1
|
Aycan M, Nahar L, Baslam M, Mitsui T. Transgenerational plasticity in salinity tolerance of rice: unraveling non-genetic phenotypic modifications and environmental influences. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5037-5053. [PMID: 38727615 DOI: 10.1093/jxb/erae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 08/29/2024]
Abstract
Transgenerational plasticity in plants enables rapid adaptation to environmental changes, allowing organisms and their offspring to adapt to the environment without altering their underlying DNA. In this study, we investigated the transgenerational plasticity in salinity tolerance of rice plants using a reciprocal transplant experimental strategy. Our aim was to assess whether non-genetic environment-induced phenotypic modifications and transgenerational salinity affect the salinity tolerance of progeny while excluding nuclear genomic factors for two generations. Using salt-tolerant and salt-sensitive rice genotypes, we observed that the parentally salt-stressed salt-sensitive genotype displayed greater growth performance, photosynthetic activity, yield performance, and transcriptional responses than the parentally non-stressed salt-sensitive plants under salt stress conditions. Surprisingly, salt stress-exposed salt-tolerant progeny did not exhibit as much salinity tolerance as salt stress-exposed salt-sensitive progeny under salt stress. Our findings indicate that the phenotypes of offspring plants differed based on the environment experienced by their ancestors, resulting in heritable transgenerational phenotypic modifications in salt-sensitive genotypes via maternal effects. These results elucidated the mechanisms underlying transgenerational plasticity in salinity tolerance, providing valuable insights into how plants respond to changing environmental conditions.
Collapse
Affiliation(s)
- Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Lutfun Nahar
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
- GrowSmart, Seoul 03129, Republic of Korea
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche labellisée CNRST (Centre AgroBio-tech-URL-CNRST-05), Université Cadi Ayyad, Marrakech, 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Université Cadi Ayyad, Marrakech, 40000, Morocco
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
2
|
Yang J, Wang X, Carmona CP, Wang X, Shen G. Inverse relationship between species competitiveness and intraspecific trait variability may enable species coexistence in experimental seedling communities. Nat Commun 2024; 15:2895. [PMID: 38570481 PMCID: PMC10991546 DOI: 10.1038/s41467-024-47295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Theory suggests that intraspecific trait variability may promote species coexistence when competitively inferior species have higher intraspecific trait variability than their superior competitors. Here, we provide empirical evidence for this phenomenon in tree seedlings. We evaluated intraspecific variability and plastic response of ten traits in 6750 seedlings of ten species in a three-year greenhouse experiment. While we observed no relationship between intraspecific trait variability and species competitiveness in competition-free homogeneous environments, an inverse relationship emerged under interspecific competition and in spatially heterogeneous environments. We showed that this relationship is driven by the plastic response of the competitively inferior species: Compared to their competitively superior counterparts, they exhibited a greater increase in trait variability, particularly in fine-root traits, in response to competition, environmental heterogeneity and their combination. Our findings contribute to understanding how interspecific competition and intraspecific trait variability together structure plant communities.
Collapse
Affiliation(s)
- Jing Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Xiya Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Xihua Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No.2), Shanghai, 200092, China
| | - Guochun Shen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China.
- Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No.2), Shanghai, 200092, China.
| |
Collapse
|
3
|
Earley TS, Feiner N, Alvarez MF, Coolon JD, Sultan SE. The relative impact of parental and current environment on plant transcriptomes depends on type of stress and genotype. Proc Biol Sci 2023; 290:20230824. [PMID: 37752834 PMCID: PMC10523085 DOI: 10.1098/rspb.2023.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Through developmental plasticity, an individual organism integrates influences from its immediate environment with those due to the environment of its parents. While both effects on phenotypes are well documented, their relative impact has been little studied in natural systems, especially at the level of gene expression. We examined this issue in four genotypes of the annual plant Persicaria maculosa by varying two key resources-light and soil moisture-in both generations. Transcriptomic analyses showed that the relative effects of parent and offspring environment on gene expression (i.e. the number of differentially expressed transcripts, DETs) varied both for the two types of resource stress and among genotypes. For light, immediate environment induced more DETs than parental environment for all genotypes, although the precise proportion of parental versus immediate DETs varied among genotypes. By contrast, the relative effect of soil moisture varied dramatically among genotypes, from 8-fold more DETs due to parental than immediate conditions to 10-fold fewer. These findings provide evidence at the transcriptomic level that the relative impacts of parental and immediate environment on the developing organism may depend on the environmental factor and vary strongly among genotypes, providing potential for the interplay of these developmental influences to evolve.
