1
|
Marie L, Breitler JC, Bamogo PKA, Bordeaux M, Lacombe S, Rios M, Lebrun M, Boulanger R, Lefort E, Nakamura S, Motoyoshi Y, Mieulet D, Campa C, Legendre L, Bertrand B. Combined sensory, volatilome and transcriptome analyses identify a limonene terpene synthase as a major contributor to the characteristic aroma of a Coffea arabica L. specialty coffee. BMC PLANT BIOLOGY 2024; 24:238. [PMID: 38566027 PMCID: PMC10988958 DOI: 10.1186/s12870-024-04890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The fruity aromatic bouquet of coffee has attracted recent interest to differentiate high value market produce as specialty coffee. Although the volatile compounds present in green and roasted coffee beans have been extensively described, no study has yet linked varietal molecular differences to the greater abundance of specific substances and support the aroma specificity of specialty coffees. RESULTS This study compared four Arabica genotypes including one, Geisha Especial, suggested to generate specialty coffee. Formal sensory evaluations of coffee beverages stressed the importance of coffee genotype in aroma perception and that Geisha Especial-made coffee stood out by having fine fruity, and floral, aromas and a more balanced acidity. Comparative SPME-GC-MS analyses of green and roasted bean volatile compounds indicated that those of Geisha Especial differed by having greater amounts of limonene and 3-methylbutanoic acid in agreement with the coffee cup aroma perception. A search for gene ontology differences of ripening beans transcriptomes of the four varieties revealed that they differed by metabolic processes linked to terpene biosynthesis due to the greater gene expression of prenyl-pyrophosphate biosynthetic genes and terpene synthases. Only one terpene synthase (CaTPS10-like) had an expression pattern that paralleled limonene loss during the final stage of berry ripening and limonene content in the studied four varieties beans. Its functional expression in tobacco leaves confirmed its functioning as a limonene synthase. CONCLUSIONS Taken together, these data indicate that coffee variety genotypic specificities may influence ripe berry chemotype and final coffee aroma unicity. For the specialty coffee variety Geisha Especial, greater expression of terpene biosynthetic genes including CaTPS10-like, a limonene synthase, resulted in the greater abundance of limonene in green beans, roasted beans and a unique citrus note of the coffee drink.
Collapse
Affiliation(s)
- Lison Marie
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France.
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France.
| | - Jean-Christophe Breitler
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Pingdwende Kader Aziz Bamogo
- PHIM (Plant Health Institute of Montpellier), University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, Montpellier, F-34398, France
| | | | - Séverine Lacombe
- PHIM (Plant Health Institute of Montpellier), University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, Montpellier, F-34398, France
| | - Maëlle Rios
- PHIM (Plant Health Institute of Montpellier), University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, Montpellier, F-34398, France
| | - Marc Lebrun
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- QualiSud, University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, University of La Réunion, University of Avignon, Montpellier, F-34398, France
| | - Renaud Boulanger
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- QualiSud, University of Montpellier, CIRAD, IRD, INRAE, Institut Agro, University of La Réunion, University of Avignon, Montpellier, F-34398, France
| | - Eveline Lefort
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Sunao Nakamura
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1, Seika-dai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Yudai Motoyoshi
- Research Institute, Suntory Global Innovation Center Limited, 8-1-1, Seika-dai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Delphine Mieulet
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Claudine Campa
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| | - Laurent Legendre
- INRAE, UR 1115 Plantes et Systèmes de Culture Horticoles, Site Agroparc, Avignon, 84914, France
| | - Benoît Bertrand
- CIRAD (Centre de coopération internationale en recherche agronomique pour le développement), UMR DIADE, Montpellier, F-34398, France
- DIADE (Diversity, Adaptation, Development of Plants), University of Montpellier, CIRAD, IRD, Montpellier, F-34398, France
| |
Collapse
|
2
|
Fu X, Li G, Hu F, Huang J, Lou Y, Li Y, Li Y, He H, Lv Y, Cheng J. Comparative transcriptome analysis in peaberry and regular bean coffee to identify bean quality associated genes. BMC Genom Data 2023; 24:12. [PMID: 36849914 PMCID: PMC9969625 DOI: 10.1186/s12863-022-01098-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The peaberry bean in Arabica coffee has exceptional quality compared to the regular coffee bean. Understanding the molecular mechanism of bean quality is imperative to introduce superior coffee quality traits. Despite high economic importance, the regulatory aspects of bean quality are yet largely unknown in peaberry. A transcriptome analysis was performed by using peaberry and regular coffee beans in this study. RESULTS The result of phenotypic analysis stated a difference in the physical attributes of both coffee beans. In addition, transcriptome analysis revealed low genetic differences. Only 139 differentially expressed genes were detected in which 54 genes exhibited up-regulation and 85 showed down-regulations in peaberry beans compared to regular beans. The majority of differentially expressed genes had functional annotation with cell wall modification, lipid binding, protein binding, oxidoreductase activity, and transmembrane transportation. Many fold lower expression of Ca25840-PMEs1, Ca30827-PMEs2, Ca30828-PMEs3, Ca25839-PMEs4, Ca36469-PGs. and Ca03656-Csl genes annotated with cell wall modification might play a critical role to develop different bean shape patterns in Arabica. The ERECTA family genes Ca15802-ERL1, Ca99619-ERL2, Ca07439-ERL3, Ca97226-ERL4, Ca89747-ERL5, Ca07056-ERL6, Ca01141-ERL7, and Ca32419-ERL8 along lipid metabolic pathway genes Ca06708-ACOX1, Ca29177-ACOX2, Ca01563-ACOX3, Ca34321-CPFA1, and Ca36201-CPFA2 are predicted to regulate different shaped bean development. In addition, flavonoid biosynthesis correlated genes Ca03809-F3H, Ca95013-CYP75A1, and Ca42029-CYP75A2 probably help to generate rarely formed peaberry beans. CONCLUSION Our results provide molecular insights into the formation of peaberry. The data resources will be important to identify candidate genes correlated with the different bean shape patterns in Arabica.
Collapse
Affiliation(s)
- Xingfei Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Guiping Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Jiaxiong Huang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Yuqiang Lou
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Yaqi Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Hongyan He
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - YuLan Lv
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China
| | - Jinhuan Cheng
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Yunnan, Baoshan, 678000, China.
| |
Collapse
|
3
|
Combes MC, Joët T, Stavrinides AK, Lashermes P. New cup out of old coffee: contribution of parental gene expression legacy to phenotypic novelty in coffee beans of the allopolyploid Coffea arabica L. ANNALS OF BOTANY 2023; 131:157-170. [PMID: 35325016 PMCID: PMC9904342 DOI: 10.1093/aob/mcac041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/21/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Allopolyploidization is a widespread phenomenon known to generate novel phenotypes by merging evolutionarily distinct parental genomes and regulatory networks in a single nucleus. The objective of this study was to investigate the transcriptional regulation associated with phenotypic novelty in coffee beans of the allotetraploid Coffea arabica. METHODS A genome-wide comparative transcriptomic analysis was performed in C. arabica and its two diploid progenitors, C. canephora and C. eugenioides. Gene expression patterns and homeologue expression were studied on seeds at five different maturation stages. The involvement of homeologue expression bias (HEB) in specific traits was addressed both by functional enrichment analyses and by the study of gene expression in the caffeine and chlorogenic acid biosynthesis pathways. KEY RESULTS Expression-level dominance in C. arabica seed was observed for most of the genes differentially expressed between the species. Approximately a third of the genes analysed showed HEB. This proportion increased during seed maturation but the biases remained equally distributed between the sub-genomes. The relative expression levels of homeologues remained relatively constant during maturation and were correlated with those estimated in leaves of C. arabica and interspecific hybrids between C. canephora and C. eugenioides. Functional enrichment analyses performed on genes exhibiting HEB enabled the identification of processes potentially associated with physiological traits. The expression profiles of the genes involved in caffeine biosynthesis mirror the differences observed in the caffeine content of mature seeds of C. arabica and its parental species. CONCLUSIONS Neither of the two sub-genomes is globally preferentially expressed in C. arabica seeds, and homeologues appear to be co-regulated by shared trans-regulatory mechanisms. The observed HEBs are thought to be a legacy of gene expression differences inherited from diploid progenitor species. Pre-existing functional divergences between parental species appear to play an important role in controlling the phenotype of C. arabica seeds.
Collapse
Affiliation(s)
| | - Thierry Joët
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | | | | |
Collapse
|
4
|
Torrez V, Benavides-Frias C, Jacobi J, Speranza CI. Ecological quality as a coffee quality enhancer. A review. AGRONOMY FOR SUSTAINABLE DEVELOPMENT 2023; 43:19. [PMID: 36748099 PMCID: PMC9894527 DOI: 10.1007/s13593-023-00874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
As both coffee quality and sustainability become increasingly important, there is growing interest in understanding how ecological quality affects coffee quality. Here we analyze, for the first time, the state of evidence that ecological quality, in terms of biodiversity and ecosystem functions, impacts the quality of Coffea arabica and C. canephora, based on 78 studies. The following ecosystem functions were included: pollination; weed, disease, and pest control; water and soil fertility regulation. Biodiversity was described by the presence, percentage, and diversity of shade trees. Coffee quality was described by the green bean physical characteristics, biochemical compounds, and organoleptic characteristics. The presence and diversity of shade trees positively impacted bean size and weight and reduced the percentage of rejected beans, but these observations were not consistent over different altitudes. In fact, little is known about the diversity of shade trees and their influence on biochemical compounds. All biochemical compounds varied with the presence of shade, percentage of shade, and elevation. Coffee beans from more diverse tree shade plantations obtained higher scores for final total organoleptic quality than simplified tree shade and unshaded plantations. Decreasing ecological quality diminished ecosystem functions such as pollination, which in turn negatively affected bean quality. Shade affected pests and diseases in different ways, but weeds were reduced. High soil quality positively affected coffee quality. Shade improved the water use efficiency, such that coffee plants were not water stressed and coffee quality was improved. While knowledge on the influence of shade trees on overall coffee quality remains scarce, there is evidence that agroecosystem simplification is negatively correlated with coffee quality. Given global concerns about biodiversity and habitat loss, we recommend that the overall definition of coffee quality include measures of ecological quality, although these aspects are not always detectable in certain coffee quality characteristics or the final cup.
