1
|
Cheng Y, Zhang R, Li X, Zhou X, Chen M, Liu A. The Dopamine Transporter Is a New Target for Ischemic Stroke. CNS Neurosci Ther 2024; 30:e70092. [PMID: 39467829 PMCID: PMC11518691 DOI: 10.1111/cns.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
AIMS Dopamine transporter (DAT) can regulate DA homeostasis and has been implicated in many nervous system diseases. Whether DAT is involved in the protection against ischemic stroke is unclear. METHODS In vivo microdialysis measurements of DA were recorded in the ischemic penumbral area of mice with middle cerebral artery occlusion (MCAO). DAT coding gene, Slc6a3 mutation, and DAT overexpression animals were performed MCAO. Madopar (compound formulation of levodopa) and nomifensine (DA reuptake inhibitor) were administered in MCAO animals. Brain slices were prepared in Slc6a3 mutation or wild-type (WT) animals with MCAO to record miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs). The effects of DA and its dopamine-1 receptor (D1R) antagonists (SCH-23390) on mEPSCs, mIPSCs, and neurons protection were recorded. RESULTS MCAO caused a prominent increase in DA. Slc6a3 mutation significantly attenuated the ischemic injury, whereas DAT overexpression aggravated this injury. Both nomifensine and madopar protected against brain injury. Slc6a3 mutation and DA restored the disturbance of mEPSCs and mIPSC, and protected against neuron death, which was abolished by SCH-23390. CONCLUSION DAT inhibition might be explored as a strategy for ischemic stroke prevention. DA and D1R involve in the restoration of synaptic dysfunction and neuron protection.
Collapse
Affiliation(s)
- Yan‐Qiong Cheng
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ruo‐Xi Zhang
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xing‐Yuan Li
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiao‐Ting Zhou
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ming Chen
- MOE Frontier Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Ai‐Jun Liu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Asmussen L, Frey BM, Frontzkowski LK, Wróbel PP, Grigutsch LS, Choe CU, Bönstrup M, Cheng B, Thomalla G, Quandt F, Gerloff C, Schulz R. Dopaminergic mesolimbic structural reserve is positively linked to better outcome after severe stroke. Brain Commun 2024; 6:fcae122. [PMID: 38712322 PMCID: PMC11073754 DOI: 10.1093/braincomms/fcae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
The concept of brain reserve capacity has emerged in stroke recovery research in recent years. Imaging-based biomarkers of brain health have helped to better understand outcome variability in clinical cohorts. Still, outcome inferences are far from being satisfactory, particularly in patients with severe initial deficits. Neurorehabilitation after stroke is a complex process, comprising adaption and learning processes, which, on their part, are critically influenced by motivational and reward-related cognitive processes. Amongst others, dopaminergic neurotransmission is a key contributor to these mechanisms. The question arises, whether the amount of structural reserve capacity in the dopaminergic system might inform about outcome variability after severe stroke. For this purpose, this study analysed imaging and clinical data of 42 severely impaired acute stroke patients. Brain volumetry was performed within the first 2 weeks after the event using the Computational Anatomy Toolbox CAT12, grey matter volume estimates were collected for seven key areas of the human dopaminergic system along the mesocortical, mesolimbic and nigrostriatal pathways. Ordinal logistic regression models related regional volumes to the functional outcome, operationalized by the modified Rankin Scale, obtained 3-6 months after stroke. Models were adjusted for age, lesion volume and initial impairment. The main finding was that larger volumes of the amygdala and the nucleus accumbens at baseline were positively associated with a more favourable outcome. These data suggest a link between the structural state of mesolimbic key areas contributing to motor learning, motivational and reward-related brain networks and potentially the success of neurorehabilitation. They might also provide novel evidence to reconsider dopaminergic interventions particularly in severely impaired stroke patients to enhance recovery after stroke.
Collapse
Affiliation(s)
- Liv Asmussen
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| | - Benedikt M Frey
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| | - Lukas K Frontzkowski
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| | - Paweł P Wróbel
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| | - L Sophie Grigutsch
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| | - Chi-un Choe
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| | - Marlene Bönstrup
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
- University Medical Center Leipzig, Department of Neurology, 04103 Leipzig, Germany
| | - Bastian Cheng
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| | - Götz Thomalla
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| | - Fanny Quandt
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| | - Christian Gerloff
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| | - Robert Schulz
- University Medical Center Hamburg-Eppendorf, Department of Neurology, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Wang C, Liu Y, Liu X, Zhang Y, Yan X, Deng X, Shi J. Scutellarin Alleviates Ischemic Brain Injury in the Acute Phase by Affecting the Activity of Neurotransmitters in Neurons. Molecules 2023; 28:molecules28073181. [PMID: 37049959 PMCID: PMC10095904 DOI: 10.3390/molecules28073181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Cerebral ischemic stroke is a common neuron loss disease that is caused by the interruption of the blood supply to the brain. In order to enhance the CIS outcome, both identifying the treatment target of ischemic brain damage in the acute phase and developing effective therapies are urgently needed. Scutellarin had been found to be beneficial to ischemic injuries and has been shown to have potent effects in clinical application on both stroke and myocardial infarction. However, whether scutellarin improves ischemic brain damage in the acute phase remains unknown. In this study, the protective effects of scutellarin on ischemic brain damage in the acute phase (within 12 h) were illustrated. In middle cerebral artery occlusion and reperfusion (MCAO/R) modeling rats, the Z-Longa score was significantly down-regulated by 25% and 23.1%, and the brain infarct size was reduced by 26.95 ± 0.03% and 25.63 ± 0.02% when responding to high-dose and low-dose scutellarin treatments, respectively. H&E and TUNEL staining results indicated that the neuron loss of the ischemic region was improved under scutellarin treatment. In order to investigate the mechanism of scutellarin's effects on ischemic brain damage in the acute phase, changes in proteins and metabolites were analyzed. The suppression of scutellarin on the glutamate-inducing excitatory amino acid toxicity was strongly indicated in the study of both proteomics and metabolomics. A molecular docking experiment presented strong interactions between scutellarin and glutamate receptors, which score much higher than those of memantine. Further, by performing a parallel reaction monitoring-mass spectrometry (PRM-MS) study on both the cortex and hippocampus tissue of the ischemic region, we screened the scutellarin-regulating molecules that are involved in both the release and transportation of neurotransmitters. It was found that the aberrant levels of glutamate receptors, including EAAT2, GRIN1, GRIN2B, and GRM1, as well as of other glutamatergic pathway-involving proteins, including CAMKK2, PSD95, and nNOS, were significantly regulated in the ischemic cortex. In the hippocampus, EAAT2, GRIN1, nNOS, and CAM were significantly regulated. Taken together, scutellarin exerts potent effects on ischemic brain damage in the acute phase by regulating the activity of neurotransmitters and reducing the toxicity of excitatory amino acids in in neurons.
Collapse
Affiliation(s)
- Chunguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100105, China
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100105, China
| | - Yaoyu Liu
- School of Trational Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100105, China
| | - Xi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100105, China
| | - Yuting Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100105, China
| | - Xingli Yan
- School of Trational Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100105, China
| | - Xinqi Deng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jinli Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100105, China
| |
Collapse
|
4
|
Barlow B, Landolf K, LaPlante R, Cercone J, Kim JY, Ghorashi S, Howell A, Armahizer M, Heavner MS. Electrolyte considerations in targeted temperature management. Am J Health Syst Pharm 2023; 80:102-110. [PMID: 36269999 DOI: 10.1093/ajhp/zxac307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Targeted temperature management (TTM), including normothermia and therapeutic hypothermia, is used primarily for comatose patients with return of spontaneous circulation after cardiac arrest or following neurological injury. Despite the potential benefits of TTM, risks associated with physiological alterations, including electrolyte shifts, may require intervention. SUMMARY This review describes the normal physiological balance of electrolytes and temperature-related alterations as well as the impact of derangements on patient outcomes, providing general recommendations for repletion and monitoring of key electrolytes, including potassium, phosphate, and magnesium. CONCLUSION Frequent monitoring and consideration of patient variables such as renal function and other risk factors for adverse effects are important areas of awareness for clinicians caring for patients undergoing TTM.
Collapse
Affiliation(s)
- Brooke Barlow
- Memorial Hermann Woodlands Medical Center, Shenandoah, TX, USA
| | - Kaitlin Landolf
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Reid LaPlante
- Department of Pharmacy, University of Maryland Medical Center, Baltimore, MD, USA
| | - Jessica Cercone
- Department of Pharmacy, St. Clair Health, Pittsburgh, PA, USA
| | - Ji-Yeon Kim
- Department of Pharmacy, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Sona Ghorashi
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Alexandria Howell
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Michael Armahizer
- Department of Pharmacy, University of Maryland Medical Center, Baltimore, MD, USA
| | - Mojdeh S Heavner
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
5
|
Zhang Y, Zhao X, Zhang Y, Zeng F, Yan S, Chen Y, Li Z, Zhou D, Liu L. The role of circadian clock in astrocytes: From cellular functions to ischemic stroke therapeutic targets. Front Neurosci 2022; 16:1013027. [PMID: 36570843 PMCID: PMC9772621 DOI: 10.3389/fnins.2022.1013027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that astrocytes, the abundant cell type in the central nervous system (CNS), play a critical role in maintaining the immune response after cerebral infarction, regulating the blood-brain barrier (BBB), providing nutrients to the neurons, and reuptake of glutamate. The circadian clock is an endogenous timing system that controls and optimizes biological processes. The central circadian clock and the peripheral clock are consistent, controlled by various circadian components, and participate in the pathophysiological process of astrocytes. Existing evidence shows that circadian rhythm controls the regulation of inflammatory responses by astrocytes in ischemic stroke (IS), regulates the repair of the BBB, and plays an essential role in a series of pathological processes such as neurotoxicity and neuroprotection. In this review, we highlight the importance of astrocytes in IS and discuss the potential role of the circadian clock in influencing astrocyte pathophysiology. A comprehensive understanding of the ability of the circadian clock to regulate astrocytes after stroke will improve our ability to predict the targets and biological functions of the circadian clock and gain insight into the basis of its intervention mechanism.
