1
|
Liu D, Sun X, Qi X, Liang C. Sexual spores in mushrooms: bioactive compounds, factors and molecular mechanisms of spore formation. Arch Microbiol 2025; 207:38. [PMID: 39836288 DOI: 10.1007/s00203-024-04220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Throughout the life cycle of mushrooms, countless spores are released from the fruiting bodies. The spores have significant implications in the food and medicine industries due to pharmacological effects attributed to their bioactive ingredients. Moreover, high concentration of mushroom spores can induce extrinsic allergic reactions in mushroom cultivation workers. Therefore, it is important to study the bioactive ingredients of medicinal mushroom spores and molecular mechanisms of spore formation to develop healthcare products utilizing medicinal mushroom spores and breed sporeless/low- or high-spore-producing strains. This review summarizes the bioactive compounds of mushroom spores, the influence factors and molecular mechanisms of spore formation. Many bioactive compounds extracted from mushroom spores have a wide range of pharmacological activities. Several exogenous factors such as temperature, humidity, light, nutrients, and culture matrix, and endogenous factors such as metabolism-related enzymes activities and expression levels of genes related to sporulation individually or in combination affect the formation, size, and discharge of spores. The future research directions are also discussed for supplying references to analyze the bioactive compounds of spores and the molecular mechanisms of spore formation in mushrooms.
Collapse
Affiliation(s)
- Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
2
|
Marian IM, Valdes ID, Hayes RD, LaButti K, Duffy K, Chovatia M, Johnson J, Ng V, Lugones LG, Wösten HAB, Grigoriev IV, Ohm RA. High phenotypic and genotypic plasticity among strains of the mushroom-forming fungus Schizophyllum commune. Fungal Genet Biol 2024; 173:103913. [PMID: 39004162 DOI: 10.1016/j.fgb.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Schizophyllum commune is a mushroom-forming fungus notable for its distinctive fruiting bodies with split gills. It is used as a model organism to study mushroom development, lignocellulose degradation and mating type loci. It is a hypervariable species with considerable genetic and phenotypic diversity between the strains. In this study, we systematically phenotyped 16 dikaryotic strains for aspects of mushroom development and 18 monokaryotic strains for lignocellulose degradation. There was considerable heterogeneity among the strains regarding these phenotypes. The majority of the strains developed mushrooms with varying morphologies, although some strains only grew vegetatively under the tested conditions. Growth on various carbon sources showed strain-specific profiles. The genomes of seven monokaryotic strains were sequenced and analyzed together with six previously published genome sequences. Moreover, the related species Schizophyllum fasciatum was sequenced. Although there was considerable genetic variation between the genome assemblies, the genes related to mushroom formation and lignocellulose degradation were well conserved. These sequenced genomes, in combination with the high phenotypic diversity, will provide a solid basis for functional genomics analyses of the strains of S. commune.
Collapse
Affiliation(s)
- Ioana M Marian
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ivan D Valdes
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Richard D Hayes
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kecia Duffy
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Luis G Lugones
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Robin A Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
3
|
Ángeles-Argáiz RE, Aguirre-Beltrán LFL, Hernández-Oaxaca D, Quintero-Corrales C, Trujillo-Roldán MA, Castillo-Ramírez S, Garibay-Orijel R. Assembly collapsing versus heterozygosity oversizing: detection of homokaryotic and heterokaryotic Laccaria trichodermophora strains by hybrid genome assembly. Microb Genom 2024; 10:001218. [PMID: 38529901 PMCID: PMC10995626 DOI: 10.1099/mgen.0.001218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Genome assembly and annotation using short-paired reads is challenging for eukaryotic organisms due to their large size, variable ploidy and large number of repetitive elements. However, the use of single-molecule long reads improves assembly quality (completeness and contiguity), but haplotype duplications still pose assembly challenges. To address the effect of read length on genome assembly quality, gene prediction and annotation, we compared genome assemblers and sequencing technologies with four strains of the ectomycorrhizal fungus Laccaria trichodermophora. By analysing the predicted repertoire of carbohydrate enzymes, we investigated the effects of assembly quality on functional inferences. Libraries were generated using three different sequencing platforms (Illumina Next-Seq, Mi-Seq and PacBio Sequel), and genomes were assembled using single and hybrid assemblies/libraries. Long reads or hybrid assemby resolved the collapsing of repeated regions, but the nuclear heterozygous versions remained unresolved. In dikaryotic fungi, each cell includes two nuclei and each nucleus has differences not only in allelic gene version but also in gene composition and synteny. These heterokaryotic cells produce fragmentation and size overestimation of the genome assembly of each nucleus. Hybrid assembly revealed a wider functional diversity of genomes. Here, several predicted oxidizing activities on glycosyl residues of oligosaccharides and several chitooligosaccharide acetylase activities would have passed unnoticed in short-read assemblies. Also, the size and fragmentation of the genome assembly, in combination with heterozygosity analysis, allowed us to distinguish homokaryotic and heterokaryotic strains isolated from L. trichodermophora fruit bodies.
Collapse
Affiliation(s)
- Rodolfo Enrique Ángeles-Argáiz
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito de los Posgrados s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C. Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, México, C.P. 91612, Mexico
| | - Luis Fernando Lozano Aguirre-Beltrán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
| | - Diana Hernández-Oaxaca
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C. Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz, México, C.P. 91073, Mexico
| | - Christian Quintero-Corrales
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito de los Posgrados s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
| | - Mauricio A. Trujillo-Roldán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico, C.P. 22860, Mexico
| | - Santiago Castillo-Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México, C.P. 62210, Mexico
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México, C.P. 04510, Mexico
| |
Collapse
|
4
|
Ichida H, Murata H, Hatakeyama S, Yamada A, Ohta A. Near-complete de novo assembly of Tricholoma bakamatsutake chromosomes revealed the structural divergence and differentiation of Tricholoma genomes. G3 (BETHESDA, MD.) 2023; 13:jkad198. [PMID: 37659058 PMCID: PMC10627285 DOI: 10.1093/g3journal/jkad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Tricholoma bakamatsutake, which is an edible ectomycorrhizal fungus associated with Fagaceae trees, may have diverged before the other species in Tricholoma section Caligata. We generated a highly contiguous whole-genome sequence for T. bakamatsutake SF-Tf05 isolated in an Oak (Quercus salicina) forest in Japan. The assembly of high-fidelity long reads, with a median read length of 12.3 kb, resulted in 13 chromosome-sized contigs comprising 142,068,211 bases with an average guanine and cytosine (GC) content of 43.94%. The 13 chromosomes were predicted to encode 11,060 genes. A contig (122,566 bases) presumably containing the whole circular mitochondrial genome was also recovered. The chromosome-wide comparison of T. bakamatsutake and Tricholoma matsutake (TMA_r1.0) indicated that the basic number of chromosomes (13) was conserved, but the structures of the corresponding chromosomes diverged, with multiple inversions and translocations. Gene conservation and cluster analyses revealed at least 3 phylogenetic clades in Tricholoma section Caligata. Specifically, all T. bakamatsutake strains belonged to the "bakamatsutake" clade, which is most proximal to the "caligatum" clade consisting of Tricholoma caligatum and Tricholoma fulvocastaneum. The constructed highly contiguous nearly telomere-to-telomere genome sequence of a T. bakamatsutake isolate will serve as a fundamental resource for future research on the evolution and differentiation of Tricholoma species.
Collapse
Affiliation(s)
- Hiroyuki Ichida
- Ion Beam Breeding Group, RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
| | - Hitoshi Murata
- Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, Tsukuba, Ibaraki 305-8687, Japan
| | - Shin Hatakeyama
- Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Akiyoshi Yamada
- Faculty of Agriculture, Shinshu University, Minami-minowa, Nagano 399-4598, Japan
| | - Akira Ohta
- Kansai Research Center, FFPRI, Kyoto, Kyoto 612-0855, Japan
| |
Collapse
|
5
|
Sun X, Liu D, Zhao X. Transcription factors: switches for regulating growth and development in macrofungi. Appl Microbiol Biotechnol 2023; 107:6179-6191. [PMID: 37624406 DOI: 10.1007/s00253-023-12726-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Macrofungi (or mushrooms) act as an extraordinarily important part to human health due to their nutritional and/or medicinal value, but the detailed researches in growth and development mechanisms have yet to be explored further. Transcription factors (TFs) play indispensable roles in signal transduction and affect growth, development, and metabolism of macrofungi. In recent years, increasing research effort has been employed to probe the relationship between the development of macrofungi and TFs. Herein, the present review comprehensively summarized the functional TFs researched in macrofungi, including modulating mycelial growth, fructification, sclerotial formation, sexual reproduction, spore formation, and secondary metabolism. Meanwhile, the possible effect mechanisms of TFs on the growth and development of some macrofungi were also revealed. Specific examples of functional characterizations of TFs in macrofungi (such as Schizophyllum commune and Coprinopsis cinerea) were described to a better comprehension of regulatory effect. Future research prospects in the field of TFs of macrofungi are discussed. We illustrated the functional versatility of the TFs in macrofungi based on specific examples. A systematical realization of the interaction and possible mechanisms between TFs and macrofungi can supply possible solutions to regulate genetic characteristics, which supply novel insights into the regulation of growth, development and metabolism of macrofungi. KEY POINTS: • The functional TFs researched in macrofungi were summarized. • The possible effect mechanisms of TFs in macrofungal were described. • The multiple physiological functions of TFs in macrofungi were discussed.
