1
|
Yoo H, Greene GH, Yuan M, Xu G, Burton D, Liu L, Marqués J, Dong X. Translational Regulation of Metabolic Dynamics during Effector-Triggered Immunity. MOLECULAR PLANT 2020; 13:88-98. [PMID: 31568832 PMCID: PMC6946852 DOI: 10.1016/j.molp.2019.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 05/03/2023]
Abstract
Recent studies have shown that global translational reprogramming is an early activation event in pattern-triggered immunity, when plants recognize microbe-associated molecular patterns. However, it is not fully known whether translational regulation also occurs in subsequent immune responses, such as effector-triggered immunity (ETI). In this study, we performed genome-wide ribosome profiling in Arabidopsis upon RPS2-mediated ETI activation and discovered that specific groups of genes were translationally regulated, mostly in coordination with transcription. These genes encode enzymes involved in aromatic amino acid, phenylpropanoid, camalexin, and sphingolipid metabolism. The functional significance of these components in ETI was confirmed by genetic and biochemical analyses. Our findings provide new insights into diverse translational regulation of plant immune responses and demonstrate that translational coordination of metabolic gene expression is an important strategy for ETI.
Collapse
Affiliation(s)
- Heejin Yoo
- Howard Hughes Medical Institute, Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - George H Greene
- Howard Hughes Medical Institute, Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China
| | - Guoyong Xu
- Howard Hughes Medical Institute, Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Derek Burton
- Howard Hughes Medical Institute, Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Lijing Liu
- Howard Hughes Medical Institute, Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Jorge Marqués
- Howard Hughes Medical Institute, Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Xu Y, Liu F, Zhu S, Li X. Expression of a maize NBS gene ZmNBS42 enhances disease resistance in Arabidopsis. PLANT CELL REPORTS 2018; 37:1523-1532. [PMID: 30039463 DOI: 10.1007/s00299-018-2324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Expression of the ZmNBS42 in Arabidopsis plants conferred resistance to bacterial pathogens, providing potential resistance enhancement of maize in further genetic breeding. Nucleotide-binding site (NBS) domain proteins play critical roles in disease resistance. In this study, we isolate a novel NBS gene ZmNBS42 from maize and systematically investigate its function on disease resistance. We find that the expression levels of ZmNBS42 in maize leaf were strikingly increased in response to Bipolaris maydis inoculation and SA treatment. The spatial expression pattern analysis reveals that, during development, ZmNBS42 is ubiquitously highly expressed in maize root, leaf, stem, internode and seed, but lowly expressed in pericarp and embryo. To better understand the roles of ZmNBS42, we overexpressed ZmNBS42 in heterologous systems. Transient overexpression of ZmNBS42 in the leaves of Nicotiana benthamiana induces a hypersensitive response. ZmNBS42 overexpression (ZmNBS42-OE) Arabidopsis plants produced more SA content than Col-0 plants, and increased the expression levels of some defense-responsive genes compared to Col-0 plants. Moreover, the ZmNBS42-OE Arabidopsis plants displayed enhanced resistance against Pseudomonas syringae pathovar tomato DC3000 (Pst DC3000). These results together suggest that ZmNBS42 can serve as an important regulator in disease resistance, thus better understanding of ZmNBS42 would benefit the resistance enhancement in maize breeding programs.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
3
|
Pratas MI, Aguiar B, Vieira J, Nunes V, Teixeira V, Fonseca NA, Iezzoni A, van Nocker S, Vieira CP. Inferences on specificity recognition at the Malus×domestica gametophytic self-incompatibility system. Sci Rep 2018; 8:1717. [PMID: 29379047 PMCID: PMC5788982 DOI: 10.1038/s41598-018-19820-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 01/01/2023] Open
Abstract
In Malus × domestica (Rosaceae) the product of each SFBB gene (the pollen component of the gametophytic self-incompatibility (GSI) system) of a S-haplotype (the combination of pistil and pollen genes that are linked) interacts with a sub-set of non-self S-RNases (the pistil component), but not with the self S-RNase. To understand how the Malus GSI system works, we identified 24 SFBB genes expressed in anthers, and determined their gene sequence in nine M. domestica cultivars. Expression of these SFBBs was not detected in the petal, sepal, filament, receptacle, style, stigma, ovary or young leaf. For all SFBBs (except SFBB15), identical sequences were obtained only in cultivars having the same S-RNase. Linkage with a particular S-RNase was further established using the progeny of three crosses. Such data is needed to understand how other genes not involved in GSI are affected by the S-locus region. To classify SFBBs specificity, the amino acids under positive selection obtained when performing intra-haplotypic analyses were used. Using this information and the previously identified S-RNase positively selected amino acid sites, inferences are made on the S-RNase amino acid properties (hydrophobicity, aromatic, aliphatic, polarity, and size), at these positions, that are critical features for GSI specificity determination.