Collapse
Affiliation(s)
- Yuxing Zhang
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yao Chen
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhong Li
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,Desheng Zhou,
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,*Correspondence: Lijuan Liu,
| |
Collapse
|
6
|
Ghozy S, Reda A, Varney J, Elhawary AS, Shah J, Murry K, Sobeeh MG, Nayak SS, Azzam AY, Brinjikji W, Kadirvel R, Kallmes DF. Neuroprotection in Acute Ischemic Stroke: A Battle Against the Biology of Nature. Front Neurol 2022; 13:870141. [PMID: 35711268 PMCID: PMC9195142 DOI: 10.3389/fneur.2022.870141] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke is the second most common cause of global death following coronary artery disease. Time is crucial in managing stroke to reduce the rapidly progressing insult of the ischemic penumbra and the serious neurologic deficits that might follow it. Strokes are mainly either hemorrhagic or ischemic, with ischemic being the most common of all types of strokes. Thrombolytic therapy with recombinant tissue plasminogen activator and endovascular thrombectomy are the main types of management of acute ischemic stroke (AIS). In addition, there is a vital need for neuroprotection in the setting of AIS. Neuroprotective agents are important to investigate as they may reduce mortality, lessen disability, and improve quality of life after AIS. In our review, we will discuss the main types of management and the different modalities of neuroprotection, their mechanisms of action, and evidence of their effectiveness after ischemic stroke.
Collapse
Affiliation(s)
- Sherief Ghozy
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States.,Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC Program), Oxford University, Oxford, United Kingdom
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Joseph Varney
- School of Medicine, American University of the Caribbean, Philipsburg, Sint Maarten
| | | | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | | | - Mohamed Gomaa Sobeeh
- Faculty of Physical Therapy, Sinai University, Cairo, Egypt.,Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Sandeep S Nayak
- Department of Internal Medicine, NYC Health + Hospitals/Metropolitan, New York, NY, United States
| | - Ahmed Y Azzam
- Faculty of Medicine, October 6 University, Giza, Egypt
| | - Waleed Brinjikji
- Department of Neurosurgery, Mayo Clinic Rochester, Rochester, MN, United States
| | | | - David F Kallmes
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Gursoy M, Gul Z, Buyukuysal RL. Sigma receptor ligands haloperidol and ifenprodil attenuate hypoxia induced dopamine release in rat striatum. Neurol Res 2022; 44:927-936. [DOI: 10.1080/01616412.2022.2072100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Murat Gursoy
- Bursa Provincial Health Directorate, T.C. Ministry of Health, Bursa, Turkey
| | - Zulfiye Gul
- Department of Medical Pharmacology, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
| | - R. Levent Buyukuysal
- Department of Medical Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
8
|
Guseynov NA, Ivashkevich SG, Boyko EM. Physiological features of cells and microvasculature under the local hypothermia influence. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-1-34-41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Hypothermia or cold therapy is the local or systemic application of cold for therapeutic purposes. Local application of cold is used to control inflammation: pain and swelling, hematoma and trismus reduction. Despite the frequent use of cooling in prosthodontic rehabilitation and in physical therapy, as evidenced by many reports in the literature, there is scientific documentation that suggests disadvantages of using this treatment in maxillofacial surgery and oral surgery. Also the clinical studies that have been carried out in maxillofacial surgery and oral surgery have been conducted in an empirical manner, which casts doubt on the results. In view of this, it is relevant to study the mechanisms of microcirculatory preconditioning and hypothermia. This physiological process is so interesting for the development of medical devices of controlled hardware hypothermia to prevent inflammatory symptoms at the stage of rehabilitation by targeting the vascular and cellular component of the inflammatory process in different areas of the human body. To date, the use of local hardware controlled hypothermia in various pathological conditions in humans is a topical trend in medicine. Microcirculatory bloodstream is directly related to temperature factors. Although there are concepts of vascular spasm or dilatation in the microcirculatory bloodstream during systemic hypothermia, there are no reliable data on the cellular and vascular reactions during local hypothermia. In this paper, a search for fundamental and current scientific work on the topic of cellular and vascular changes under the influence of hypothermia was conducted. The search for data revealed that the mechanisms of intracellular hypothermia are of particular interest for the development of therapeutic treatments after surgical interventions in areas with extensive blood supply. With this in mind, it is relevant to investigate several areas: the role of endothelium, glycocalyx and blood cells in microcirculatory-mediated preconditioning and intracellular hypothermia, and in the molecular mechanism that regulates these processes, whether they occur in the same way in all tissues.
Collapse
|
9
|
Guseynov NA, Ivashkevich SG, Boyko EM. Physiological features of cells and microvasculature under the local hypothermia influence. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-1-33-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Hypothermia or cold therapy is the local or systemic application of cold for therapeutic purposes. Local application of cold is used to control inflammation: pain and swelling, hematoma and trismus reduction. Despite the frequent use of cooling in prosthodontic rehabilitation and in physical therapy, as evidenced by many reports in the literature, there is scientific documentation that suggests disadvantages of using this treatment in maxillofacial surgery and oral surgery. Also the clinical studies that have been carried out in maxillofacial surgery and oral surgery have been conducted in an empirical manner, which casts doubt on the results. In view of this, it is relevant to study the mechanisms of microcirculatory preconditioning and hypothermia. This physiological process is so interesting for the development of medical devices of controlled hardware hypothermia to prevent inflammatory symptoms at the stage of rehabilitation by targeting the vascular and cellular component of the inflammatory process in different areas of the human body. To date, the use of local hardware controlled hypothermia in various pathological conditions in humans is a topical trend in medicine. Microcirculatory bloodstream is directly related to temperature factors. Although there are concepts of vascular spasm or dilatation in the microcirculatory bloodstream during systemic hypothermia, there are no reliable data on the cellular and vascular reactions during local hypothermia. In this paper, a search for fundamental and current scientific work on the topic of cellular and vascular changes under the influence of hypothermia was conducted. The search for data revealed that the mechanisms of intracellular hypothermia are of particular interest for the development of therapeutic treatments after surgical interventions in areas with extensive blood supply. With this in mind, it is relevant to investigate several areas: the role of endothelium, glycocalyx and blood cells in microcirculatory-mediated preconditioning and intracellular hypothermia, and in the molecular mechanism that regulates these processes, whether they occur in the same way in all tissues.
Collapse
|
10
|
Toader AM, Hoteiuc O, Bidian C, Oltean DD, Tabaran F, Grad O, Clichici S, Mitrea DR. Neuronal apoptosis can be prevented by the combined therapy with melatonin and hypothermia in a neonatal rat model of hypoxic-ischemic encephalopathy. Med Pharm Rep 2021; 94:197-207. [PMID: 34013191 PMCID: PMC8118207 DOI: 10.15386/mpr-1903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Birth hypoxia is a leading cause of perinatal mortality and neurological morbidity, resulting in central nervous system injury. Cerebral hypoxia and ischemia can produce a severe brain damage following a typical pattern, defined by selective vulnerability of the brain regions. The neonates are most prone to hypoxic-ischemic injuries due to the lack of efficient antioxidant defense. Neonatal hypoxia-ischemia (HI) in a 7-day-old rat HI model can produce cell death by apoptotic or necrotic mechanisms. The degree of apoptotic or necrotic mechanisms responsible for cell death in neonatal hypoxia-ischemia are not very clear as yet. The form of neuronal death may also depend on the severity of ischemic injury. Necrosis predominates in more severe cases, whereas apoptosis occurs in areas with milder ischemic injury. A human study demonstrated apoptotic and necrotic forms of cell death after hypoxic injury, whereas in some brains from stillbirths, only apoptotic figures were observed. The expression of activated caspase-3 reflects the role of apoptosis in neonatal hypoxic ischemic brain injury. Objectives The aim of this study was to evaluate the possible neuroprotective effect of melatonin and hypothermia in hypoxic-ischemic encephalopathy in newborn rats. Local damages induced by hypoxia and ischemia were assessed by evaluating the changes in terms of histology and apoptosis. Methods The experiment was conducted on 20 newborn Wistar rats premedicated for seven days with melatonin in a dose of 20 mg/kg/day. On the 7th postnatal day (P7), the newborn rats were exposed to ischemia (by clamping the right carotid artery) and hypobaric hypoxia (8% O2 for 90 minutes) and some groups to hypothermia. Results In this experimental model of neonatal encephalopathy, melatonin, in a dose of 20 mg/kg/day has neuroprotective effect by reducing the number of cells expressing apoptosis in Cornu Ammonis (CA) (Ammon's Horn) CA1, CA2, CA3 and dentate gyrus of the hippocampus when combined with hypothermia. Conclusion The results of this study prove that melatonin is protective in ischemic-hypoxic brain injuries, but the protection is conditioned in most of the brain regions (excepting cerebral cortex) by conjugation with post-injury hypothermia treatment.