Collapse
Affiliation(s)
- Timothy S. Earley
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | | | - Mariano F. Alvarez
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D. Coolon
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Sonia E. Sultan
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
4
|
Tian H, Harder LD, Wang A, Zhang D, Liao W. Habitat effects on reproductive phenotype, pollinator behavior, fecundity, and mating outcomes of a bumble bee-pollinated herb. AMERICAN JOURNAL OF BOTANY 2022; 109:470-485. [PMID: 35244204 PMCID: PMC9314043 DOI: 10.1002/ajb2.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Fecundity and mating outcomes commonly differ among plant populations occupying contrasting environments. If self-pollination occurs primarily among flowers within plants, contrasting reproductive outcomes among populations must reflect environmental effects on plant-pollinator interactions. Specifically, local conditions could affect features of plant phenotypes that influence pollinator behavior, in turn modifying plant reproductive outcomes. METHODS We compared phenotypes, pollinator abundance and behavior, and female fecundity and mating in two meadow populations and two forest populations of Aconitum kusnezoffii within 3 km of each other. Mating outcomes were assessed using microsatellites. RESULTS Meadow plants generally produced more, shorter ramets with more, larger flowers, but less nectar per flower than forest plants. These differences likely largely represent phenotypic plasticity. Individual bumble bees visited more flowers on forest plants, likely because the more abundant bees in the meadows depleted nectar availability, as indicated by briefer visits to individual flowers. Despite similar fruit set in both habitats, forest plants set more seeds per fruit. Nevertheless, meadow plants produced more seeds overall, owing to sevenfold greater flower production. Consistent with individual bees visiting fewer flowers on meadow plants, more of their seeds were outcrossed. However, the outcrossed seeds of forest plants included more male mates. CONCLUSIONS Reproductive outcomes can vary among populations of animal-pollinated plants as a result of differences in the availability of effective pollinators and environmental effects on plant phenotypes, and their functional consequences for pollinator behavior that governs pollen dispersal.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringBeijing Normal UniversityBeijing100875China
| | - Lawrence D. Harder
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Ai‐Ying Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringBeijing Normal UniversityBeijing100875China
| | - Da‐Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringBeijing Normal UniversityBeijing100875China
| | - Wan‐Jin Liao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringBeijing Normal UniversityBeijing100875China
| |
Collapse
|
5
|
Waterman R, Sultan SE. Transgenerational effects of parent plant competition on offspring development in contrasting conditions. Ecology 2021; 102:e03531. [PMID: 34496058 DOI: 10.1002/ecy.3531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Conditions during a parent's lifetime can induce phenotypic changes in offspring, providing a potentially important source of variation in natural populations. Yet, to date, biotic factors have seldom been tested as sources of transgenerational effects in plants. In a greenhouse experiment with the generalist annual Polygonum persicaria, we tested for effects of parental competition on offspring by growing isogenic parent plants either individually or in competitive arrays and comparing their seedling progeny in contrasting growth environments. Offspring of competing vs. non-competing parents showed significantly altered development, resulting in greater biomass and total leaf area, but only when growing in neighbor or simulated canopy shade, rather than sunny dry conditions. A follow-up experiment in which parent plants instead competed in dry soil found that offspring in dry soil had slightly reduced growth, both with and without competitors. In neither experiment were effects of parental competition explained by changes in seed provisioning, suggesting a more complex mode of regulatory inheritance. We hypothesize that parental competition in moist soil (i.e., primarily for light) confers specific developmental effects that are beneficial for light-limited offspring, while parental competition in dry soil (i.e., primarily for belowground resources) produces offspring of slightly lower overall quality. Together, these results indicate that competitive conditions during the parental generation can contribute significantly to offspring variation, but these transgenerational effects will depend on the abiotic resources available to both parents and progeny.