Collapse
Affiliation(s)
- Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
6
|
Zhang SS, Li X, Li GJ, Huang Q, Tian JH, Wang JL, Li M, Li SM. Genetic and Molecular Evidence of a Tetrapolar Mating System in the Edible Mushroom Grifola frondosa. J Fungi (Basel) 2023; 9:959. [PMID: 37888215 PMCID: PMC10607315 DOI: 10.3390/jof9100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Grifola frondosa is a valuable edible fungus with high nutritional and medicinal values. The mating systems of fungi not only offer practical strategies for breeding, but also have far-reaching effects on genetic variability. Grifola frondosa has been considered as a sexual species with a tetrapolar mating system based on little experimental data. In the present study, one group of test crosses and six groups of three-round mating experiments from two parental strains were conducted to determine the mating system in G. frondosa. A chi-squared test of the results of the test-cross mating experiments indicated that they satisfied Mendelian segregation, while a series of three-round mating experiments showed that Mendelian segregation was not satisfied, implying a segregation distortion phenomenon in G. frondosa. A genomic map of the G. frondosa strain, y59, grown from an LMCZ basidiospore, with 40.54 Mb and 12 chromosomes, was generated using genome, transcriptome and Hi-C sequencing technology. Based on the genomic annotation of G. frondosa, the mating-type loci A and B were located on chromosomes 1 and 11, respectively. The mating-type locus A coded for the β-fg protein, HD1, HD2 and MIP, in that order. The mating-type locus B consisted of six pheromone receptors (PRs) and five pheromone precursors (PPs) in a crossed order. Moreover, both HD and PR loci may have only one sublocus that determines the mating type in G. frondosa. The nonsynonymous SNP and indel mutations between the A1B1 and A2B2 mating-type strains and the reference genome of y59 only occurred on genes HD2 and PR1/2, preliminarily confirming that the mating type of the y59 strain was A1B2 and not A1B1. Based on the genetic evidence and the more reliable molecular evidence, the results reveal that the mating system of G. frondosa is tetrapolar. This study has important implications for the genetics and hybrid breeding of G. frondosa.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
| | - Xiao Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071001, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding 071001, China
| | - Guo-Jie Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071001, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding 071001, China
| | - Qi Huang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
| | - Jing-Hua Tian
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071001, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding 071001, China
| | - Jun-Ling Wang
- College of Life Science, Hebei Agricultural University, Baoding 071001, China;
| | - Ming Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071001, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding 071001, China
| | - Shou-Mian Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (S.-S.Z.); (X.L.); (G.-J.L.); (Q.H.); (J.-H.T.); (M.L.)
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding 071001, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding 071001, China
| |
Collapse
|
7
|
Peris D, Lu DS, Kinneberg VB, Methlie IS, Dahl MS, James TY, Kauserud H, Skrede I. Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection. PLoS Genet 2022; 18:e1010097. [PMID: 35358178 PMCID: PMC8970355 DOI: 10.1371/journal.pgen.1010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.
Collapse
Affiliation(s)
- David Peris
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health, Valencian International University (VIU), Valencia, Spain
| | - Dabao Sun Lu
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vilde Bruhn Kinneberg
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ine-Susanne Methlie
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Malin Stapnes Dahl
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Wang G, Wang Y, Chen L, Wang H, Guo L, Zhou X, Dou M, Wang B, Lin J, Liu L, Wang Z, Deng Y, Zhang J. Genetic structure and evolutionary diversity of mating-type (MAT) loci in Hypsizygus marmoreus. IMA Fungus 2021; 12:35. [PMID: 34930496 PMCID: PMC8686365 DOI: 10.1186/s43008-021-00086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
The mating compatibility in fungi is generally governed by genes located within a single or two unlinked mating type (MAT) loci. Hypsizygus marmoreus is an edible mushroom in the order Agaricales with a tetrapolar system, which contains two unlinked MAT loci-homeodomain (HD) transcription factor genes and pheromone/pheromone receptor genes (P/R). In this study, we analyzed the genetic structure and diversity of MAT loci in tetrapolar system of H. marmoreus through sequencing of 54 heterokaryon and 8 homokaryon strains. Although within the HD loci, the gene order was conserved, the gene contents were variable, and the HD loci haplotypes were further classified into four types. By analyzing the structure, phylogeny, and the HD transmissibility based on the progeny of these four HD mating-type loci types, we found that they were heritable and tightly linked at the HD loci. The P/R loci genes were found to comprise three pheromone receptors, three pheromones, and two pheromone receptor-like genes. Intra- and inter-specific phylogenetic analyses of pheromone receptors revealed that the STE3 genes were divided into three groups, and we thus theorize that they diverged before speciation. Comparative analysis of the MAT regions among 73 Basidiomycete species indicated that the diversity of HD and P/R loci in Agaricales and Boletales may contribute to mating compatibility. The number of HD genes were not correlated with the tetrapolar or bipolar systems. In H. marmoreus, the expression levels of these genes at HD and P/R loci of compatible strains were found higher than in those of homonuclear/homokaryotic strains, indicating that these mating genes acted as switches for mating processes. Further collinear analysis of HD loci in interspecific species found that HD loci contains conserved recombination hotspots showing major rearrangements in Coprinopsis cinerea and Schizophyllum commune, suggesting different mechanisms for evolution of physically linked MAT loci in these groups. It seems likely that gene rearrangements are common in Agaricales fungi around HD loci. Together, our study provides insights into the genomic basis of mating compatibility in H. marmoreus.
Collapse
Affiliation(s)
- Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng, 224002 China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuanyuan Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lianfu Chen
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430000 China
| | - Hongbo Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lin Guo
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xuan Zhou
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Meijie Dou
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Baiyu Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jingxian Lin
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lei Liu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350002 China
| | - Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
9
|
Foulongne-Oriol M, Taskent O, Kües U, Sonnenberg ASM, van Peer AF, Giraud T. Mating-Type Locus Organization and Mating-Type Chromosome Differentiation in the Bipolar Edible Button Mushroom Agaricus bisporus. Genes (Basel) 2021; 12:1079. [PMID: 34356095 PMCID: PMC8305134 DOI: 10.3390/genes12071079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
In heterothallic basidiomycete fungi, sexual compatibility is restricted by mating types, typically controlled by two loci: PR, encoding pheromone precursors and pheromone receptors, and HD, encoding two types of homeodomain transcription factors. We analysed the single mating-type locus of the commercial button mushroom variety, Agaricus bisporus var. bisporus, and of the related variety burnettii. We identified the location of the mating-type locus using genetic map and genome information, corresponding to the HD locus, the PR locus having lost its mating-type role. We found the mip1 and β-fg genes flanking the HD genes as in several Agaricomycetes, two copies of the β-fg gene, an additional HD2 copy in the reference genome of A. bisporus var. bisporus and an additional HD1 copy in the reference genome of A. bisporus var. burnettii. We detected a 140 kb-long inversion between mating types in an A. bisporus var. burnettii heterokaryon, trapping the HD genes, the mip1 gene and fragments of additional genes. The two varieties had islands of transposable elements at the mating-type locus, spanning 35 kb in the A. bisporus var. burnettii reference genome. Linkage analyses showed a region with low recombination in the mating-type locus region in the A. bisporus var. burnettii variety. We found high differentiation between β-fg alleles in both varieties, indicating an ancient event of recombination suppression, followed more recently by a suppression of recombination at the mip1 gene through the inversion in A. bisporus var. burnettii and a suppression of recombination across whole chromosomes in A. bisporus var. bisporus, constituting stepwise recombination suppression as in many other mating-type chromosomes and sex chromosomes.
Collapse
Affiliation(s)
| | - Ozgur Taskent
- Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France;
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Goettingen Center for Molecular Biosciences (GZMB), Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany;
| | - Anton S. M. Sonnenberg
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.S.M.S.); (A.F.v.P.)
| | - Arend F. van Peer
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.S.M.S.); (A.F.v.P.)