Collapse
Affiliation(s)
- Alina Mihaela Toader
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Hoteiuc
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Bidian
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan-Daniel Oltean
- Department of Surgical Specialties, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- Department of Morphopathology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania
| | - Ovidiu Grad
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniela Rodica Mitrea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Fachim HA, Guizzo R, Cunha AOS, Pereira AC, Anjos LC, Mortari MR, Santos WF. Ceftriaxone pretreatment confers neuroprotection in rats with acute glaucoma and reduces the score of seizures induced by pentylenotetrazole in mice. J Biochem Mol Toxicol 2020; 34:e22578. [DOI: 10.1002/jbt.22578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/01/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Helene A. Fachim
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Renato Guizzo
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Alexandra O. S. Cunha
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Adriana C. Pereira
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Lilian C. Anjos
- Neuropharmacology Laboratory, Department of Physiological Sciences University of Brasília‐UnB Brasília Brazil
| | - Márcia R. Mortari
- Neuropharmacology Laboratory, Department of Physiological Sciences University of Brasília‐UnB Brasília Brazil
| | - Wagner F. Santos
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| |
Collapse
|
12
|
Wang Y, Wang X, Zhang X, Chen S, Sun Y, Liu W, Jin X, Zheng G. D1 receptor-mediated endogenous tPA upregulation contributes to blood-brain barrier injury after acute ischaemic stroke. J Cell Mol Med 2020; 24:9255-9266. [PMID: 32627929 PMCID: PMC7417722 DOI: 10.1111/jcmm.15570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Blood‐brain barrier (BBB) integrity injury within the thrombolytic time window is becoming a critical target to reduce haemorrhage transformation (HT). We have previously reported that BBB damage was initially damaged in non‐infarcted striatum after acute ischaemia stroke. However, the underlying mechanism is not clear. Since acute ischaemic stroke could induce a significant increase of dopamine release in striatum, in current study, our aim is to investigate the role of dopamine receptor signal pathway in BBB integrity injury after acute ischaemia using rat middle cerebral artery occlusion model. Our data showed that 2‐h ischaemia induced a significant increase of endogenous tissue plasminogen activator (tPA) in BBB injury area and intra‐striatum infusion of tPA inhibitor neuroserpin, significantly alleviated 2‐h ischaemia‐induced BBB injury. In addition, intra‐striatum infusion of D1 receptor antagonist SCH23390 significantly decreased ischaemia‐induced upregulation of endogenous tPA, accompanied by decrease of BBB injury and occludin degradation. More important, inhibition of hypoxia‐inducible factor‐1 alpha with inhibitor YC‐1 significantly decreased 2‐h ischaemia‐induced endogenous tPA upregulation and BBB injury. Taken together, our data demonstrate that acute ischaemia disrupted BBB through activation of endogenous tPA via HIF‐1α upregulation, thus representing a new therapeutic target for protecting BBB after acute ischaemic stroke.
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaona Wang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyu Zhang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuang Chen
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinchun Jin
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Guoqing Zheng
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Zhong ZF, Han J, Zhang JZ, Xiao Q, Chen JY, Zhang K, Hu J, Chen LD. Neuroprotective Effects of Salidroside on Cerebral Ischemia/Reperfusion-Induced Behavioral Impairment Involves the Dopaminergic System. Front Pharmacol 2019; 10:1433. [PMID: 31920641 PMCID: PMC6923222 DOI: 10.3389/fphar.2019.01433] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Salidroside, a phenylpropanoid glycoside, is the main bioactive component of Rhodiola rosea L. Salidroside has prominent anti-stroke effects in cerebral ischemia/reperfusion models. However, the underlying mechanisms of its actions are poorly understood. This study examined the anti-stroke effects of salidroside in middle cerebral artery occlusion (MCAO)-induced rat model of stroke and its potential mechanisms involving the dopaminergic system. Salidroside administration increased the levels of dopamine (DA), homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) in the ipsilateral striatum after induction of transient ischemia, which were assessed using microdialysis with high-performance liquid chromatography coupled with electrochemical detection (HPLC-ECD). Furthermore, treatment with salidroside ameliorated neurobehavioral impairment, assessed with the modified neurological severity scores (mNSS), the balance beam test, and the foot fault test. Moreover, enzyme-linked immunosorbent assay (ELISA) suggested that MCAO-induced reduction in monoamine oxidase (MAO) was inhibited by salidroside. Immunohistochemical and immunofluorescence analyses revealed high level of tyrosine hydroxylase (TH) in the ipsilateral striatal caudate putamen (CPu) after cerebral ischemia/reperfusion, which could be further elevated by salidroside. In addition, salidroside could reverse the decreased immunoreactivity of TH in the substantia nigra pars compacta (SNpc). These results suggest that the anti-stroke effects of salidroside in MCAO-induced cerebral ischemia/reperfusion may involve the modulation of monoamine metabolism in the striatum and SNpc, which may be related to the function of the dopaminergic system in the rat brain.
Collapse
Affiliation(s)
- Zhi-Feng Zhong
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China.,Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China
| | - Ji-Zhou Zhang
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China
| | - Qing Xiao
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China
| | - Jing-Yan Chen
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China
| | - Kai Zhang
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China
| | - Juan Hu
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China.,School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li-Dian Chen
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, China.,School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
14
|
Roles Played by the Na +/Ca 2+ Exchanger and Hypothermia in the Prevention of Ischemia-Induced Carrier-Mediated Efflux of Catecholamines into the Extracellular Space: Implications for Stroke Therapy. Neurochem Res 2019; 45:16-33. [PMID: 31346893 PMCID: PMC6942591 DOI: 10.1007/s11064-019-02842-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/30/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
The release of [3H]dopamine ([3H]DA) and [3H]noradrenaline ([3H]NA) in acutely perfused rat striatal and cortical slice preparations was measured at 37 °C and 17 °C under ischemic conditions. The ischemia was simulated by the removal of oxygen and glucose from the Krebs solution. At 37 °C, resting release rates in response to ischemia were increased; in contrast, at 17 °C, resting release rates were significantly reduced, or resting release was completely prevented. The removal of extracellular Ca2+ further increased the release rates of [3H]DA and [3H]NA induced by ischemic conditions. This finding indicated that the Na+/Ca2+ exchanger (NCX), working in reverse in the absence of extracellular Ca2+, fails to trigger the influx of Ca2+ in exchange for Na+ and fails to counteract ischemia by further increasing the intracellular Na+ concentration ([Na+]i). KB-R7943, an inhibitor of NCX, significantly reduced the cytoplasmic resting release rate of catecholamines under ischemic conditions and under conditions where Ca2+ was removed. Hypothermia inhibited the excessive release of [3H]DA in response to ischemia, even in the absence of Ca2+. These findings further indicate that the NCX plays an important role in maintaining a high [Na+]i, a condition that may lead to the reversal of monoamine transporter functions; this effect consequently leads to the excessive cytoplasmic tonic release of monoamines and the reversal of the NCX. Using HPLC combined with scintillation spectrometry, hypothermia, which enhances the stimulation-evoked release of DA, was found to inhibit the efflux of toxic DA metabolites, such as 3,4-dihydroxyphenylacetaldehyde (DOPAL). In slices prepared from human cortical brain tissue removed during elective neurosurgery, the uptake and release values for [3H]NA did not differ from those measured at 37 °C in slices that were previously maintained under hypoxic conditions at 8 °C for 20 h. This result indicates that hypothermia preserves the functions of the transport and release mechanisms, even under hypoxic conditions. Oxidative stress (H2O2), a mediator of ischemic brain injury enhanced the striatal resting release of [3H]DA and its toxic metabolites (DOPAL, quinone). The study supports our earlier findings that during ischemia transmitters are released from the cytoplasm. In addition, the major findings of this study that hypothermia of brain slice preparations prevents the extracellular calcium concentration ([Ca2+]o)-independent non-vesicular transmitter release induced by ischemic insults, inhibiting Na+/Cl−-dependent membrane transport of monoamines and their toxic metabolites into the extracellular space, where they can exert toxic effects.
Collapse
|
15
|
A Metabonomics Investigation into the Therapeutic Effects of BuChang NaoXinTong Capsules on Reversing the Amino Acid-Protein Interaction Network of Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7258624. [PMID: 31015890 PMCID: PMC6446104 DOI: 10.1155/2019/7258624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 02/05/2023]
Abstract
Background Amino acids (AAs) in cerebrospinal fluid (CSF) play a pivotal role in cerebral ischemia (CI). BuChang NaoXinTong Capsules (BNC) are widely prescribed in Chinese medicine for the treatment of cerebrovascular and cardiovascular diseases. Methods In order to investigate the therapeutic effects and pharmacological mechanisms of BNC on reversing CI from a system level, an amino acid-protein interaction imbalanced network of CI containing metabolites of AAs, key regulatory enzymes, and proteins was constructed for the first time. Furthermore, a novel method for detecting the ten AAs in CSF was developed by UPLC-QQQ-MS in an effort to validate the imbalanced networks and the therapeutic effects of BNC via analysis of metabolites. Results Based on a middle cerebral artery occlusion (MCAO) rat model, the dynamic levels of amino acids in CSF 3, 6, 12, and 24 h after MCAO were analyzed. Up to 24 h, the accumulated nine AA biomarkers were found to significantly change in the MCAO group compared to the sham group and exhibited an obvious tendency for returning to baseline values after BNC treatment. In addition, based on the imbalanced network of CI, four key enzymes that regulate the generation of BNC-mediated AA biomarkers were selected and validated using an enzyme-linked immunosorbent assay and western blotting. Finally, aromatic-L-amino-acid decarboxylase (AADC) was found to be one of the putative targets for BNC-mediated protection against CI. Conclusion This study provides new strategies to explore the mechanism of cerebral ischemia and help discover the potential mechanism of BNC.
