landscape Biodiversity and Landscape Unit University of LiègeGembloux Agro‐Bio Tech Gembloux Belgium
| | - Edouard Ilunga wa Ilunga
- Ecology, Restoration Ecology and Landscape Research Unit Faculty of Agronomy University of Lubumbashi Lubumbashi Democratic Republic of Congo
| | - Grégory Mahy
- Department of Forest, Nature and Landscape Biodiversity and Landscape Unit University of LiègeGembloux Agro‐Bio Tech Gembloux Belgium
| | - Pierre Meerts
- Laboratoire d'Ecologie Végétale et Biogéochimie Université Libre de Bruxelles Bruxelles Belgium
| |
Collapse
|
7
|
Mohiley A, Tielbörger K, Seifan M, Gruntman M. The role of biotic interactions in determining metal hyperaccumulation in plants. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anubhav Mohiley
- Plant Ecology Group Institute for Evolution and Ecology University of Tübingen Tübingen Germany
| | - Katja Tielbörger
- Plant Ecology Group Institute for Evolution and Ecology University of Tübingen Tübingen Germany
| | - Merav Seifan
- Mitrani Department of Desert Ecology Swiss Institute for Dryland Environmental and Energy ResearchJacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the Negev Be'er Sheva Israel
| | - Michal Gruntman
- Plant Ecology Group Institute for Evolution and Ecology University of Tübingen Tübingen Germany
- Porter School of Environmental Studies and School of Plant Sciences and Food Security Tel Aviv University Tel Aviv Israel
| |
Collapse
|
8
|
Babst-Kostecka A, Przybyłowicz WJ, van der Ent A, Ryan C, Dietrich CC, Mesjasz-Przybyłowicz J. Endosperm prevents toxic amounts of Zn from accumulating in the seed embryo – an adaptation to metalliferous sites in metal-tolerant Biscutella laevigata. Metallomics 2020; 12:42-53. [DOI: 10.1039/c9mt00239a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The pseudometallophyte Biscutella laevigata adapts to metalliferous soils by allocating excess metal(loid)s to the endosperm (E) of seeds to protect embryonic tissues and improve reproductive success.
Collapse
Affiliation(s)
- Alicja Babst-Kostecka
- W. Szafer Institute of Botany
- Polish Academy of Sciences
- Department of Ecology
- 31-512 Krakow
- Poland
| | - Wojciech J. Przybyłowicz
- AGH University of Science and Technology
- Faculty of Physics & Applied Computer Science
- 30-059 Kraków
- Poland
- Department of Botany and Zoology
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation
- Sustainable Minerals Institute
- The University of Queensland
- Australia
- Laboratoire Sols et Environnement
| | | | - Charlotte C. Dietrich
- W. Szafer Institute of Botany
- Polish Academy of Sciences
- Department of Ecology
- 31-512 Krakow
- Poland
| | | |
Collapse
|
9
|
Pan G, Zhang H, Liu P, Xiao Z, Li X, Liu W. Effects of manganese stress on phenology and biomass allocation in Xanthium strumarium from metalliferous and non-metalliferous sites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:308-316. [PMID: 30716666 DOI: 10.1016/j.ecoenv.2019.01.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Xanthium strumarium is an annual pseudometallophyte. To reveal the mechanisms of this species to adapt to metallicolous environmental conditions, phenological traits and biomass allocation of metallicolous and non-metallicolous populations of X. strumarium under six Mn2+ concentrations by pot culture experiments were performed. The results showed that both time to bolting and time to fruit setting in the metallicolous population were earlier than those in the non-metallicolous population. The number of flowers, fruits, seeds and 1000-seed weight in the metallicolous population were higher than those in the non-metallicolous population under Mn stress. Reproductive allocation and harvest index in the metallicolous population were higher than those in the non-metallicolous population. Furthermore, all the Mn concentrations in leaves, stems, roots, and fruits of the metallicolous population were higher than the counterparts of non-metallicolous population. These results suggested that metallicolous population had higher tolerance to Mn stress than non-metallicolous population, the earlier flowering and fruiting, and the enhancement in reproductive allocation may contribute to plant tolerance to Mn toxicity for X. strumarium.
