1
|
|
2
|
Tonge D, Edström A, Ekström P. Use of explant cultures of peripheral nerves of adult vertebrates to study axonal regeneration in vitro. Prog Neurobiol 1998; 54:459-80. [PMID: 9522396 DOI: 10.1016/s0301-0082(97)00072-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Explanted preparations of peripheral nerves with attached dorsal root ganglia of adult mammals and amphibia survive for several days in serum-free medium and can be used to study axonal regeneration in vitro. This review outlines the methods which we routinely use and how they may be applied to study different aspects of axonal regeneration. When the peripheral nerves are crushed in vitro, axons regenerate through the crush site into the distal stump within 1 day (mouse) or 3 days (frog). The outgrowth distance of the leading sensory axons can be determined with the use of a simple method based on axonal transport of labelled proteins. A compartmentalised system permits selective application of drugs and other agents to either ganglia or peripheral nerve containing the regenerating axons and has been used to study selected aspects of regeneration including influence of non-neuronal cells, retrograde signalling, axonal release of proteins during regeneration and the role of phospholipase A2 activity. Explanted preparations may also be cultured in a layer of extracellular matrix material (matrigel), in which spontaneous outgrowth of a large number of naked axons from the cut ends of nerves starts within 1 day and continues for several days. This provides an opportunity to study the direct effects of different agents on axonal elongation. Preparations cultured in collagen gels show sparse spontaneous axonal growth, but this can be increased by addition of certain growth factors. The phenotype of the regenerating axons can be studied using immunohistochemical methods.
Collapse
Affiliation(s)
- D Tonge
- Division of Biomedical Sciences, King's College, London, UK
| | | | | |
Collapse
|
3
|
Remgård P, Kanje M. Release of slow axonally transported proteins from the rat vagus nerve in vitro. Brain Res 1994; 663:326-8. [PMID: 7874518 DOI: 10.1016/0006-8993(94)91280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cultured rat vagus nerve was used to investigate the release of [35S]methionine-labelled slow axonally transported proteins during regeneration. After metabolic labelling the released proteins were collected from an isolated compartment at the distal end of the nerve. Several proteins were released at a time point consistent with the arrival of slow axonally transported proteins at the collection compartment, including actin and a group of 150 kDa proteins.
Collapse
Affiliation(s)
- P Remgård
- Department of Animal Physiology, University of Lund, Sweden
| | | |
Collapse
|
4
|
Remgård P, Ekström PA, Edström A. A fast axonally transported protein of the frog sciatic sensory axons undergoes similar qualitative changes during regeneration in vitro and in vivo. J Neurochem 1991; 57:1907-12. [PMID: 1940907 DOI: 10.1111/j.1471-4159.1991.tb06402.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The adult frog sciatic sensory neurons have been shown to regenerate in vitro. If a crush injury is made at the beginning of culture, regeneration starts after 3.4 days and proceeds at a rate of approximately 0.8 mm/day for several days. Two-dimensional gel electrophoresis was used to study the patterns of radiolabeled, fast axonally transported proteins during the first 7 days of regeneration. Interest was focused on one protein, referred to as rrp31 (regeneration-related protein 31), which changed in apparent pI from 4.9 to 5.3 when the outgrowth of new fibers started. The change was noticeable 3 days after injury and became prominent during day 5 of culturing. By day 7 the pI changed again, this time toward the original value. The in vitro results were supported by experiments in vivo. In this case the change occurred earlier, with a peak only 3 days after injury, after which the pI decreased. If adenosine at 1 mM was included in the culturing medium, the outgrowth of sensory axons was inhibited in a nontoxic way, and the pI changes of rrp31 were prevented. The temporal nature of the pI changes suggests a role for rrp31 in the initiation of the regeneration process.