Collapse
|
16
|
Maldonado JR. Delirium pathophysiology: An updated hypothesis of the etiology of acute brain failure. Int J Geriatr Psychiatry 2018; 33:1428-1457. [PMID: 29278283 DOI: 10.1002/gps.4823] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Delirium is the most common neuropsychiatric syndrome encountered by clinicians dealing with older adults and the medically ill and is best characterized by 5 core domains: cognitive deficits, attentional deficits, circadian rhythm dysregulation, emotional dysregulation, and alteration in psychomotor functioning. DESIGN An extensive literature review and consolidation of published data into a novel interpretation of known pathophysiological causes of delirium. RESULTS Available data suggest that numerous pathological factors may serve as precipitants for delirium, each having differential effects depending on patient-specific patient physiological characteristics (substrate). On the basis of an extensive literature search, a newly proposed theory, the systems integration failure hypothesis, was developed to bring together the most salient previously described theories, by describing the various contributions from each into a complex web of pathways-highlighting areas of intersection and commonalities and explaining how the variable contribution of these may lead to the development of various cognitive and behavioral dysfunctions characteristic of delirium. The specific cognitive and behavioral manifestations of the specific delirium picture result from a combination of neurotransmitter function and availability, variability in integration and processing of sensory information, motor responses to both external and internal cues, and the degree of breakdown in neuronal network connectivity, hence the term acute brain failure. CONCLUSIONS The systems integration failure hypothesis attempts to explain how the various proposed delirium pathophysiologic theories interact with each other, causing various clinically observed delirium phenotypes. A better understanding of the underlying pathophysiology of delirium may eventually assist in designing better prevention and management approaches.
Collapse
|
17
|
Gower A, Tiberi M. The Intersection of Central Dopamine System and Stroke: Potential Avenues Aiming at Enhancement of Motor Recovery. Front Synaptic Neurosci 2018; 10:18. [PMID: 30034335 PMCID: PMC6043669 DOI: 10.3389/fnsyn.2018.00018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dopamine, a major neurotransmitter, plays a role in a wide range of brain sensorimotor functions. Parkinson's disease and schizophrenia are two major human neuropsychiatric disorders typically associated with dysfunctional dopamine activity levels, which can be alleviated through the druggability of the dopaminergic systems. Meanwhile, several studies suggest that optimal brain dopamine activity levels are also significantly impacted in other serious neurological conditions, notably stroke, but this has yet to be fully appreciated at both basic and clinical research levels. This is of utmost importance as there is a need for better treatments to improve recovery from stroke. Here, we discuss the state of knowledge regarding the modulation of dopaminergic systems following stroke, and the use of dopamine boosting therapies in animal stroke models to improve stroke recovery. Indeed, studies in animals and humans show stroke leads to changes in dopamine functioning. Moreover, evidence from animal stroke models suggests stimulation of dopamine receptors may be a promising therapeutic approach for enhancing motor recovery from stroke. With respect to the latter, we discuss the evidence for several possible receptor-linked mechanisms by which improved motor recovery may be mediated. One avenue of particular promise is the subtype-selective stimulation of dopamine receptors in conjunction with physical therapy. However, results from clinical trials so far have been more mixed due to a number of potential reasons including, targeting of the wrong patient populations and use of drugs which modulate a wide array of receptors. Notwithstanding these issues, it is hoped that future research endeavors will assist in the development of more refined dopaminergic therapeutic approaches to enhance stroke recovery.
Collapse
Affiliation(s)
- Annette Gower
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Mario Tiberi
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Zhu S, Yam M, Wang Y, Linton JD, Grenell A, Hurley JB, Du J. Impact of euthanasia, dissection and postmortem delay on metabolic profile in mouse retina and RPE/choroid. Exp Eye Res 2018; 174:113-120. [PMID: 29864440 DOI: 10.1016/j.exer.2018.05.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/02/2023]
Abstract
Metabolomics studies in the retina and retinal pigment epithelium (RPE) in animal models or postmortem donors are essential to understanding the retinal metabolism and to revealing the underlying mechanisms of retinal degenerative diseases. We have studied how different methods of euthanasia (CO2 or cervical dislocation) different isolation procedures and postmortem delay affect metabolites in mouse retina and RPE/choroid using LC MS/MS and GC MS. Compared with cervical dislocation, CO2 exposure for 5 min dramatically degrades ATP and GTP into purine metabolites in the retina while raising intermediates in glucose metabolism and amino acids in the RPE/choroid. Isolation in cold buffer containing glucose has the least change in metabolites. Postmortem delay time-dependently and differentially impacts metabolites in the retina and RPE/choroid. In the postmortem retina, 18% of metabolites were changed at 0.5 h (h), 41% at 4 h and 51% at 8 h. However, only 6% of metabolites were changed in the postmortem RPE/choroid and it steadily increased to 20% at 8 h. Notably, both postmortem retina and RPE/choroid tissue showed increased purine metabolites. Storage of eyes in cold nutrient-rich medium substantially blocked the postmortem change in the retina and RPE/choroid. In conclusion, our study provides optimized methods to prepare fresh or postmortem retina and RPE/choroid tissue for metabolomics studies.
Collapse
Affiliation(s)
- Siyan Zhu
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506, USA; Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Michelle Yam
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506, USA; Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506, USA; Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Jonathan D Linton
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
| | - Allison Grenell
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506, USA; Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, WV 26506, USA; Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
19
|
Zhu B, Cao H, Sun L, Li B, Guo L, Duan J, Zhu H, Zhang Q. Metabolomics-based mechanisms exploration of Huang-Lian Jie-Du decoction on cerebral ischemia via UPLC-Q-TOF/MS analysis on rat serum. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:147-156. [PMID: 29360497 DOI: 10.1016/j.jep.2018.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian Jie-Du decoction (HLJDD), a traditional formula of Chinese medicine constituted with Rhizoma Coptidis, RadixScutellariae, CortexPhellodendri amurensis and Fructus Gardeniae, exhibits unambiguous therapeutic effect on cerebral ischemia via multi-targets action. Further investigation, however, is still required to explore the relationship between those mechanisms and targets through system approaches. MATERIALS AND METHODS Rats of cerebral ischemia were completed by middle cerebral artery occlusion (MCAO) with reperfusion. Following evaluation of pharmacological actions of HLJDD on MCAO rats, the plasma samples from rats of control, MCAO and HLJDD-treated MCAO groups were prepared strictly and subjected to ultra-performance liquid chromatography quadrupole time of flight mass spectrometry for metabolites analysis. The raw mass data were imported to MassLynx software for peak detection and alignment, and further introduced to EZinfo 2.0 software for orthogonal projection to latent structures analysis, principal component analysis and partial least-squares-discriminant analysis. The metabolic pathways assay of those potential biomarkers were performed with MetaboAnalyst through the online database, HMDB, Metlin, KEGG and SMPD. Those intriguing metabolic pathways were further investigated via biochemical assay. RESULTS HLJDD ameliorated the MCAO-induce cerebral damage and blocked the severe inflammation response. There were nineteen different biomarkers identified among control, MCAO and HLJDD-treated MCAO groups. Ten metabolic pathways were proposed from these significant metabolites. Incorporation with the biochemical assay of cerebral tissue, modulation of metabolic stress, regulation glutamate/GABA-glutamine cycle and enhancement of cholinergic neurons function were explored that involved in the actions of HLJDD on cerebral ischemia. CONCLUSION HLJDD achieves therapeutic action on cerebral ischemia via coordinating the basic pathophysiological network of metabolic stress, glutamate metabolism, and acetylcholine levels and function.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Animals
- Behavior, Animal/drug effects
- Biomarkers/blood
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Chromatography, Liquid
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Energy Metabolism/drug effects
- Glutamic Acid/metabolism
- Infarction, Middle Cerebral Artery/blood
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/psychology
- Inflammation Mediators/blood
- Least-Squares Analysis
- Male
- Metabolomics/methods
- Multivariate Analysis
- Neuroprotective Agents/pharmacology
- Principal Component Analysis
- Rats, Sprague-Dawley
- Spectrometry, Mass, Electrospray Ionization
- Stress, Physiological/drug effects
- Time Factors
Collapse
Affiliation(s)
- Baojie Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huiting Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Limin Sun
- School of Traditional Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| | - Bo Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liwei Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qichun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
20
|
Stradecki-Cohan HM, Cohan CH, Raval AP, Dave KR, Reginensi D, Gittens RA, Youbi M, Perez-Pinzon MA. Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition. J Alzheimers Dis 2018; 60:S87-S105. [PMID: 28453486 DOI: 10.3233/jad-170057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer's disease. The "regenerative" capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to several disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer's disease.