Collapse
Affiliation(s)
- Gao Pan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, PR China
| | - Heping Zhang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Peng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, PR China
| | - Zehua Xiao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Xinhang Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Wensheng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
10
|
Fones HN, Preston GM, Smith JAC. Variation in defence strategies in the metal hyperaccumulator plant Noccaea caerulescens is indicative of synergies and trade-offs between forms of defence. ROYAL SOCIETY OPEN SCIENCE 2019; 6:172418. [PMID: 30800336 PMCID: PMC6366173 DOI: 10.1098/rsos.172418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/18/2018] [Indexed: 05/18/2023]
Abstract
In the metal hyperaccumulator plant Noccaea caerulescens, zinc may provide a defence against pathogens. However, zinc accumulation is a variable trait in this species. We hypothesize that this variability affects the outcome of interactions between metal accumulation and the various constitutive and inducible defences that N. caerulescens shares with non-accumulator plants. We compare zinc concentrations, glucosinolate concentrations and inducible stress responses, including reactive oxygen species (ROS) and cell death, in four N. caerulescens populations, and relate these to the growth of the plant pathogen Pseudomonas syringae, its zinc tolerance mutants and Pseudomonas pathogens isolated from a natural population of N. caerulescens. The populations display strikingly different combinations of defences. Where defences are successful, pathogens are limited primarily by metals, cell death or organic defences; there is evidence of population-dependent trade-offs or synergies between these. In addition, we find evidence that Pseudomonas pathogens have the capacity to overcome any of these defences, indicating that the arms race continues. These data indicate that defensive enhancement, joint effects and trade-offs between different forms of defence are all plausible explanations for the variation we observe between populations, with factors including metal availability and metal-tolerant pathogen load probably shaping the response of each population to infection.
Collapse
Affiliation(s)
- Helen N. Fones
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
11
|
Nowak J, Frérot H, Faure N, Glorieux C, Liné C, Pourrut B, Pauwels M. Can zinc pollution promote adaptive evolution in plants? Insights from a one-generation selection experiment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5561-5572. [PMID: 30215761 PMCID: PMC6255711 DOI: 10.1093/jxb/ery327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Human activities generate environmental stresses that can lead plant populations to become extinct. Population survival would require the evolution of adaptive responses that increase tolerance to these stresses. Thus, in pseudometallophyte species that have colonized anthropogenic metalliferous habitats, the evolution of increased metal tolerance is expected in metallicolous populations. However, the mechanisms by which metal tolerance evolves remain unclear. In this study, parent populations were created from non-metallicolous families of Noccaea caerulescens. They were cultivated for one generation in mesocosms and under various levels of zinc (Zn) contamination to assess whether Zn in soil represents a selective pressure. Individual plant fitness estimates were used to create descendant populations, which were cultivated in controlled conditions with moderate Zn contamination to test for adaptive evolution in functional traits. The number of families showing high fitness estimates in mesocosms was progressively reduced with increasing Zn levels in soil, suggesting increasing selection for metal tolerance. In the next generation, adaptive evolution was suggested for some physiological and ecological traits in descendants of the most exposed populations, together with a significant decrease of Zn hyperaccumulation. Our results confirm experimentally that Zn alone can be a significant evolutionary pressure promoting adaptive divergence among populations.
Collapse
Affiliation(s)
- Julien Nowak
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Hélène Frérot
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Nathalie Faure
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Cédric Glorieux
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Clarisse Liné
- ISA, Laboratoire Sols et Environnement, Lille Cedex, France
| | | | - Maxime Pauwels
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| |
Collapse
|
12
|
Wan JSH, Fazlioglu F, Bonser SP. Loss of plasticity in life-history strategy associated with secondary invasion into stressful environments in invasive narrowleaf plantain (Plantago lanceolata
L.). AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justin S. H. Wan
- Evolution and Ecology Research Centre; School of Biological, Earth and Environmental Sciences; UNSW Australia; Sydney 2052 Australia
| | - Fatih Fazlioglu
- Faculty of Arts and Sciences; Molecular Biology and Genetics; Ordu University; Ordu 52200 Turkey
| | - Stephen P. Bonser
- Evolution and Ecology Research Centre; School of Biological, Earth and Environmental Sciences; UNSW Australia; Sydney 2052 Australia
| |
Collapse
|
13
|
Bothe H, Słomka A. Divergent biology of facultative heavy metal plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 219:45-61. [PMID: 29028613 DOI: 10.1016/j.jplph.2017.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/04/2023]
Abstract
Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current literature favours the idea that hyperaccumulation of heavy metals serves plants as deterrent against attack by feeding animals (termed elemental defense hypothesis). The capability to hyperaccumulate heavy metals in A. halleri and N. caerulescens is achieved by duplications and alterations of the cis-regulatory properties of genes coding for heavy metal transporting/excreting proteins. Several metallophytes have developed ecotypes with a varying content of such heavy metal transporters as an adaption to the specific toxicity of a heavy metal site.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9 Str., 30-387 Cracow, Poland.