Collapse
Affiliation(s)
- Vania Torrez
- Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, Bolivia
| | | | - Johanna Jacobi
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
5
|
Antoine G, Vaissayre V, Meile JC, Payet J, Conéjéro G, Costet L, Fock-Bastide I, Joët T, Dussert S. Diterpenes of Coffea seeds show antifungal and anti-insect activities and are transferred from the endosperm to the seedling after germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:627-637. [PMID: 36535102 DOI: 10.1016/j.plaphy.2022.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Species of the genus Coffea accumulate diterpenes of the ent-kaurane family in the endosperm of their seeds, of which cafestol and kahweol are the most abundant. The diterpenes are mainly stored in esterified form with fatty acids, mostly palmitate. In contrast to the numerous studies on their effects on human health and therapeutic applications, nothing was previously known about their biological and ecological role in planta. The antifungal and anti-insect activities of cafestol and cafestol palmitate were thus investigated in this study. Cafestol significantly affected the mycelial growth of five of the six phytopathogenic fungi tested. It also greatly reduced the percentage of pupation of larvae and the pupae and adult masses of one of the two fruit flies tested. By contrast, cafestol palmitate had no significant effect against any of the fungi and insects studied. Using confocal imaging and oil body isolation and analysis, we showed that diterpenes are localized in endosperm oil bodies, suggesting that esterification with fatty acids enables the accumulation of large amounts of diterpenes in a non-toxic form. Diterpene measurements in all organs of seedlings recovered from whole seed germination or embryos isolated from the endosperm showed that diterpenes are transferred from the endosperm to the cotyledons during seedling growth and then distributed to all organs, including the hypocotyl and the root. Collectively, our findings show that coffee diterpenes are broad-spectrum defence compounds that protect not only the seed on the mother plant and in the soil, but also the seedling after germination.
Collapse
Affiliation(s)
- Gaëlle Antoine
- DIADE, Univ Montpellier, IRD, CIRAD, Montpellier, France; PVBMT, Univ Réunion, CIRAD, La Réunion, Saint-Pierre, France
| | | | - Jean-Christophe Meile
- QUALISUD, Univ Montpellier, CIRAD, Institut Agro, Univ Avignon, Univ La Réunion, IRD, Montpellier, France
| | - Jim Payet
- PVBMT, Univ Réunion, CIRAD, La Réunion, Saint-Pierre, France
| | | | - Laurent Costet
- PVBMT, Univ Réunion, CIRAD, La Réunion, Saint-Pierre, France
| | | | - Thierry Joët
- DIADE, Univ Montpellier, IRD, CIRAD, Montpellier, France
| | | |
Collapse
|
6
|
Elango D, Wang W, Thudi M, Sebastiar S, Ramadoss BR, Varshney RK. Genome-wide association mapping of seed oligosaccharides in chickpea. FRONTIERS IN PLANT SCIENCE 2022; 13:1024543. [PMID: 36352859 PMCID: PMC9638045 DOI: 10.3389/fpls.2022.1024543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Chickpea (Cicer arietinum L.) is one of the major pulse crops, rich in protein, and widely consumed all over the world. Most legumes, including chickpeas, possess noticeable amounts of raffinose family oligosaccharides (RFOs) in their seeds. RFOs are seed oligosaccharides abundant in nature, which are non-digestible by humans and animals and cause flatulence and severe abdominal discomforts. So, this study aims to identify genetic factors associated with seed oligosaccharides in chickpea using the mini-core panel. We have quantified the RFOs (raffinose and stachyose), ciceritol, and sucrose contents in chickpea using high-performance liquid chromatography. A wide range of variations for the seed oligosaccharides was observed between the accessions: 0.16 to 15.13 mg g-1 raffinose, 2.77 to 59.43 mg g-1 stachyose, 4.36 to 90.65 mg g-1 ciceritol, and 3.57 to 54.12 mg g-1 for sucrose. Kabuli types showed desirable sugar profiles with high sucrose, whereas desi types had high concentrations RFOs. In total, 48 single nucleotide polymorphisms (SNPs) were identified for all the targeted sugar types, and nine genes (Ca_06204, Ca_04353, and Ca_20828: Phosphatidylinositol N-acetylglucosaminyltransferase; Ca_17399 and Ca_22050: Remorin proteins; Ca_11152: Protein-serine/threonine phosphatase; Ca_10185, Ca_14209, and Ca_27229: UDP-glucose dehydrogenase) were identified as potential candidate genes for sugar metabolism and transport in chickpea. The accessions with low RFOs and high sucrose contents may be utilized in breeding specialty chickpeas. The identified candidate genes could be exploited in marker-assisted breeding, genomic selection, and genetic engineering to improve the sugar profiles in legumes and other crop species.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Department of Plant Science, Penn State University, University Park, PA, United States
| | - Wanyan Wang
- Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Mahender Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
- Centre for Crop Health, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- Genetics Gains Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sheelamary Sebastiar
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)-Sugarcane Breeding Institute, Coimbatore, India
| | - Bharathi Raja Ramadoss
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Rajeev K. Varshney
- Genetics Gains Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
7
|
Portillo OR, Arévalo AC. Caffeine. A critical review of contemporary scientific literature. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Caffeine is a secondary metabolite extensively studied for its stimulatory properties and presumed association with specific pathologies. This alkaloid is typically consumed through coffee, tea, and other plant products but is also an additive in many medications and confectionaries. Nonetheless, despite its worldwide consumption and acceptance, there is controversial evidence as to whether its effects on the central nervous system should be interpreted as stimulatory or as an addiction in which typical withdrawal effects are canceled out with its daily consumption. The following discussion is the product of an extensive review of current scientific literature, which aims to describe the most salient topics associated with caffeine's purpose in nature, biosynthesis, metabolism, physiological effects, toxicity, extraction, industrial use and current plant breeding approaches for the development of new caffeine deficient varieties as a more economical option to the industrially decaffeinated coffees currently available to caffeine intolerant consumers.
Keywords: biosynthesis, decaffeination, extraction, metabolism, physiological effects, plant breeding.
Collapse
Affiliation(s)
- Ostilio R. Portillo
- Faculty of Engineering, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - Ana C. Arévalo
- Faculty of Chemistry & Pharmacy, National Autonomous University of Hondura (UNAH), Tegucigalpa, Honduras
| |
Collapse
|
8
|
Portillo OR, Arévalo AC. Coffee's carbohydrates. A critical review of scientific literature. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Only two species have gained economic importance in coffee production: Coffea arabica L. (Arabica coffee) & Coffea canephora Pierre ex A. Froehner var. Robusta, with 65 and 35% of world production attributed to C. arabica http://wsx5customurl.comL. & C. canephora P. respectively. In general, it is estimated that 6 mt of fresh and ripe fruits produce approximately 1 mt of raw and dry grains. The grain endosperm is mainly composed of cellulose, hemicelluloses, proteins, minerals and lipids, but starch and tannins are absent. However, the seed's chemical composition of C. arabica and C. canephora, before roasting, differs concerning their primary and secondary metabolites content, which serve as precursors for the synthesis of volatile compounds during the roasting process. For this reason, there are marked organoleptic differences between both species' roasted and ground grain. However, the evidence suggests that such differences can also be attributed to other factors since coffees grown in cool, highland areas generally have better sensory attributes than their counterparts grown in hot, lowland areas. It has been speculated that environmental conditions in cool, highland areas induce the slow accumulation of primary and secondary metabolites during the endosperm development resulting in sensorial differences after roasting. This essay focuses on the study of coffee beans' carbohydrates (primary metabolites) before and after roasting, their influence on cup quality, biosynthesis and differences linked to the involved species, their metabolism, solubility and extraction, as well as a discussion on the analytical techniques used for its determination.
Keywords: sucrose synthase, sucrose phosphate phosphatase, sucrose phosphate synthase, aploplasm, cytoplasm, Manan synthase, Galactosyl transferase.
Collapse
Affiliation(s)
- Ostilio R. Portillo
- Faculty of Engineering, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - Ana C. Arévalo
- Faculty of Chemistry & Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| |
Collapse
|
9
|
R. Portillo O, Arévalo AC. Coffee's Phenolic Compounds. A general overview of the coffee fruit's phenolic composition. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phenolic compounds are secondary metabolites ubiquitously distributed in the plant kingdom which come in a wide array of molecular configurations which confer them a comprehensive set of chemical attributes such as, but not limited to: nutraceutical properties, industrial applications (e.g., dyes, rawhide processing, beer production, antioxidants), and plant self-defense mechanisms against natural enemies also known as the Systemic Acquired Resistance (SAR).However, despite the fact, that there is a large number of phenolic-containing food products (e.g., chocolate, green tea, wines, beer, wood barrel-aged spirits, cherries, grapes, apples, peaches, plums, pears, etc.), coffee remains, in the western hemisphere, as the main source of dietary phenolic compounds reflected by the fact that, in the international market, coffee occupies the second trading position after oil and its derivatives. The following discussion is the product of an extensive review of scientific literature that aims to describe essential topics related to coffee phenolic compounds, especially chlorogenic acids, their purpose in nature, biosynthesis, determination, metabolism, chemical properties, and their effect on cup quality.
Keywords: phenolic acids, caffeoylquinic acid, antioxidant capacity, metabolism, biosynthesis.
Collapse
Affiliation(s)
- Ostilio R. Portillo
- Faculty of Engineering, National Autonomous University of Honduras, Tegucigalpa (UNAH), Honduras
| | - Ana C. Arévalo
- Faculty of Chemistry & Pharmacy, National Autonomous University of Honduras, Tegucigalpa (UNAH), Honduras
| |
Collapse
|
10
|
Koutouleas A, Sarzynski T, Bordeaux M, Bosselmann AS, Campa C, Etienne H, Turreira-García N, Rigal C, Vaast P, Ramalho JC, Marraccini P, Ræbild A. Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.877476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coffee is deemed to be a high-risk crop in light of upcoming climate changes. Agroforestry practices have been proposed as a nature-based strategy for coffee farmers to mitigate and adapt to future climates. However, with agroforestry systems comes shade, a highly contentious factor for coffee production in terms of potential yield reduction, as well as additional management needs and interactions between shade trees and pest and disease. In this review, we summarize recent research relating to the effects of shade on (i) farmers' use and perceptions, (ii) the coffee microenvironment, (iii) pest and disease incidence, (iv) carbon assimilation and phenology of coffee plants, (v) coffee quality attributes (evaluated by coffee bean size, biochemical compounds, and cup quality tests), (vi) breeding of new Arabica coffee F1 hybrids and Robusta clones for future agroforestry systems, and (vii) coffee production under climate change. Through this work, we begin to decipher whether shaded systems are a feasible strategy to improve the coffee crop sustainability in anticipation of challenging climate conditions. Further research is proposed for developing new coffee varieties adapted to agroforestry systems (exhibiting traits suitable for climate stressors), refining extension tools by selecting locally-adapted shade trees species and developing policy and economic incentives enabling the adoption of sustainable agroforestry practices.