Collapse
Affiliation(s)
- Holly M Stradecki-Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles H Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Ami P Raval
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Kunjan R Dave
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Reginensi
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Rolando A Gittens
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Mehdi Youbi
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
21
|
Amantea D, Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance. Curr Opin Pharmacol 2017; 35:111-119. [DOI: 10.1016/j.coph.2017.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022]
|
22
|
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol 2017; 292:63-79. [PMID: 28274862 PMCID: PMC5400679 DOI: 10.1016/j.expneurol.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allen Liu
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Jóźwiak-Bębenista M, Wiktorowska-Owczarek A, Kowalczyk E. Beta-adrenoceptor-mediated cyclic AMP signal in different types of cultured nerve cells in normoxic and hypoxic conditions. Mol Biol 2016. [DOI: 10.1134/s0026893316050071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Turner AJ, Nalivaeva NN, Fonnum F, Tipton KF, Hausmann L, Schulz JB. Reflections on 60 years of publication of the Journal of Neurochemistry. J Neurochem 2016; 139 Suppl 2:7-16. [PMID: 27534601 DOI: 10.1111/jnc.13673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
This review reflects on the origins, development, publishing trends, and scientific directions of the Journal of Neurochemistry over its 60 year lifespan as seen by key contributors to the Journal's production. The Journal first appeared in May 1956 with just two issues published in that inaugural year. By 1963, it appeared monthly and, by 2002, 24 hard copy issues were published yearly. In 2014, the Journal became online only. For much of its time, the Journal was managed through two separate editorial offices each with their respective Chief Editor (the 'Western' and 'Eastern' hemispheres). The Journal was restructured to operate through a single editorial office and Editor-in-Chief from 2013. Scientifically, the Journal progressed through distinct scientific eras with the first two decades generally centered around developments in methodology followed by a period when publications delved deeper into underlying mechanisms. By the late 1980s, the Journal had entered the age of genetics and beyond, with an increasing focus on neurodegenerative diseases. Reviews have played a regular part in the success of J Neurochem with focused special and virtual issues being a highlight of recent years. Today, 60 years and onwards, J Neurochem continues to be a leading source of top-quality, original and review articles in neuroscience. We look forward to its continued success at the forefront of neurochemistry in the decades to come. This article celebrates 60 years of publication of Journal of Neurochemistry including personal reminiscences from some of the Chief Editors, past and present, as well as input from some of the key contributors to the Journal over this period. We highlight the scientific, technological, and publishing developments along the way, with reference to key papers published in the Journal. The support of the Journal toward the aims and objectives of the International Society for Neurochemistry (ISN) is also emphasized. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Natalia N Nalivaeva
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Keith F Tipton
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Laura Hausmann
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany. .,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
25
|
Abstract
Ischemic brain injury produced by stroke or cardiac arrest is a major cause of human neurological disability. Steady advances in the neurosciences have elucidated pathophysiological mechanisms of brain ischemia and have suggested many therapeutic approaches directed at specific injury mechanisms to achieve neuroprotection of the acutely ischemic brain. The first portion of this two-part review highlights the differentiating features and pathological mechanisms of focal and global cerebral ischemic injury and summarizes a wealth of recent evidence as to how antagonism of excitatory amino acid neurotoxicity, mediated via NMDA as well as non-NMDA receptors, may offer a means of diminishing the extent of ischemic injury. The Neuroscientist 1:95-103, 1995
Collapse
Affiliation(s)
- Myron D. Ginsberg
- Cerebral Vascular Disease Research Center Department
of Neurology University of Miami School of Medicine Miami, Florida
| |
Collapse
|
26
|
Abstract
Ischemic brain injury produced by stroke or cardiac arrest is a major cause of human neurological disability. Steady advances in the neurosciences have elucidated the pathophysiological mechanisms of brain ischemia and have suggested many therapeutic approaches to achieve neuroprotection of the acutely ischemic brain that are directed at specific injury mechanisms. In the second portion of this two-part review, the following potential therapeutic approaches to acute ischemic injury are considered: 1) modulation of nonglutamatergic neurotransmission, including monoaminergic systems (dopamine, norepinephrine, serotonin), γ-aminobutyric acid, and adenosine; 2) mild-to-moderate therapeutic hypothermia; 3) calcium channel antagonism; 4) an tagonism of oxygen free radicals; 5) modulation of the nitric oxide system; 6) antagonism of cytoskeletal proteolysis; 7) growth factor administration; 8) therapy directed at cellular mediators of injury; and 9) the rationale for combination pharmacotherapy. The Neuroscientist 1:164-175, 1995
Collapse
Affiliation(s)
- Myron D. Ginsberg
- Cerebral Vascular Disease Research Center Department
of Neurology University of Miami School of Medicine Miami, Florida
| |
Collapse
|
27
|
Freedman JE, Lin YJ. REVIEW ■ : ATP-sensitive Potassium Channels: Diverse Functions in the Central Nervous System. Neuroscientist 2016. [DOI: 10.1177/107385849600200309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ATP-sensitive potassium channels open when cytoplasmic levels of ATP drop, thus linking membrane potential to the metabolic state of the cell. Cloning studies have suggested that these channels are related structurally to the inward rectifier family of potassium channels, with two putative membrane-spanning regions. Sulfonylurea drugs, which are used in the treatment of diabetes, inhibit these channels by binding to an associated membrane protein. Other drugs, including some vasodilators, activate ATP-sensitive potassium channels. Diverse neurotransmitter and hormone receptors can modulate these channels, in some cases through interactions with guanyl nucleotide binding proteins. There appear to be multiple subtypes of these channels, differing in electrical properties as well as in drug sensitivities. In the brain, these channels appear to play a role in mediating satiety after feeding. They also function in neurons to protect against excitotoxicity, by counteracting the membrane depolarization associated with metabolic stress. Brain dopamine receptors appear to modulate a novel subtype of ATP-sensitive potassium channel. The association of dopamine receptors with a mechanism involved in protection against neurodegeneration may have implications for the causes of diseases in which dopaminergic regions of brain undergo structural changes, possibly including schizophrenia. NEUROSCIENTIST 2:145-152, 1996
Collapse
Affiliation(s)
- Jonathan E. Freedman
- Department of Pharmaceutical Sciences Northeastern University
Boston, Massachusetts
| | - Yong-Jian Lin
- Department of Pharmaceutical Sciences Northeastern University
Boston, Massachusetts
| |
Collapse
|
28
|
Knowles MD, de la Tremblaye PB, Azogu I, Plamondon H. Endocannabinoid CB1 receptor activation upon global ischemia adversely impact recovery of reward and stress signaling molecules, neuronal survival and behavioral impulsivity. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:8-21. [PMID: 26529486 DOI: 10.1016/j.pnpbp.2015.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/15/2015] [Accepted: 10/31/2015] [Indexed: 12/28/2022]
Abstract
Global cerebral ischemia in rodents, which mimics cardiac arrest in humans, is associated with a surge in endocannabinoids and increased transmission of dopamine and glutamate leading to excitotoxic cell death. The current study assessed the role of CB1 receptor activation at the moment of an ischemic insult on ensuing regulation of stress and reward signaling molecules, neuronal injury and anxiety-like behavior. Male Wistar rats were separated into 4 groups (n=10/group); sham and ischemic rats administered the CB1 endocannabinoid receptor antagonist AM251 (2mg/kg, i.p.) 30min prior to global cerebral ischemia, and vehicle-treated counterparts. The effects of CB1 receptor blockade on corticotropin-releasing hormone (CRH), vesicular glutamate transporter 2 (vGluT2), tyrosine hydroxylase (TH) and dopamine receptor 1 (DRD1) signaling expression, together with CA1 neuronal damage and anxiety-like behaviors were assessed. Our findings show attenuated CA1 injury and behavioral deficits in AM251-treated ischemic rats. AM251-pretreatment also partially or completely reversed ischemia-induced alterations in TH-ir expression at the hippocampus, ventral tegmental area (VTA), nucleus accumbens (NAc) and basolateral amygdala (BLA), normalized DRD1-ir at the medial forebrain bundle, and diminished BLA and PVN-CRH expression. All groups showed comparable vGluT2 expression at the BLA and PVN-parvocellular subdivision. These findings support a determinant role of CB1 receptor activation at time of ischemia on functional recovery. They also support "state-dependent" effects of endocannabinoids, raising considerations in the development of effective molecules to regulate HPA axis function and mood disorders following cardiac arrest and stroke.
Collapse
Affiliation(s)
- Megan Dunbar Knowles
- Department of Psychology, University of Ottawa, Behavioural Neuroscience Group, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Patricia Barra de la Tremblaye
- Department of Psychology, University of Ottawa, Behavioural Neuroscience Group, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Idu Azogu
- Department of Psychology, University of Ottawa, Behavioural Neuroscience Group, 136 Jean-Jacques Lussier, Ottawa, ON, Canada
| | - Hélène Plamondon
- Department of Psychology, University of Ottawa, Behavioural Neuroscience Group, 136 Jean-Jacques Lussier, Ottawa, ON, Canada.
| |
Collapse
|
29
|
Martins-Júnior JL, Bernardi MM, Bondan EF. Propentofylline treatment on open field behavior in rats with focal ethidium bromide-induced demyelination in the ventral surface of the brainstem. Life Sci 2016; 148:132-8. [PMID: 26872980 DOI: 10.1016/j.lfs.2016.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/25/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Propentofylline (PPF) is a xanthine derivative with pharmacological effects that are distinct from those of classic methylxanthines. It depresses the activation of microglial cells and astrocytes, which is associated with neuronal damage during neural inflammation and hypoxia. Our previous studies showed that PPF improved remyelination following gliotoxic lesions that were induced by ethidium bromide (EB). In the present study, the long-term effects of PPF on open field behavior in rats with EB-induced focal demyelination were examined. The effects of PPF were first evaluated in naive rats that were not subjected to EB lesions. Behavior in the beam walking test was also evaluated during chronic PPF treatment because impairments in motor coordination can interfere with behavior in the open field. The results showed that PPF treatment in unlesioned rats decreased general activity and caused motor impairment in the beam walking test. Gliotoxic EB injections increased general activity in rats that were treated with PPF compared with rats that received saline solution. Motor incoordination was also attenuated in PPF-treated rats. These results indicate that PPF reversed the effects of EB lesions on behavior in the open field and beam walking test.