| |
Collapse
|
14
|
Does the Cost of Adaptation to Extremely Stressful Environments Diminish Over Time? A Literature Synthesis on How Plants Adapt to Heavy Metals and Pesticides. Evol Biol 2017. [DOI: 10.1007/s11692-017-9419-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Jacobs A, Drouet T, Sterckeman T, Noret N. Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous 'Ganges' in field trials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8176-8188. [PMID: 28144868 DOI: 10.1007/s11356-017-8504-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Urban soil contamination with trace metals is a major obstacle to the development of urban agriculture as crops grown in urban gardens are prone to accumulate trace metals up to toxic levels for human consumption. Phytoextraction is considered as a potentially cost-effective alternative to conventional methods such as excavation. Field trials of phytoextraction with Noccaea caerulescens were conducted on urban soils contaminated with Cd, Cu, Pb, and Zn (respectively around 2, 150-200, 400-500, and 400-700 μg g-1 of dry soil). Metallicolous (Ganges population) and non-metallicolous (NMET) populations were compared for biomass production and trace metal uptake. Moreover, we tested the effect of compost and fertilizer addition. Maximal biomass of 5 t ha-1 was obtained with NMET populations on some plots. Compared to Ganges- the high Cd-accumulating ecotype from South of France often used in phytoextraction trials- NMET populations have an advantage for biomass production and for Zn accumulation, with an average Zn uptake of 2.5 times higher. The addition of compost seems detrimental due to metal immobilization in the soil with little or no effect on plant growth. In addition to differences between populations, variations of growth and metal accumulation were mostly explained by soil Cd and Zn concentrations and texture. Our field trials confirm the potential of using N. caerulescens for both Cd and Zn remediation of moderately contaminated soils-with uptake values of up to 200 g Cd ha-1 and 47 kg Zn ha-1-and show the interest of selecting the adequate population according to the targeted metal.
Collapse
Affiliation(s)
- Arnaud Jacobs
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050, Brussels, Belgium.
| | - Thomas Drouet
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050, Brussels, Belgium
| | - Thibault Sterckeman
- Laboratoire Sols et Environnement, INRA-Université de Lorraine, 2 avenue de la Forêt de Haye, TSA 40602, F-54518, Vandoeuvre-lès-Nancy Cédex, France
| | - Nausicaa Noret
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050, Brussels, Belgium
| |
Collapse
|
16
|
Gonneau C, Noret N, Godé C, Frérot H, Sirguey C, Sterckeman T, Pauwels M. Demographic history of the trace metal hyperaccumulator Noccaea caerulescens (J. Presl and C. Presl) F. K. Mey. in Western Europe. Mol Ecol 2016; 26:904-922. [PMID: 27914207 DOI: 10.1111/mec.13942] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/27/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022]
Abstract
Noccaea caerulescens (Brassicaceae) is a major pseudometallophyte model for the investigation of the genetics and evolution of metal hyperaccumulation in plants. We studied the population genetics and demographic history of this species to advance the understanding of among-population differences in metal hyperaccumulation and tolerance abilities. Sampling of seven to 30 plants was carried out in 62 sites in Western Europe. Genotyping was carried out using a combination of new chloroplast and nuclear neutral markers. A strong genetic structure was detected, allowing the definition of three genetic subunits. Subunits showed a good geographic coherence. Accordingly, distant metallicolous populations generally belonged to distinct subunits. Approximate Bayesian computation analysis of demographic scenarios among subunits further supported a primary isolation of populations from the southern Massif Central prior to last glacial maximum, whereas northern populations may have derived during postglacial recolonization events. Estimated divergence times among subunits were rather recent in comparison with the species history, but certainly before the establishment of anthropogenic metalliferous sites. Our results suggest that the large-scale genetic structure of N. caerulescens populations pre-existed to the local adaptation to metalliferous sites. The population structure of quantitative variation for metal-related adaptive traits must have established independently in isolated gene pools. However, features of the most divergent genetic unit (e.g. extreme levels of Cd accumulation observed in previous studies) question the putative relationships between adaptive evolution of metal-related traits and subunits isolation. Finally, admixture signals among distant metallicolous populations suggest a putative role of human activities in facilitating long-distance genetic exchanges.