Collapse
|
11
|
Hall RD, Trevisan F, de Vos RCH. Coffee berry and green bean chemistry - Opportunities for improving cup quality and crop circularity. Food Res Int 2022; 151:110825. [PMID: 34980376 DOI: 10.1016/j.foodres.2021.110825] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Coffee cup quality is primarily determined by the type and variety of green beans chosen and the roasting regime used. Furthermore, green coffee beans are not only the starting point for the production of all coffee beverages but also are a major source of revenue for many sub-tropical countries. Green bean quality is directly related to its biochemical composition which is influenced by genetic and environmental factors. Post-harvest, on-farm processing methods are now particularly recognised as being influential to bean chemistry and final cup quality. However, research on green coffee has been limited and results are fragmented. Despite this, there are already indications that multiple factors play a role in determining green coffee chemistry - including plant cultivation/fruit ripening issues and ending with farmer practices and post-harvest storage conditions. Here, we provide the first overview of the knowledge determined so far specifically for pre-factory, green coffee composition. In addition, the potential of coffee waste biomass in a biobased economy context for the delivery of useful bioactives is described as this is becoming a topic of growing relevance within the coffee industry. We draw attention to a general lack of consistency in experimentation and reporting and call for a more intensive and united effort to build up our knowledge both of green bean composition and also how perturbations in genetic and environmental factors impact bean chemistry, crop sustainability and ultimately, cup quality.
Collapse
Affiliation(s)
- Robert D Hall
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Fabio Trevisan
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ric C H de Vos
- Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
12
|
Li Z, Zhang C, Zhang Y, Zeng W, Cesarino I. Coffee cell walls—composition, influence on cup quality and opportunities for coffee improvements. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The coffee beverage is the second most consumed drink worldwide after water. In coffee beans, cell wall storage polysaccharides (CWSPs) represent around 50 per cent of the seed dry mass, mainly consisting of galactomannans and arabinogalactans. These highly abundant structural components largely influence the organoleptic properties of the coffee beverage, mainly due to the complex changes they undergo during the roasting process. From a nutritional point of view, coffee CWSPs are soluble dietary fibers shown to provide numerous health benefits in reducing the risk of human diseases. Due to their influence on coffee quality and their health-promoting benefits, CWSPs have been attracting significant research attention. The importance of cell walls to the coffee industry is not restricted to beans used for beverage production, as several coffee by-products also present high concentrations of cell wall components. These by-products include cherry husks, cherry pulps, parchment skin, silver skin, and spent coffee grounds, which are currently used or have the potential to be utilized either as food ingredients or additives, or for the generation of downstream products such as enzymes, pharmaceuticals, and bioethanol. In addition to their functions during plant development, cell walls also play a role in the plant’s resistance to stresses. Here, we review several aspects of coffee cell walls, including chemical composition, biosynthesis, their function in coffee’s responses to stresses, and their influence on coffee quality. We also propose some potential cell wall–related biotechnological strategies envisaged for coffee improvements.
Collapse
Affiliation(s)
| | | | | | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Comparative transcriptome and metabolome profiling in the maturing seeds of contrasting cluster bean (Cyamopsis tetragonoloba L. Taub) cultivars identified key molecular variations leading to increased gum accumulation. Gene 2021; 791:145727. [PMID: 34010707 DOI: 10.1016/j.gene.2021.145727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 05/13/2021] [Indexed: 11/23/2022]
Abstract
Cluster bean (Guar) is the major source of industrial gum. Knowledge on the molecular events regulating galactomannan gum accumulation in guar will pave way for accelerated development of gummy guar genotypes. RNA Seq analysis in the immature seeds of contrasting cluster bean genotypes HGS 563 (gum type) and Pusa Navbahar (vegetable type) resulted in the generation of 19,855,490 and 21,488,472 quality reads. Data analysis identified 4938 differentially expressed genes between the gummy vs vegetable genotypes. A set of 2241 genes were up-regulated and 2587 genes were down-regulated in gummy guar. Significant up-regulation of genes involved in the biosynthesis of galactomannan and cell wall storage polysaccharides was observed in the gummy HGS 563. Genes involved in carotenoids, flavonoids, non mevalonic acid, terpenoids, and wax metabolism were also up-regulated in HGS 563. Mannose and galactose were the major nucleotide sugars in Pusa Navbahar and HGS 563 immature seeds. Immature seeds of HGS 563 showed high concentration of mannose and galactose accumulation compared to Pusa Navbahar. qRT-PCR analysis of selected genes confirmed the findings of transcriptome data.
Collapse
|
14
|
Miray R, Kazaz S, To A, Baud S. Molecular Control of Oil Metabolism in the Endosperm of Seeds. Int J Mol Sci 2021; 22:1621. [PMID: 33562710 PMCID: PMC7915183 DOI: 10.3390/ijms22041621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
In angiosperm seeds, the endosperm develops to varying degrees and accumulates different types of storage compounds remobilized by the seedling during early post-germinative growth. Whereas the molecular mechanisms controlling the metabolism of starch and seed-storage proteins in the endosperm of cereal grains are relatively well characterized, the regulation of oil metabolism in the endosperm of developing and germinating oilseeds has received particular attention only more recently, thanks to the emergence and continuous improvement of analytical techniques allowing the evaluation, within a spatial context, of gene activity on one side, and lipid metabolism on the other side. These studies represent a fundamental step toward the elucidation of the molecular mechanisms governing oil metabolism in this particular tissue. In particular, they highlight the importance of endosperm-specific transcriptional controls for determining original oil compositions usually observed in this tissue. In the light of this research, the biological functions of oils stored in the endosperm of seeds then appear to be more diverse than simply constituting a source of carbon made available for the germinating seedling.
Collapse
Affiliation(s)
| | | | | | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (R.M.); (S.K.); (A.T.)
| |
Collapse
|
15
|
Yuan J, Sun N, Du H, Yin S, Kang H, Umair M, Liu C. Roles of metabolic regulation in developing Quercus variabilis acorns at contrasting geologically-derived phosphorus sites in subtropical China. BMC PLANT BIOLOGY 2020; 20:389. [PMID: 32842952 PMCID: PMC7449008 DOI: 10.1186/s12870-020-02605-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/16/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Phosphorus (P) -rich soils develop in phosphorite residing areas while P-deficient soils are ubiquitous in subtropical regions. Little has been reported that how metabolites participate in the seed development and the processes involved in their coping with contrasting-nutrient environments. RESULTS Here we quantified the metabolites of Quercus variabilis acorns in the early (July), middle (August), late (September) development stages, and determined element (C, H, O, N, P, K, Ca, Mg, S, Fe, Al, Mn, Na, Zn, and Cu) concentrations of acorns in the late stage, at geologically-derived contrasting-P sites in subtropical China. The primary metabolic pathways included sugar metabolism, the TCA cycle, and amino acid metabolism. Most metabolites (especially C- and N-containing metabolites) increased and then decreased from July to September. Acorns between the two sites were significantly discriminated at the three stages, respectively, by metabolites (predominantly sugars and organic acids). Concentrations of P, orthophosphoric acid and most sugars were higher; erythrose was lower in late-stage acorns at P-rich sites than those at P-deficient sites. No significant differences existed in the size and dry mass of individual acorns between oak populations at the two sites. CONCLUSIONS Oak acorns at the two sites formed distinct metabolic phenotypes related to their distinct geologically-derived soil conditions, and the late-stage acorns tended to increase P-use-efficiency in the material synthesis process at P-deficient sites, relative to those at P-rich sites.
Collapse
Affiliation(s)
- Jun Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
| | - Hongmei Du
- School of Design, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan RD, Shanghai, China
- Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Education, P. R. China, 800 Dongchuan RD, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China
| | - Hongzhang Kang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan RD, Shanghai, China
- Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Education, P. R. China, 800 Dongchuan RD, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China
| | - Muhammad Umair
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai, 200240, China.
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan RD, Shanghai, China.
- Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Education, P. R. China, 800 Dongchuan RD, Shanghai, China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, 800 Dongchuan RD., Shanghai, China.
| |
Collapse
|
16
|
Zheng Y, Chen L, Zhu Z, Li D, Zhou P. Multigene engineering of medium-chain fatty acid biosynthesis in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. 3 Biotech 2020; 10:340. [PMID: 32714735 DOI: 10.1007/s13205-020-02340-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022] Open
Abstract
Medium-chain fatty acids (MCFAs) are an ideal feedstock for biodiesel and a range of oleochemical products. In this study, different combinations of CnFATB3, CnLPAAT-B and CnKASI from coconut (Cocos nucifera L.) were coexpressed in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. Transgenic lines expressing different combinations of these genes were designated FL (FatB3 + LPAAT-B), FK (FatB3 + KASI) and FLK (FatB3 + LPAAT-B + KASI). The homozygous seeds of transgenic Arabidopsis thaliana expressing high levels of these genes were screened, and their fatty acid composition and lipid contents were determined. Compared with its content in wild-type A. thaliana, the lauric acid (C12:0) content was significantly increased by at least 395%, 134% and 124% in FLK, FL and FK seeds, respectively. Meanwhile, the myristic acid (C14:0) content was significantly increased by at least 383%, 106% and 102% in FL, FLK and FK seeds, respectively, compared to its level in wild-type seeds. Therefore, the FLK plants exhibited the best effects to increase the level of C12:0, and FL expressed the optimal combination of genes to increase the level of 14:0 MCFA.
Collapse
Affiliation(s)
- Yusheng Zheng
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Lizhi Chen
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Zhiyong Zhu
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Dongdong Li
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Peng Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
17
|
Cheng B, Smyth HE, Furtado A, Henry RJ. Slower development of lower canopy beans produces better coffee. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4201-4214. [PMID: 32206798 PMCID: PMC7337091 DOI: 10.1093/jxb/eraa151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
The production of high-quality coffee is being challenged by changing climates in coffee-growing regions. The coffee beans from the upper and lower canopy at different development stages of the same plants were analyzed to investigate the impact of the microenvironment on gene expression and coffee quality. Compared with coffee beans from the upper canopy, lower canopy beans displayed more intense aroma with higher caffeine, trigonelline, and sucrose contents, associated with greater gene expression in the representative metabolic pathways. Global gene expression indicated a longer ripening in the lower canopy, resulting from higher expression of genes relating to growth inhibition and suppression of chlorophyll degradation during early bean ripening. Selection of genotypes or environments that enhance expression of the genes slowing bean development may produce higher quality coffee beans, allowing coffee production in a broader range of available future environments.