Collapse
Affiliation(s)
- Robin Waterman
- Biology Department, Wesleyan University, Middletown, Connecticut, 06459, USA.,Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48823, USA
| | - Sonia E Sultan
- Biology Department, Wesleyan University, Middletown, Connecticut, 06459, USA
| |
Collapse
|
6
|
McGuigan K, Hoffmann AA, Sgrò CM. How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200119. [PMID: 33866811 PMCID: PMC8059617 DOI: 10.1098/rstb.2020.0119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Transgenerational effects that are interpreted in terms of epigenetics have become an important research focus at a time when rapid environmental changes are occurring. These effects are usually interpreted as enhancing fitness extremely rapidly, without depending on the slower process of natural selection changing DNA-encoded (fixed) genetic variants in populations. Supporting evidence comes from a variety of sources, including environmental associations with epialleles, cross-generation responses of clonal material exposed to different environmental conditions, and altered patterns of methylation or frequency changes in epialleles across time. Transgenerational environmental effects have been postulated to be larger than those associated with DNA-encoded genetic changes, based on (for instance) stronger associations between epialleles and environmental conditions. Yet environmental associations for fixed genetic differences may always be weak under polygenic models where multiple combinations of alleles can lead to the same evolutionary outcome. The ultimate currency of adaptation is fitness, and few transgenerational studies have robustly determined fitness effects, particularly when compared to fixed genetic variants. Not all transgenerational modifications triggered by climate change will increase fitness: stressful conditions often trigger negative fitness effects across generations that can eliminate benefits. Epigenetic responses and other transgenerational effects will undoubtedly play a role in climate change adaptation, but further, well-designed, studies are required to test their importance relative to DNA-encoded changes. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Katrina McGuigan
- School of Biological Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Ary A. Hoffmann
- School of Biosciences and Bio21 Institute, The University of Melbourne, Melbourne 3010, Australia
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
7
|
Fitch G, Vandermeer JH. Light availability influences the intensity of nectar robbery and its effects on reproduction in a tropical shrub via multiple pathways. AMERICAN JOURNAL OF BOTANY 2020; 107:1635-1644. [PMID: 33190224 DOI: 10.1002/ajb2.1559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The multiple exogenous pathways by which light availability affects plant reproduction (e.g., via influence on attraction of mutualists and antagonists) remain surprisingly understudied. The light environment experienced by a parent can also have transgenerational effects on offspring via these same pathways. METHODS We evaluated (a) the influence of light availability on floral traits in Odontonema cuspidatum, (b) the relative importance of the pathways by which light influences nectar robbery and reproductive output, and (c) the role of parental light environment in mediating these relationships. We conducted a reciprocal translocation experiment using clonally propagated ramets and field surveys of naturally occurring plants. RESULTS Light availability influenced multiple floral traits, including flower number and nectar volume, which in turn influenced nectar robbery. But nectar robbery was also directly influenced by light availability, due to light effects on nectar robber foraging behavior or neighborhood floral context. Parental light environment mediated the link between light availability and nectar robber attraction, suggesting local adaptation to low-light environments in floral visitor attraction. However, we found no transgenerational effect on reproduction. CONCLUSIONS Our findings demonstrate that exogenous pathways by which light influences plants (particularly through effects on floral antagonists) can complicate the positive relationship between light availability and plant reproduction. Our results are among the first to document effects of light on floral antagonists and clonal transgenerational effects on flower visitor attraction traits.