Collapse
Affiliation(s)
- Cédric Gonneau
- Laboratoire Sols et Environnement UMR1120, Université de Lorraine, TSA 40602, Vandœuvre-lès-Nancy Cedex, F-54518, France.,Laboratoire Sols et Environnement UMR1120, INRA, Vandœuvre-lès-Nancy Cedex, F-54518, France
| | - Nausicaa Noret
- Laboratoire d'Écologie Végétale et Biogéochimie, Université libre de Bruxelles, Campus de la Plaine - CP244, Boulevard du Triomphe, B-1050, Ixelles, Belgium
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | - Hélène Frérot
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | - Catherine Sirguey
- Laboratoire Sols et Environnement UMR1120, Université de Lorraine, TSA 40602, Vandœuvre-lès-Nancy Cedex, F-54518, France.,Laboratoire Sols et Environnement UMR1120, INRA, Vandœuvre-lès-Nancy Cedex, F-54518, France
| | - Thibault Sterckeman
- Laboratoire Sols et Environnement UMR1120, Université de Lorraine, TSA 40602, Vandœuvre-lès-Nancy Cedex, F-54518, France.,Laboratoire Sols et Environnement UMR1120, INRA, Vandœuvre-lès-Nancy Cedex, F-54518, France
| | - Maxime Pauwels
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| |
Collapse
|
17
|
Mousset M, David P, Petit C, Pouzadoux J, Hatt C, Flaven É, Ronce O, Mignot A. Lower selfing rates in metallicolous populations than in non-metallicolous populations of the pseudometallophyte Noccaea caerulescens (Brassicaceae) in Southern France. ANNALS OF BOTANY 2016; 117:507-19. [PMID: 26772770 PMCID: PMC4765546 DOI: 10.1093/aob/mcv191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/05/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS The pseudometallophyte Noccaea caerulescens is an excellent model to study evolutionary processes, as it grows both on normal and on heavy-metal-rich, toxic soils. The evolution and demography of populations are critically impacted by mating system and, yet, information about the N. caerulescens mating system is limited. METHODS Mean selfing rates were assessed using microsatellite loci and a robust estimation method (RMES) in five metallicolous and five non-metallicolous populations of N. caerulescens in Southern France, and this measure was replicated for two successive reproductive seasons. As a part of the study, the patterns of gene flow among populations were analysed. The mating system was then characterized at a fine spatial scale in three populations using the MLTR method on progeny arrays. KEY RESULTS The results confirm that N. caerulescens has a mixed mating system, with selfing rates ranging from 0·2 to 0·5. Selfing rates did not vary much among populations within ecotypes, but were lower in the metallicolous than in the non-metallicolous ecotype, in both seasons. Effective population size was also lower in non-metallicolous populations. Biparental inbreeding was null to moderate. Differentiation among populations was generally high, but neither ecotype nor isolation by distance explained it. CONCLUSIONS The consequences of higher selfing rates on adaptation are expected to be weak to moderate in non-metallicolous populations and they are expected to suffer less from inbreeding depression, compared to metallicolous populations.
Collapse
Affiliation(s)
- Mathilde Mousset
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE CC 065, Place Eugène Bataillon, 34095 Montpellier cedex 05, France and
| | - Patrice David
- Centre d'Écologie Fonctionnelle et Évolutive, CEFE-UMR 5175, Campus CNRS, 1919 Route de Mende, 34293 Montpellier cedex, France
| | - Christophe Petit
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE CC 065, Place Eugène Bataillon, 34095 Montpellier cedex 05, France and
| | - Juliette Pouzadoux
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE CC 065, Place Eugène Bataillon, 34095 Montpellier cedex 05, France and
| | - Clémence Hatt
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE CC 065, Place Eugène Bataillon, 34095 Montpellier cedex 05, France and
| | - Élodie Flaven
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE CC 065, Place Eugène Bataillon, 34095 Montpellier cedex 05, France and
| | - Ophélie Ronce
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE CC 065, Place Eugène Bataillon, 34095 Montpellier cedex 05, France and
| | - Agnès Mignot
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE CC 065, Place Eugène Bataillon, 34095 Montpellier cedex 05, France and
| |
Collapse
|
18
|
Hörger AC, Fones HN, Preston GM. The current status of the elemental defense hypothesis in relation to pathogens. FRONTIERS IN PLANT SCIENCE 2013; 4:395. [PMID: 24137169 PMCID: PMC3797420 DOI: 10.3389/fpls.2013.00395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/16/2013] [Indexed: 05/08/2023]
Abstract
Metal hyperaccumulating plants are able to accumulate exceptionally high concentrations of metals, such as zinc, nickel, or cadmium, in their aerial tissues. These metals reach concentrations that would be toxic to most other plant species. This trait has evolved multiple times independently in the plant kingdom. Recent studies have provided new insight into the ecological and evolutionary significance of this trait, by showing that some metal hyperaccumulating plants can use high concentrations of accumulated metals to defend themselves against attack by pathogenic microorganisms and herbivores. Here, we review the evidence that metal hyperaccumulation acts as a defensive trait in plants, with particular emphasis on plant-pathogen interactions. We discuss the mechanisms by which defense against pathogens might have driven the evolution of metal hyperaccumulation, including the interaction of this trait with other forms of defense. In particular, we consider how physiological adaptations and fitness costs associated with metal hyperaccumulation could have resulted in trade-offs between metal hyperaccumulation and other defenses. Drawing on current understanding of the population ecology of metal hyperaccumulator plants, we consider the conditions that might have been necessary for metal hyperaccumulation to be selected as a defensive trait, and discuss the likelihood that these were fulfilled. Based on these conditions, we propose a possible scenario for the evolution of metal hyperaccumulation, in which selective pressure for resistance to pathogens or herbivores, combined with gene flow from non-metallicolous populations, increases the likelihood that the metal hyperaccumulating trait becomes established in plant populations.