Collapse
Affiliation(s)
- J L Martins-Júnior
- Post-Graduate Program in Environmental and Experimental Pathology, Universidade Paulista, São Paulo, SP, Brazil
| | - M M Bernardi
- Post-Graduate Program in Environmental and Experimental Pathology, Universidade Paulista, São Paulo, SP, Brazil.
| | - E F Bondan
- Post-Graduate Program in Environmental and Experimental Pathology, Universidade Paulista, São Paulo, SP, Brazil
| |
Collapse
|
30
|
Barrese V, Taglialatela M, Greenwood IA, Davidson C. Protective role of Kv7 channels in oxygen and glucose deprivation-induced damage in rat caudate brain slices. J Cereb Blood Flow Metab 2015; 35:1593-600. [PMID: 25966943 PMCID: PMC4640310 DOI: 10.1038/jcbfm.2015.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/09/2015] [Accepted: 04/09/2015] [Indexed: 11/09/2022]
Abstract
Ischemic stroke can cause striatal dopamine efflux that contributes to cell death. Since Kv7 potassium channels regulate dopamine release, we investigated the effects of their pharmacological modulation on dopamine efflux, measured by fast cyclic voltammetry (FCV), and neurotoxicity, in Wistar rat caudate brain slices undergoing oxygen and glucose deprivation (OGD). The Kv7 activators retigabine and ICA27243 delayed the onset, and decreased the peak level of dopamine efflux induced by OGD; and also decreased OGD-induced damage measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Retigabine also reduced OGD-induced necrotic cell death evaluated by lactate dehydrogenase activity assay. The Kv7 blocker linopirdine increased OGD-evoked dopamine efflux and OGD-induced damage, and attenuated the effects of retigabine. Quantitative-PCR experiments showed that OGD caused an ~6-fold decrease in Kv7.2 transcript, while levels of mRNAs encoding for other Kv7 subunits were unaffected; western blot experiments showed a parallel reduction in Kv7.2 protein levels. Retigabine also decreased the peak level of dopamine efflux induced by L-glutamate, and attenuated the loss of TTC staining induced by the excitotoxin. These results suggest a role for Kv7.2 in modulating ischemia-evoked caudate damage.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Division of Biomedical Sciences, St George's University of London, London, UK.,Department of Neuroscience Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy.,Department of Medicine and Health Science, University of Molise, Campobasso, Italy
| | - Iain A Greenwood
- Division of Biomedical Sciences, St George's University of London, London, UK
| | - Colin Davidson
- Division of Biomedical Sciences, St George's University of London, London, UK
| |
Collapse
|
31
|
Takahashi K, Foster JB, Lin CLG. Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 2015; 72:3489-506. [PMID: 26033496 PMCID: PMC11113985 DOI: 10.1007/s00018-015-1937-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the central nervous system. Excitatory amino acid transporter 2 (EAAT2) is primarily responsible for clearance of extracellular glutamate to prevent neuronal excitotoxicity and hyperexcitability. EAAT2 plays a critical role in regulation of synaptic activity and plasticity. In addition, EAAT2 has been implicated in the pathogenesis of many central nervous system disorders. In this review, we summarize current understanding of EAAT2, including structure, pharmacology, physiology, and functions, as well as disease relevancy, such as in stroke, Parkinson's disease, epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, major depressive disorder, and addiction. A large number of studies have demonstrated that up-regulation of EAAT2 protein provides significant beneficial effects in many disease models suggesting EAAT2 activation is a promising therapeutic approach. Several EAAT2 activators have been identified. Further understanding of EAAT2 regulatory mechanisms could improve development of drug-like compounds that spatiotemporally regulate EAAT2.
Collapse
Affiliation(s)
- Kou Takahashi
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Joshua B. Foster
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
32
|
Kolpakova ME, Veselkina OS, Vlasov TD. Creatine in Cell Metabolism and Its Protective Action in Cerebral Ischemia. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0098-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Hu W, Cheng X, Ye X, Zhao L, Huang Y, Zhu H, Yan Z, Wang X, Wang X, Bai G, Gao H. Ex vivo (1)H nuclear magnetic resonance spectroscopy reveals systematic alterations in cerebral metabolites as the key pathogenetic mechanism of bilirubin encephalopathy. Mol Brain 2014; 7:87. [PMID: 25424547 PMCID: PMC4252999 DOI: 10.1186/s13041-014-0087-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/13/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bilirubin encephalopathy (BE) is a severe neurologic sequelae induced by hyperbilirubinemia in newborns. However, the pathogenetic mechanisms underlying the clinical syndromes of BE remain ambiguous. Ex vivo (1)H nuclear magnetic resonance (NMR) spectroscopy was used to measure changes in the concentrations of cerebral metabolites in various brain areas of newborn 9-day-old rats subjected to bilirubin to explore the related mechanisms of BE. RESULTS When measured 0.5 hr after injection of bilirubin, levels of the amino acid neurotransmitters glutamate (Glu), glutamine (Gln), and γ-aminobutyric acid (GABA) in hippocampus and occipital cortex significantly decreased, by contrast, levels of aspartate (Asp) considerably increased. In the cerebellum, Glu and Gln levels significantly decreased, while GABA, and Asp levels showed no significant differences. In BE 24 hr rats, all of the metabolic changes observed returned to normal in the hippocampus and occipital cortex; however, levels of Glu, Gln, GABA, and glycine significantly increased in the cerebellum. CONCLUSIONS These metabolic changes for the neurotransmitters are mostly likely the result of a shift in the steady-state equilibrium of the Gln-Glu-GABA metabolic cycle between astrocytes and neurons, in a region-specific manner. Changes in energy metabolism and the tricarboxylic acid cycle may also be involved in the pathogenesis of BE.
Collapse
Affiliation(s)
- Wenyi Hu
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiaojie Cheng
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xinjian Ye
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Yanan Huang
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Huanle Zhu
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Zhihan Yan
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xuebao Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiaojie Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guanghui Bai
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
34
|
Wang JY, Wang CY, Tan CH, Chao TT, Huang YS, Lee CC. Effect of different antipsychotic drugs on short-term mortality in stroke patients. Medicine (Baltimore) 2014; 93:e170. [PMID: 25437033 PMCID: PMC4616374 DOI: 10.1097/md.0000000000000170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The safety, tolerability, and efficacy data for antipsychotic drugs used in the acute phase of stroke are limited. The primary aim of this study was to examine the effectiveness and safety of typical and atypical antipsychotics on acute ischemic stroke mortality.This observational study was conducted in a retrospective cohort of patients selected from the 2010-2011 National Health Research Institute database in Taiwan. Patients were tracked for 1 month from the time of their first hospitalization for acute ischemic stroke. A nested case-control analysis was used to estimate the odds ratio (OR) of 30-day mortality associated with antipsychotic drug, adjusted for age, gender, disease severity, and comorbidities.The study cohort included 47,225 subjects with ischemic stroke, including 9445 mortality cases and 37,780 matched controls. After adjustment for the covariates, antipsychotics users before ischemic stroke are associated with a 73% decrease in the rate of mortality (OR 0.27; 95% CI 0.23-0.31). After ischemic stroke, the use of antipsychotics is associated with 87% decrease in the rate of mortality (OR 0.13; 95% CI 0.1-0.16). The users of conventional antipsychotics are associated with a 78% decrease in the rate of mortality (OR 0.22; 95% CI 0.18-0.26). The users of atypical antipsychotics are also associated with a 86% decrease in the rate of mortality (OR 0.14; 95% CI 0.12-0.17).We found that 1-month mortality among acute stroke patients treated with antipsychotics is significantly lower. The benefit on lower mortality was found not only among ischemic stroke patients who had received antipsychotics previously but also among patients who start antipsychotics after their stroke.
Collapse
Affiliation(s)
- Jen-Yu Wang
- From the Department of Internal Medicine (J-YW,C-YW, C-HT) and Medical Research Center (T-TC), Cardinal Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City; Department of Neurology (Y-SH) and Department of Otolaryngology (C-CL), Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi; and School of Medicine (CCL), Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Alleviation of glutamate mediated neuronal insult by piroxicam in rodent model of focal cerebral ischemia: a possible mechanism of GABA agonism. J Physiol Biochem 2014; 70:901-13. [DOI: 10.1007/s13105-014-0358-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
|
36
|
Prabhakar H, Sandhu K, Bhagat H, Durga P, Chawla R. Current concepts of optimal cerebral perfusion pressure in traumatic brain injury. J Anaesthesiol Clin Pharmacol 2014; 30:318-27. [PMID: 25190937 PMCID: PMC4152669 DOI: 10.4103/0970-9185.137260] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Traumatic brain injury (TBI) consists of varied pathophysiological consequences and alteration of intracranial dynamics, reduction of the cerebral blood flow and oxygenation. In the past decade more emphasis has been directed towards optimizing cerebral perfusion pressure (CPP) in patients who have suffered TBI. Injured brain may show signs of ischemia if CPP remains below 50 mmHg and raising the CPP above 60 mmHg may avoid cerebral oxygen desaturation. Though CPP above 70 mmHg is influential in achieving an improved patient outcome, maintenance of CPP higher than 70 mmHg was associated with greater risk of acute respiratory distress syndrome (ARDS). The target CPP has been laid within 50-70 mmHg. Cerebral blood flow and metabolism are heterogeneous after TBI and with regional temporal differences in the requirement for CPP. Brain monitoring techniques such as jugular venous oximetry, monitoring of brain tissue oxygen tension (PbrO2), and cerebral microdialysis provide complementary and specific information that permits the selection of the optimal CPP. This review highlights the rationale for use CPP directed therapies and neuromonitoring to identify optimal CPP of head injured patients. The article also reviews the evidence provided by various clinical trials regarding optimal CPP and their application in the management of head injured patients.