Collapse
Affiliation(s)
- Gordon Fitch
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - John H Vandermeer
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
8
|
Mackenzie SA, Kundariya H. Organellar protein multi-functionality and phenotypic plasticity in plants. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190182. [PMID: 31787051 PMCID: PMC6939364 DOI: 10.1098/rstb.2019.0182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the increasing impact of climate instability on agricultural and ecological systems has come a heightened sense of urgency to understand plant adaptation mechanisms in more detail. Plant species have a remarkable ability to disperse their progeny to a wide range of environments, demonstrating extraordinary resiliency mechanisms that incorporate epigenetics and transgenerational stability. Surprisingly, some of the underlying versatility of plants to adapt to abiotic and biotic stress emerges from the neofunctionalization of organelles and organellar proteins. We describe evidence of possible plastid specialization and multi-functional organellar protein features that serve to enhance plant phenotypic plasticity. These features appear to rely on, for example, spatio-temporal regulation of plastid composition, and unusual interorganellar protein targeting and retrograde signalling features that facilitate multi-functionalization. Although we report in detail on three such specializations, involving MSH1, WHIRLY1 and CUE1 proteins in Arabidopsis, there is ample reason to believe that these represent only a fraction of what is yet to be discovered as we begin to elaborate cross-species diversity. Recent observations suggest that plant proteins previously defined in one context may soon be rediscovered in new roles and that much more detailed investigation of proteins that show subcellular multi-targeting may be warranted. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, 362 Frear North Building, University Park, PA 16802, USA
| | - Hardik Kundariya
- Departments of Biology and Plant Science, The Pennsylvania State University, 362 Frear North Building, University Park, PA 16802, USA
| |
Collapse
|
9
|
Baker BH, Berg LJ, Sultan SE. Context-Dependent Developmental Effects of Parental Shade Versus Sun Are Mediated by DNA Methylation. FRONTIERS IN PLANT SCIENCE 2018; 9:1251. [PMID: 30210520 PMCID: PMC6119717 DOI: 10.3389/fpls.2018.01251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/06/2018] [Indexed: 05/12/2023]
Abstract
Parental environment influences progeny development in numerous plant and animal systems. Such inherited environmental effects may alter offspring phenotypes in a consistent way, for instance when resource-deprived parents produce low quality offspring due to reduced maternal provisioning. However, because development of individual organisms is guided by both inherited and immediate environmental cues, parental conditions may have different effects depending on progeny environment. Such context-dependent transgenerational plasticity suggests a mechanism of environmental inheritance that can precisely interact with immediate response pathways, such as epigenetic modification. We show that parental light environment (shade versus sun) resulted in context-dependent effects on seedling development in a common annual plant, and that these effects were mediated by DNA methylation. We grew replicate parents of five highly inbred Polygonum persicaria genotypes in glasshouse shade versus sun and, in a fully factorial design, measured ecologically important traits of their isogenic seedling offspring in both environments. Compared to the offspring of sun-grown parents, the offspring of shade-grown parents produced leaves with greater mean and specific leaf area, and had higher total leaf area and biomass. These shade-adaptive effects of parental shade were pronounced and highly significant for seedlings growing in shade, but slight and generally non-significant for seedlings growing in sun. Based on both regression and covariate analysis, inherited effects of parental shade were not mediated by changes to seed provisioning. To test for a role of DNA methylation, we exposed replicate offspring of isogenic shaded and fully insolated parents to either the demethylating agent zebularine or to control conditions during germination, then raised them in simulated growth chamber shade. Partial demethylation of progeny DNA had no phenotypic effect on offspring of shaded parents, but caused offspring of sun-grown parents to develop as if their parents had been shaded, with larger leaves and greater total canopy area and biomass. These results contribute to the increasing body of evidence that DNA methylation can mediate transgenerational environmental effects, and show that such effects may contribute to nuanced developmental interactions between parental and immediate environments.
Collapse
|
10
|
Donelson JM, Salinas S, Munday PL, Shama LNS. Transgenerational plasticity and climate change experiments: Where do we go from here? GLOBAL CHANGE BIOLOGY 2018; 24:13-34. [PMID: 29024256 DOI: 10.1111/gcb.13903] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/30/2017] [Indexed: 05/18/2023]
Abstract
Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental conditions that may promote it, its relationship to within-generation plasticity (WGP) and its role in evolutionary potential. In this review, we consider how the detection of TGP in climate change experiments is affected by the predictability of environmental variation, as well as the timing and magnitude of environmental change cues applied. We also discuss the need to design experiments that are able to distinguish TGP from selection and TGP from WGP in multigenerational experiments. We conclude by suggesting future research directions that build on the knowledge to date and admit the limitations that exist, which will depend on the way environmental change is simulated and the type of experimental design used. Such an approach will open up this burgeoning area of research to a wider variety of organisms and allow better predictive capacity of the role of TGP in the response of organisms to future climate change.