Collapse
Affiliation(s)
- Maria I Pratas
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Nunes
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Vanessa Teixeira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Nuno A Fonseca
- European Bioinformatics Institute (EMBL-EBI,) Welcome Trust Genome Campus, CB10 1SD, Cambridge, United Kingdom
| | - Amy Iezzoni
- Michigan State University, East Lansing, MI, 48824-1325, USA
| | | | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
4
|
Li X, Zhang Y, Yin L, Lu J. Overexpression of pathogen-induced grapevine TIR-NB-LRR gene VaRGA1 enhances disease resistance and drought and salt tolerance in Nicotiana benthamiana. PROTOPLASMA 2017; 254:957-969. [PMID: 27468994 DOI: 10.1007/s00709-016-1005-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/14/2016] [Indexed: 05/21/2023]
Abstract
The NBS-LRR proteins encoded by the majority of R genes represent important intracellular receptors that directly or indirectly recognize pathogen effector proteins, which subsequently activate plant defense responses. In this study, a novel Plasmopara viticola-induced TIR-NBS-LRR gene, named VaRGA1, was cloned from leaf tissues of a highly downy mildew-resistant Vitis amurensis "Shuanghong" grapevine. The fluorescence signal of the VaRGA1-GFP fusion protein was clearly partitioned to the cytoplasm and nucleus. The expression of the VaRGA1 gene was strongly induced during early stages of infection by P. viticola, and was also significantly upregulated after drought and salt treatments. Accordingly, grapevine leaves transiently expressing the VaRGA1 gene manifested increased resistance to P. viticola, and the overexpression of the VaRGA1 gene in Nicotiana benthamiana conferred enhanced resistance to Phytophthora parasitica through the activation of salicylic acid (SA) signaling and phenylpropanoid pathways and could also increase tolerance to drought and salt stresses at the germination and vegetable growth stages. These findings indicate that the grapevine VaRGA1 gene may function as the immune and non-immune receptors against biotic and abiotic stresses and that there may be signaling overlap between biotic and abiotic responses.
Collapse
Affiliation(s)
- Xinlong Li
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jiang Lu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China.
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
MacQueen A, Bergelson J. Modulation of R-gene expression across environments. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2093-105. [PMID: 26983577 PMCID: PMC4793800 DOI: 10.1093/jxb/erv530] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments.
Collapse
Affiliation(s)
- Alice MacQueen
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Sarazin V, Duclercq J, Mendou B, Aubanelle L, Nicolas V, Aono M, Pilard S, Guerineau F, Sangwan-Norreel B, Sangwan RS. Arabidopsis BNT1, an atypical TIR-NBS-LRR gene, acting as a regulator of the hormonal response to stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:216-229. [PMID: 26398806 DOI: 10.1016/j.plantsci.2015.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/20/2015] [Accepted: 07/25/2015] [Indexed: 06/05/2023]
Abstract
During their life cycle, plants have to cope with fluctuating environmental conditions. The perception of the stressful environmental conditions induces a specific stress hormone signature specifying a proper response with an efficient fitness. By reverse genetics, we isolated and characterized a novel mutation in Arabidopsis, associated with environmental stress responses, that affects the At5g11250/BURNOUT1 (BNT1) gene which encode a Toll/Interleukin1 receptor-nucleotide binding site leucine-rich repeat (TIR-NBS-LRR) protein. The knock-out bnt1 mutants displayed, in the absence of stress conditions, a multitude of growth and development defects, suchas severe dwarfism, early senescence and flower sterility, similar to those observed in vitro in wild type plants upon different biotic and/or abiotic stresses. The disruption of BNT1 causes also a drastic increase of the jasmonic, salicylic and abscisic acids as well as ethylene levels. Which was consistent with the expression pattern observed in bnt1 showing an over representation of genes involved in the hormonal response to stress? Therefore, a defect in BNT1 forced the plant to engage in an exhausting general stress response, which produced frail, weakened and poorly adapted plants expressing "burnout" syndromes. Furthermore, by in vitro phenocopying experiments, physiological, chemical and molecular analyses, we propose that BNT1 could represent a molecular link between stress perception and specific hormonal signature.