Collapse
Affiliation(s)
- Anja C. Hörger
- Department of Plant Sciences, University of OxfordOxford, UK
| | - Helen N. Fones
- Department of Plant Sciences, University of OxfordOxford, UK
| | - Gail M. Preston
- Department of Plant Sciences, University of OxfordOxford, UK
| |
Collapse
|
19
|
Gan JH, Xiong ZT, Li JP, Chen DQ. Differential response to copper stress in the reproductive resources and allocation of metallophyte Kummerowia stipulacea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:204-211. [PMID: 23290682 DOI: 10.1016/j.ecoenv.2012.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Abundant seed production is a key life history trait for plant to maintain the stability of the whole population in adverse environments such as heavy metal contaminated mine area. In the current studies, we hypothesize that mine (metallicolous) populations of metallophytes have formed specialized reproductive strategies to adapt themselves to the heavy metal contaminated habitats, and differ from normal (non-metallicolous) populations in reproductive allocation. To test this hypothesis, the differences in reproductive resources and reproductive allocation between the copper mine and non-copper mine populations of pseudo-metallophyte Kummerowia stipulacea were comparatively examined under controlled Cu exposure experiments. Compared to non-copper mine population, copper mine population shows an increased seed output and larger reproductive effort under Cu stress. The increase of reproductive allocation in metallicolous population depends on not only seed size but also seed number per plant. The plants of metallicolous population increase allocation to the reproductive organs at the expense of a curtailment of allocation to vegetative traits, resulting in plants with shorter height and fewer branch numbers. There is little evidence displaying effect of root nodule on the reproductive resources and allocation. In addition, plants in metallicolous population reduce the transfer of Cu from roots to aboveground parts. These data suggest that plants of metallicolous population tend to invest more resources to reproductive output and increase their reproductive allocation in the adaptive evolution to Cu-enriched mine soils.
Collapse
Affiliation(s)
- Jin-hua Gan
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei 430079, PR China
| | | | | | | |
Collapse
|
20
|
Wójcik M, Dresler S, Jawor E, Kowalczyk K, Tukiendorf A. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum. CHEMOSPHERE 2013; 90:1249-1257. [PMID: 23084517 DOI: 10.1016/j.chemosphere.2012.09.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/27/2012] [Accepted: 09/08/2012] [Indexed: 05/27/2023]
Abstract
Waste deposits produced by metal mining and smelting activities provide extremely difficult habitats for plant colonization and growth. Therefore, plants spontaneously colonizing such areas represent a very interesting system for studying evolution of plant adaptation and population differentiation between contaminated and noncontaminated environments. In this study, two populations of Dianthus carthusianorum, one originating from Zn-Pb waste deposit (a metallicolous population, M) and the other from unpolluted soil (a nonmetallicolous population, NM), were analyzed in respect of their morphological and physiological traits as well as genetic markers. It was found that the plants inhabiting the waste heap differed significantly from the NM plants in terms of leaf size and shape, and these differences were persistent between the first generation of the plants of both populations cultivated under uniform, controlled laboratory conditions. In contrast with the evident morphological differences, no significant differentiation between the populations regarding the physiological traits measured (accumulation of proline, anthocyanins, chlorophyll, carotenoids) was found. These traits can be regarded as neither population specific nor stress markers. The genetic variability was analyzed using 17 random amplified polymorphic DNA (RAPD) and four inter simple sequence repeat (ISSR) markers; this proved that the differentiation between the M and NM populations exists also at the genetic level. Analysis of molecular variance (AMOVA) showed that 24% of the total genetic diversity resided among populations, while 76% - within the populations. However, no significant differences in intrapopulation genetic diversity (Hj) between the M and NM populations of D. carthusianorum was found, which contradicts the theory that acquisition of adaptation mechanisms to adverse, isolated growth habitats is related to reduction in genetic diversity. Distinct genetic differences between the two populations in combination with evident morphological variation support the proposal to regard the M population of D. carthusianorum as a separate calamine ecotype.