Collapse
Affiliation(s)
- Jennifer M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | | | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Lisa N S Shama
- Coastal Ecology Section, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Wadden Sea Station Sylt, List, Germany
| |
Collapse
|
11
|
Hales NR, Schield DR, Andrew AL, Card DC, Walsh MR, Castoe TA. Contrasting gene expression programs correspond with predator-induced phenotypic plasticity within and across generations in Daphnia. Mol Ecol 2017. [PMID: 28628257 DOI: 10.1111/mec.14213] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research has shown that a change in environmental conditions can alter the expression of traits during development (i.e., "within-generation phenotypic plasticity") as well as induce heritable phenotypic responses that persist for multiple generations (i.e., "transgenerational plasticity", TGP). It has long been assumed that shifts in gene expression are tightly linked to observed trait responses at the phenotypic level. Yet, the manner in which organisms couple within- and TGP at the molecular level is unclear. Here we tested the influence of fish predator chemical cues on patterns of gene expression within- and across generations using a clone of Daphnia ambigua that is known to exhibit strong TGP but weak within-generation plasticity. Daphnia were reared in the presence of predator cues in generation 1, and shifts in gene expression were tracked across two additional asexual experimental generations that lacked exposure to predator cues. Initial exposure to predator cues in generation 1 was linked to ~50 responsive genes, but such shifts were 3-4× larger in later generations. Differentially expressed genes included those involved in reproduction, exoskeleton structure and digestion; major shifts in expression of genes encoding ribosomal proteins were also identified. Furthermore, shifts within the first-generation and transgenerational shifts in gene expression were largely distinct in terms of the genes that were differentially expressed. Such results argue that the gene expression programmes involved in within- vs. transgeneration plasticity are fundamentally different. Our study provides new key insights into the plasticity of gene expression and how it relates to phenotypic plasticity in nature.
Collapse
Affiliation(s)
- Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Audra L Andrew
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
12
|
Colicchio J. Transgenerational effects alter plant defence and resistance in nature. J Evol Biol 2017; 30:664-680. [PMID: 28102915 PMCID: PMC5382043 DOI: 10.1111/jeb.13042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defence. In this study, I document genetically determined variation, within-generation plasticity, and a direct role of trichomes in herbivore defence for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of interannual variation in herbivore density and the high cost of plant defence makes plant-herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions.
Collapse
Affiliation(s)
- J Colicchio
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
13
|
Walsh MR, Castoe T, Holmes J, Packer M, Biles K, Walsh M, Munch SB, Post DM. Local adaptation in transgenerational responses to predators. Proc Biol Sci 2016; 283:rspb.2015.2271. [PMID: 26817775 DOI: 10.1098/rspb.2015.2271] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. 'within-generation' plasticity), such 'transgenerational plasticity' (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations.
Collapse
Affiliation(s)
- Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Todd Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Julian Holmes
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Michelle Packer
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kelsey Biles
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Melissa Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Stephan B Munch
- National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, CA 95060, USA
| | - David M Post
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Moriuchi KS, Friesen ML, Cordeiro MA, Badri M, Vu WT, Main BJ, Aouani ME, Nuzhdin SV, Strauss SY, von Wettberg EJB. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula. PLoS One 2016; 11:e0150350. [PMID: 26943813 PMCID: PMC4778912 DOI: 10.1371/journal.pone.0150350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 02/14/2016] [Indexed: 11/19/2022] Open
Abstract
High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic plasticity, which are likely to vary in populations from contrasting environments.