Collapse
Affiliation(s)
- Vivien Sarazin
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France; Laboulet Semences, Airaines, France
| | - Jérome Duclercq
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Benjamin Mendou
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Laurent Aubanelle
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Veyres Nicolas
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Mitsuko Aono
- National Institute for Environmental Studies, Environmental Biology Division, Tsukuba, Japan
| | | | | | - Brigitte Sangwan-Norreel
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Rajbir S Sangwan
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France.
| |
Collapse
|
7
|
Piofczyk T, Jeena G, Pecinka A. Arabidopsis thaliana natural variation reveals connections between UV radiation stress and plant pathogen-like defense responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:34-43. [PMID: 25656510 DOI: 10.1016/j.plaphy.2015.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/21/2015] [Indexed: 05/12/2023]
Abstract
UV radiation is a ubiquitous component of solar radiation that affects plant growth and development. Here we studied growth related traits of 345 Arabidopsis thaliana accessions in response to UV radiation stress. We analyzed the genetic basis of this natural variation by genome-wide association studies, which suggested a specific candidate genomic region. RNA-sequencing of three sensitive and three resistant accessions combined with mutant analysis revealed five large effect genes. Mutations in PHE ammonia lyase 1 (PAL1) and putative kinase At1g76360 rendered Arabidopsis hypersensitive to UV stress, while loss of function from putative methyltransferase At4g22530, novel plant snare 12 (NPSN12) and defense gene activated disease resistance 2 (ADR2) conferred higher UV stress resistance. Three sensitive accessions showed strong ADR2 transcriptional activation, accumulation of salicylic acid (SA) and dwarf growth upon UV stress, while these phenotypes were much less affected in resistant plants. The phenotype of sensitive accessions resembles autoimmune reactions due to overexpression of defense related genes, and suggests that natural variation in response to UV radiation stress is driven by pathogen-like responses in Arabidopsis.
Collapse
Affiliation(s)
- Thomas Piofczyk
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Ganga Jeena
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Ales Pecinka
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany.
| |
Collapse
|
8
|
Papdi C, Pérez-Salamó I, Joseph MP, Giuntoli B, Bögre L, Koncz C, Szabados L. The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:772-84. [PMID: 25847219 DOI: 10.1111/tpj.12848] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 05/22/2023]
Abstract
The ethylene response factor VII (ERF-VII) transcription factor RELATED TO APETALA2.12 (RAP2.12) was previously identified as an activator of the ALCOHOL DEHYDROGENASE1 promoter::luciferase (ADH1-LUC) reporter gene. Here we show that overexpression of RAP2.12 and its homologues RAP2.2 and RAP2.3 sustains ABA-mediated activation of ADH1 and activates hypoxia marker genes under both anoxic and normoxic conditions. Inducible expression of all three RAP2s conferred tolerance to anoxia, oxidative and osmotic stresses, and enhanced the sensitivity to abscisic acid (ABA). Consistently, the rap2.12-2 rap2.3-1 double mutant showed hypersensitivity to both submergence and osmotic stress. These findings suggest that the three ERF-VII-type transcription factors play roles in tolerance to multiple stresses that sequentially occur during and after submergence in Arabidopsis. Oxygen-dependent degradation of RAP2.12 was previously shown to be mediated by the N-end rule pathway. During submergence the RAP2.12, RAP2.2 and RAP2.3 are stabilized and accumulates in the nucleus affecting the transcription of stress response genes. We conclude that the stabilized RAP2 transcription factors can prolong the ABA-mediated activation of a subset of osmotic responsive genes (e.g. ADH1). We also show that RAP2.12 protein level is affected by the REALLY INTERESTING GENE (RING) domain containing SEVEN IN ABSENTIA of Arabidopsis thaliana 2 (SINAT2). Silencing of SINAT1/2 genes leads to enhanced RAP2.12 abundance independently of the presence or absence of its N-terminal degron. Taken together, our results suggest that RAP2.12 and its homologues RAP2.2 and RAP2.3 act redundantly in multiple stress responses. Alternative protein degradation pathways may provide inputs to the RAP2 transcription factors for the distinct stresses.