Collapse
Affiliation(s)
- Bing Cheng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Heather E Smyth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
18
|
Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110471. [PMID: 32540001 DOI: 10.1016/j.plantsci.2020.110471] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Plants produce a huge diversity of specialized metabolites (SM) throughout their life cycle that play important physiological and ecological functions. SM can protect plants and seeds against diseases, predators, and abiotic stresses, or support their interactions with beneficial or symbiotic organisms. They also have strong impacts on human nutrition and health. Despite this importance, the biosynthesis and biological functions of most of the SM remain elusive and their diversity and/or quantity have been reduced in most crops during domestication. Seeds present a large number of SM that are important for their physiological, agronomic, nutritional or industrial qualities and hence, provide interesting models for both studying biosynthesis and producing large amounts of specialized metabolites. For instance, phenolics are abundant and widely distributed in seeds. More specifically, flavonoid pathway has been instrumental for understanding environmental or developmental regulations of specialized metabolic pathways, at the molecular and cellular levels. Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
19
|
Lee MY, Seo HS, Singh D, Lee SJ, Lee CH. Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng. J Ginseng Res 2020; 44:413-423. [PMID: 32372863 PMCID: PMC7195594 DOI: 10.1016/j.jgr.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ginseng berries (GBs) show temporal metabolic variations among different maturation stages, determining their organoleptic and functional properties. METHODS We analyzed metabolic variations concomitant to five different maturation stages of GBs including immature green (IG), mature green (MG), partially red (PR), fully red (FR), and overmature red (OR) using mass spectrometry (MS)-based metabolomic profiling and multivariate analyses. RESULTS The partial least squares discriminant analysis score plot based on gas chromatography-MS datasets highlighted metabolic disparity between preharvest (IG and MG) and harvest/postharvest (PR, FR, and OR) GB extracts along PLS1 (34.9%) with MG distinctly segregated across PLS2 (18.2%). Forty-three significantly discriminant primary metabolites were identified encompassing five developmental stages (variable importance in projection > 1.0, p < 0.05). Among them, most amino acids, organic acids, 5-C sugars, ethanolamines, purines, and palmitic acid were detected in preharvest GB extracts, whereas 6-C sugars, phenolic acid, and oleamide levels were distinctly higher during later maturation stages. Similarly, the partial least squares discriminant analysis based on liquid chromatography-MS datasets displayed preharvest and harvest/postharvest stages clustered across PLS1 (11.1 %); however, MG and PR were separated from IG, FR, and OR along PLS2 (5.6 %). Overall, 24 secondary metabolites were observed significantly discriminant (variable importance in projection > 1.0, p < 0.05), with most displaying higher relative abundance during preharvest stages excluding ginsenosides Rg1 and Re. Furthermore, we observed strong positive correlations between total flavonoid and phenolic metabolite contents in GB extracts and antioxidant activity. CONCLUSION Comprehending the dynamic metabolic variations associated with GB maturation stages rationalize their optimal harvest time per se the related agroeconomic traits.
Collapse
Affiliation(s)
- Mee Youn Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Han Sol Seo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Stavrinides AK, Dussert S, Combes MC, Fock-Bastide I, Severac D, Minier J, Bastos-Siqueira A, Demolombe V, Hem S, Lashermes P, Joët T. Seed comparative genomics in three coffee species identify desiccation tolerance mechanisms in intermediate seeds. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1418-1433. [PMID: 31790120 PMCID: PMC7031068 DOI: 10.1093/jxb/erz508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/10/2019] [Indexed: 05/13/2023]
Abstract
In contrast to desiccation-tolerant 'orthodox' seeds, so-called 'intermediate' seeds cannot survive complete drying and are short-lived. All species of the genus Coffea produce intermediate seeds, but they show a considerable variability in seed desiccation tolerance (DT), which may help to decipher the molecular basis of seed DT in plants. We performed a comparative transcriptome analysis of developing seeds in three coffee species with contrasting desiccation tolerance. Seeds of all species shared a major transcriptional switch during late maturation that governs a general slow-down of metabolism. However, numerous key stress-related genes, including those coding for the late embryogenesis abundant protein EM6 and the osmosensitive calcium channel ERD4, were up-regulated during DT acquisition in the two species with high seed DT, C. arabica and C. eugenioides. By contrast, we detected up-regulation of numerous genes involved in the metabolism, transport, and perception of auxin in C. canephora seeds with low DT. Moreover, species with high DT showed a stronger down-regulation of the mitochondrial machinery dedicated to the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, respiration measurements during seed dehydration demonstrated that intermediate seeds with the highest DT are better prepared to cease respiration and avoid oxidative stresses.
Collapse
Affiliation(s)
| | | | | | | | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier Cedex 5, France
| | | | | | - Vincent Demolombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Sonia Hem
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Thierry Joët
- IRD, Université Montpellier, UMR DIADE, Montpellier, France
| |
Collapse
|
21
|
Identification and Expression Analysis of the NAC Gene Family in Coffea canephora. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NAC gene family is one of the largest families of transcriptional regulators in plants, and it plays important roles in the regulation of growth and development as well as in stress responses. Genome-wide analyses have been performed in diverse plant species, but there is still no systematic analysis of the NAC genes of Coffea canephora Pierre ex A. Froehner. In this study, we identified 63 NAC genes from the genome of C. canephora. The basic features and comparison analysis indicated that the NAC gene members increased via duplication events during the evolution of the plant. Phylogenetic analysis divided the NAC proteins from C. canephora, Arabidopsis and rice into 16 subgroups. Analysis of the expression patterns of CocNACs under cold stress and coffee bean development indicated that 38 CocNACs were differentially expressed under cold stress; six genes may play important roles in the process of cold acclimation, and four genes among 54 CocNACs showing a variety of expression patterns during different developmental stages of coffee beans may be positively related to the bean development. This study can expand our understanding of the functions of the CocNAC gene family in cold responses and bean development, thereby potentially intensifying the molecular breeding programs of Coffea spp. plants.
Collapse
|
22
|
Volpi E Silva N, Mazzafera P, Cesarino I. Should I stay or should I go: are chlorogenic acids mobilized towards lignin biosynthesis? PHYTOCHEMISTRY 2019; 166:112063. [PMID: 31280091 DOI: 10.1016/j.phytochem.2019.112063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 05/09/2023]
Abstract
Chlorogenic acids (CGAs) and the biopolymer lignin are both products of the phenylpropanoid pathway. Whereas CGAs have been reported to play a role during stress responses, lignin is a major component of secondary cell walls, providing physical strength and hydrophobicity to supportive and water-conducting tissues. Because the chemical structure of CGAs largely resembles those of some lignin intermediates and because CGAs can be converted back to hydroxycinnamoyl-CoAs in vitro, CGAs have been considered authentic intermediates of the lignin biosynthetic pathway. However, it is still unclear whether and how the CGA pool can be channeled towards the production of lignin monomers in response to developmental or environmental signals. Comprehensive studies on the catalytic activity of recombinant enzymes together with functional characterizations in planta have been very useful in understanding the potential interdependence between these two metabolic routes. Here we present the current understanding on CGA metabolism and discuss the biochemical and molecular evidence of the metabolic re-routing of CGAs towards lignin.
Collapse
Affiliation(s)
- Nathalia Volpi E Silva
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil; Department of Crop Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, CEP, 05508-090, São Paulo, SP, Brazil.
| |
Collapse
|
23
|
Dos Santos TB, Soares JDM, Lima JE, Silva JC, Ivamoto ST, Baba VY, Souza SGH, Lorenzetti APR, Paschoal AR, Meda AR, Nishiyama Júnior MY, de Oliveira ÚC, Mokochinski JB, Guyot R, Junqueira-de-Azevedo ILM, Figueira AVO, Mazzafera P, Júnior OR, Vieira LGE, Pereira LFP, Domingues DS. An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses. Funct Integr Genomics 2018; 19:151-169. [PMID: 30196429 DOI: 10.1007/s10142-018-0634-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023]
Abstract
Coffea arabica L. is an important agricultural commodity, accounting for 60% of traded coffee worldwide. Nitrogen (N) is a macronutrient that is usually limiting to plant yield; however, molecular mechanisms of plant acclimation to N limitation remain largely unknown in tropical woody crops. In this study, we investigated the transcriptome of coffee roots under N starvation, analyzing poly-A+ libraries and small RNAs. We also evaluated the concentration of selected amino acids and N-source preferences in roots. Ammonium was preferentially taken up over nitrate, and asparagine and glutamate were the most abundant amino acids observed in coffee roots. We obtained 34,654 assembled contigs by mRNA sequencing, and validated the transcriptional profile of 12 genes by RT-qPCR. Illumina small RNA sequencing yielded 8,524,332 non-redundant reads, resulting in the identification of 86 microRNA families targeting 253 genes. The transcriptional pattern of eight miRNA families was also validated. To our knowledge, this is the first catalog of differentially regulated amino acids, N sources, mRNAs, and sRNAs in Arabica coffee roots.
Collapse
Affiliation(s)
- Tiago Benedito Dos Santos
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil. .,Universidade do Oeste Paulista, Rodovia Raposo Tavares Km 572, Presidente Prudente, 19067-175, Brazil.