Collapse
Affiliation(s)
- Ken S. Moriuchi
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Maren L. Friesen
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
- Department of Plant Biology, Michigan State University, Lansing, Michigan 48824, United States of America
| | - Matilde A. Cordeiro
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Plant Cell Biotechnology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mounawer Badri
- Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif, Tunisia
| | - Wendy T. Vu
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Bradley J. Main
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | | | - Sergey V. Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Sharon Y. Strauss
- Department of Evolution and Ecology and Center for Population Biology, University of California Davis, Davis, California, United States of America
| | - Eric J. B. von Wettberg
- Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, Florida, United States of America
- Kushlan Institute for Tropical Science, Fairchild Tropical Botanic Garden, Coral Gables, Florida, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kopp CW, Cleland EE. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming. PLoS One 2015; 10:e0139029. [PMID: 26402617 PMCID: PMC4581864 DOI: 10.1371/journal.pone.0139029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/07/2015] [Indexed: 11/19/2022] Open
Abstract
Shifts in plant species phenology (the timing of life-history events such as flowering) have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology. Here, we describe how experimental warming and the presence of a range-expanding species, sagebrush (Artemisia rothrockii), interact to influence the flowering phenology (day of first and peak flowering) and production (number of flowers) of an alpine cushion plant, Trifolium andersonii, in California's White Mountains. Both first flowering and peak flowering were strongly accelerated by warming, but not when sagebrush was present. Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush. A shading treatment delayed phenology and lowered flower production, suggesting that shading may be the mechanism by which sagebrush presence delayed flowering of the understory species. This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology.
Collapse
Affiliation(s)
- Christopher W. Kopp
- The Biodiversity Research Centre, The University of British Columbia, Vancouver, Canada
- * E-mail:
| | - Elsa E. Cleland
- Ecology, Behavior & Evolution Section, Division of Biological Sciences, University of California San Diego, San Diego, United States of America
| |
Collapse
|
16
|
Baker JA, Wund MA, Heins DC, King RW, Reyes ML, Foster SA. Life-history plasticity in female threespine stickleback. Heredity (Edinb) 2015; 115:322-34. [PMID: 26286665 DOI: 10.1038/hdy.2015.65] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
The postglacial adaptive radiation of the threespine stickleback fish (Gasterosteus aculeatus) has been widely used to investigate the roles of both adaptive evolution and plasticity in behavioral and morphological divergence from the ancestral condition represented by present-day oceanic stickleback. These phenotypes tend to exhibit high levels of ecotypic differentiation. Population divergence in life history has also been well studied, but in contrast to behavior and morphology, the extent and importance of plasticity has been much less well studied. In this review, we summarize what is known about life-history plasticity in female threespine stickleback, considering four traits intimately associated with reproductive output: age/size at maturation, level of reproductive effort, egg size and clutch size. We envision life-history plasticity in an iterative, ontogenetic framework, in which females may express plasticity repeatedly across each of several time frames. We contrast the results of laboratory and field studies because, for most traits, these approaches give somewhat different answers. We provide ideas on what the cues might be for observed plasticity in each trait and, when possible, we inquire about the relative costs and benefits to expressed plasticity. We end with an example of how we think plasticity may play out in stickleback life history given what we know of plasticity in the ancestor.