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
10
|
Wirth S, Freihorst D, Krause K, Kothe E. What Role Might Non-Mating Receptors Play in Schizophyllum commune? J Fungi (Basel) 2021; 7:jof7050399. [PMID: 34065484 PMCID: PMC8161036 DOI: 10.3390/jof7050399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 01/10/2023] Open
Abstract
The B mating-type locus of the tetrapolar basidiomycete Schizophyllum commune encodes pheromones and pheromone receptors in multiple allelic specificities. This work adds substantial new evidence into the organization of the B mating-type loci of distantly related S. commune strains showing a high level of synteny in gene order and neighboring genes. Four pheromone receptor-like genes were found in the genome of S. commune with brl1, brl2 and brl3 located at the B mating-type locus, whereas brl4 is located separately. Expression analysis of brl genes in different developmental stages indicates a function in filamentous growth and mating. Based on the extensive sequence analysis and functional characterization of brl-overexpression mutants, a function of Brl1 in mating is proposed, while Brl3, Brl4 and Brl2 (to a lower extent) have a role in vegetative growth, possible determination of growth direction. The brl3 and brl4 overexpression mutants had a dikaryon-like, irregular and feathery phenotype, and they avoided the formation of same-clone colonies on solid medium, which points towards enhanced detection of self-signals. These data are supported by localization of Brl fusion proteins in tips, at septa and in not-yet-fused clamps of a dikaryon, confirming their importance for growth and development in S. commune.
Collapse
|
11
|
Quintero-Corrales C, Ángeles-Argáiz R, Jaramillo-Correa JP, Piñero D, Garibay-Orijel R, Mastretta-Yanes A. Allopatric instead of parapatric divergence in an ectomycorrhizal fungus (Laccaria trichodermophora) in tropical sky-islands. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Meng L, Chou T, Jiang S, Wang L, Zhu M, Mukhtar I, Xie B, Wang W. Characterization and expression pattern analysis of pheromone receptor-like genes in Winter Mushroom Flammulina filiformis. Arch Microbiol 2020; 202:2671-2678. [PMID: 32719947 DOI: 10.1007/s00203-020-01990-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/02/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022]
Abstract
Pheromone receptor-like genes (PRLGs) belong to the G protein-coupled receptors (GPCRs) family that interacts with biotic and abiotic stimulants and transmits signals to intracellular downstream pathways in eukaryotic cells. In this study, we investigated the structure and expressions patterns of PRLGs in Winter Mushroom Flammulina filiformis. Based on the alignment analysis, the structure of PRLGs was found conserved in F. filiformis strains expect few single-nucleotide polymorphism (SNP) sites. Six PRLGs were found at five different unlinked loci, scattered in the genomes of F. filiformis strains. These genes contain 2-5 introns; however, the introns were not found in the same relative positions regarding the encoded protein sequences in tested strains of F. filiformis. Three conserved motifs were identified in peptides structures of PRLGs, however, FfSte3.s6 contained only two types, suggests its difference in evolution and function. We have further analyzed the expression patterns of each PRLGs in different developmental stages of the fruiting body in F. filiformis by quantitative real-time polymerase chain reaction (qRT-PCR). The results exhibited expression variation of PRLGs at different developmental stages of the F. filiformis. Especially, FfSte3.s1 and FfSte3.s2 exhibited maximum expression level in mycelia stage. Other PRLGs exhibited high expression level in fruiting body stages. This study suggests that PRLGs could be vital genes involving in fruiting body development in F. filiformis. However, further studies could be performed to reveal their specific functional pathways in the fruiting body development.
Collapse
Affiliation(s)
- Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tiansheng Chou
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Siyuan Jiang
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Mengjuan Zhu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Irum Mukhtar
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Wallen RM, Perlin MH. An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi. Front Microbiol 2018; 9:503. [PMID: 29619017 PMCID: PMC5871698 DOI: 10.3389/fmicb.2018.00503] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi.
Collapse
Affiliation(s)
| | - Michael H. Perlin
- Department of Biology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
14
|
Gao W, Qu J, Zhang J, Sonnenberg A, Chen Q, Zhang Y, Huang C. A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genomics 2018; 19:18. [PMID: 29304732 PMCID: PMC5755439 DOI: 10.1186/s12864-017-4421-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/27/2017] [Indexed: 11/21/2022] Open
Abstract
Background Pleurotus tuoliensis (Bailinggu) is a commercially cultivated mushroom species with an increasing popularity in China and other Asian countries. Commercial profits are now low, mainly due to a low yield, long cultivation period and sensitivity to diseases. Breeding efforts are thus required to improve agronomical important traits. Developing saturated genetic linkage and physical maps is a start for applying genetic and molecular approaches to accelerate the precise breeding programs. Results Here we present a genetic linkage map for P. tuoliensis constructed by using 115 haploid monokaryons derived from a hybrid strain H6. One thousand one hundred and eighty-two SNP markers developed by 2b–RAD (type IIB restriction-site associated DNA) approach were mapped to 12 linkage groups. The map covers 1073 cM with an average marker spacing of 1.0 cM. The genome of P. tuoliensis was de novo sequenced as 40.8 Mb and consisted of 500 scaffolds (>500 bp), which showed a high level of colinearity to the genome of P. eryngii var. eryngii. A total of 97.4% SNP markers (1151) were physically localized on 78 scaffolds, and the physical length of these anchored scaffolds were 33.9 Mb representing 83.1% of the whole genome. Mating type loci A and B were mapped on separate linkage groups and identified physically on the assembled genomes. Five putative pheromone receptors and two putative pheromone precursors were identified for the mating type B locus. Conclusions This study reported a first genetic linkage map integrated with physical mapping of the de novo sequenced genome and the mating type loci of an important cultivated mushroom in China, P. tuoliensis. The de novo sequenced and annotated genome, assembled using a 2b–RAD generated linkage map, provides a basis for marker-assisted breeding of this economic important mushroom species. Electronic supplementary material The online version of this article (10.1186/s12864-017-4421-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jibin Qu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Anton Sonnenberg
- Plant Breeding, Wageningen University & Research Centre, 6708, PB, Wageningen, The Netherlands
| | - Qiang Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Yan Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
15
|
Chung CL, Lee TJ, Akiba M, Lee HH, Kuo TH, Liu D, Ke HM, Yokoi T, Roa MB, Lu MYJ, Chang YY, Ann PJ, Tsai JN, Chen CY, Tzean SS, Ota Y, Hattori T, Sahashi N, Liou RF, Kikuchi T, Tsai IJ. Comparative and population genomic landscape of Phellinus noxius
: A hypervariable fungus causing root rot in trees. Mol Ecol 2017; 26:6301-6316. [DOI: 10.1111/mec.14359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Chia-Lin Chung
- Department of Plant Pathology and Microbiology; National Taiwan University; Taipei City Taiwan
- Master Program for Plant Medicine; National Taiwan University; Taipei City Taiwan
| | - Tracy J. Lee
- Biodiversity Research Center; Academia Sinica; Taipei City Taiwan
- Biodiversity Program; Taiwan International Graduate Program; Academia Sinica and National Taiwan Normal University; Taipei City Taiwan
- Department of Life Science; National Taiwan Normal University; Taipei City Taiwan
| | - Mitsuteru Akiba
- Department of Forest Microbiology; Forestry and Forest Products Research Institute; Tsukuba Japan
| | - Hsin-Han Lee
- Department of Plant Pathology and Microbiology; National Taiwan University; Taipei City Taiwan
| | - Tzu-Hao Kuo
- Biodiversity Research Center; Academia Sinica; Taipei City Taiwan
| | - Dang Liu
- Biodiversity Research Center; Academia Sinica; Taipei City Taiwan
- Genome and Systems Biology Degree Program; National Taiwan University and Academia Sinica; Taipei City Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center; Academia Sinica; Taipei City Taiwan
| | - Toshiro Yokoi
- Department of Forest Microbiology; Forestry and Forest Products Research Institute; Tsukuba Japan
| | - Marylette B. Roa
- Biodiversity Research Center; Academia Sinica; Taipei City Taiwan
- Philippine Genome Center; University of the Philippines Diliman; Quezon City Philippines
| | - Mei-Yeh J. Lu
- Biodiversity Research Center; Academia Sinica; Taipei City Taiwan
| | - Ya-Yun Chang
- Department of Plant Pathology and Microbiology; National Taiwan University; Taipei City Taiwan
| | - Pao-Jen Ann
- Plant Pathology Division; Taiwan Agricultural Research Institute; Taichung City Taiwan
| | - Jyh-Nong Tsai
- Plant Pathology Division; Taiwan Agricultural Research Institute; Taichung City Taiwan
| | - Chien-Yu Chen
- Department of Bio-industrial Mechatronics Engineering; National Taiwan University; Taipei City Taiwan
| | - Shean-Shong Tzean
- Department of Plant Pathology and Microbiology; National Taiwan University; Taipei City Taiwan
| | - Yuko Ota
- Department of Forest Microbiology; Forestry and Forest Products Research Institute; Tsukuba Japan
- College of Bioresource Sciences; Nihon University; Fujisawa Japan
| | - Tsutomu Hattori
- Department of Forest Microbiology; Forestry and Forest Products Research Institute; Tsukuba Japan
| | - Norio Sahashi
- Department of Forest Microbiology; Forestry and Forest Products Research Institute; Tsukuba Japan
| | - Ruey-Fen Liou
- Department of Plant Pathology and Microbiology; National Taiwan University; Taipei City Taiwan
- Master Program for Plant Medicine; National Taiwan University; Taipei City Taiwan
| | - Taisei Kikuchi
- Division of Parasitology; Faculty of Medicine; University of Miyazaki; Miyazaki Japan
| | - Isheng J. Tsai
- Biodiversity Research Center; Academia Sinica; Taipei City Taiwan
- Biodiversity Program; Taiwan International Graduate Program; Academia Sinica and National Taiwan Normal University; Taipei City Taiwan
- Department of Life Science; National Taiwan Normal University; Taipei City Taiwan
- Genome and Systems Biology Degree Program; National Taiwan University and Academia Sinica; Taipei City Taiwan
| |
Collapse
|
16
|
Mujic AB, Kuo A, Tritt A, Lipzen A, Chen C, Johnson J, Sharma A, Barry K, Grigoriev IV, Spatafora JW. Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus. G3 (BETHESDA, MD.) 2017; 7:1775-1789. [PMID: 28450370 PMCID: PMC5473757 DOI: 10.1534/g3.117.039396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 12/04/2022]
Abstract
Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales.