Collapse
Affiliation(s)
- P Remgård
- Department of Animal Physiology, University of Lund, Sweden
| | | | | |
Collapse
|
5
|
Howes S, Bissoon N, Ito M, Beesley PW, Gurd JW. The effect of castanospermine on the synthesis of synaptic glycoproteins by rat brain slices. Neurochem Res 1990; 15:257-63. [PMID: 2195374 DOI: 10.1007/bf00968669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Slices were prepared from rat forebrains and the incorporation of [3H]mannose and [35S]methionine into proteins and glycoproteins determined. The incorporation of methionine continued to increase for up to 8 hours whereas mannose incorporation was maximal between 2 and 4 hours and declined thereafter. Glycopeptides prepared by pronase digestion of [3H]mannose-labeled glycoproteins were digested with endoglucosaminidase H (endo H) and analysed by gel filtration. The major endo H-sensitive oligosaccharide eluted in a position similar to standard Man8GlcNAc. In the presence of castanospermine, which inhibits glucosidase I, the first enzymatic step in the processing of N-linked oligosaccharides, a new endo H-sensitive glycan similar in size to standard Glc3Man9GlcNAc2 accumulated. Synaptic membranes (SMs) were isolated from slices which had been incubated with either [3H]mannose or [35S]methionine in the presence and absence of castanospermine. In the presence of inhibitor the relative incorporation of [3H]mannose into high-mannose glycans of synaptic glycoproteins was increased. The incorporation of newly synthesized, [35S] methionine-labeled, Con A-binding glycoproteins into SMs was not affected by the addition of inhibitor. Many of the glycoproteins synthesized in the presence of castanospermine exhibited a decreased electrophoretic mobility indicative of the presence of altered oligosaccharide chains. The results indicate that changes in oligosaccharide composition produced by castanospermine had little effect on the subsequent transport and incorporation of glycoproteins into synaptic membranes.
Collapse
Affiliation(s)
- S Howes
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
6
|
Stone GC, Dougher MM. Heat stress increases delivery of a unique sub-population of proteins conveyed by fast axonal transport. J Neurosci Res 1989; 24:477-86. [PMID: 2481043 DOI: 10.1002/jnr.490240404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of heat stress on protein synthesis and fast axonal transport was examined in vitro in bullfrog dorsal root ganglion (DRG) and associated spinal/sciatic nerve. Qualitative and quantitative changes of individual 35S-methionine-labelled proteins were determined following DRG labelling and fast transport in respective nerves via two-dimensional gel electrophoresis/autoradiography. Elevation of temperature from 18 degrees C to 33 degrees C for up to 6 hr resulted in a marked increase in synthesis of five individual DRG species of approximately 74,000 daltons that comigrate with heat shock proteins (HSPs). A quantitative comparison of species within this subset revealed two subgroups differentially affected by stress. The three most basic proteins were induced to approximately 1300% of unstressed controls after 6 hr of stress, while the two most acidic species demonstrated an increase to only 300% of controls over the same period. The relative abundance of 25 additional DRG proteins were uneffected by heat stress. Of 70 35S-labelled fast-transported proteins similarly analyzed, 15, comprising 5 families, were consistently transported at greater than 150% of controls following up to 6 hr of heat stress. Over this period all 15 proteins shared a similar profile of abundance relative to non-induced proteins. Transport was elevated to the greatest extent after 2 hr of stress, declined after 3 hr, and tended to rebound at later times. The remaining 55 fast-transported protein spots analyzed were unaffected. An increased delivery of this unique sub-population of 15 fast-transported proteins suggests a possible involvement in early cellular events that mediate heat stress in the nervous system.
Collapse
Affiliation(s)
- G C Stone
- Division of Molecular Biology and Neural Regeneration, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| | | |
Collapse
|
7
|
Aleuria lectin remains bound to its receptors during rapid axonal transport in retinal ganglion cells. Neurochem Int 1989; 15:185-9. [DOI: 10.1016/0197-0186(89)90099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1988] [Accepted: 03/06/1989] [Indexed: 11/18/2022]
|
8
|
Stone GC, Dougher MM. Heat stress induces changes in protein synthesis and fast axonal transport in bullfrog sensory neurons. J Neurochem 1988; 51:960-6. [PMID: 3261780 DOI: 10.1111/j.1471-4159.1988.tb01833.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of heat stress on protein synthesis and fast axonal transport were examined in an in vitro bullfrog primary afferent neuron preparation. The magnitude of effect was determined for individual [35S]methionine-labelled protein species separated via two-dimensional gel electrophoresis. Elevation of temperature of the preparation from 18 degrees C to 33 degrees C caused a transient inhibition of synthesis of non-heat-shock proteins, whereas the synthesis of a 74,000-dalton protein increased to 927% of controls after 4 h. Similar prolonged stress conditions had no effect on the relative abundance of 36 individual, newly synthesized proteins undergoing fast axonal transport. A dramatic exception was represented by a 55,000-dalton glycoprotein whose fast transport was increased to 291% of control. The increase in transport of this protein during a time when synthesis and transport of other non-heat-shock proteins were not enhanced suggests that it may play a unique role in the early cellular events that mediate survival or thermotolerance in the neuron.