Collapse
Affiliation(s)
- Małgorzata Wójcik
- Department of Plant Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | | | | | | | | |
Collapse
|
21
|
Craciun AR, Meyer CL, Chen J, Roosens N, De Groodt R, Hilson P, Verbruggen N. Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4179-89. [PMID: 22581842 DOI: 10.1093/jxb/ers104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
There is huge variability among populations of the hyperaccumulator Noccaea caerulescens (formerly Thlaspi caerulescens) in their capacity to tolerate and accumulate cadmium. To gain new insights into the mechanisms underlying this variability, we estimated cadmium fluxes and further characterized the N. caerulescens heavy metal ATPase 4 (NcHMA4) gene in three populations (two calamine, Saint-Félix-de-Pallières, France and Prayon, Belgium; one serpentine, Puente Basadre, Spain) presenting contrasting levels of tolerance and accumulation. Cadmium uptake and translocation varied among populations in the same way as accumulation; the population with the highest cadmium concentration in shoots (Saint Félix-de-Pallières) presented the highest capacity for uptake and translocation. We demonstrated that the four NcHMA4 copies identified in a previous study are not fixed at the species level, and that the copy truncated in the C-terminal part encodes a functional protein. NcHMA4 expression and gene copy number was lower in the serpentine population, which was the least efficient in cadmium translocation compared to the calamine populations. NcHMA4 expression was associated with the vascular tissue in all organs, with a maximum at the crown. Overall, our results indicate that differences in cadmium translocation ability of the studied populations appear to be controlled, at least partially, by NcHMA4, while the overexpression of NcHMA4 in the two calamine populations may result from convergent evolution.
Collapse
Affiliation(s)
- Adrian R Craciun
- Laboratoire de Physiologie et Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus de la Plaine, CP242, Bd du Triomphe, 1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser MT. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 163:117-26. [PMID: 22325439 PMCID: PMC3314946 DOI: 10.1016/j.envpol.2011.12.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 05/18/2023]
Abstract
The understanding of the influence of toxic elements on root anatomy and element distribution is still limited. This study describes anatomical responses, metal accumulation and element distribution of rooted cuttings of Salix caprea after exposure to Cd and/or Zn. Differences in the development of apoplastic barriers and tissue organization in roots between two distinct S. caprea isolates with divergent Cd uptake and accumulation capacities in leaves might reflect an adaptive predisposition based on different natural origins. Energy-dispersive X-ray spectroscopy (EDX) revealed that Cd and Zn interfered with the distribution of elements in a tissue- and isolate-specific manner. Zinc, Ca, Mg, Na and Si were enriched in the peripheral bark, K and S in the phloem and Cd in both vascular tissues. Si levels were lower in the superior Cd translocator. Since the cuttings originated from stocks isolated from polluted and unpolluted sites we probably uncovered different strategies against toxic elements.
Collapse
Affiliation(s)
- Marek Vaculík
- Department of Applied Genetics and Cell Biology, BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, SK-842 15 Bratislava, Slovakia
| | - Cornelia Konlechner
- Department of Applied Genetics and Cell Biology, BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ingrid Langer
- Department of Forest & Soil Sciences, BOKU – University of Natural Resources and Life Sciences, Peter Jordan Strasse 82, A-1190 Vienna, Austria
| | - Wolfram Adlassnig
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Markus Puschenreiter
- Department of Forest & Soil Sciences, BOKU – University of Natural Resources and Life Sciences, Peter Jordan Strasse 82, A-1190 Vienna, Austria
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, SK-842 15 Bratislava, Slovakia
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
23
|
Hanikenne M, Nouet C. Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:252-9. [PMID: 21531166 DOI: 10.1016/j.pbi.2011.04.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 05/21/2023]
Abstract
In the course of evolution, plants adapted to widely differing metal availabilities in soils and therefore represent an important source of natural variation of metal homeostasis networks. Research on plant metal homeostasis can thus provide insights into the functioning, regulation and adaptation of biological networks. Here, we describe major recent breakthroughs in the understanding of the genetic and molecular basis of metal hyperaccumulation and associated hypertolerance, a naturally selected complex trait which represents an extreme adaptation of the metal homeostasis network. Investigations in this field reveal further the molecular alterations underlying the evolution of natural phenotypic diversity and provide a highly relevant framework for comparative genomics.