Collapse
Affiliation(s)
- J A Baker
- Department of Biology, Clark University, Worcester, MA, USA
| | - M A Wund
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - D C Heins
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - R W King
- Department of Biology, Clark University, Worcester, MA, USA
| | - M L Reyes
- Department of Biology, Clark University, Worcester, MA, USA
| | - S A Foster
- Department of Biology, Clark University, Worcester, MA, USA
| |
Collapse
|
17
|
Kalischuk ML, Johnson D, Kawchuk LM. Priming with a double-stranded DNA virus alters Brassica rapa seed architecture and facilitates a defense response. Gene 2015; 557:130-7. [DOI: 10.1016/j.gene.2014.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023]
|
18
|
Leimar O, McNamara JM. The evolution of transgenerational integration of information in heterogeneous environments. Am Nat 2015; 185:E55-69. [PMID: 25674697 DOI: 10.1086/679575] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An organism's phenotype can be influenced by maternal cues and directly perceived environmental cues, as well as by its genotype at polymorphic loci, which can be interpreted as a genetic cue. In fluctuating environments, natural selection favors organisms that efficiently integrate different sources of information about the likely success of phenotypic alternatives. In such situations, it can be beneficial to pass on maternal cues that offspring can respond to. A maternal cue could be based on environmental cues directly perceived by the mother but also partly on cues that were passed on by the grandmother. We have used a mathematical model to investigate how the passing of maternal cues and the integration of different sources of information evolve in response to qualitatively different kinds of temporal and spatial environmental fluctuations. The model shows that the passing of maternal cues and the transgenerational integration of sources of information readily evolve. Factors such as the degree of temporal autocorrelation, the predictive accuracy of different environmental cues, and the level of gene flow strongly influence the expression of adaptive maternal cues and the relative weights given to different sources of information. We outline the main features of the relation between the characteristics of environmental fluctuations and the adaptive systems of phenotype determination and compare these predictions with empirical studies on cue integration.
Collapse
Affiliation(s)
- Olof Leimar
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
19
|
Maternal environmental effects of competition influence evolutionary potential in rapeseed (Brassica rapa). Evol Ecol 2014. [DOI: 10.1007/s10682-014-9735-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Herman JJ, Spencer HG, Donohue K, Sultan SE. How stable 'should' epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution 2013; 68:632-43. [PMID: 24274594 DOI: 10.1111/evo.12324] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023]
Abstract
Although there is keen interest in the potential adaptive value of epigenetic variation, it is unclear what conditions favor the stability of these variants either within or across generations. Because epigenetic modifications can be environmentally sensitive, existing theory on adaptive phenotypic plasticity provides relevant insights. Our consideration of this theory suggests that stable maintenance of environmentally induced epigenetic states over an organism's lifetime is most likely to be favored when the organism accurately responds to a single environmental change that subsequently remains constant, or when the environmental change cues an irreversible developmental transition. Stable transmission of adaptive epigenetic states from parents to offspring may be selectively favored when environments vary across generations and the parental environment predicts the offspring environment. The adaptive value of stability beyond a single generation of parent-offspring transmission likely depends on the costs of epigenetic resetting. Epigenetic stability both within and across generations will also depend on the degree and predictability of environmental variation, dispersal patterns, and the (epi)genetic architecture underlying phenotypic responses to environment. We also discuss conditions that favor stability of random epigenetic variants within the context of bet hedging. We conclude by proposing research directions to clarify the adaptive significance of epigenetic stability.
Collapse
Affiliation(s)
- Jacob J Herman
- Biology Department, Wesleyan University, Middletown, Connecticut, 06459-0170.
| | | | | | | |
Collapse
|
21
|
Patsias K, Bruelheide H. Climate change – Bad news for montane forest herb layer species? ACTA OECOLOGICA 2013. [DOI: 10.1016/j.actao.2013.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Prendeville HR, Barnard-Kubow K, Dai C, Barringer BC, Galloway LF. Clinal variation for only some phenological traits across a species range. Oecologia 2013; 173:421-30. [DOI: 10.1007/s00442-013-2630-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 02/13/2013] [Indexed: 11/30/2022]
|
23
|
Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J. The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 2012; 27:244-52. [PMID: 22244797 DOI: 10.1016/j.tree.2011.11.014] [Citation(s) in RCA: 755] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
Abstract
Despite being recognized as a promoter of diversity and a condition for local coexistence decades ago, the importance of intraspecific variance has been neglected over time in community ecology. Recently, there has been a new emphasis on intraspecific variability. Indeed, recent developments in trait-based community ecology have underlined the need to integrate variation at both the intraspecific as well as interspecific level. We introduce new T-statistics ('T' for trait), based on the comparison of intraspecific and interspecific variances of functional traits across organizational levels, to operationally incorporate intraspecific variability into community ecology theory. We show that a focus on the distribution of traits at local and regional scales combined with original analytical tools can provide unique insights into the primary forces structuring communities.