| | - João D M Soares
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil
| | - Joni E Lima
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 13400-970, Brazil.,Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Juliana C Silva
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil.,Programa de pós-graduação em Bioinformática, Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 86300-000, Brazil
| | - Suzana T Ivamoto
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil.,Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista, Rio Claro, 13506-900, Brazil
| | - Viviane Y Baba
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil
| | - Silvia G H Souza
- Laboratório de Biologia Molecular, Universidade Paranaense, Umuarama, 87502-210, Brazil
| | - Alan P R Lorenzetti
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Alexandre R Paschoal
- Programa de pós-graduação em Bioinformática, Universidade Tecnológica Federal do Paraná, Cornélio Procópio, 86300-000, Brazil
| | - Anderson R Meda
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil
| | | | - Úrsula C de Oliveira
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - João B Mokochinski
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-970, Brazil
| | - Romain Guyot
- IRD, UMR IPME, COFFEEADAPT, BP 64501, 34394, Montpellier Cedex 5, France
| | | | - Antônio V O Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 13400-970, Brazil
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, 13083-970, Brazil
| | - Osvaldo R Júnior
- Life Sciences Core Facility (LaCTAD), Universidade Estadual de Campinas, Campinas, 13083-886, Brazil
| | - Luiz G E Vieira
- Universidade do Oeste Paulista, Rodovia Raposo Tavares Km 572, Presidente Prudente, 19067-175, Brazil
| | - Luiz F P Pereira
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil.,Embrapa Café, Brasília, 70770-901, Brazil
| | - Douglas S Domingues
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, 86047-902, Brazil.,Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista, Rio Claro, 13506-900, Brazil
| |
Collapse
|
24
|
Quintero FOC, Pinto LG, Barsalobres-Cavallari CF, Arcuri MDLC, Pino LE, Peres LEP, Maluf MP, Maia IG. Identification of a seed maturation protein gene from Coffea arabica (CaSMP) and analysis of its promoter activity in tomato. PLANT CELL REPORTS 2018; 37:1257-1268. [PMID: 29947954 DOI: 10.1007/s00299-018-2310-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
A seed maturation protein gene (CaSMP) from Coffea arabica is expressed in the endosperm of yellow/green fruits. The CaSMP promoter drives reporter expression in the seeds of immature tomato fruits. In this report, an expressed sequence tag-based approach was used to identify a seed-specific candidate gene for promoter isolation in Coffea arabica. The tissue-specific expression of the cognate gene (CaSMP), which encodes a yet uncharacterized coffee seed maturation protein, was validated by RT-qPCR. Additional expression analysis during coffee fruit development revealed higher levels of CaSMP transcript accumulation in the yellow/green phenological stage. Moreover, CaSMP was preferentially expressed in the endosperm and was down-regulated during water imbibition of the seeds. The presence of regulatory cis-elements known to be involved in seed- and endosperm-specific expression was observed in the CaSMP 5'-upstream region amplified by genome walking (GW). Additional histochemical analysis of transgenic tomato (cv. Micro-Tom) lines harboring the GW-amplified fragment (~ 1.4 kb) fused to uidA reporter gene confirmed promoter activity in the ovule of immature tomato fruits, while no activity was observed in the seeds of ripening fruits and in the other organs/tissues examined. These results indicate that the CaSMP promoter can be used to drive transgene expression in coffee beans and tomato seeds, thus representing a promising biotechnological tool.
Collapse
Affiliation(s)
- Fabíola OCampo Quintero
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-689, Brazil
| | - Layra G Pinto
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-689, Brazil
| | - Carla F Barsalobres-Cavallari
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-689, Brazil
| | - Mariana de Lara Campos Arcuri
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-689, Brazil
| | - Lilian Ellen Pino
- Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of Sao Paulo (USP), Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Department of Biological Sciences (LCB), Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of Sao Paulo (USP), Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Mirian P Maluf
- Embrapa Coffee and Coffee Center Alcides Carvalho, Agronomic Institute of Campinas, Campinas, Sao Paulo, 13012-970, Brazil
| | - Ivan G Maia
- Department of Genetics, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, 18618-689, Brazil.
| |
Collapse
|
25
|
Cheng B, Furtado A, Henry RJ. The coffee bean transcriptome explains the accumulation of the major bean components through ripening. Sci Rep 2018; 8:11414. [PMID: 30061608 PMCID: PMC6065352 DOI: 10.1038/s41598-018-29842-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
The composition of the maturing coffee bean determines the processing performance and ultimate quality of the coffee produced from the bean. Analysis of differences in gene expression during bean maturation may explain the basis of genetic and environmental variation in coffee quality. The transcriptome of the coffee bean was analyzed at three stages of development, immature (green), intermediate (yellow) and mature (red). A total of more than 120 million 150 bp paired-end reads were collected by sequencing of transcripts of triplicate samples at each developmental stage. A greater number of transcripts were expressed at the yellow stage. As the beans matured the types of highly expressed transcripts changed from transcripts predominantly associated with galactomannan, triacylglycerol (TAG), TAG lipase, 11 S and 7S-like storage protein and Fasciclin-like arabinogalactan protein 17 (FLA17) in green beans to transcripts related to FLA1 at the yellow stage and TAG storage lipase SDP1, and SDP1-like in red beans. This study provides a genomic resource that can be used to investigate the impact of environment and genotype on the bean transcriptome and develop coffee varieties and production systems that are better adapted to deliver quality coffee despite climate variations.
Collapse
Affiliation(s)
- Bing Cheng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
26
|
Dussert S, Serret J, Bastos-Siqueira A, Morcillo F, Déchamp E, Rofidal V, Lashermes P, Etienne H, JOët T. Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1583-1597. [PMID: 29361125 PMCID: PMC5888931 DOI: 10.1093/jxb/erx492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/20/2017] [Indexed: 05/24/2023]
Abstract
The 'intermediate seed' category was defined in the early 1990s using coffee (Coffea arabica) as a model. In contrast to orthodox seeds, intermediate seeds cannot survive complete drying, which is a major constraint for seed storage and has implications for both biodiversity conservation and agricultural purposes. However, intermediate seeds are considerably more tolerant to drying than recalcitrant seeds, which are highly sensitive to desiccation. To gain insight into the mechanisms governing such differences, changes in desiccation tolerance (DT), hormone contents, and the transcriptome were analysed in developing coffee seeds. Acquisition of DT coincided with a dramatic transcriptional switch characterised by the repression of primary metabolism, photosynthesis, and respiration, and the up-regulation of genes coding for late-embryogenesis abundant (LEA) proteins, heat-shock proteins (HSPs), and antioxidant enzymes. Analysis of the heat-stable proteome in mature coffee seeds confirmed the accumulation of LEA proteins identified at the transcript level. Transcriptome analysis also suggested a major role for ABA and for the transcription factors CaHSFA9, CaDREB2G, CaANAC029, CaPLATZ, and CaDOG-like in DT acquisition. The ability of CaHSFA9 and CaDREB2G to trigger HSP gene transcription was validated by Agrobacterium-mediated transformation of coffee somatic embryos.
Collapse
Affiliation(s)
| | | | | | | | | | - Valérie Rofidal
- Biochimie et physiologie moléculaire des plantes, CNRS, INRA, Montpellier Supagro, Université Montpellier, France
| | | | | | | |
Collapse
|
27
|
Worku M, de Meulenaer B, Duchateau L, Boeckx P. Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Res Int 2017; 105:278-285. [PMID: 29433216 DOI: 10.1016/j.foodres.2017.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 11/07/2017] [Accepted: 11/19/2017] [Indexed: 12/25/2022]
Abstract
Although various studies have assessed altitude, shade and postharvest processing effects on biochemical content and quality of coffee beans, data on their interactions are scarce. The individual and interactive effects of these factors on the caffeine, chlorogenic acids (CGA) and sucrose contents as well as physical and sensory qualities of green coffee beans from large plantations in southwestern Ethiopia were evaluated. Caffeine and CGA contents decreased with increasing altitude; they respectively declined 0.12 and 1.23gkg-1 100m-1. Sucrose content increased with altitude; however, the altitude effect was significant for wet-processed beans (3.02gkg-1 100m-1), but not for dry-processed beans (0.36g kg-1 100m-1). Similarly, sucrose content increased with altitude with much stronger effect for coffee grown without shade (2.11gkg-1 100m-1) compared to coffee grown under shade (0.93gkg-1 100m-1). Acidity increased with altitude when coffee was grown under shade (0.22 points 100m-1), but no significant altitude effect was observed on coffee grown without shade. Beans grown without shade showed a higher physical quality score for dry (37.2) than for wet processing (29.1). These results generally underline the complex interaction effects between altitude and shade or postharvest processing on biochemical composition and quality of green arabica coffee beans.
Collapse
Affiliation(s)
- Mohammed Worku
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P. O. Box 307, Jimma, Ethiopia; Isotope Bioscience Laboratory - ISOFYS, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Bruno de Meulenaer
- Department of Food Safety and Food Quality (a Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D1 9820 Merelbeke, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
28
|
Tolessa K, D'heer J, Duchateau L, Boeckx P. Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2849-2857. [PMID: 27786361 DOI: 10.1002/jsfa.8114] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/11/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Coffee quality is a key characteristic for the international market, comprising cup quality and chemical bean constituents. In Ethiopia, using total specialty cup scores, coffees are grouped into Q1 (specialty 1) ≥ 85 and Q2 (80-84.75). This classification results in market segmentation and higher prices. Although different studies have evaluated the effects of altitude and shade on bean quality, optimum shade levels along different altitudinal ranges are not clearly indicated. Information on effects of harvest periods on coffee quality is also scanty. The present study examined the influences of these factors and their interactions on Ethiopian coffee quality RESULTS: Coffee from high altitude with open or medium shade and early to middle harvest periods had a superior bean quality. These growing conditions also favoured the production of beans with lower caffeine. An increasing altitude, from mid to high, at approximately 400 m, decreased caffeine content by 10%. At high altitude, dense shade decreased Q1 coffee by 50%. Compared to late harvesting, early harvesting increased the percentage from 27% to 73%. At mid altitude, > 80% is Q2 coffee. CONCLUSIONS Changes of quality scores driven by altitude, shade and harvest period are small, although they may induce dramatic switches in the fraction Q1 versus Q2 coffee. The latter affects both farmers' profits and competitiveness in international markets. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kassaye Tolessa
- College of Agriculture and Veterinary Medicine, Jimma University, PO Box 307, Jimma, Ethiopia
- Isotope Bioscience Laboratory - ISOFYS, Ghent University, Gent, Belgium, Coupure Links 653, 9000, Gent, Belgium
| | - Jolien D'heer
- Isotope Bioscience Laboratory - ISOFYS, Ghent University, Gent, Belgium, Coupure Links 653, 9000, Gent, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Belgium, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Ghent University, Gent, Belgium, Coupure Links 653, 9000, Gent, Belgium
| |
Collapse
|
29
|
Ivamoto ST, Sakuray LM, Ferreira LP, Kitzberger CSG, Scholz MBS, Pot D, Leroy T, Vieira LGE, Domingues DS, Pereira LFP. Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:340-347. [PMID: 28002787 DOI: 10.1016/j.plaphy.2016.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Lipids are among the major chemical compounds present in coffee beans, and they affect the flavor and aroma of the coffee beverage. Coffee oil is rich in kaurene diterpene compounds, mainly cafestol (CAF) and kahweol (KAH), which are related to plant defense mechanisms and to nutraceutical and sensorial beverage characteristics. Despite their importance, the final steps of coffee diterpenes biosynthesis remain unknown. To understand the molecular basis of coffee diterpenes biosynthesis, we report the content dynamics of CAF and KAH in several Coffea arabica tissues and the transcriptional analysis of cytochrome P450 genes (P450). We measured CAF and KAH concentrations in leaves, roots, flower buds, flowers and fruit tissues at seven developmental stages (30-240 days after flowering - DAF) using HPLC. Higher CAF levels were detected in flower buds and flowers when compared to fruits. In contrast, KAH concentration increased along fruit development, peaking at 120 DAF. We did not detect CAF or KAH in leaves, and higher amounts of KAH than CAF were detected in roots. Using P450 candidate genes from a coffee EST database, we performed RT-qPCR transcriptional analysis of leaves, flowers and fruits at three developmental stages (90, 120 and 150 DAF). Three P450 genes (CaCYP76C4, CaCYP82C2 and CaCYP74A1) had transcriptional patterns similar to CAF concentration and two P450 genes (CaCYP71A25 and CaCYP701A3) have transcript accumulation similar to KAH concentration. These data warrant further investigation of these P450s as potential candidate genes involved in the final stages of the CAF and KAH biosynthetic pathways.