Collapse
Affiliation(s)
- Alija Bajro Mujic
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Alan Kuo
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Andrew Tritt
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Anna Lipzen
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Cindy Chen
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Jenifer Johnson
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Aditi Sharma
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Kerrie Barry
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Igor V Grigoriev
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
17
|
Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T. Fungal Sex: The Basidiomycota. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0046-2016. [PMID: 28597825 PMCID: PMC5467461 DOI: 10.1128/microbiolspec.funk-0046-2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.
Collapse
Affiliation(s)
- Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, V0H 1Z0, Canada
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA 01002
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
18
|
Chen W, Chai H, Yang W, Zhang X, Chen Y, Zhao Y. Characterization of Non-coding Regions in B Mating Loci of Agrocybe salicacola Groups: Target Sites for B Mating Type Identification. Curr Microbiol 2017; 74:772-778. [PMID: 28393263 DOI: 10.1007/s00284-017-1247-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/05/2017] [Indexed: 01/29/2023]
Abstract
Agrocybe salicacola is a delicious and cultivable mushroom. It is important to understand this species' inherent characteristics, especially to elucidate the constitution and segregation of mating genes. In this study, two compatible B mating loci in strain YAASM0711 of A. salicacola were cloned from the monokaryons, and sequence and phylogeny analyses showed two conserved genes encoding pheromone receptors maybe lost mating activity, which determined by comparing with those of other mushrooms. In the conserved regions of mating loci, partial insertion/deletion fragments made non-coding regions posses polymorphisms, and monokaryotic strains of different mating types were distinguished from each other according to the amplification profile of variable regions, which suggested mating loci were integrally assigned to offspring strains during mitosis in A. salicacola. As our known, it is the first to develop molecular markers for B mating-type identification using variable non-coding fragments of mating loci in basidiomycetes.
Collapse
Affiliation(s)
- Weimin Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, 650223, Yunnan, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, Yunnan, China
| | - Hongmei Chai
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, 650223, Yunnan, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, Yunnan, China
| | - Weixian Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China
- College of Life Science, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Xiaolei Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, 650223, Yunnan, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, Yunnan, China
| | - Yuhui Chen
- College of Life Science, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - YongChang Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223, Yunnan, China.
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, 650223, Yunnan, China.
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, Yunnan, China.
| |
Collapse
|
19
|
Making Use of Genomic Information to Explore the Biotechnological Potential of Medicinal Mushrooms. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Advances in Understanding Mating Type Gene Organization in the Mushroom-Forming Fungus Flammulina velutipes. G3-GENES GENOMES GENETICS 2016; 6:3635-3645. [PMID: 27621376 PMCID: PMC5100862 DOI: 10.1534/g3.116.034637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The initiation of sexual development in the important edible and medicinal mushroom Flammulina velutipes is controlled by special genes at two different, independent, mating type (MAT) loci: HD and PR. We expanded our understanding of the F. velutipes mating type system by analyzing the MAT loci from a series of strains. The HD locus of F. velutipes houses homeodomain genes (Hd genes) on two separated locations: sublocus HD-a and HD-b. The HD-b subloci contained strain-specific Hd1/Hd2 gene pairs, and crosses between strains with different HD-b subloci indicated a role in mating. The function of the HD-a sublocus remained undecided. Many, but not all strains contained the same conserved Hd2 gene at the HD-a sublocus. The HD locus usually segregated as a whole, though we did detect one new HD locus with a HD-a sublocus from one parental strain, and a HD-b sublocus from the other. The PR locus of F. velutipes contained pheromone receptor (STE3) and pheromone precursor (Pp) genes at two locations, sublocus PR-a and PR-b. PR-a and PR-b both contained sets of strain-specific STE3 and Pp genes, indicating a role in mating. PR-a and PR-b cosegregated in our experiments. However, the identification of additional strains with identical PR-a, yet different PR-b subloci, demonstrated that PR subloci can recombine within the PR locus. In conclusion, at least three of the four MAT subloci seem to participate in mating, and new HD and PR loci can be generated through intralocus recombination in F. velutipes.
Collapse
|
21
|
de Mattos-Shipley K, Ford K, Alberti F, Banks A, Bailey A, Foster G. The good, the bad and the tasty: The many roles of mushrooms. Stud Mycol 2016; 85:125-157. [PMID: 28082758 PMCID: PMC5220184 DOI: 10.1016/j.simyco.2016.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fungi are often inconspicuous in nature and this means it is all too easy to overlook their importance. Often referred to as the "Forgotten Kingdom", fungi are key components of life on this planet. The phylum Basidiomycota, considered to contain the most complex and evolutionarily advanced members of this Kingdom, includes some of the most iconic fungal species such as the gilled mushrooms, puffballs and bracket fungi. Basidiomycetes inhabit a wide range of ecological niches, carrying out vital ecosystem roles, particularly in carbon cycling and as symbiotic partners with a range of other organisms. Specifically in the context of human use, the basidiomycetes are a highly valuable food source and are increasingly medicinally important. In this review, seven main categories, or 'roles', for basidiomycetes have been suggested by the authors: as model species, edible species, toxic species, medicinal basidiomycetes, symbionts, decomposers and pathogens, and two species have been chosen as representatives of each category. Although this is in no way an exhaustive discussion of the importance of basidiomycetes, this review aims to give a broad overview of the importance of these organisms, exploring the various ways they can be exploited to the benefit of human society.
Collapse
Affiliation(s)
- K.M.J. de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - K.L. Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - F. Alberti
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - A.M. Banks
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - A.M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - G.D. Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
22
|
Díaz-Valderrama JR, Aime MC. The cacao pathogen Moniliophthora roreri (Marasmiaceae) possesses biallelic A and B mating loci but reproduces clonally. Heredity (Edinb) 2016; 116:491-501. [PMID: 26932308 PMCID: PMC4868271 DOI: 10.1038/hdy.2016.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023] Open
Abstract
The cacao pathogen Moniliophthora roreri belongs to the mushroom-forming family Marasmiaceae, but it has never been observed to produce a fruiting body, which calls to question its capacity for sexual reproduction. In this study, we identified potential A (HD1 and HD2) and B (pheromone precursors and pheromone receptors) mating genes in M. roreri. A PCR-based method was subsequently devised to determine the mating type for a set of 47 isolates from across the geographic range of the fungus. We developed and generated an 11-marker microsatellite set and conducted association and linkage disequilibrium (standardized index of association, IA(s)) analyses. We also performed an ancestral reconstruction analysis to show that the ancestor of M. roreri is predicted to be heterothallic and tetrapolar, which together with sliding window analyses support that the A and B mating loci are likely unlinked and follow a tetrapolar organization within the genome. The A locus is composed of a pair of HD1 and HD2 genes, whereas the B locus consists of a paired pheromone precursor, Mr_Ph4, and receptor, STE3_Mr4. Two A and B alleles but only two mating types were identified. Association analyses divided isolates into two well-defined genetically distinct groups that correlate with their mating type; IA(s) values show high linkage disequilibrium as is expected in clonal reproduction. Interestingly, both mating types were found in South American isolates but only one mating type was found in Central American isolates, supporting a prior hypothesis of clonal dissemination throughout Central America after a single or very few introductions of the fungus from South America.