Collapse
Affiliation(s)
- Cyrille Violle
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Herman JJ, Sultan SE. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. FRONTIERS IN PLANT SCIENCE 2011; 2:102. [PMID: 22639624 PMCID: PMC3355592 DOI: 10.3389/fpls.2011.00102] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/07/2011] [Indexed: 05/18/2023]
Abstract
Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.
Collapse
|
25
|
Variation in Plant Distributions, Plant Traits and Disease Levels across a Woodland/Grassland Ecotone. AMERICAN MIDLAND NATURALIST 2011. [DOI: 10.1674/0003-0031-166.2.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Anderson JT, Sparks JP, Geber MA. Phenotypic plasticity despite source-sink population dynamics in a long-lived perennial plant. THE NEW PHYTOLOGIST 2010; 188:856-867. [PMID: 20696010 DOI: 10.1111/j.1469-8137.2010.03404.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
• Species that exhibit adaptive plasticity alter their phenotypes in response to environmental conditions, thereby maximizing fitness in heterogeneous landscapes. However, under demographic source-sink dynamics, selection should favor traits that enhance fitness in the source habitat at the expense of fitness in the marginal habitat. Consistent with source-sink dynamics, the perennial blueberry, Vaccinium elliottii (Ericaceae), shows substantially higher fitness and population sizes in dry upland forests than in flood-prone bottomland forests, and asymmetrical gene flow occurs from upland populations into bottomland populations. Here, we examined whether this species expresses plasticity to these distinct environments despite source-sink dynamics. • We assessed phenotypic responses to a complex environmental gradient in the field and to water stress in the glasshouse. • Contrary to expectations, V. elliottii exhibited a high degree of plasticity in foliar and root traits (specific leaf area, carbon isotope ratios, foliar nitrogen content, root : shoot ratio, root porosity and root architecture). • We propose that plasticity can be maintained in source-sink systems if it is favored within the source habitat and/or a phylogenetic artifact that is not costly. Additionally, plasticity could be advantageous if habitat-based differences in fitness result from incipient niche expansion. Our results illuminate the importance of evaluating phenotypic traits and fitness components across heterogeneous landscapes.
Collapse
Affiliation(s)
- Jill T Anderson
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
27
|
Environmental context determines within- and potential between-generation consequences of herbivory. Oecologia 2010; 163:911-20. [PMID: 20407792 DOI: 10.1007/s00442-010-1634-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Plant tolerance to herbivory may depend on local environmental conditions. Models predict both increased and decreased tolerance with increasing resources. Transgenerational effects of herbivory may result in cross-generation tolerance. We evaluated within- and potential between-generation consequences of deer browsing in light-gap and understory habitats in the forest-edge herb, Campanulastrum americanum. Plants were assigned to deer-browsed, simulated-herbivory, and control (undamaged) treatments in the two light environments. In light gaps, plants were eaten earlier, more frequently, and had less vegetative recovery relative to uneaten plants than in the understory. As a result, browsed light-gap plants had a greater reduction in flowers and fruit than understory plants. This reduced tolerance was in part because deer browsing damaged plants in light gaps more than those in the understory. However, in the simulated herbivory treatment, where damage levels were similar between light habitats, plants growing in high-resource light gaps also had reduced tolerance of herbivory relative to those in the forest understory. C. americanum's reproductive phenology was delayed by reduced light and the loss of the apical meristem. As a result, deer-browsed plants in the light gap flowered slightly later than uneaten plants in the understory. C. americanum has a polymorphic life history and maternal flowering time influences the frequency of annual and biennial offspring. The later flowering of deer-browsed plants in light gaps will likely result in a reduced frequency of high-fitness annual offspring and an increase in lower fitness biennial offspring. Therefore, additional between-generation costs of herbivory are expected relative to those predicted by fruit number alone.
Collapse
|
28
|
Latzel V, Hájek T, Klimešová J, Gómez S. Nutrients and disturbance history in twoPlantagospecies: maternal effects as a clue for observed dichotomy between resprouting and seeding strategies. OIKOS 2009. [DOI: 10.1111/j.1600-0706.2009.17767.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|