Collapse
Affiliation(s)
- Hemanshu Prabhakar
- Department of Neuroanaesthesiology, Neurosciences Centre, All India Institute of Medical Sciences, PGIMER, Chandigarh, India
| | - Kavita Sandhu
- Department of Neuroanaesthesiology and Critical Care, Max Superspeciality Hospital, PGIMER, Chandigarh, India
| | - Hemant Bhagat
- Department of Anaesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Padmaja Durga
- Department of Anesthesiology and Intensive Care, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Rajiv Chawla
- Department of Anaesthesiology and Intensive Care, G B Pant Hospital, New Delhi, India
| |
Collapse
|
37
|
Park EJ, Min YG, Kim GW, Cho JP, Maeng WJ, Choi SC. Pathophysiology of brain injuries in acute carbon monoxide poisoning: A novel hypothesis. Med Hypotheses 2014; 83:186-9. [DOI: 10.1016/j.mehy.2014.04.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/19/2014] [Accepted: 04/29/2014] [Indexed: 11/28/2022]
|
38
|
Crick EW, Osorio I, Frei M, Mayer AP, Lunte CE. Correlation of 3-mercaptopropionic acid induced seizures and changes in striatal neurotransmitters monitored by microdialysis. Eur J Pharm Sci 2014; 57:25-33. [PMID: 24462767 PMCID: PMC4004672 DOI: 10.1016/j.ejps.2013.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/11/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The goal of this study was to use a status epilepticus steady-state chemical model in rats using the convulsant, 3-mercaptopropionic acid (3-MPA), and to compare the changes in striatal neurotransmission on a slow (5min) and fast (60s) timescale. In vivo microdialysis was combined with electrophysiological methods in order to provide a complete evaluation of the dynamics of the results obtained. OBJECTIVE To compare the effects of a steady-state chemical model pof status epilepticus on striatal amino-acid and amine neurotransmitters contents, as measured via in vivo microdialysis combined with electrophysiological methods. Measurements were performed on samples collected every 60s and every 5min. "Fast" (60s) and "slow" (5min) sampling timescales were selected, to gain more insight into the dynamics of GABA synthesis inhibition and of its effects on other neurotransmitters and on cortical electrical activity. METHODS 3-MPA was administered in the form of an intra-venous load (60mg/kg) followed by a constant infusion (50mg/kg/min) for min. Microdialysis samples were collected from the striatum at intervals of 5min and 60s and analyzed for biogenic amine and amino acid neurotransmitters. ECoG activity was monitored via screws placed over the cortex. RESULTS In the 5min samples, glutamate (Glu) increased and γ-aminobutyric acid (GABA) decreased monotonically while changes in dopamine (DA) concentration were bimodal. In the sixty second samples, Glu changes were bimodal, a feature that was not apparent with the 5min samples. ECoG activity was indicative of status epilepticus. CONCLUSIONS This study describes the combination of in vivo microdialysis with electrophysiology to monitor the effect of 3-MPA on neurotransmission in the brain. This led to a better understanding of the chemical changes in the striatum due to the applied 3-MPA chemical model of status epilepticus.
Collapse
Affiliation(s)
- Eric W Crick
- R.N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Ivan Osorio
- Comprehensive Epilepsy Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, United States; Flint Hills Scientific, LLC, 5040 Bob Billings Parkway, Suite A, Lawrence, KS 66049, United States
| | - Mark Frei
- Flint Hills Scientific, LLC, 5040 Bob Billings Parkway, Suite A, Lawrence, KS 66049, United States
| | - Andrew P Mayer
- R.N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Craig E Lunte
- R.N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| |
Collapse
|
39
|
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 2013; 115:157-88. [PMID: 24361499 DOI: 10.1016/j.pneurobio.2013.11.006] [Citation(s) in RCA: 818] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 01/22/2023]
Abstract
Excitotoxicity, the specific type of neurotoxicity mediated by glutamate, may be the missing link between ischemia and neuronal death, and intervening the mechanistic steps that lead to excitotoxicity can prevent stroke damage. Interest in excitotoxicity began fifty years ago when monosodium glutamate was found to be neurotoxic. Evidence soon demonstrated that glutamate is not only the primary excitatory neurotransmitter in the adult brain, but also a critical transmitter for signaling neurons to degenerate following stroke. The finding led to a number of clinical trials that tested inhibitors of excitotoxicity in stroke patients. Glutamate exerts its function in large by activating the calcium-permeable ionotropic NMDA receptor (NMDAR), and different subpopulations of the NMDAR may generate different functional outputs, depending on the signaling proteins directly bound or indirectly coupled to its large cytoplasmic tail. Synaptic activity activates the GluN2A subunit-containing NMDAR, leading to activation of the pro-survival signaling proteins Akt, ERK, and CREB. During a brief episode of ischemia, the extracellular glutamate concentration rises abruptly, and stimulation of the GluN2B-containing NMDAR in the extrasynaptic sites triggers excitotoxic neuronal death via PTEN, cdk5, and DAPK1, which are directly bound to the NMDAR, nNOS, which is indirectly coupled to the NMDAR via PSD95, and calpain, p25, STEP, p38, JNK, and SREBP1, which are further downstream. This review aims to provide a comprehensive summary of the literature on excitotoxicity and our perspectives on how the new generation of excitotoxicity inhibitors may succeed despite the failure of the previous generation of drugs.
Collapse
Affiliation(s)
- Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, 91 Hsueh-Shih Road, 40402 Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan.
| | - Shu Zhang
- Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan; Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada
| | - Yu Tian Wang
- Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada.
| |
Collapse
|
40
|
Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 2013; 21:1190-222. [PMID: 24206937 DOI: 10.1016/j.jagp.2013.09.005] [Citation(s) in RCA: 439] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Delirium is a neurobehavioral syndrome caused by dysregulation of neuronal activity secondary to systemic disturbances. Over time, a number of theories have been proposed in an attempt to explain the processes leading to the development of delirium. Each proposed theory has focused on a specific mechanism or pathologic process (e.g., dopamine excess or acetylcholine deficiency theories), observational and experiential evidence (e.g., sleep deprivation, aging), or empirical data (e.g., specific pharmacologic agents' association with postoperative delirium, intraoperative hypoxia). This article represents a review of published literature and summarizes the top seven proposed theories and their interrelation. This review includes the "neuroinflammatory," "neuronal aging," "oxidative stress," "neurotransmitter deficiency," "neuroendocrine," "diurnal dysregulation," and "network disconnectivity" hypotheses. Most of these theories are complementary, rather than competing, with many areas of intersection and reciprocal influence. The literature suggests that many factors or mechanisms included in these theories lead to a final common outcome associated with an alteration in neurotransmitter synthesis, function, and/or availability that mediates the complex behavioral and cognitive changes observed in delirium. In general, the most commonly described neurotransmitter changes associated with delirium include deficiencies in acetylcholine and/or melatonin availability; excess in dopamine, norepinephrine, and/or glutamate release; and variable alterations (e.g., either a decreased or increased activity, depending on delirium presentation and cause) in serotonin, histamine, and/or γ-aminobutyric acid. In the end, it is unlikely that any one of these theories is fully capable of explaining the etiology or phenomenologic manifestations of delirium but rather that two or more of these, if not all, act together to lead to the biochemical derangement and, ultimately, to the complex cognitive and behavioral changes characteristic of delirium.
Collapse
Affiliation(s)
- José R Maldonado
- Departments of Psychiatry, Internal Medicine & Surgery and the Psychosomatic Medicine Service, Stanford University School of Medicine, and Board of Directors, American Delirium Society, Stanford, CA.
| |
Collapse
|
41
|
Kucharz K, Wieloch T, Toresson H. Fission and Fusion of the Neuronal Endoplasmic Reticulum. Transl Stroke Res 2013; 4:652-62. [DOI: 10.1007/s12975-013-0279-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
|
42
|
Ates O, Cayli SR, Gurses I, Karabulut AB, Yucel N, Kocak A, Cakir CO, Yologlu S. Do sodium channel blockers have neuroprotective effect after onset of ischemic insult? Neurol Res 2013; 29:317-23. [PMID: 17509233 DOI: 10.1179/016164107x159225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Cerebral ischemia causes a series of pathophysiologic events that may result in cerebral infarct. Some neurons are more vulnerable to ischemia, particularly pyramidal neurons in the hippocampal CA1 region. Pharmacologic intervention for treatment of cerebral ischemia aims to counteract secondary neurotoxic events or to interrupt the progression of this process. In the present study, we compare the neuroprotective effects of sodium channel blockers (mexiletine, riluzole and phenytoin) and investigate whether they have neuroprotective effect when given after ischemic insult. METHODS A transient global cerebral ischemia model was performed in this study by clipping bilateral common carotid arteries during 45 minutes. Riluzole (8 mg/kg), mexiletine (80 mg/kg) and phenytoin (200 mg/kg) were injected into the rats intraperitoneally 30 minutes before or after reperfusion. Lipid peroxidation levels and cerebral water contents were evaluated 24 hours after ischemia. Histopathologic assessment of hippocampal region was determined 7 days after ischemia. RESULTS Riluzole, mexiletine and phenytoin treatment after global ischemia significantly decreased water content of the ischemic brain (p<0.05 for each). No significant difference was observed in cerebral edema among the drug treatment groups (p>0.05). When pre-treatment and post-treatment groups were compared with each other, only riluzole pre-treatment group revealed better result for cerebral edema (p<0.05). Pre-treatment with these drugs revealed significantly better results for the malonyldialdehyde (MDA) level and the number of survival neuron on the hippocampal region than the post-treatment groups. CONCLUSION It is demonstrated that riluzole, mexiletine and phenytoin are potent neuroprotective agents in the rat model of transient global cerebral ischemia, but they are more effective when given before onset of the ischemia.