Collapse
Affiliation(s)
- J R Díaz-Valderrama
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - M C Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
23
|
|
24
|
|
25
|
Rong C, Zhao S, Li D, Wang L, Wang S, Ma K, Xu F, Liu Y. Cloning of the A Mating-Type Locus from Lepista nuda and Characterization of Its Genetic Structure. Curr Microbiol 2015; 71:669-77. [PMID: 26330378 DOI: 10.1007/s00284-015-0902-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/22/2015] [Indexed: 02/05/2023]
Abstract
Lepista nuda (Bull. ex Fr.) Cooke (Tricholomataceae) is an edible fungus with both economic and medical value. Identification of its mating-type loci is important for promoting breeding programs in L. nuda. The A mating-type locus of L. nuda and its flanking region were cloned and characterized in the present study. It contained two homeodomain transcription factor genes (called lna1 and lna2). Lna1 and Lna2 protein harbored conserved motif of homeodomain transcription factor protein. The novel finding of this study was that the gene order around the A locus was mip, lna2, lna1, and β-fg in L. nuda, which was differed from other edible fungi. In addition, lna1 and lna2 showed divergent, inward transcriptional direction. The phylogenetic tree of HD proteins showed that L. nuda Lna1 and Lna2 were phylogenetically related with Laccaria bicolor. Our results revealed that the A mating-type locus had been subjected to gene rearrangements relative to all other basidiomycetes.
Collapse
Affiliation(s)
- Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, Beijing, 100097, China.,Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, 100097, China
| | - Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, Beijing, 100097, China.,Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, 100097, China
| | - Dengjin Li
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, Beijing, 100097, China
| | - Lijuan Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, Beijing, 100097, China
| | - Shouxian Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, Beijing, 100097, China.,Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, 100097, China
| | - Kang Ma
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, Beijing, 100097, China
| | - Feng Xu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, Beijing, 100097, China. .,Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, 100097, China.
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, Beijing, 100097, China. .,Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, Beijing, 100097, China.
| |
Collapse
|
26
|
Kuo A, Kohler A, Martin FM, Grigoriev IV. Expanding genomics of mycorrhizal symbiosis. Front Microbiol 2014; 5:582. [PMID: 25408690 PMCID: PMC4219462 DOI: 10.3389/fmicb.2014.00582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism.
Collapse
Affiliation(s)
- Alan Kuo
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| | - Annegret Kohler
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Francis M. Martin
- UMR, Lab of Excellence for Advanced Research on the Biology of TRee and Forest Ecosystems, Tree-Microbe Interactions, Institut National de la Recherche Agronomique, Université de LorraineNancy, France
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome InstituteWalnut Creek, CA, USA
| |
Collapse
|
27
|
Kim KH, Kang YM, Im CH, Ali A, Kim SY, Je HJ, Kim MK, Rho HS, Lee HS, Kong WS, Ryu JS. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii. PLoS One 2014; 9:e104693. [PMID: 25133513 PMCID: PMC4136793 DOI: 10.1371/journal.pone.0104693] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Young Min Kang
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Chak Han Im
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Asjad Ali
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Sun Young Kim
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Hee-Jeong Je
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Min-Keun Kim
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
| | - Hyun Su Rho
- Department of Microbiology, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Sook Lee
- Department of Microbiology, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Sik Kong
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumsung, Republic of Korea
| | - Jae-San Ryu
- Environment-friendly Research Division, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Levasseur A, Lomascolo A, Chabrol O, Ruiz-Dueñas FJ, Boukhris-Uzan E, Piumi F, Kües U, Ram AFJ, Murat C, Haon M, Benoit I, Arfi Y, Chevret D, Drula E, Kwon MJ, Gouret P, Lesage-Meessen L, Lombard V, Mariette J, Noirot C, Park J, Patyshakuliyeva A, Sigoillot JC, Wiebenga A, Wösten HAB, Martin F, Coutinho PM, de Vries RP, Martínez AT, Klopp C, Pontarotti P, Henrissat B, Record E. The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genomics 2014; 15:486. [PMID: 24942338 PMCID: PMC4101180 DOI: 10.1186/1471-2164-15-486] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology. RESULTS The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases. CONCLUSIONS With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Anthony Levasseur
- INRA, UMR1163 Biotechnologie des Champignons Filamenteux, Aix-Marseille Université, Polytech Marseille, 163 avenue de Luminy, CP 925, 13288 Marseille Cedex 09, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Au CH, Wong MC, Bao D, Zhang M, Song C, Song W, Law PTW, Kües U, Kwan HS. The genetic structure of the A mating-type locus of Lentinula edodes. Gene 2013; 535:184-90. [PMID: 24295887 DOI: 10.1016/j.gene.2013.11.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 11/29/2022]
Abstract
The Shiitake mushroom, Lentinula edodes (Berk.) Pegler is a tetrapolar basidiomycete with two unlinked mating-type loci, commonly called the A and B loci. Identifying the mating-types in shiitake is important for enhancing the breeding and cultivation of this economically-important edible mushroom. Here, we identified the A mating-type locus from the first draft genome sequence of L. edodes and characterized multiple alleles from different monokaryotic strains. Two intron-length polymorphism markers were developed to facilitate rapid molecular determination of A mating-type. L. edodes sequences were compared with those of known tetrapolar and bipolar basidiomycete species. The A mating-type genes are conserved at the homeodomain region across the order Agaricales. However, we observed unique genomic organization of the locus in L. edodes which exhibits atypical gene order and multiple repetitive elements around its A locus. To our knowledge, this is the first known exception among Homobasidiomycetes, in which the mitochondrial intermediate peptidase (mip) gene is not closely linked to A locus.
Collapse
Affiliation(s)
- Chun Hang Au
- Biology Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man Chun Wong
- Biology Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Dapeng Bao
- Edible Fungi Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Meiyan Zhang
- Edible Fungi Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chunyan Song
- Edible Fungi Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenhua Song
- Edible Fungi Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Patrick Tik Wan Law
- Biology Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ursula Kües
- Division of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Hoi Shan Kwan
- Biology Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
30
|
Wu L, van Peer A, Song W, Wang H, Chen M, Tan Q, Song C, Zhang M, Bao D. Cloning of the Lentinula edodes B mating-type locus and identification of the genetic structure controlling B mating. Gene 2013; 531:270-8. [PMID: 24029079 DOI: 10.1016/j.gene.2013.08.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/05/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
During the life cycle of heterothallic tetrapolar Agaricomycetes such as Lentinula edodes (Berk.) Pegler, the mating type system, composed of unlinked A and B loci, plays a vital role in controlling sexual development and resulting formation of the fruit body. L. edodes is produced worldwide for consumption and medicinal purposes, and understanding its sexual development is therefore of great importance. A considerable amount of mating type factors has been indicated over the past decades but few genes have actually been identified, and no complete genetic structures of L. edodes B mating-type loci are available. In this study, we cloned the matB regions from two mating compatible L. edodes strains, 939P26 and 939P42. Four pheromone receptors were identified on each new matB region, together with three and four pheromone precursor genes in the respective strains. Gene polymorphism, phylogenetic analysis and distribution of pheromone receptors and pheromone precursors clearly indicate a bipartite matB locus, each sublocus containing a pheromone receptor and one or two pheromone precursors. Detailed sequence comparisons of genetic structures between the matB regions of strains 939P42, 939P26 and a previously reported strain SUP2 further supported this model and allowed identification of the B mating type subloci borders. Mating studies confirmed the control of B mating by the identified pheromone receptors and pheromones in L. edodes.
Collapse
Affiliation(s)
- Lin Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, P.R. China; Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P.R. China; National Engineering Research Center of Edible Fungi, Ministry of Science and Technology, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
van der Nest MA, Steenkamp ET, Wilken MP, Stenlid J, Wingfield MJ, Wingfield BD, Slippers B. Mutualism and asexual reproduction influence recognition genes in a fungal symbiont. Fungal Biol 2013; 117:439-50. [PMID: 23809654 DOI: 10.1016/j.funbio.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 04/23/2013] [Accepted: 05/01/2013] [Indexed: 11/20/2022]
Abstract
Mutualism between microbes and insects is common and alignment of the reproductive interests of microbial symbionts with this lifestyle typically involves clonal reproduction and vertical transmission by insect partners. Here the Amylostereum fungus-Sirex woodwasp mutualism was used to consider whether their prolonged association and predominance of asexuality have affected the mating system of the fungal partner. Nucleotide information for the pheromone receptor gene rab1, as well as the translation elongation factor 1α gene and ribosomal RNA internal transcribed spacer region were utilized. The identification of rab1 alleles in Amylostereum chailletii and Amylostereum areolatum populations revealed that this gene is more polymorphic than the other two regions, although the diversity of all three regions was lower than what has been observed in free-living Agaricomycetes. Our data suggest that suppressed recombination might be implicated in the diversification of rab1, while no evidence of balancing selection was detected. We also detected positive selection at only two codons, suggesting that purifying selection is important for the evolution of rab1. The symbiotic relationship with their insect partners has therefore influenced the diversity of this gene and influenced the manner in which selection drives and maintains this diversity in A. areolatum and A. chailletii.