Collapse
Affiliation(s)
- Marc Hanikenne
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering, Department of Life Sciences (B22), University of Liège, Liège, Belgium.
| | | |
Collapse
|
24
|
Huang WX, Huang Y, Ye FY, Shan S, Xiong ZT. Effects of copper on phenology and reproduction in Rumex dentatus from metalliferous and non-metalliferous sites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1043-1049. [PMID: 21316763 DOI: 10.1016/j.ecoenv.2011.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 01/17/2011] [Accepted: 01/29/2011] [Indexed: 05/30/2023]
Abstract
The responses of phenology and reproductive traits to copper stress in two populations of Rumex dentatus were comparatively studied with pot culture experiments. Seeds used for the experiments were, respectively, collected from metalliferous and normal soils. It was found that the responses of phenology and reproductive traits to Cu treatment between the two populations were significantly different. Compared to the non-metallicolous population, the metallicolous population of R. dentatus had a short life cycle, large reproductive effort, and high fertility under Cu stress. In addition, the reproductive effort in metallicolous population of R. dentatus was maintained at the expense of a curtailment of vegetative development. The results suggested that change in phenological traits and more resources allocation to reproduction might play an important role in the adaptation of metallicolous population of R. dentatus to the Cu-enriched mine soils.
Collapse
Affiliation(s)
- Wu-Xing Huang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei 430079, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Dechamps C, Elvinger N, Meerts P, Lefèbvre C, Escarré J, Colling G, Noret N. Life history traits of the pseudometallophyte Thlaspi caerulescens in natural populations from Northern Europe. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13 Suppl 1:125-35. [PMID: 21134096 DOI: 10.1111/j.1438-8677.2010.00387.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We examined recruitment, survival, life cycle and fecundity of two metallicolous (M, on metalliferous calamine soils) and two non-metallicolous (NM, on normal soils) populations of Thlaspi caerulescens in Belgium and Luxemburg. In each population, permanent plots were monitored over two reproductive seasons. In M populations, plots were located in two contrasting environments (grass versus grove) in order to test the influence of vegetation cover on life strategy. Our results show that the monocarpic life cycle is dominant in all populations of T. caerulescens. However the length of the pre-reproductive period varies from several months (winter annuals) to 1 year or more (perennials), and is partly related to plant origin (M versus NM). Most plants growing in metalliferous environments were annuals, whereas NM plants were mostly perennials. These differences in life cycle were related to differences in survival during summer, which was better in NM than in M populations. Within each M population, different survival conditions and life cycles were observed according to vegetation cover. Plants growing in grass areas were mostly annuals and had a low survival rate in summer whereas grove plants were mostly perennials and survived better in summer. Our results suggest the selection of stress avoiders (shortening of life cycle) in M populations of T. caerulescens but only for individuals growing in grass areas. Summer survival seems to play a key role in selection of life strategy in T. caerulescens.
Collapse
Affiliation(s)
- C Dechamps
- Université Libre de Bruxelles, Laboratoire d'Ecologie végétale et Biogéochimie, Bruxelles, Belgium.
| | | | | | | | | | | | | |
Collapse
|
26
|
Matesanz S, Gianoli E, Valladares F. Global change and the evolution of phenotypic plasticity in plants. Ann N Y Acad Sci 2010; 1206:35-55. [PMID: 20860682 DOI: 10.1111/j.1749-6632.2010.05704.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments.
Collapse
Affiliation(s)
- Silvia Matesanz
- Laboratorio Internacional de Cambio Global (LINC-Global), Instituto de Recursos Naturales, CCMA-CSIC, Madrid, Spain.
| | | | | |
Collapse
|
27
|
Meyer CL, Kostecka AA, Saumitou-Laprade P, Créach A, Castric V, Pauwels M, Frérot H. Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. THE NEW PHYTOLOGIST 2010; 185:130-42. [PMID: 19863732 DOI: 10.1111/j.1469-8137.2009.03062.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We estimated the level of quantitative polymorphism for zinc (Zn) tolerance in neighboring metallicolous and nonmetallicolous populations of Arabidopsis halleri and tested the hypothesis that divergent selection has shaped this polymorphism. A short-term hydroponic test was used to capture the quantitative polymorphism present between edaphic types, among and within populations. We measured six morphological and physiological traits on shoots and roots to estimate the response of A. halleri to Zn. In order to assess the adaptive value of Zn tolerance polymorphism, we compared differentiation of quantitative traits with that of molecular markers. Zinc tolerance of metallicolous populations was, on average, higher than that of nonmetallicolous populations according to the morphological and physiological traits measured. Phenotypic variability within edaphic types was very high and mainly explained by polymorphism among individuals within populations. Genetic differentiation for photosystem II yield of leaves (a measure of photosynthetic efficiency) was greater than the differentiation for microsatellite and thus, probably shaped by divergent selection. Overall, these results suggest that, in the sampled populations, Zn tolerance has been increased in metallicolous populations through selection on standing genetic variation within local nonmetallicolous ancestral populations.