Collapse
Affiliation(s)
- Suzana T Ivamoto
- Instituto Agronômico do Paraná (IAPAR), Laboratório de Biotecnologia Vegetal, CP 481, CEP 86001-970, Londrina, PR, Brazil; Universidade Estadual de Londrina (UEL), CP 6001, CEP 86051-980, Londrina, PR, Brazil
| | - Leonardo M Sakuray
- Instituto Agronômico do Paraná (IAPAR), Laboratório de Biotecnologia Vegetal, CP 481, CEP 86001-970, Londrina, PR, Brazil; Universidade Estadual de Londrina (UEL), CP 6001, CEP 86051-980, Londrina, PR, Brazil
| | - Lucia P Ferreira
- Instituto Agronômico do Paraná (IAPAR), Laboratório de Biotecnologia Vegetal, CP 481, CEP 86001-970, Londrina, PR, Brazil
| | - Cíntia S G Kitzberger
- Instituto Agronômico do Paraná (IAPAR), Laboratório de Ecofisiologia Vegetal, CP 481, CEP 86001-970, Londrina, PR, Brazil
| | - Maria B S Scholz
- Instituto Agronômico do Paraná (IAPAR), Laboratório de Ecofisiologia Vegetal, CP 481, CEP 86001-970, Londrina, PR, Brazil
| | - David Pot
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, (CIRAD), UMR AGAP, 34398, Montpellier, France
| | - Thierry Leroy
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, (CIRAD), UMR AGAP, 34398, Montpellier, France
| | - Luiz G E Vieira
- Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP 19067-175, Presidente Prudente, SP, Brazil
| | - Douglas S Domingues
- Universidade Estadual Paulista (UNESP), Instituto de Biociências de Rio Claro, Avenida 24-A, 1515, CEP 13506-900, Rio Claro, SP, Brazil
| | - Luiz F P Pereira
- Instituto Agronômico do Paraná (IAPAR), Laboratório de Biotecnologia Vegetal, CP 481, CEP 86001-970, Londrina, PR, Brazil; Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA Café), CEP 70770-901, Brasília, DF, Brazil.
| |
Collapse
|
30
|
Ivamoto ST, Reis O, Domingues DS, dos Santos TB, de Oliveira FF, Pot D, Leroy T, Vieira LGE, Carazzolle MF, Pereira GAG, Pereira LFP. Transcriptome Analysis of Leaves, Flowers and Fruits Perisperm of Coffea arabica L. Reveals the Differential Expression of Genes Involved in Raffinose Biosynthesis. PLoS One 2017; 12:e0169595. [PMID: 28068432 PMCID: PMC5221826 DOI: 10.1371/journal.pone.0169595] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/17/2016] [Indexed: 11/20/2022] Open
Abstract
Coffea arabica L. is an important crop in several developing countries. Despite its economic importance, minimal transcriptome data are available for fruit tissues, especially during fruit development where several compounds related to coffee quality are produced. To understand the molecular aspects related to coffee fruit and grain development, we report a large-scale transcriptome analysis of leaf, flower and perisperm fruit tissue development. Illumina sequencing yielded 41,881,572 high-quality filtered reads. De novo assembly generated 65,364 unigenes with an average length of 1,264 bp. A total of 24,548 unigenes were annotated as protein coding genes, including 12,560 full-length sequences. In the annotation process, we identified nine candidate genes related to the biosynthesis of raffinose family oligossacarides (RFOs). These sugars confer osmoprotection and are accumulated during initial fruit development. Four genes from this pathway had their transcriptional pattern validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, we identified ~24,000 putative target sites for microRNAs (miRNAs) and 134 putative transcriptionally active transposable elements (TE) sequences in our dataset. This C. arabica transcriptomic atlas provides an important step for identifying candidate genes related to several coffee metabolic pathways, especially those related to fruit chemical composition and therefore beverage quality. Our results are the starting point for enhancing our knowledge about the coffee genes that are transcribed during the flowering and initial fruit development stages.
Collapse
Affiliation(s)
- Suzana Tiemi Ivamoto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná (IAPAR), Londrina, Brazil
| | - Osvaldo Reis
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Douglas Silva Domingues
- Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | | | | | - David Pot
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, (CIRAD), UMR AGAP, Montpellier, France
| | - Thierry Leroy
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, (CIRAD), UMR AGAP, Montpellier, France
| | - Luiz Gonzaga Esteves Vieira
- Programa de Pós Graduação em Agronomia, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Luiz Filipe Protasio Pereira
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná (IAPAR), Londrina, Brazil
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa Café), Brasília, Brazil
| |
Collapse
|
31
|
Cheng B, Furtado A, Smyth HE, Henry RJ. Influence of genotype and environment on coffee quality. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.09.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Guerin C, Joët T, Serret J, Lashermes P, Vaissayre V, Agbessi MDT, Beulé T, Severac D, Amblard P, Tregear J, Durand-Gasselin T, Morcillo F, Dussert S. Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:423-41. [PMID: 27145323 DOI: 10.1111/tpj.13208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 05/25/2023]
Abstract
Global demand for vegetable oils is increasing at a dramatic rate, while our understanding of the regulation of oil biosynthesis in plants remains limited. To gain insights into the mechanisms that govern oil synthesis and fatty acid (FA) composition in the oil palm fruit, we used a multilevel approach combining gene coexpression analysis, quantification of allele-specific expression and joint multivariate analysis of transcriptomic and lipid data, in an interspecific backcross population between the African oil palm, Elaeis guineensis, and the American oil palm, Elaeis oleifera, which display contrasting oil contents and FA compositions. The gene coexpression network produced revealed tight transcriptional coordination of fatty acid synthesis (FAS) in the plastid with sugar sensing, plastidial glycolysis, transient starch storage and carbon recapture pathways. It also revealed a concerted regulation, along with FAS, of both the transfer of nascent FA to the endoplasmic reticulum, where triacylglycerol assembly occurs, and of the production of glycerol-3-phosphate, which provides the backbone of triacylglycerols. Plastid biogenesis and auxin transport were the two other biological processes most tightly connected to FAS in the network. In addition to WRINKLED1, a transcription factor (TF) known to activate FAS genes, two novel TFs, termed NF-YB-1 and ZFP-1, were found at the core of the FAS module. The saturated FA content of palm oil appeared to vary above all in relation to the level of transcripts of the gene coding for β-ketoacyl-acyl carrier protein synthase II. Our findings should facilitate the development of breeding and engineering strategies in this and other oil crops.
Collapse
Affiliation(s)
- Chloé Guerin
- PalmElit SAS, Montferrier-sur-Lez, F-34980, France
| | - Thierry Joët
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | - Julien Serret
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | | | | | | | | | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 Rue de la Cardonille, Montpellier Cedex 5, 34094, France
| | | | - James Tregear
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | | | | | | |
Collapse
|
33
|
Tran HT, Lee LS, Furtado A, Smyth H, Henry RJ. Advances in genomics for the improvement of quality in coffee. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3300-3312. [PMID: 26919810 DOI: 10.1002/jsfa.7692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Coffee is an important crop that provides a livelihood to millions of people living in developing countries. Production of genotypes with improved coffee quality attributes is a primary target of coffee genetic improvement programmes. Advances in genomics are providing new tools for analysis of coffee quality at the molecular level. The recent report of a genomic sequence for robusta coffee, Coffea canephora, is a major development. However, a reference genome sequence for the genetically more complex arabica coffee (C. arabica) will also be required to fully define the molecular determinants controlling quality in coffee produced from this high quality coffee species. Genes responsible for control of the levels of the major biochemical components in the coffee bean that are known to be important in determining coffee quality can now be identified by association analysis. However, the narrow genetic base of arabica coffee suggests that genomics analysis of the wild relatives of coffee (Coffea spp.) may be required to find the phenotypic diversity required for effective association genetic analysis. The genomic resources available for the study of coffee quality are described and the potential for the application of next generation sequencing and association genetic analysis to advance coffee quality research are explored. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hue Tm Tran
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
- Western Highlands Agriculture & Forestry Science Institute (WASI), Daklak, Vietnam
| | - L Slade Lee
- Southern Cross University, East Lismore, NSW 2480, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Heather Smyth
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Robert J Henry
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
34
|
Yu S, Du S, Yuan J, Hu Y. Fatty acid profile in the seeds and seed tissues of Paeonia L. species as new oil plant resources. Sci Rep 2016; 6:26944. [PMID: 27240678 PMCID: PMC4886256 DOI: 10.1038/srep26944] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023] Open
Abstract
Most common plant oils have little α-linolenic acid (C18:3(Δ9,12,15), ALA) and an unhealthy ω6/ω3 ratio. Here, fatty acids (FAs) in the seeds of 11 species of Paeonia L., including 10 tree peony and one herbaceous species, were explored using gas chromatograph-mass spectrometer. Results indicated that all Paeonia had a ω6/ω3 ratio less than 1.0, and high amounts of ALA (26.7-50%), oleic acid (C18:1(Δ9), OA) (20.8-46%) and linoleic acid (C18:2(Δ9,12), LA) (10-38%). ALA was a dominant component in oils of seven subsection Vaginatae species, whereas OA was predominant in two subsection Delavayanae species. LA was a subdominant oil component in P. ostii and P. obovata. Moreover, the FA composition and distribution of embryo (22 FAs), endosperm (14 FAs) and seed coat (6 FAs) in P. ostii, P. rockii and P. ludlowii were first reported. Peony species, particularly P. decomposita and P. rockii, can be excellent plant resources for edible oil because they provide abundant ALA to balance the ω6/ω3 ratio. The differences in the ALA, LA and OA content proportion also make the peony species a good system for detailed investigation of FA biosynthesis pathway and ALA accumulation.
Collapse
Affiliation(s)
- Shuiyan Yu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Shaobo Du
- East China Normal University, Shanghai 200241, China
| | - Junhui Yuan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yonghong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- East China Normal University, Shanghai 200241, China
| |
Collapse
|
35
|
Alves LC, Magalhães DMD, Labate MTV, Guidetti-Gonzalez S, Labate CA, Domingues DS, Sera T, Vieira LGE, Pereira LFP. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1635-1647. [PMID: 26809209 DOI: 10.1021/acs.jafc.5b04376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.