Collapse
MESH Headings
- Animals
- Basidiomycota/genetics
- Basidiomycota/physiology
- Cluster Analysis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Genes, Mating Type, Fungal
- Hymenoptera/microbiology
- Molecular Sequence Data
- Peptide Elongation Factor 1/genetics
- Polymorphism, Genetic
- Receptors, Pheromone/genetics
- Recombination, Genetic
- Sequence Analysis, DNA
- Symbiosis
Collapse
Affiliation(s)
- Magriet A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute-FABI, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | |
Collapse
|
32
|
Molecular characterization of sexual diversity in a population of Serpula lacrymans, a tetrapolar basidiomycete. G3-GENES GENOMES GENETICS 2013; 3:145-52. [PMID: 23390592 PMCID: PMC3564976 DOI: 10.1534/g3.112.003731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/25/2012] [Indexed: 12/22/2022]
Abstract
Different mating systems have evolved in the fungal kingdom, including a tetrapolar multiallelic mating system in many basidiomycetes. In tetrapolar species, the presence of different alleles at two mating loci (MAT A and MAT B) is necessary for mating to occur. The tetrapolar fungus Serpula lacrymans causes wood-decay in buildings in temperate regions worldwide and is present in Europe with a genetically homogeneous founder population. Using genome sequence data, we annotated the two mating type loci for S. lacrymans and found the expected synteny with other basidiomycetes, except for a retrotransposon being present in one locus (MAT A). We developed markers linked to the MAT A and MAT B regions and used these to investigate the mating type diversity in the European population. Moreover, we found a good match between the genetic markers and functional mating types as revealed by segregation and mating studies. A low diversity of mating types is present in the European S. lacrymans population caused by the founder event where a limited number of genotypes were introduced. This finding contrasts the situation in natural fungal populations where a high diversity of mating types is normally present. Although S. lacrymans has a large and viable population in Europe, we argue that the low mating type diversity restrains the dispersal and establishment of the fungus.
Collapse
|
33
|
Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor. PLoS One 2012; 7:e40197. [PMID: 22870194 PMCID: PMC3411680 DOI: 10.1371/journal.pone.0040197] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/04/2012] [Indexed: 01/07/2023] Open
Abstract
Background The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus.
Collapse
|
34
|
Characterization of DNA polymorphisms in Rhizopogon roseolus homeodomain protein genes and their utilization for strain identification. Mycol Prog 2012. [DOI: 10.1007/s11557-012-0840-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Vincenot L, Nara K, Sthultz C, Labbé J, Dubois MP, Tedersoo L, Martin F, Selosse MA. Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex. Mol Ecol 2011; 21:281-99. [PMID: 22168318 DOI: 10.1111/j.1365-294x.2011.05392.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biogeographical patterns and large-scale genetic structure have been little studied in ectomycorrhizal (EM) fungi, despite the ecological and economic importance of EM symbioses. We coupled population genetics and phylogenetic approaches to understand spatial structure in fungal populations on a continental scale. Using nine microsatellite markers, we characterized gene flow among 16 populations of the widespread EM basidiomycete Laccaria amethystina over Europe (i.e. over 2900 km). We also widened our scope to two additional populations from Japan (10(4) km away) and compared them with European populations through microsatellite markers and multilocus phylogenies, using three nuclear genes (NAR, G6PD and ribosomal DNA) and two mitochondrial ribosomal genes. European L. amethystina populations displayed limited differentiation (average F(ST) = 0.041) and very weak isolation by distance (IBD). This panmictic European pattern may result from effective aerial dispersal of spores, high genetic diversity in populations and mutualistic interactions with multiple hosts that all facilitate migration. The multilocus phylogeny based on nuclear genes confirmed that Japanese and European specimens were closely related but clustered on a geographical basis. By using microsatellite markers, we found that Japanese populations were strongly differentiated from the European populations (F(ST) = 0.416), more than expected by extrapolating the European pattern of IBD. Population structure analyses clearly separated the populations into two clusters, i.e. European and Japanese clusters. We discuss the possibility of IBD in a continuous population (considering some evidence for a ring species over the Northern Hemisphere) vs. an allopatric speciation over Eurasia, making L. amethystina a promising model of intercontinental species for future studies.
Collapse
Affiliation(s)
- Lucie Vincenot
- UMR5175, Centre d'Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
van Peer AF, Park SY, Shin PG, Jang KY, Yoo YB, Park YJ, Lee BM, Sung GH, James TY, Kong WS. Comparative genomics of the mating-type loci of the mushroom Flammulina velutipes reveals widespread synteny and recent inversions. PLoS One 2011; 6:e22249. [PMID: 21799803 PMCID: PMC3140503 DOI: 10.1371/journal.pone.0022249] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/17/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mating-type loci of mushroom fungi contain master regulatory genes that control recognition between compatible nuclei, maintenance of compatible nuclei as heterokaryons, and fruiting body development. Regions near mating-type loci in fungi often show adapted recombination, facilitating the generation of novel mating types and reducing the production of self-compatible mating types. Compared to other fungi, mushroom fungi have complex mating-type systems, showing both loci with redundant function (subloci) and subloci with many alleles. The genomic organization of mating-type loci has been solved in very few mushroom species, which complicates proper interpretation of mating-type evolution and use of those genes in breeding programs. METHODOLOGY/PRINCIPAL FINDINGS We report a complete genetic structure of the mating-type loci from the tetrapolar, edible mushroom Flammulina velutipes mating type A3B3. Two matB3 subloci, matB3a that contains a unique pheromone and matB3b, were mapped 177 Kb apart on scaffold 1. The matA locus of F. velutipes contains three homeodomain genes distributed over 73 Kb distant matA3a and matA3b subloci. The conserved matA region in Agaricales approaches 350 Kb and contains conserved recombination hotspots showing major rearrangements in F. velutipes and Schizophyllum commune. Important evolutionary differences were indicated; separation of the matA subloci in F. velutipes was diverged from the Coprinopsis cinerea arrangement via two large inversions whereas separation in S. commune emerged through transposition of gene clusters. CONCLUSIONS/SIGNIFICANCE In our study we determined that the Agaricales have very large scale synteny at matA (∼350 Kb) and that this synteny is maintained even when parts of this region are separated through chromosomal rearrangements. Four conserved recombination hotspots allow reshuffling of large fragments of this region. Next to this, it was revealed that large distance subloci can exist in matB as well. Finally, the genes that were linked to specific mating types will serve as molecular markers in breeding.
Collapse
Affiliation(s)
- Arend F. van Peer
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Soon-Young Park
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Pyung-Gyun Shin
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Kab-Yeul Jang
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Young-Bok Yoo
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Young-Jin Park
- National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea
| | - Byoung-Moo Lee
- National Academy of Agricultural Science, Rural Development Administration, Suwon, Republic of Korea
| | - Gi-Ho Sung
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Won-Sik Kong
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| |
Collapse
|
37
|
Pöggeler S, O’Gorman CM, Hoff B, Kück U. Molecular organization of the mating-type loci in the homothallic Ascomycete Eupenicillium crustaceum. Fungal Biol 2011; 115:615-24. [DOI: 10.1016/j.funbio.2011.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
38
|
Douhan GW, Vincenot L, Gryta H, Selosse MA. Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 2011; 115:569-97. [PMID: 21724164 DOI: 10.1016/j.funbio.2011.03.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/06/2011] [Accepted: 03/12/2011] [Indexed: 11/25/2022]
Abstract
Ectomycorrhizal (EM) fungi are major microbial components of boreal, temperate and Mediterranean forests, as well as some tropical forest ecosystems. Nearly two decades of studies have clarified many aspects of their population biology, based on several model species from diverse lineages of fungi where the EM symbiosis evolved, i.e. among Hymenomycetes and, to a lesser extent, among Ascomycetes. In this review, we show how tools for individual recognition have changed, shifting from the use of somatic incompatibility reactions to dominant and non-specific markers (such as random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP)) and, more recently, to co-dominant and specific markers (such as microsatellites and single nucleotide polymorphisms (SNPs)). At the same time, the theoretical focus has also changed. In earlier studies, a major aim was the description of genet size and popul/ation strategy. For example, we show how some studies supported or challenged the simple, classical model of colonization of new forest stands by ruderal (R) species, propagating by spores and forming small genets, progressively replaced in older forests by more competitive (C) species, propagating by mycelial growth and forming larger genets. By contrast, more recent studies give insights into some genetic traits, such as partners' assortment (allo- versus autogamy), genetic structure of populations and gene flow that turn out to depend both on distance and on whether spores are animal- or wind-dispersed. We discuss the rising awareness that (i) many morphospecies contain cryptic biological species (often sympatric) and (ii) trans- and inter-continental species may often contain several biological species isolated by distance. Finally, we show the emergence of biogeographic approaches and call for some aspects to be developed, such as fine-scale and long-term population monitoring, analyses of subterranean populations of extra-radical mycelia, or more model species from the tropics, as well as from the Ascomycetes (whose genetic idiosyncrasies are discussed). With the rise of the '-omics' sciences, analysis of population structure for non-neutral genes is expected to develop, and forest management and conservation biology will probably profit from published and expected work.