Collapse
Affiliation(s)
- Csaba Papdi
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726, Szeged, Hungary
- Royal Holloway, University of London, Egham Hill, Surrey, TW20 0EX, UK
| | - Imma Pérez-Salamó
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726, Szeged, Hungary
- Royal Holloway, University of London, Egham Hill, Surrey, TW20 0EX, UK
| | - Mary Prathiba Joseph
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726, Szeged, Hungary
| | - Beatrice Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - László Bögre
- Royal Holloway, University of London, Egham Hill, Surrey, TW20 0EX, UK
| | - Csaba Koncz
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726, Szeged, Hungary
- Max-Planck-Institut für Züchtungsforschung, Carl von Linne weg 10., 50829, Cologne, Germany
| | - László Szabados
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726, Szeged, Hungary
| |
Collapse
|
9
|
Gao D, Appiano M, Huibers RP, Chen X, Loonen AEHM, Visser RGF, Wolters AMA, Bai Y. Activation tagging of ATHB13 in Arabidopsis thaliana confers broad-spectrum disease resistance. PLANT MOLECULAR BIOLOGY 2014; 86:641-53. [PMID: 25293871 DOI: 10.1007/s11103-014-0253-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/30/2014] [Indexed: 05/21/2023]
Abstract
Powdery mildew species Oidium neolycopersici (On) can cause serious yield losses in tomato production worldwide. Besides on tomato, On is able to grow and reproduce on Arabidopsis. In this study we screened a collection of activation-tagged Arabidopsis mutants and identified one mutant, 3221, which displayed resistance to On, and in addition showed a reduced stature and serrated leaves. Additional disease tests demonstrated that the 3221 mutant exhibited resistance to downy mildew (Hyaloperonospora arabidopsidis) and green peach aphid (Myzus persicae), but retained susceptibility to bacterial pathogen Pseudomonas syringae pv tomato DC3000. The resistance trait and morphological alteration were mutually linked in 3221. Identification of the activation tag insertion site and microarray analysis revealed that ATHB13, a homeodomain-leucine zipper (HD-Zip) transcription factor, was constitutively overexpressed in 3221. Silencing of ATHB13 in 3221 resulted in the loss of both the morphological alteration and resistance, whereas overexpression of the cloned ATHB13 in Col-0 and Col-eds1-2 backgrounds resulted in morphological alteration and resistance. Microarray analysis further revealed that overexpression of ATHB13 influenced the expression of a large number of genes. Previously, it was reported that ATHB13-overexpressing lines conferred tolerance to abiotic stress. Together with our results, it appears that ATHB13 is involved in the crosstalk between abiotic and biotic stress resistance pathways.