Collapse
Affiliation(s)
- Leonardo Cardoso Alves
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina , P.O. Box 6001, Londrina, Parana 86051-990, Brazil
| | | | | | - Simone Guidetti-Gonzalez
- Max Feffer Plant Genetics Laboratory, ESALQ, Universidade de Sao Paulo , Piracicaba, Sao Paulo, Brazil
| | - Carlos Alberto Labate
- Max Feffer Plant Genetics Laboratory, ESALQ, Universidade de Sao Paulo , Piracicaba, Sao Paulo, Brazil
| | - Douglas Silva Domingues
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
| | - Tumoru Sera
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
| | | | - Luiz Filipe Protasio Pereira
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
- EMBRAPA Café , Brasilia, DF, Brazil
| |
Collapse
|
36
|
Bertrand B, Bardil A, Baraille H, Dussert S, Doulbeau S, Dubois E, Severac D, Dereeper A, Etienne H. The Greater Phenotypic Homeostasis of the Allopolyploid Coffea arabica Improved the Transcriptional Homeostasis Over that of Both Diploid Parents. PLANT & CELL PHYSIOLOGY 2015; 56:2035-51. [PMID: 26355011 PMCID: PMC4679393 DOI: 10.1093/pcp/pcv117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/07/2015] [Indexed: 05/02/2023]
Abstract
Polyploidy impacts the diversity of plant species, giving rise to novel phenotypes and leading to ecological diversification. In order to observe adaptive and evolutionary capacities of polyploids, we compared the growth, primary metabolism and transcriptomic expression level in the leaves of the newly formed allotetraploid Coffea arabica species compared with its two diploid parental species (Coffea eugenioides and Coffea canephora), exposed to four thermal regimes (TRs; 18-14, 23-19, 28-24 and 33-29°C). The growth rate of the allopolyploid C. arabica was similar to that of C. canephora under the hottest TR and that of C. eugenioides under the coldest TR. For metabolite contents measured at the hottest TR, the allopolyploid showed similar behavior to C. canephora, the parent which tolerates higher growth temperatures in the natural environment. However, at the coldest TR, the allopolyploid displayed higher sucrose, raffinose and ABA contents than those of its two parents and similar linolenic acid leaf composition and Chl content to those of C. eugenioides. At the gene expression level, few differences between the allopolyploid and its parents were observed for studied genes linked to photosynthesis, respiration and the circadian clock, whereas genes linked to redox activity showed a greater capacity of the allopolyploid for homeostasis. Finally, we found that the overall transcriptional response to TRs of the allopolyploid was more homeostatic compared with its parents. This better transcriptional homeostasis of the allopolyploid C. arabica afforded a greater phenotypic homeostasis when faced with environments that are unsuited to the diploid parental species.
Collapse
Affiliation(s)
- Benoît Bertrand
- CIRAD, UMR IPME, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Amélie Bardil
- University of Neuchâtel, Institute of Biology, Laboratory of Evolutionary Botany, Emile Argand 11, CP 158, 2000 Neuchâtel, Switzerland
| | - Hélène Baraille
- Université de Reims, Unité de Recherche Vignes et Vins de Champagne, Laboratoire de stress, défenses et reproduction des plantes, Campus Moulin de la Housse, 51687 Reims Cedex 2, France
| | - Stéphane Dussert
- IRD, UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Sylvie Doulbeau
- IRD, UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Emeric Dubois
- CNRS, Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, Montpellier Cedex 34, France
| | - Dany Severac
- CNRS, Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, Montpellier Cedex 34, France
| | - Alexis Dereeper
- IRD, UMR IPME, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Hervé Etienne
- CIRAD, UMR IPME, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| |
Collapse
|
37
|
Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Mol Genet Genomics 2015; 291:323-36. [PMID: 26334613 DOI: 10.1007/s00438-015-1111-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Studies in diploid parental species of polyploid plants are important to understand their contributions to the formation of plant and species evolution. Coffea eugenioides is a diploid species that is considered to be an ancestor of allopolyploid Coffea arabica together with Coffea canephora. Despite its importance in the evolutionary history of the main economic species of coffee, no study has focused on C. eugenioides molecular genetics. RNA-seq creates the possibility to generate reference transcriptomes and identify coding genes and potential candidates related to important agronomic traits. Therefore, the main objectives were to obtain a global overview of transcriptionally active genes in this species using next-generation sequencing and to analyze specific genes that were highly expressed in leaves and fruits with potential exploratory characteristics for breeding and understanding the evolutionary biology of coffee. A de novo assembly generated 36,935 contigs that were annotated using eight databases. We observed a total of ~5000 differentially expressed genes between leaves and fruits. Several genes exclusively expressed in fruits did not exhibit similarities with sequences in any database. We selected ten differentially expressed unigenes in leaves and fruits to evaluate transcriptional profiles using qPCR. Our study provides the first gene catalog for C. eugenioides and enhances the knowledge concerning the mechanisms involved in the C. arabica homeologous. Furthermore, this work will open new avenues for studies into specific genes and pathways in this species, especially related to fruit, and our data have potential value in assisted breeding applications.
Collapse
|
38
|
Valiñas MA, Lanteri ML, ten Have A, Andreu AB. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4902-4913. [PMID: 25921651 DOI: 10.1021/jf505777p] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin.
Collapse
Affiliation(s)
- Matías Ariel Valiñas
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | - María Luciana Lanteri
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | - Arjen ten Have
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | - Adriana Balbina Andreu
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| |
Collapse
|
39
|
Errouane K, Doulbeau S, Vaissayre V, Leblanc O, Collin M, Kaid-Harche M, Dussert S. The embryo and the endosperm contribute equally to argan seed oil yield but confer distinct lipid features to argan oil. Food Chem 2015; 181:270-6. [PMID: 25794750 DOI: 10.1016/j.foodchem.2015.02.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
In the perspective of studying lipid biosynthesis in the argan seed, the anatomy, ploidy level and lipid composition of mature seed tissues were investigated using an experimental design including two locations in Algeria and four years of study. Using flow cytometry, we determined that mature argan seeds consist of two well-developed tissues, the embryo and the endosperm. The lipid content of the embryo was higher than that of the endosperm, but the dry weight of the endosperm was higher. Consequently, both tissues contribute equally to seed oil yield. Considerable differences in fatty acid composition were observed between the two tissues. In particular, the endosperm 18:2 percentage was twofold higher than that of the embryo. The tocopherol content of the endosperm was also markedly higher than that of the embryo. In contrast, the endosperm and the embryo had similar sterol and triterpene alcohol contents and compositions.
Collapse
Affiliation(s)
- Kheira Errouane
- Laboratoire des Productions, Valorisations Végétales et Microbiennes, Département de Biotechnologie, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, B.P. 1505, El M'Naouar, Oran 31000, Algeria; IRD, UMR DIADE, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France
| | - Sylvie Doulbeau
- IRD, UMR DIADE, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France
| | | | - Olivier Leblanc
- IRD, UMR DIADE, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France; ERL IRD-CNRS 5300, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France
| | - Myriam Collin
- IRD, UMR DIADE, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France
| | - Meriem Kaid-Harche
- Laboratoire des Productions, Valorisations Végétales et Microbiennes, Département de Biotechnologie, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, B.P. 1505, El M'Naouar, Oran 31000, Algeria
| | - Stéphane Dussert
- IRD, UMR DIADE, 911 Av. Agropolis, BP 64501, 34394 Montpellier, France.
| |
Collapse
|
40
|
Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joët T, Labadie K, Lan T, Leclercq J, Lepelley M, Leroy T, Li LT, Librado P, Lopez L, Muñoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono, Rigoreau M, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ, Jayarama, Ming R, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA, Wincker P, Lashermes P. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 2014; 345:1181-4. [PMID: 25190796 DOI: 10.1126/science.1255274] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.
Collapse
Affiliation(s)
- France Denoeud
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Lorenzo Carretero-Paulet
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA
| | - Alexis Dereeper
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Gaëtan Droc
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Romain Guyot
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Marco Pietrella
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Adriana Alberti
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - François Anthony
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Giuseppe Aprea
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Pascal Bento
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Maria Bernard
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Stéphanie Bocs
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Claudine Campa
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Alberto Cenci
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France. Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Marie-Christine Combes
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Dominique Crouzillat
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | | | - Fabien De Bellis
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Stéphane Dussert
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Olivier Garsmeur
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Thomas Gayraud
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Valentin Guignon
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Katharina Jahn
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada. Center for Biotechnology, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany. AG Genominformatik, Technische Fakultät, Universität Bielefeld, 33594 Bielefeld, Germany
| | - Véronique Jamilloux
- Institut National de la Recherche Agronomique (INRA), Unité de Recherches en Génomique-Info (UR INRA 1164), Centre de Recherche de Versailles, 78026 Versailles Cedex, France
| | - Thierry Joët
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Tianying Lan
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA. Department of Biology, Chongqing University of Science and Technology, 4000042 Chongqing, China
| | - Julie Leclercq
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Maud Lepelley
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Thierry Leroy
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Lei-Ting Li
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | | | - Adriana Muñoz
- Department of Mathematics, University of Maryland, Mathematics Building 084, University of Maryland, College Park, MD 20742, USA. School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Benjamin Noel
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | | | - Valérie Poncet
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - David Pot
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Priyono
- Indonesian Coffee and Cocoa Institute, Jember, East Java, Indonesia
| | - Michel Rigoreau
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | - Christine Tranchant-Dubreuil
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Robert VanBuren
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qiong Zhang
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alan C Andrade
- Laboratório de Genética Molecular, Núcleo de Biotecnologia (NTBio), Embrapa Recursos Genéticos e Biotecnologia, Final Av. W/5 Norte, Parque Estação Biológia, Brasília-DF 70770-917, Brazil
| | - Xavier Argout
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Benoît Bertrand
- CIRAD, UMR RPB (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Alexandre de Kochko
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Giorgio Graziosi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy. DNA Analytica Srl, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4072, Australia
| | - Jayarama
- Central Coffee Research Institute, Coffee Board, Coffee Research Station (Post) - 577 117 Chikmagalur District, Karnataka State, India
| | - Ray Ming
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chifumi Nagai
- Hawaii Agriculture Research Center, Post Office Box 100, Kunia, HI 96759-0100, USA
| | - Steve Rounsley
- BIO5 Institute, University of Arizona, 1657 Helen Street, Tucson, AZ 85721, USA
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Victor A Albert
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA.
| | - Patrick Wincker
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France.
| | - Philippe Lashermes
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
41
|
De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation. G3-GENES GENOMES GENETICS 2014; 4:2147-57. [PMID: 25193496 PMCID: PMC4232540 DOI: 10.1534/g3.114.013409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop.