Collapse
Affiliation(s)
- Greg W Douhan
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
39
|
Kües U, Navarro-González M. Mating-type orthologous genes in the primarily homothallic Moniliophthora perniciosa, the causal agent of Witches' Broom Disease in cacao. J Basic Microbiol 2010; 50:442-51. [PMID: 20586074 DOI: 10.1002/jobm.201000013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cacao-pathogenic Moniliophthora perniciosa C-biotype is a primarily homothallic Agaricomycete of which the genome has recently become available. Searching of the genome sequence with mating type proteins from other basidiomycetes detected one or possibly two potential genes for HD1 homeodomain transcription factors, 7 or possibly 8 genes for potential pheromone receptors and five genes for putative pheromone precursors. Apparently, the fungus possesses gene functions encoded in the tetrapolar basidiomycetes in the A and B mating loci, respectively. In the tetrapolar species, the A and B mating type genes govern formation of clamp cells at hyphal septa of the dikaryon and their fusion with sub-apical cells as well as mushroom production. The C-biotype forms fused clamp cells and also basidiocarps on mycelia germinated from basidiospores and their development might be controlled by the detected genes. It represents the first example of a primarily homothallic basidiomycete where A - and B -mating-type-like genes were found. Various strategies are discussed as how self-compatibility in presence of such genes can evolve. An A -mating-type like gene for an HD2 homeodomain transcription factor is, however, not included in the available sequence representing estimated 69% coverage of the haploid genome but there are non-mating genes for other homeodomain transcription factors of currently unknown function that are conserved in basidiomycetes and also various ascomycetes.
Collapse
Affiliation(s)
- Ursula Kües
- Division of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University Göttingen, Göttingen, Germany.
| | | |
Collapse
|
40
|
A single mating-type locus composed of homeodomain genes promotes nuclear migration and heterokaryosis in the white-rot fungus Phanerochaete chrysosporium. EUKARYOTIC CELL 2010; 10:249-61. [PMID: 21131435 DOI: 10.1128/ec.00212-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The white-rot basidiomycete fungus Phanerochaete chrysosporium (Agaricomycetes) is a model species that produces potent wood-degrading enzymes. The mating system of the species has been difficult to characterize due to its cryptic fruiting habit and lack of clamp connections in the heterokaryotic phase. By exploiting the draft genome sequence, we reevaluated the mating system of P. chrysosporium by studying the inheritance and segregation of putative mating-type gene homologues, the homeodomain transcription factor genes (MAT-A) and the pheromone receptors (MAT-B). A pattern of mating incompatibility and fructification consistent with a bipolar system with a single MAT locus was observed, but the rejection response was much weaker than that seen in other agaricomycete species, leading to stable heterokaryons with identical MAT alleles. The homeodomain genes appear to comprise the single MAT locus because they are heterozygous in wild strains and hyperpolymorphic at the DNA sequence level and promote aspects of sexual reproduction, such as nuclear migration, heterokaryon stability, and basidiospore formation. The pheromone receptor loci that might constitute a MAT-B locus, as in many other Agaricomycetes, are not linked to the MAT-A locus and display low levels of polymorphism. This observation is inconsistent with a bipolar mating system that includes pheromones and pheromone receptors as mating-type determinants. The partial uncoupling of nuclear migration and mating incompatibility in this species may be predicted to lead to parasexual recombination and may have contributed to the homothallic behavior observed in previous studies.
Collapse
|
41
|
Billiard S, López-Villavicencio M, Devier B, Hood ME, Fairhead C, Giraud T. Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev Camb Philos Soc 2010; 86:421-42. [PMID: 21489122 DOI: 10.1111/j.1469-185x.2010.00153.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The advantage of sex has been among the most debated issues in biology. Surprisingly, the question of why sexual reproduction generally requires the combination of distinct gamete classes, such as small and large gametes, or gametes with different mating types, has been much less investigated. Why do systems with alternative gamete classes (i.e. systems with either anisogamy or mating types or both) appear even though they restrict the probability of finding a compatible mating partner? Why does the number of gamete classes vary from zero to thousands, with most often only two classes? We review here the hypotheses proposed to explain the origin, maintenance, number, and loss of gamete classes. We argue that fungi represent highly suitable models to help resolve issues related to the evolution of distinct gamete classes, because the number of mating types vary from zero to thousands across taxa, anisogamy is present or not, and because there are frequent transitions between these conditions. We review the nature and number of gamete classes in fungi, and we attempt to draw inferences from these data on the evolutionary forces responsible for their appearance, loss or maintenance, and number.
Collapse
Affiliation(s)
- Sylvain Billiard
- Université Lille Nord de France, USTL, GEPV, CNRS, FRE 3268, Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
42
|
Metin B, Findley K, Heitman J. The mating type locus (MAT) and sexual reproduction of Cryptococcus heveanensis: insights into the evolution of sex and sex-determining chromosomal regions in fungi. PLoS Genet 2010; 6:e1000961. [PMID: 20502678 PMCID: PMC2873909 DOI: 10.1371/journal.pgen.1000961] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/20/2010] [Indexed: 11/19/2022] Open
Abstract
Mating in basidiomycetous fungi is often controlled by two unlinked, multiallelic loci encoding homeodomain transcription factors or pheromones/pheromone receptors. In contrast to this tetrapolar organization, Cryptococcus neoformans/Cryptococcus gattii have a bipolar mating system, and a single biallelic locus governs sexual reproduction. The C. neoformans MAT locus is unusually large (>100 kb), contains >20 genes, and enhances virulence. Previous comparative genomic studies provided insights into how this unusual MAT locus might have evolved involving gene acquisitions into two unlinked loci and fusion into one contiguous locus, converting an ancestral tetrapolar system to a bipolar one. Here we tested this model by studying Cryptococcus heveanensis, a sister species to the pathogenic Cryptococcus species complex. An extant sexual cycle was discovered; co-incubating fertile isolates results in the teleomorph (Kwoniella heveanensis) with dikaryotic hyphae, clamp connections, septate basidia, and basidiospores. To characterize the C. heveanensis MAT locus, a fosmid library was screened with C. neoformans/C. gattii MAT genes. Positive fosmids were sequenced and assembled to generate two large probably unlinked MAT gene clusters: one corresponding to the homeodomain locus and the other to the pheromone/receptor locus. Strikingly, two divergent homeodomain genes (SXI1, SXI2) are present, similar to the bE/bW Ustilago maydis paradigm, suggesting one or the other homeodomain gene was recently lost in C. neoformans/C. gattii. Sequencing MAT genes from other C. heveanensis isolates revealed a multiallelic homeodomain locus and at least a biallelic pheromone/receptor locus, similar to known tetrapolar species. Taken together, these studies reveal an extant C. heveanensis sexual cycle, define the structure of its MAT locus consistent with tetrapolar mating, and support the proposed evolutionary model for the bipolar Cryptococcus MAT locus revealing transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals.
Collapse
Affiliation(s)
- Banu Metin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Keisha Findley
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
43
|
A-mating-type gene expression can drive clamp formation in the bipolar mushroom Pholiota microspora (Pholiota nameko). EUKARYOTIC CELL 2010; 9:1109-19. [PMID: 20453073 DOI: 10.1128/ec.00374-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the bipolar basidiomycete Pholiota microspora, a pair of homeodomain protein genes located at the A-mating-type locus regulates mating compatibility. In the present study, we used a DNA-mediated transformation system in P. microspora to investigate the homeodomain proteins that control the clamp formation. When a single homeodomain protein gene (A3-hox1 or A3-hox2) from the A3 monokaryon strain was transformed into the A4 monokaryon strain, the transformants produced many pseudoclamps but very few clamps. When two homeodomain protein genes (A3-hox1 and A3-hox2) were transformed either separately or together into the A4 monokaryon, the ratio of clamps to the clamplike cells in the transformants was significantly increased to ca. 50%. We therefore concluded that the gene dosage of homeodomain protein genes is important for clamp formation. When the sip promoter was connected to the coding region of A3-hox1 and A3-hox2 and the fused fragments were introduced into NGW19-6 (A4), the transformants achieved more than 85% clamp formation and exhibited two nuclei per cell, similar to the dikaryon (NGW12-163 x NGW19-6). The results of real-time reverse transcription-PCR confirmed that sip promoter activity is greater than that of the native promoter of homeodomain protein genes in P. microspora. Thus, we concluded that nearly 100% clamp formation requires high expression levels of homeodomain protein genes and that altered expression of the A-mating-type genes alone is sufficient to drive true clamp formation.