Collapse
Affiliation(s)
- Dongli Gao
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics 2014; 15:949. [PMID: 25363865 PMCID: PMC4237293 DOI: 10.1186/1471-2164-15-949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Vascular wilt caused by Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) is a serious disease of chickpea (Cicer arietinum L.) accounting for approximately 10-15% annual crop loss. The fungus invades the plant via roots, colonizes the xylem vessels and prevents the upward translocation of water and nutrients, finally resulting in wilting of the entire plant. Although comparative transcriptomic profiling have highlighted some important signaling molecules, but proteomic studies involving chickpea-Foc1 are limited. The present study focuses on comparative root proteomics of susceptible (JG62) and resistant (WR315) chickpea genotypes infected with Foc1, to understand the mechanistic basis of susceptibility and/or resistance. RESULTS The differential and unique proteins of both genotypes were identified at 48 h, 72 h, and 96 h post Foc1 inoculation. 2D PAGE analyses followed by MALDI-TOF MS and MS/MS identified 100 differentially (>1.5 fold<, p<0.05) or uniquely expressed proteins. These proteins were further categorized into 10 functional classes and grouped into GO (gene ontology) categories. Network analyses of identified proteins revealed intra and inter relationship of these proteins with their neighbors as well as their association with different defense signaling pathways. qRT-PCR analyses were performed to correlate the mRNA and protein levels of some proteins of representative classes. CONCLUSIONS The differential and unique proteins identified indicate their involvement in early defense signaling of the host. Comparative analyses of expression profiles of obtained proteins suggest that albeit some common components participate in early defense signaling in both susceptible and resistant genotypes, but their roles and regulation differ in case of compatible and/or incompatible interactions. Thus, functional characterization of identified PR proteins (PR1, BGL2, TLP), Trypsin protease inhibitor, ABA responsive protein, cysteine protease, protein disulphide isomerase, ripening related protein and albumins are expected to serve as important molecular components for biotechnological application and development of sustainable resistance against Foc1.
Collapse
Affiliation(s)
- Moniya Chatterjee
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Sumanti Gupta
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Anirban Bhar
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Dipankar Chakraborti
- />Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), 30 Park Street, Kolkata, 700016 India
| | - Debabrata Basu
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Sampa Das
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| |
Collapse
|
11
|
Yadeta KA, Valkenburg DJ, Hanemian M, Marco Y, Thomma BPHJ. The Brassicaceae-specific EWR1 gene provides resistance to vascular wilt pathogens. PLoS One 2014; 9:e88230. [PMID: 24505441 PMCID: PMC3914955 DOI: 10.1371/journal.pone.0088230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 01/05/2014] [Indexed: 11/19/2022] Open
Abstract
Soil-borne vascular wilt diseases caused by Verticillium spp. are among the most destructive diseases worldwide in a wide range of plant species. The most effective means of controlling Verticillium wilt diseases is the use of genetic resistance. We have previously reported the identification of four activation-tagged Arabidopsis mutants which showed enhanced resistance to Verticillium wilt. Among these, one mutant also showed enhanced resistance to Ralstonia solanacearum, a bacterial vascular wilt pathogen. Cloning of the activation tag revealed an insertion upstream of gene At3g13437, which we designated as EWR1 (for Enhancer of vascular Wilt Resistance 1) that encodes a putatively secreted protein of unknown function. The search for homologs of Arabidopsis EWR1 (AtEWR1) in public databases only identified homologs within the Brassicaceae family. We subsequently cloned the EWR1 homolog from Brassica oleracea (BoEWR1) and show that over-expression in Arabidopsis results in V. dahliae resistance. Moreover, over-expression of AtEWR1 and BoEWR1 in N. benthamiana, a member of the Solanaceae family, results in V. dahliae resistance, suggesting that EWR1 homologs can be used to engineer Verticillium wilt resistance in non-Brassicaceae crops as well.