Collapse
Affiliation(s)
- Claire-Lise Meyer
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille, Bâtiment SN2, F-59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Besnard G, Basic N, Christin PA, Savova-Bianchi D, Galland N. Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations? THE NEW PHYTOLOGIST 2009; 181:974-984. [PMID: 19076982 DOI: 10.1111/j.1469-8137.2008.02706.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Thlaspi caerulescens (Brassicaceae) is a promising plant model with which to study heavy metal hyperaccumulation. Population genetics studies are necessary for a better understanding of its history, which will be useful for further genomic studies on the evolution of heavy metal hyperaccumulation.The genetic structure of 24 natural Swiss locations was investigated using nuclear and plastid loci. Population genetics parameters were estimated and genetic pools were identified using Bayesian inference on eight putatively neutral nuclear loci.Finally, the effect of cadmium (Cd) and zinc (Zn) soil concentrations on genetic differentiation at loci located in genes putatively involved in heavy metal responses was examined using partial Mantel tests in Jura, western Switzerland.Four main genetic clusters were recognized based on nuclear and plastid loci,which gave mostly congruent signals. In Jura, genetic differentiation linked to heavy metal concentrations in soil was shown at some candidate loci, particularly for genes encoding metal transporters. This suggests that natural selection limits gene flow between metalliferous and non metalliferous locations at such loci.Strong historical factors explain the present genetic structure of Swiss T. caerulescens populations, which has to be considered in studies testing for relationships between environmental and genetic variations. Linking of genetic differentiation at candidate genes with soil characteristics offers new perspectives in the study of heavy metal hyperaccumulation.
Collapse
Affiliation(s)
- Guillaume Besnard
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
- Present address: Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Nevena Basic
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pascal-Antoine Christin
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Nicole Galland
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Dechamps C, Noret N, Mozek R, Escarré J, Lefèbvre C, Gruber W, Meerts P. Cost of adaptation to a metalliferous environment for Thlaspi caerulescens: a field reciprocal transplantation approach. THE NEW PHYTOLOGIST 2008; 177:167-177. [PMID: 17944825 DOI: 10.1111/j.1469-8137.2007.02245.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Field reciprocal transplantations of two metallicolous populations (Mpops) and two nonmetallicolous populations (NMpops) of Thlaspi caerulescens were performed here to determine the pattern of local adaptation and to assess the cost of adaptation of Mpops to a metalliferous environment (Menv). The role of herbivores as an important selective pressure in the nonmetalliferous environment (NMenv) was also examined. Growth, survival, fitness, life cycle and herbivore consumption were monitored for each transplant for 2 yr. Local adaptation of Mpops to their own environment was clearly demonstrated, as Mpops consistently outperformed NMpops in Menv. In NMenv, no advantage of NMpops over Mpops was detected. However, the fitness of Mpops was generally lower in NMenv than in Menv. Herbivore consumption appeared to be a significant selective pressure for Mpops in NMenv. An imbalance of selective forces between Menv and NMenv probably explains the greater local adaptation of Mpops. Therefore, colonization of NMenv by Mpops appears possible. Although Mpops were able to survive and reproduce in NMenv, they nevertheless expressed a cost attributable in part to their higher susceptibility to herbivores.
Collapse
Affiliation(s)
- Caroline Dechamps
- Université Libre de Bruxelles, Laboratoire de Génétique et d'Ecologie Végétales, CP320, chaussée de Wavre 1850, B-1160 Bruxelles, Belgium
| | - Nausicaa Noret
- Université Libre de Bruxelles, Laboratoire de Génétique et d'Ecologie Végétales, CP320, chaussée de Wavre 1850, B-1160 Bruxelles, Belgium
| | - Rony Mozek
- Université Libre de Bruxelles, Laboratoire de Génétique et d'Ecologie Végétales, CP320, chaussée de Wavre 1850, B-1160 Bruxelles, Belgium
| | - José Escarré
- Centre d'Ecologie Fonctionnelle et Evolutive (CNRS) - UMR 5175, Route de Mende 1919, F-34293 Montpellier Cedex 05, France
| | - Claude Lefèbvre
- Université Libre de Bruxelles, Laboratoire de Génétique et d'Ecologie Végétales, CP320, chaussée de Wavre 1850, B-1160 Bruxelles, Belgium
| | - Wolf Gruber
- Université Libre de Bruxelles, Laboratoire de Génétique et d'Ecologie Végétales, CP320, chaussée de Wavre 1850, B-1160 Bruxelles, Belgium
| | - Pierre Meerts
- Université Libre de Bruxelles, Laboratoire de Génétique et d'Ecologie Végétales, CP320, chaussée de Wavre 1850, B-1160 Bruxelles, Belgium
| |
Collapse
|
30
|
Affiliation(s)
- Mark Macnair
- School of Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS.
| |
Collapse
|