Collapse
|
44
|
Abstract
The genome sequences of the basidiomycete Agaricomycetes species Coprinopsis cinerea, Laccaria bicolor, Schizophyllum commune, Phanerochaete chrysosporium, and Postia placenta, as well as of Cryptococcus neoformans and Ustilago maydis, are now publicly available. Out of these fungi, C. cinerea, S. commune, and U. maydis, together with the budding yeast Saccharomyces cerevisiae, have been investigated for years genetically and molecularly for signaling in sexual reproduction. The comparison of the structure and organization of mating type genes in fungal genomes reveals an amazing conservation of genes regulating the sexual reproduction throughout the fungal kingdom. In agaricomycetes, two mating type loci, A, coding for homeodomain type transcription factors, and B, encoding a pheromone/receptor system, regulate the four typical mating interactions of tetrapolar species. Evidence for both A and B mating type genes can also be identified in basidiomycetes with bipolar systems, where only two mating interactions are seen. In some of these fungi, the B locus has lost its self/nonself discrimination ability and thus its specificity while retaining the other regulatory functions in development. In silico analyses now also permit the identification of putative components of the pheromone-dependent signaling pathways. Induction of these signaling cascades leads to development of dikaryotic mycelia, fruiting body formation, and meiotic spore production. In pheromone-dependent signaling, the role of heterotrimeric G proteins, components of a mitogen-activated protein kinase (MAPK) cascade, and cyclic AMP-dependent pathways can now be defined. Additionally, the pheromone-dependent signaling through monomeric, small GTPases potentially involved in creating the polarized cytoskeleton for reciprocal nuclear exchange and migration during mating is predicted.
Collapse
|
45
|
van der Nest MA, Slippers B, Steenkamp ET, De Vos L, Van Zyl K, Stenlid J, Wingfield MJ, Wingfield BD. Genetic linkage map for Amylostereum areolatum reveals an association between vegetative growth and sexual and self-recognition. Fungal Genet Biol 2009; 46:632-41. [PMID: 19523529 DOI: 10.1016/j.fgb.2009.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
Amylostereum areolatum is a filamentous fungus that grows through tip extension, branching and hyphal fusion. In the homokaryotic phase, the hyphae of different individuals are capable of fusing followed by heterokaryon formation, only if they have dissimilar allelic specificities at their mating-type (mat) loci. In turn, hyphal fusion between heterokaryons persists only when they share the same alleles at all of their heterokaryon incompatibility (het) loci. In this study we present the first genetic linkage map for A. areolatum, onto which the mat and het loci, as well as quantitative trait loci (QTLs) for mycelial growth rate are mapped. The recognition loci (mat-A and het-A) are positioned near QTLs associated with mycelial growth, suggesting that the genetic determinants influencing recognition and growth rate in A. areolatum are closely associated. This was confirmed when isolates associated with specific mat and het loci displayed significantly different mycelial growth rates. Although the link between growth and sexual recognition has previously been observed in other fungi, this is the first time that an association between growth and self-recognition has been shown.
Collapse
Affiliation(s)
- M A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yi R, Tachikawa T, Ishikawa M, Mukaiyama H, Bao D, Aimi T. Genomic structure of the A mating-type locus in a bipolar basidiomycete, Pholiota nameko. ACTA ACUST UNITED AC 2008; 113:240-8. [PMID: 19049868 DOI: 10.1016/j.mycres.2008.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/18/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
In the bipolar basidiomycete, Pholiota nameko, the homeodomain protein, A4-hox1, located at the A mating-type locus, is known to regulate mating compatibility. In the present study, we investigated the genomic structure of the P. nameko A mating-type locus and its flanking region. A second homeodomain gene (A4-hox2) was discovered upstream of A4-hox1; this together with the conserved gene order around the A mating-type locus and their similar transcription direction were found in P. nameko, another bipolar mushroom, Coprinellus disseminatus, and two tetrapolar mushrooms, Coprinopsis cinerea and Laccaria bicolor. Analysis of the deduced protein sequences of the homeodomain protein genes from two strains of P. nameko show that the putative functional domains differ from those of the homeodomain proteins of the tetrapolar mushrooms, C. cinerea and L. bicolor.
Collapse
Affiliation(s)
- Ruirong Yi
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-cho Minami, Tottori-shi, Tottori 680-8553, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Hsueh YP, Heitman J. Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Curr Opin Microbiol 2008; 11:517-24. [PMID: 18935978 DOI: 10.1016/j.mib.2008.09.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 09/18/2008] [Accepted: 09/22/2008] [Indexed: 12/24/2022]
Abstract
The mating-type locus (MAT) orchestrates sexual reproduction in fungi. Sexual reproduction is related not only to fitness of an organism, but also correlated with virulence in certain pathogens. In the dandruff-associated fungus Malassesia globosa, although the sexual cycle remains to be discovered, whole genome analysis has led to the hypothesis that mating may occur on host skin. Furthermore, the MAT locus of M. globosa and U. hordei provides evidence that transitions between tetrapolar and bipolar systems have independently occurred. These results, together with studies recapitulating the ancestral tetrapolar mating system in Cryptococcus and the structure of MAT in related smut fungi, have furthered understanding on transitions between different mating systems and the evolution of MAT in the Basidiomycota.
Collapse
Affiliation(s)
- Yen-Ping Hsueh
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | | |
Collapse
|
48
|
Labbé J, Zhang X, Yin T, Schmutz J, Grimwood J, Martin F, Tuskan GA, Le Tacon F. A genetic linkage map for the ectomycorrhizal fungus Laccaria bicolor and its alignment to the whole-genome sequence assemblies. THE NEW PHYTOLOGIST 2008; 180:316-328. [PMID: 18783356 DOI: 10.1111/j.1469-8137.2008.02614.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A genetic linkage map for the ectomycorrhizal basidiomycete Laccaria bicolor was constructed from 45 sib-homokaryotic haploid mycelial lines derived from the parental S238N strain progeny. For map construction, 294 simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs), amplified fragment length polymorphisms (AFLPs) and random amplified polymorphic DNA (RAPD) markers were employed to identify and assay loci that segregated in backcross configuration. Using SNP, RAPD and SSR sequences, the L. bicolor whole-genome sequence (WGS) assemblies were aligned onto the linkage groups. A total of 37.36 Mbp of the assembled sequences was aligned to 13 linkage groups. Most mapped genetic markers used in alignment were colinear with the sequence assemblies, indicating that both the genetic map and sequence assemblies achieved high fidelity. The resulting matrix of recombination rates between all pairs of loci was used to construct an integrated linkage map using JoinMap. The final map consisted of 13 linkage groups spanning 812 centiMorgans (cM) at an average distance of 2.76 cM between markers (range 1.9-17 cM). The WGS and the present linkage map represent an initial step towards the identification and cloning of quantitative trait loci associated with development and functioning of the ectomycorrhizal symbiosis.
Collapse
Affiliation(s)
- J Labbé
- UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, INRA-Nancy, 54280 Champenoux, France
| | - X Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6422, USA
- Joint Genome Institute, 2500 Mitchell St, Walnut Creek, CA 94250, USA
| | - T Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6422, USA
- Joint Genome Institute, 2500 Mitchell St, Walnut Creek, CA 94250, USA
| | - J Schmutz
- Stanford Human Genome Center, Department of Genetics, Stanford University School of Medicine, 975 California Avenue, Palo Alto, CA 94304, USA
| | - J Grimwood
- Stanford Human Genome Center, Department of Genetics, Stanford University School of Medicine, 975 California Avenue, Palo Alto, CA 94304, USA
| | - F Martin
- UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, INRA-Nancy, 54280 Champenoux, France
| | - G A Tuskan
- Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6422, USA
- Joint Genome Institute, 2500 Mitchell St, Walnut Creek, CA 94250, USA
| | - F Le Tacon
- UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, INRA-Nancy, 54280 Champenoux, France
| |
Collapse
|
49
|
Abstract
The first genomic sequence for a representative of symbiotic fungi, the ectomycorrhizal basidiomycete Laccaria bicolor, has been published. The unravelling of this genome provides tantalizing hints about differences between this symbiotic fungus and its saprotrophic and pathogenic relatives. An expansion of several multigene families occurred in L. bicolor, suggesting that adaptation to symbiosis proceeded by gene duplication. Within lineage-specific genes those coding for symbiosis-regulated secreted proteins showed an up-regulated expression in ectomycorrhizas. L. bicolor is lacking enzymes involved in the degradation of plant cell wall components (cellulose, hemicellulose, pectins and pectates), preventing the symbiont from degrading host cells. By contrast, L. bicolor possesses expanded multigene families associated with hydrolysis of bacterial and microfauna polysaccharides and proteins. The genome analysis revealed the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The next stages will involve finer-scale investigation of gene networks to reveal the details of the general patterns now uncovered at the genomic level. The acceptance of L. bicolor as a model organism for symbiosis genetics will, however, depend strongly on the availability of additional genetic, genomic and molecular biological resources, such as gene inactivation procedures.
Collapse
Affiliation(s)
- Francis Martin
- UMR1136 INRA-Nancy Université Interactions Arbres/Micro-organismes, IFR110, Centre de Nancy, 54280 Champenoux, France
| | - Marc-André Selosse
- UMR5175, Centre d'Ecologie Fonctionnelle et Evolutive, Equipe Interactions Biotiques, 1919 Route de Mende, 34 293 Montpellier cedex 5, France
| |
Collapse
|
50
|
Talbot NJ. Unwrapping the Laccaria genome. THE NEW PHYTOLOGIST 2008; 180:259-260. [PMID: 19138214 DOI: 10.1111/j.1469-8137.2008.02636.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|