Collapse
|
42
|
da Silva Taveira JH, Borém FM, Figueiredo LP, Reis N, Franca AS, Harding SA, Tsai CJ. Potential markers of coffee genotypes grown in different Brazilian regions: A metabolomics approach. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.02.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Cotta MG, Barros LMG, de Almeida JD, de Lamotte F, Barbosa EA, Vieira NG, Alves GSC, Vinecky F, Andrade AC, Marraccini P. Lipid transfer proteins in coffee: isolation of Coffea orthologs, Coffea arabica homeologs, expression during coffee fruit development and promoter analysis in transgenic tobacco plants. PLANT MOLECULAR BIOLOGY 2014; 85:11-31. [PMID: 24469961 DOI: 10.1007/s11103-013-0166-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to perform a genomic analysis of non-specific lipid-transfer proteins (nsLTPs) in coffee. Several nsLTPs-encoding cDNA and gene sequences were cloned from Coffea arabica and Coffea canephora species. In this work, their analyses revealed that coffee nsLTPs belong to Type II LTP characterized under their mature forms by a molecular weight of around 7.3 kDa, a basic isoelectric points of 8.5 and the presence of typical CXC pattern, with X being an hydrophobic residue facing towards the hydrophobic cavity. Even if several single nucleotide polymorphisms were identified in these nsLTP-coding sequences, 3D predictions showed that they do not have a significant impact on protein functions. Northern blot and RT-qPCR experiments revealed specific expression of Type II nsLTPs-encoding genes in coffee fruits, mainly during the early development of endosperm of both C. arabica and C. canephora. As part of our search for tissue-specific promoters in coffee, an nsLTP promoter region of around 1.2 kb was isolated. It contained several DNA repeats including boxes identified as essential for grain specific expression in other plants. The whole fragment, and a series of 5' deletions, were fused to the reporter gene β-glucuronidase (uidA) and analyzed in transgenic Nicotiana tabacum plants. Histochemical and fluorimetric GUS assays showed that the shorter (345 bp) and medium (827 bp) fragments of nsLTP promoter function as grain-specific promoters in transgenic tobacco plants.
Collapse
Affiliation(s)
- Michelle G Cotta
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, CP 02372, Brasília, DF, 70770-917, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Patui S, Clincon L, Peresson C, Zancani M, Conte L, Del Terra L, Navarini L, Vianello A, Braidot E. Lipase activity and antioxidant capacity in coffee (Coffea arabica L.) seeds during germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:19-25. [PMID: 24576760 DOI: 10.1016/j.plantsci.2013.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/19/2013] [Accepted: 12/25/2013] [Indexed: 06/03/2023]
Abstract
In this paper, lipase activity was characterized in coffee (Coffea arabica L.) seeds to determine its involvement in lipid degradation during germination. The lipase activity, evaluated by a colorimetric method, was already present before imbibition of seeds and was further induced during the germination process. The activity showed a biphasic behaviour, which was similar in seeds either with or without endocarp (parchment), even though the phenomenon showed a delay in the former. The enzymatic activity was inhibited by tetrahydrolipstatin (THL), a selective and irreversible inhibitor of lipases, and by a polyclonal antibody raised against purified alkaline lipase from castor bean. The immunochemical analysis evidenced a protein of ca. 60 kDa, cross-reacting with an anti-lipase antibody, in coffee samples obtained from seeds of both types. Gas chromatographic analyses of free fatty acid (FFA) content confirmed the differences shown in the lipolytic activity of the samples with or without parchment, since FFA levels increased more rapidly in samples without parchment. Finally, the analyses of the antioxidant capacity showed that the presence of parchment was crucial for lowering the oxidation of the lipophylic fraction, being the seeds with parchment less prone to oxidation processes.
Collapse
Affiliation(s)
- Sonia Patui
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Luisa Clincon
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Carlo Peresson
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Marco Zancani
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Lanfranco Conte
- Department of Food Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | | | | | - Angelo Vianello
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Enrico Braidot
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| |
Collapse
|
45
|
Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, Lashermes P, Dussert S. Regulation of galactomannan biosynthesis in coffee seeds. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:323-337. [PMID: 24203356 DOI: 10.1093/jxb/ert380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The seed of Coffea arabica accumulates large amounts of cell wall storage polysaccharides (CWSPs) of the mannan family in the cell walls of the endosperm. The variability induced by the growing environment and extensive pairwise correlation analysis with stringent significance thresholds was used to investigate transcript-transcript and transcript-metabolite relationships among 26 sugar-related genes, and the amount of CWSPs and seven soluble low molecular weight carbohydrates in the developing coffee endosperm. A dense module of nine quantitatively co-expressed genes was detected at the mid-developmental stage when CWSPs accumulate. This module included the five genes of the core galactomannan synthetic machinery, namely genes coding for the enzymes needed to assemble the mannan backbone (mannan synthase, ManS), and genes that introduce the galactosyl side chains (galactosyltransferase, GMGT), modulate the post-depositional degree of galactose substitution (α-galactosidase), and produce the nucleotide sugar building blocks GDP-mannose and UDP-galactose (mannose-1P guanyltransferase and UDP-glucose 4'-epimerase, respectively). The amount of CWSPs stored in the endosperm at the onset of their accumulation was primarily and quantitatively modulated at the transcriptional level (i.e. positively correlated with the expression level of these key galactomannan biosynthetic genes). This analysis also suggests a role for sorbitol and raffinose family oligosaccharides as transient auxiliary sources of building blocks for galactomannan synthesis. Finally, a microarray-based analysis of the developing seed transcriptome revealed that all genes of the core galactomannan synthesis machinery grouped in a single cluster of 209 co-expressed genes. Analysis of the gene composition of this cluster revealed remarkable functional coherence and identified transcription factors that putatively control galactomannan biosynthesis in coffee.
Collapse
Affiliation(s)
- Thierry Joët
- IRD, UMR DIADE, BP 64501, 34394 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, Sarah G, Omore A, Durand-Gasselin T, Morcillo F. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. PLANT PHYSIOLOGY 2013; 162:1337-58. [PMID: 23735505 PMCID: PMC3707537 DOI: 10.1104/pp.113.220525] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/29/2013] [Indexed: 05/18/2023]
Abstract
Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis.
Collapse
Affiliation(s)
- Stéphane Dussert
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité, Adaptation et Développement des Plantes, BP 64501, 34394 Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, Sarah G, Omore A, Durand-Gasselin T, Morcillo F. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. PLANT PHYSIOLOGY 2013. [PMID: 23735505 DOI: 10.2307/41943482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis.
Collapse
Affiliation(s)
- Stéphane Dussert
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité, Adaptation et Développement des Plantes, BP 64501, 34394 Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Antioxidant enzyme activity and hydrogen peroxide content during the drying of Arabica coffee beans. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1933-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Pezzopane JRM, Salva TDJG, de Lima VB, Fazuoli LC. Agrometeorological parameters for prediction of the maturation period of Arabica coffee cultivars. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2012; 56:843-851. [PMID: 21866379 DOI: 10.1007/s00484-011-0486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 05/31/2023]
Abstract
The objective of this study was to determine the harvest period of coffee fruits based on the relationship between agrometeorological parameters and sucrose accumulation in the seeds. Over the crop years 2004/2005 and 2006/2007, from 150 days after flowering (DAF) onwards, samples of 50 fruits of cultivars Mundo Novo IAC 376-4, Obatã IAC 1669-20 and Catuaí Vermelho IAC 144 were collected from coffee trees located in Campinas, Brazil. The endosperm of the fruits was freeze-dried, ground and analyzed for sucrose content by high-performance liquid chromatography. A weather station provided data to calculate the accumulated growing degree-day (GDD) units, and the reference (ET(o)) and actual (ET(r)) evapotranspiration rates. The results showed that the highest rates of sucrose accumulation occurred at the transition from the cane-green to the cherry phenological stage. Models for the estimation of sucrose content during maturation based on meteorological variables exhibited similar or better performance than the DAF variable, with better results for the variables GDD and ET(o). The Mundo Novo cultivar reached the highest sucrose level in the endosperm after 2,790 GDD, while cultivar Catuaí attained its maximum sucrose concentration after the accumulated evapotranspiration rate has reached a value of 870 mm. As for cultivar Obatã, the maximum sucrose concentration was predicted with the same degree of accuracy using any of the parameters investigated. For the Obatã cultivar, the values of the variables calculated for the maximum sucrose concentration to be reached were 249 DAF, 3,090 GDD, 1,020 ET(o) and 900 ET(r).
Collapse
|
50
|
Lepelley M, Mahesh V, McCarthy J, Rigoreau M, Crouzillat D, Chabrillange N, de Kochko A, Campa C. Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). PLANTA 2012; 236:313-26. [PMID: 22349733 PMCID: PMC3382651 DOI: 10.1007/s00425-012-1613-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/08/2012] [Indexed: 05/20/2023]
Abstract
Phenylalanine ammonia lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway producing phenolics, widespread constituents of plant foods and beverages, including chlorogenic acids, polyphenols found at remarkably high levels in the coffee bean and long recognized as powerful antioxidants. To date, whereas PAL is generally encoded by a small gene family, only one gene has been characterized in Coffea canephora (CcPAL1), an economically important species of cultivated coffee. In this study, a molecular- and bioinformatic-based search for CcPAL1 paralogues resulted successfully in identifying two additional genes, CcPAL2 and CcPAL3, presenting similar genomic structures and encoding proteins with close sequences. Genetic mapping helped position each gene in three different coffee linkage groups, CcPAL2 in particular, located in a coffee genome linkage group (F) which is syntenic to a region of Tomato Chromosome 9 containing a PAL gene. These results, combined with a phylogenetic study, strongly suggest that CcPAL2 may be the ancestral gene of C. canephora. A quantitative gene expression analysis was also conducted in coffee tissues, showing that all genes are transcriptionally active, but they present distinct expression levels and patterns. We discovered that CcPAL2 transcripts appeared predominantly in flower, fruit pericarp and vegetative/lignifying tissues like roots and branches, whereas CcPAL1 and CcPAL3 were highly expressed in immature fruit. This is the first comprehensive study dedicated to PAL gene family characterization in coffee, allowing us to advance functional studies which are indispensable to learning to decipher what role this family plays in channeling the metabolism of coffee phenylpropanoids.
Collapse
Affiliation(s)
- Maud Lepelley
- Nestlé R&D Center, 101 Av. Gustave Eiffel, Notre Dame D'Oé, BP 49716, 37097, Tours, France.
| | | | | | | | | | | | | | | |
Collapse
|