Collapse
Affiliation(s)
- Ozkan Ates
- Department of Neurosurgery, School of Medicine, Inonu University, Malatya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zong XM, Sun YF, Pei DS, Zeng YM, Xu T. Pergolide protects CA1 neurons from apoptosis in a gerbil model of global cerebral ischemia. Neurol Res 2013; 30:92-8. [PMID: 17767807 DOI: 10.1179/016164107x228688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To investigate the effects of dopamine (DA) receptor agonists and antagonists on neuronal apoptosis in hippocampal CA1 region after forebrain ischemia/reperfusion (I/R) injury in gerbils. METHODS Gerbil forebrain ischemia was induced by occluding bilateral carotid arteries for 5 minutes. The open field test, hematoxylin-eosin staining and in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) methods were used 1, 3 and 7 days after reperfusion. Western blot was used to examine the phosphorylation of c-Jun. RESULTS Pergolide could significantly reduce the habituation impairments of ischemic gerbils, increase the number of normal neurons and reduce the number of apoptotic neurons in hippocampal CA1 region after reperfusion. SKF38393, SCH23390 and spiperone had no effects on these changes in this transient I/R injury model. Furthermore, pergolide can significantly reduce the phosphorylation of c-Jun induced by transient forebrain ischemia.
Collapse
Affiliation(s)
- Xue-Mei Zong
- Center of Emergency, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | | | | | | | | |
Collapse
|
44
|
Abstract
Protection against neuronal damage is a major objective of current research in areas such as stroke medicine, Alzheimer's disease and other neurodegenerative conditions. Adenosine receptors are important modulators of cell survival, and thus agents targeting these receptors could be valuable therapeutic agents. Agonists at A(1) receptors and antagonists at A(2A) receptors are known to protect acutely against neuronal damage caused by toxins or ischemia-reperfusion, and these compounds can also protect against the cell damage inflicted by reactive oxygen species. Even endogenous adenosine may be neuroprotective, since its levels rise substantially in association with a period of ischemia-reperfusion. Unfortunately, there is growing evidence that the efficacy of adenosine receptor activation can be reduced by the concomitant activation of glutamate receptors responding to N-methyl-D-aspartate (NMDA), probably acting via the release of nitric oxide. Such problems will need to be resolved before adenosine receptor agonists can proceed far as neuroprotective agents. The use of receptor antagonists may prove a more valuable approach.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
45
|
Aneurysmal subarachnoid hemorrhage models: do they need a fix? Stroke Res Treat 2013; 2013:615154. [PMID: 23878760 PMCID: PMC3710594 DOI: 10.1155/2013/615154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/17/2022] Open
Abstract
The discovery of tissue plasminogen activator to treat acute stroke is a success story of research on preventing brain injury following transient cerebral ischemia (TGI). That this discovery depended upon development of embolic animal model reiterates that proper stroke modeling is the key to develop new treatments. In contrast to TGI, despite extensive research, prevention or treatment of brain injury following aneurysmal subarachnoid hemorrhage (aSAH) has not been achieved. A lack of adequate aSAH disease model may have contributed to this failure. TGI is an important component of aSAH and shares mechanism of injury with it. We hypothesized that modifying aSAH model using experience acquired from TGI modeling may facilitate development of treatment for aSAH and its complications. This review focuses on similarities and dissimilarities between TGI and aSAH, discusses the existing TGI and aSAH animal models, and presents a modified aSAH model which effectively mimics the disease and has a potential of becoming a better resource for studying the brain injury mechanisms and developing a treatment.
Collapse
|
46
|
Oliva I, Fernández M, Martín ED. Dopamine release regulation by astrocytes during cerebral ischemia. Neurobiol Dis 2013; 58:231-41. [PMID: 23800715 DOI: 10.1016/j.nbd.2013.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/16/2013] [Accepted: 06/15/2013] [Indexed: 11/25/2022] Open
Abstract
Brain ischemia triggers excessive release of neurotransmitters that mediate neuronal damage following ischemic injury. The striatum is one of the areas most sensitive to ischemia. Release of dopamine (DA) from ischemic neurons is neurotoxic and directly contributes to the cell death in affected areas. Astrocytes are known to be critically involved in the physiopathology of cerebrovascular disease. However, their response to ischemia and their role in neuroprotection in striatum are not completely understood. In this study, we used an in vitro model to evaluate the mechanisms of ischemia-induced DA release, and to study whether astrocytes modulate the release of DA in response to short-term ischemic conditions. Using slices of adult mouse brain exposed to oxygen and glucose deprivation (OGD), we measured the OGD-evoked DA efflux using fast cyclic voltammetry and also assessed metabolic impairment by 2,3,5-triphenyltetrazolium chloride (TTC) and tissue viability by propidium iodide (PI) staining. Our data indicate that ischemia induces massive release of DA by dual mechanisms: one which operates via vesicular exocytosis and is action potential dependent and another involving reverse transport by the dopamine transporter (DAT). Simultaneous blockade of astrocyte glutamate transporters and DAT prevented the massive release of dopamine and reduced the brain tissue damage. The present results provide the first experimental evidence that astrocytes function as a key cellular element of ischemia-induced DA release in striatum, constituting a novel and promising therapeutic target in ischemia.
Collapse
Affiliation(s)
- Idaira Oliva
- University of Castilla-La Mancha, Albacete, Spain
| | | | | |
Collapse
|
47
|
Menzie J, Prentice H, Wu JY. Neuroprotective Mechanisms of Taurine against Ischemic Stroke. Brain Sci 2013; 3:877-907. [PMID: 24961429 PMCID: PMC4061860 DOI: 10.3390/brainsci3020877] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 02/02/2023] Open
Abstract
Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke.
Collapse
Affiliation(s)
- Janet Menzie
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Howard Prentice
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Jang-Yen Wu
- Program in Integrative Biology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
48
|
Liu K, Ye XJ, Hu WY, Zhang GY, Bai GH, Zhao LC, He JW, Zhu H, Shao JB, Yan ZH, Gao HC. Neurochemical changes in the rat occipital cortex and hippocampus after repetitive and profound hypoglycemia during the neonatal period: an ex vivo ¹H magnetic resonance spectroscopy study. Mol Neurobiol 2013; 48:729-36. [PMID: 23553314 DOI: 10.1007/s12035-013-8446-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/13/2013] [Indexed: 01/06/2023]
Abstract
The brain of a human neonate is more vulnerable to hypoglycemia than that of pediatric and adult patients. Repetitive and profound hypoglycemia during the neonatal period (RPHN) causes brain damage and leads to severe neurologic sequelae. Ex vivo high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy was carried out in the present study to detect metabolite alterations in newborn and adolescent rats and investigate the effects of RPHN on their occipital cortex and hippocampus. Results showed that RPHN induces significant changes in a number of cerebral metabolites, and such changes are region-specific. Among the 16 metabolites detected by ex vivo (1)H NMR, RPHN significantly increased the levels of creatine, glutamate, glutamine, γ-aminobutyric acid, and aspartate, as well as other metabolites, including succine, taurine, and myo-inositol, in the occipital cortex of neonatal rats compared with the control. By contrast, changes in these neurochemicals were not significant in the hippocampus of neonatal rats. When the rats had developed into adolescence, the changes above were maintained and the levels of other metabolites, including lactate, N-acetyl aspartate, alanine, choline, glycine, acetate, and ascorbate, increased in the occipital cortex. By contrast, most of these metabolites were reduced in the hippocampus. These metabolic changes suggest that complementary mechanisms exist between these two brain areas. RPHN appears to affect occipital cortex and hippocampal activities, neurotransmitter transition, energy metabolism, and other metabolic equilibria in newborn rats; these effects are further aggravated when the newborn rats develop into adolescence. Changes in the metabolism of neurotransmitter system may be an adaptive measure of the central nervous system in response to RPHN.
Collapse
Affiliation(s)
- Kun Liu
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, 325035, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Granulocyte-colony stimulating factor reduces striatal dopamine accumulation caused by cerebral ischemia. Tzu Chi Med J 2012. [DOI: 10.1016/j.tcmj.2012.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Gao HC, Zhu H, Song CY, Lin L, Xiang Y, Yan ZH, Bai GH, Ye FQ, Li XK. Metabolic changes detected by ex vivo high resolution 1H NMR spectroscopy in the striatum of 6-OHDA-induced Parkinson's rat. Mol Neurobiol 2012; 47:123-30. [PMID: 22936308 DOI: 10.1007/s12035-012-8336-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons; however, its crucial mechanism of the metabolic changes of neurotransmitters remains ambiguous. The pathological mechanism of PD might involve cerebral metabolism perturbations. In this study, ex vivo proton nuclear magnetic resonance ((1)H NMR) was used to determine the level changes of 13 metabolites in the bilateral striatum of 6-hydroxydopamine (6-OHDA)-induced PD rats. The results showed that, in the right striatum of 6-OHDA-induced PD rats, increased levels of glutamate (Glu) and γ-aminobutyric acid (GABA) concomitantly with decreased level of glutamine (Gln) were observed compared to the control. Whereas, in the left striatum of 6-OHDA-induced PD rats, increased level of Glu with decreased level of GABA and unchanged Gln were observed. Other cerebral metabolites including lactate, alanine, creatine, succinate, taurine, and glycine were also found to have some perturbations. The observed metabolic changes for Glu, Gln, and GABA are mostly likely the result of a shift in the steady-state equilibrium of the Gln-Glu-GABA metabolic cycle between astrocytes and neurons. The altered Gln and GABA levels are most likely as a strategy to protect neurons from Glu excitotoxic injury after striatal dopamine depletion. Changes in energy metabolism and tricarboxylic acid cycle might be involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Chang Gao
- School of Pharmacy, Wenzhou Medical College, Wenzhou, 325035, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|