Collapse
Affiliation(s)
- Koste A. Yadeta
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Dirk-Jan Valkenburg
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Mathieu Hanemian
- Laboratoire des Interactions Plantes Microorganismes, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Yves Marco
- Laboratoire des Interactions Plantes Microorganismes, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Bart P. H. J. Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
12
|
Carter JD, Pereira A, Dickerman AW, Veilleux RE. An active ac/ds transposon system for activation tagging in tomato cultivar m82 using clonal propagation. PLANT PHYSIOLOGY 2013; 162:145-56. [PMID: 23569107 PMCID: PMC3641199 DOI: 10.1104/pp.113.213876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tomato (Solanum lycopersicum) is a model organism for Solanaceae in both molecular and agronomic research. This project utilized Agrobacterium tumefaciens transformation and the transposon-tagging construct Activator (Ac)/Dissociator (Ds)-ATag-Bar_gosGFP to produce activation-tagged and knockout mutants in the processing tomato cultivar M82. The construct carried hygromycin resistance (hyg), green fluorescent protein (GFP), and the transposase (TPase) of maize (Zea mays) Activator major transcript X054214.1 on the stable Ac element, along with a 35S enhancer tetramer and glufosinate herbicide resistance (BAR) on the mobile Ds-ATag element. An in vitro propagation strategy was used to produce a population of 25 T0 plants from a single transformed plant regenerated in tissue culture. A T1 population of 11,000 selfed and cv M82 backcrossed progeny was produced from the functional T0 line. This population was screened using glufosinate herbicide, hygromycin leaf painting, and multiplex polymerase chain reaction (PCR). Insertion sites of transposed Ds-ATag elements were identified through thermal asymmetric interlaced PCR, and resulting product sequences were aligned to the recently published tomato genome. A population of 509 independent, Ds-only transposant lines spanning all 12 tomato chromosomes has been developed. Insertion site analysis demonstrated that more than 80% of these lines harbored Ds insertions conducive to activation tagging. The capacity of the Ds-ATag element to alter transcription was verified by quantitative real-time reverse transcription-PCR in two mutant lines. The transposon-tagged lines have been immortalized in seed stocks and can be accessed through an online database, providing a unique resource for tomato breeding and analysis of gene function in the background of a commercial tomato cultivar.
Collapse
|
13
|
Harb A, Pereira A. Activation tagging using the maize En-I transposon system for the identification of abiotic stress resistance genes in Arabidopsis. Methods Mol Biol 2013; 1057:193-204. [PMID: 23918430 DOI: 10.1007/978-1-62703-568-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Activation tagging is a high-throughput method of overexpressing genes by using an enhancer present in insertion sequences that are randomly inserted in the genome to enhance the expression of adjacent genes. Gain-of-function approaches are advantageous to identify the functions of redundant genes that are not identifiable by knockout (KO) mutations, and for identification of phenotypes with small effects, which are enhanced by activation. An activation tag (ATag) library of 800 lines was generated in Arabidopsis ecotype Columbia using the En-I (Spm) transposon system. The ATag lines were used in a forward genetics strategy to identify novel genes that confer resistance/tolerance to abiotic stresses. The ATag lines were screened for altered drought and salt stress response phenotypes using quantitative assays for biomass accumulation under stress, revealing a number of resistant and sensitive ATag mutants.
Collapse
Affiliation(s)
- Amal Harb
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | | |
Collapse
|
14
|
Guillet C, Aboul-Soud MAM, Le Menn A, Viron N, Pribat A, Germain V, Just D, Baldet P, Rousselle P, Lemaire-Chamley M, Rothan C. Regulation of the fruit-specific PEP carboxylase SlPPC2 promoter at early stages of tomato fruit development. PLoS One 2012; 7:e36795. [PMID: 22615815 PMCID: PMC3355170 DOI: 10.1371/journal.pone.0036795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/06/2012] [Indexed: 12/17/2022] Open
Abstract
The SlPPC2 phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) gene from tomato (Solanum lycopersicum) is differentially and specifically expressed in expanding tissues of developing tomato fruit. We recently showed that a 1966 bp DNA fragment located upstream of the ATG codon of the SlPPC2 gene (GenBank AJ313434) confers appropriate fruit-specificity in transgenic tomato. In this study, we further investigated the regulation of the SlPPC2 promoter gene by analysing the SlPPC2 cis-regulating region fused to either the firefly luciferase (LUC) or the β-glucuronidase (GUS) reporter gene, using stable genetic transformation and biolistic transient expression assays in the fruit. Biolistic analyses of 5' SlPPC2 promoter deletions fused to LUC in fruits at the 8(th) day after anthesis revealed that positive regulatory regions are mostly located in the distal region of the promoter. In addition, a 5' UTR leader intron present in the 1966 bp fragment contributes to the proper temporal regulation of LUC activity during fruit development. Interestingly, the SlPPC2 promoter responds to hormones (ethylene) and metabolites (sugars) regulating fruit growth and metabolism. When tested by transient expression assays, the chimeric promoter:LUC fusion constructs allowed gene expression in both fruit and leaf, suggesting that integration into the chromatin is required for fruit-specificity. These results clearly demonstrate that SlPPC2 gene is under tight transcriptional regulation in the developing fruit and that its promoter can be employed to drive transgene expression specifically during the cell expansion stage of tomato fruit. Taken together, the SlPPC2 promoter offers great potential as a candidate for driving transgene expression specifically in developing tomato fruit from various tomato cultivars.