Collapse
Affiliation(s)
- G C Stone
- Division of Molecular Biology and Neural Regeneration, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | | |
Collapse
|
9
|
Abstract
Within 6 h after radiolabeled phosphate was injected into the eye of goldfish, labeled acid-soluble and acid-precipitable material began to appear in the optic nerve and subsequently also in the lobe of the optic tectum, to which the optic axons project. From the rate of appearance of the acid-precipitable material, a maximal velocity of axonal transport of 13-21 mm/day could be calculated, consistent with fast axonal transport group II. Examination of individual proteins by two-dimensional gel electrophoresis revealed that approximately 20 proteins were phosphorylated in normal and regenerating nerves. These ranged in molecular weight from approximately 18,000 to 180,000 and in pI from 4.4 to 6.9. Among them were several fast transported proteins, including protein 4, which is the equivalent of the growth-associated protein GAP-43. In addition, there was phosphorylation of some recognizable constituents of slow axonal transport, including alpha-tubulin, a neurofilament constituent (NF), and another intermediate filament protein characteristic of goldfish optic axons (ON2). At least some axonal proteins, therefore, may become phosphorylated as a result of the axonal transport of a phosphate carrier. Some of the proteins labeled by intraocular injection of 32P showed changes in phosphorylation during regeneration of the optic axons. By 3-4 weeks after an optic tract lesion, five proteins, including protein 4, showed a significant increase in labeling in the intact segment of nerve between the eye and the lesion, whereas at least four others (including ON2) showed a significant decrease. When local incorporation of radiolabeled phosphate into the nerve was examined by incubating nerve segments in 32P-containing medium, there was little or no labeling of the proteins that showed changes in phosphorylation during regeneration. Segments of either normal or regenerating nerves showed strong labeling of several other proteins, particularly a group ranging in molecular weight from 46,000 to 58,000 and in pI from 4.9 to 6.4. These proteins were presumably primarily of nonneuronal origin. Nevertheless, if degeneration of the axons had been caused by removal of the eye 1 week earlier, most of the labeling of these proteins was abolished. This suggests that phosphorylation of these proteins depends on the integrity of the optic axons.
Collapse
Affiliation(s)
- D C Larrivee
- Department of Physiology, Cornell University Medical College, New York, New York 10021
| | | |
Collapse
|
10
|
Tedeschi B, Wilson DL. Subsets of axonally transported and periaxonal polypeptides are released from regenerating nerve. J Neurochem 1987; 48:463-9. [PMID: 2432181 DOI: 10.1111/j.1471-4159.1987.tb04115.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using two-dimensional polyacrylamide gel electrophoresis to analyze proteins, we have found subsets of periaxonal and fast-transported axoplasmic proteins that are released in vitro from regenerating sciatic nerve into a surrounding bath. Of the fast-transported proteins that are released from nerve, there is a subset of at least five polypeptides that appears in greater relative abundance in the bath than in the nerve. Some of these released, fast-transported proteins are glycosylated. Several periaxonally synthesized polypeptides are released in significantly greater amounts from regenerating nerve, and of these polypeptides, two are released in greater amounts from nerve only at regions of regeneration or distal to regeneration. These released polypeptides do not represent the most abundant of the locally synthesized proteins. The released, fast-transported and periaxonal proteins may play a role in intercellular signaling or in modulation of the extracellular environment during nerve regeneration.
Collapse
|
11
|
Hammerschlag R, Stone GC, Bolen FA. A double-isotope procedure for examining protein microheterogeneity: multiple forms of fast-transported glycoproteins and sulfoproteins possess a common polypeptide chain. J Neurochem 1986; 46:569-73. [PMID: 2416879 DOI: 10.1111/j.1471-4159.1986.tb13005.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several fast-transported proteins that appear as single bands after sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolve into multiple spots during isoelectric focusing. A method was devised for determining if such microheterogeneity in net charge indicates that individual polypeptides have been posttranslationally modified to differing extents. Dorsal root ganglia were pulse-labeled with [35S]methionine and either [3H]leucine or [3H]proline, proteins fast-transported into peripheral sensory axons were separated by two-dimensional gel electrophoresis, and isotope incorporation ratios of proteins associated with individual gel spots were determined. When four microheterogeneous glycoproteins were analyzed, each protein "family" showed markedly similar isotope ratios for its three to seven characteristic spots. Such ratios differed between families by almost twofold. In addition, a group of nonglycosylated, sulfate-containing proteins was identified as a family on the basis of the similar isotope incorporation ratios of its component spots. These results suggest that protein microheterogeneity can result from variable sulfation of tyrosine residues as well as from variation in sialic acid-containing oligosaccharide side-chains. More generally, the method can be utilized to test for protein microheterogeneity in cases where the amounts of protein are too low to permit peptide mapping analysis and where the nature of the charge-altering modification is unknown.
Collapse
|
12
|
Stone GC, Hammerschlag R, Bobinski JA. Fast axonal transport of tyrosine sulfate-containing proteins: preferential routing of sulfoproteins toward nerve terminals. Cell Mol Neurobiol 1984; 4:249-62. [PMID: 6084552 DOI: 10.1007/bf00733588] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The presence of a subset of fast-transported proteins containing sulfate while lacking carbohydrate residues [Stone et al. (1983). J. Neurochem. 41:1085-1089] was confirmed by two-dimensional gel electrophoretic analysis of individual fast-transported proteins double-labeled with 35SO4 and [3H]mannose. Analysis by high-pressure liquid chromatography revealed that the sulfate moieties of these "sulfoproteins" are linked to tyrosine residues. Separation of fast-transported 35SO4-labeled proteins delivered to local regions of axon from proteins en route toward terminal regions demonstrated, on the basis of acid lability of tyrosine-bound sulfate, that the sulfoproteins were localized preferentially in the wavefront of fast-transported proteins. Analysis of individual sulfoproteins confirmed differential transport in that sulfoproteins were present at threefold greater amount in the wavefront than in material off-loaded to local regions of the axon. By contrast, nonsulfated species of molecular weights similar to those of the sulfoproteins were detected in nearly equal amounts in both regions of the transport profile. Treatment of nerve segments containing total 35SO4-labeled fast-transported proteins with sodium carbonate led to solubilization of half the protein-bound sulfate. Exposure of the solubilized proteins to mild acid resulted in the release of approximately 80% of the 35SO4 associated with this fraction. Two-dimensional gel patterns displaying carbonate releasable or nonreleasable fractions are consistent with the most abundantly labeled sulfoproteins being transported within membrane-bound organelles. In terms of apparent destination and subcellular compartmentalization, the sulfoproteins meet critical requirements for consideration as secretable fast-transported proteins.
Collapse
|
13
|
Stone GC, Hammerschlag R, Bobinski JA. Involvement of coated vesicles in the initiation of fast axonal transport. Brain Res 1984; 291:219-28. [PMID: 6199083 DOI: 10.1016/0006-8993(84)91254-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The present study examines whether coated vesicles play a role in the intrasomal transit of newly synthesized fast-transported proteins. Coated vesicles isolated from bullfrog brain were shown to have a protein composition and ultrastructure similar to purified bovine brain coated vesicles. Bullfrog brain was then used as unlabeled carrier for the isolation of coated vesicles from dorsal root ganglia labeled with [3H]leucine. Fast-transported [35S]methionine-labeled proteins were generated in separate preparations from sciatic nerve, and co-electrophoresed on two-dimensional gels with [3H]proteins of the coated vesicle fraction. The [35S]Met fluorographic X-ray film pattern was used as a guide to remove gel regions which were tested for the presence of 3H. By this means, 45 of 67 individual fast-transported proteins examined were found to contain significant levels of 3H. The fact that these proteins have similar net charge and molecular weight characteristics to the mature fast-transported proteins with which they co-migrated, suggests that such species have already undergone post-translational modifications prior to becoming associated with coated vesicles. Since most modifications of this type occur in the Golgi apparatus, it appears that the majority of fast-transported proteins are isolated in association with a population of post-Golgi coated vesicles. The role of coated vesicles is incorporated into a model describing the pathway taken by fast-transported proteins during the initiation of fast axonal transport.
Collapse
|
14
|
Stone GC, Hammerschlag R, Bobinski JA. Fast-transported glycoproteins and nonglycosylated proteins contain sulfate. J Neurochem 1983; 41:1085-9. [PMID: 6604790 DOI: 10.1111/j.1471-4159.1983.tb09055.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
35SO4-labeled fast-transported proteins of bullfrog dorsal root ganglion neurons were separated by two-dimensional gel electrophoresis, and their mobilities were compared to similar species labeled with [3H]mannose or [3H]fucose. Fluorography revealed regions of poorly resolved, high molecular weight material, likely to represent sulfated proteoglycans, as well as many well resolved spots that corresponded in mobility to individual [35S]methionine-labeled fast-transported proteins. The majority of these well resolved spots appeared as "families," previously identified as glycoproteins based on their labeling with sugars. Thus, sulfate can be a contributor to the carbohydrate side-chain charge that underlies microheterogeneity. The most heavily 35SO4-labeled species, however, corresponded to fast-transported proteins that were not labeled by either sugar. The relative acid labilities of 35SO4 associated with individual species cut from the gel confirmed the assignments of these spots as glycoproteins or nonglycoproteins. A group of spots intermediate in their acid lability was also detected, suggesting that some proteins may contain sulfate linked to carbohydrate as well as to amino acid residues.
Collapse
|