Collapse
Affiliation(s)
- Carine Guillet
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Mourad A. M. Aboul-Soud
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Aline Le Menn
- Unité de Génétique et d’Amélioration des Fruits et Légumes, Institut National de la Recherche Agronomique, Montfavet, France
| | - Nicolas Viron
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Anne Pribat
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Véronique Germain
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Daniel Just
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Pierre Baldet
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Patrick Rousselle
- Unité de Génétique et d’Amélioration des Fruits et Légumes, Institut National de la Recherche Agronomique, Montfavet, France
| | - Martine Lemaire-Chamley
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Christophe Rothan
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
15
|
Abstract
Insertional mutagenesis is one of the most effective approaches to determine the function of plant genes. However, due to genetic redundancy, loss-of-function mutations often fail to reveal the function of a member of gene families. Activation tagging is a powerful gain-of-function approach to reveal the functions of genes, especially those with high sequence similarity recalcitrant to loss-of-function genetic analyses. Activation tagging randomly inserts a T-DNA fragment containing engineered four copies of enhancer element into a plant genome to activate transcription of flanking genes. We recently generated a new binary vector, pBASTA-AT2, which has been efficiently used to discover genes involved in BR biosynthesis, metabolism, and signal transduction. Compared to pSKI015, a commonly used activation tagging vector, pBASTA-AT2, contains a smaller size of T-DNA and a bigger number of unique restriction sites within the T-DNA region, making cloning of the flanking sequence a lot easier. Our analysis indicated that pBASTA-AT2 gives dramatically improved transformation efficiency relative to pSKI015. In this article, detailed information about this activation tagging vector and the protocol for its application are provided. Three recommended gene cloning approaches based on the use of pBASTA-AT2, including inverse PCR, thermal asymmetric interlaced PCR, and adaptor ligation-mediated PCR, are described to identify T-DNA insertion sites after selection of activation-tagged mutant plants.
Collapse
Affiliation(s)
- Xiaoping Gou
- School of life sciences, Lanzhou University, Lanzhou, China
| | | |
Collapse
|
16
|
Yadeta KA, Hanemian M, Smit P, Hiemstra JA, Pereira A, Marco Y, Thomma BPHJ. The Arabidopsis thaliana DNA-binding protein AHL19 mediates verticillium wilt resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1582-91. [PMID: 21864046 DOI: 10.1094/mpmi-04-11-0090] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Verticillium spp. are destructive soilborne fungal pathogens that cause vascular wilt diseases in a wide range of plant species. Verticillium wilts are particularly notorious, and genetic resistance in crop plants is the most favorable means of disease control. In a gain-of-function screen using an activation-tagged Arabidopsis mutant collection, we identified four mutants, A1 to A4, which displayed enhanced resistance toward the vascular wilt species Verticillium dahliae, V. albo-atrum and V. longisporum but not to Fusarium oxysporum f. sp. raphani. Further testing revealed that mutant A2 displayed enhanced Ralstonia solanacearum resistance, while mutants A1 and A3 were more susceptible toward Pseudomonas syringae pv. tomato. Identification of the activation tag insertion site in the A1 mutant revealed an insertion in close proximity to the gene encoding AHL19, which was constitutively expressed in the mutant. AHL19 knock-out alleles were found to display enhanced Verticillium susceptibility whereas overexpression of AHL19 resulted in enhanced Verticillium resistance, showing that AHL19 acts as a positive regulator of plant defense.
Collapse
|
17
|
Panstruga R. Introduction to a Virtual Special Issue on pathogenic plant-fungus interactions. THE NEW PHYTOLOGIST 2010; 188:907-910. [PMID: 21058947 DOI: 10.1111/j.1469-8137.2010.03530.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|