1
|
Simonet S, Gosgnach W, Billou L, Lucats L, Royere E, Crespo C, Lapret I, Ragonnet L, Moreau K, Vayssettes-Courchay C, Berson P, Bourguignon MP. GTP-cyclohydrolase deficiency induced peripheral and deep microcirculation dysfunction with age. Microvasc Res 2021; 133:104078. [PMID: 32980388 DOI: 10.1016/j.mvr.2020.104078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023]
Abstract
The present study assessed the impact of impaired tetrahydrobiopterin (BH4) production on vasoreactivity from conduit and small arteries along the vascular tree as seen during aging. For this purpose, the mutant hyperphenylalaninemic mouse (hph-1) was used. This model is reported to be deficient in GTP cyclohydrolase I, a rate limiting enzyme in BH4 biosynthesis. BH4 is a key regulator of vascular homeostasis by regulating the nitric oxide synthase 3 (NOS3) activity. In GTP-CH deficient mice, the aortic BH4 levels were decreased, by -77% in 12 week-middle-aged mice (young) and by -83% in 35-45 week-middle-aged mice (middle-aged). In young hph-1, the mesenteric artery ability to respond to flow was slightly reduced by 9%. Aging induced huge modification in many vascular functions. In middle-aged hph-1, we observed a decrease in aortic cGMP levels, biomarker of NO availability (-46%), in flow-mediated vasodilation of mesenteric artery (-31%), in coronary hyperemia response measured in isolated heart following transient ischemia (-27%) and in cutaneous microcirculation dilation in response to acetylcholine assessed in vivo by laser-doppler technic (-69%). In parallel, the endothelium-dependent relaxation in response to acetylcholine in conduit blood vessel, measured on isolated aorta rings, was unchanged in hph-1 mice whatever the age. Our findings demonstrate that in middle-aged GTP-CH depleted mice, the reduction of BH4 was characterized by an alteration of microcirculation dilatory properties observed in various parts of the vascular tree. Large conduit blood vessels vasoreactivity, ie aorta, was unaltered even in middle-aged mice emphasizing the main BH4-deletion impact on the microcirculation.
Collapse
Affiliation(s)
- Serge Simonet
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Willy Gosgnach
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Lucie Billou
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Laurence Lucats
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Emilie Royere
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Christine Crespo
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Isabelle Lapret
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Lea Ragonnet
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Kevin Moreau
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | | | - Pascal Berson
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | | |
Collapse
|
2
|
Latremoliere A, Costigan M. Combining Human and Rodent Genetics to Identify New Analgesics. Neurosci Bull 2018; 34:143-155. [PMID: 28667479 PMCID: PMC5799129 DOI: 10.1007/s12264-017-0152-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022] Open
Abstract
Most attempts at rational development of new analgesics have failed, in part because chronic pain involves multiple processes that remain poorly understood. To improve translational success, one strategy is to select novel targets for which there is proof of clinical relevance, either genetically through heritable traits, or pharmacologically. Such an approach by definition yields targets with high clinical validity. The biology of these targets can be elucidated in animal models before returning to the patients with a refined therapeutic. For optimal treatment, having biomarkers of drug action available is also a plus. Here we describe a case study in rational drug design: the use of controlled inhibition of peripheral tetrahydrobiopterin (BH4) synthesis to reduce abnormal chronic pain states without altering nociceptive-protective pain. Initially identified in a population of patients with low back pain, the association between BH4 production and chronic pain has been confirmed in more than 12 independent cohorts, through a common haplotype (present in 25% of Caucasians) of the rate-limiting enzyme for BH4 synthesis, GTP cyclohydrolase 1 (GCH1). Genetic tools in mice have demonstrated that both injured sensory neurons and activated macrophages engage increased BH4 synthesis to cause chronic pain. GCH1 is an obligate enzyme for de novo BH4 production. Therefore, inhibiting GCH1 activity eliminates all BH4 production, affecting the synthesis of multiple neurotransmitters and signaling molecules and interfering with physiological function. In contrast, targeting the last enzyme of the BH4 synthesis pathway, sepiapterin reductase (SPR), allows reduction of pathological BH4 production without completely blocking physiological BH4 synthesis. Systemic SPR inhibition in mice has not revealed any safety concerns to date, and available genetic and pharmacologic data suggest similar responses in humans. Finally, because it is present in vivo only when SPR is inhibited, sepiapterin serves as a reliable biomarker of target engagement, allowing potential quantification of drug efficacy. The emerging development of therapeutics that target BH4 synthesis to treat chronic pain illustrates the power of combining human and mouse genetics: human genetic studies for clinical selection of relevant targets, coupled with causality studies in mice, allowing the rational engineering of new analgesics.
Collapse
Affiliation(s)
- Alban Latremoliere
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael Costigan
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Abstract
Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann-Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases.
Collapse
Affiliation(s)
- Dominic J Gessler
- University of Massachusetts Medical School, 368 Plantation Street, AS6-2049, Worcester, MA, 01605, USA
| | - Guangping Gao
- University of Massachusetts Medical School, 368 Plantation Street, AS6-2049, Worcester, MA, 01605, USA.
| |
Collapse
|
4
|
Edgar KS, Matesanz N, Gardiner TA, Katusic ZS, McDonald DM. Hyperoxia depletes (6R)-5,6,7,8-tetrahydrobiopterin levels in the neonatal retina: implications for nitric oxide synthase function in retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1769-82. [PMID: 25913075 DOI: 10.1016/j.ajpath.2015.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 01/20/2015] [Accepted: 02/10/2015] [Indexed: 02/08/2023]
Abstract
Retinopathy of prematurity is a sight-threatening complication of premature birth caused by nitro-oxidative insult to the developing retinal vasculature during therapeutic hyperoxia exposure and later ischemia-induced neovascularization on supplemental oxygen withdrawal. In the vasodegenerative phase, during hyperoxia, defective endothelial nitric oxide synthase (NOS) produces reactive oxygen and nitrogen free radicals rather than vasoprotective nitric oxide for unclear reasons. Crucially, normal NOS function depends on availability of the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4). Because BH4 synthesis is controlled enzymatically by GTP cyclohydrolase (GTPCH), we used GTPCH-depleted mice [hyperphenylalaninemia strain (hph1)] to investigate the impact of hyperoxia on BH4 bioavailability and retinal vascular pathology in the neonate. Hyperoxia decreased BH4 in retinas, lungs, and aortas in all experimental groups, resulting in a dose-dependent decrease in NOS activity and, in the wild-type group, elevated NOS-derived superoxide. Retinal dopamine levels were similarly diminished, consistent with the dependence of tyrosine hydroxylase on BH4. Despite greater depletion of BH4, the hph(+/-) and hph1(-/-) groups did not show exacerbated hyperoxia-induced vessel closure, but exhibited greater vascular protection and reduced progression to neovascular disease. This vasoprotective effect was independent of enhanced circulating vascular endothelial growth factor (VEGF), which was reduced by hyperoxia, but to local retinal ganglion cell layer-derived VEGF. In conclusion, a constitutively higher level of VEGF expression associated with retinal development protects GTPCH-deficient neonates from oxygen-induced vascular damage.
Collapse
Affiliation(s)
- Kevin S Edgar
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Nuria Matesanz
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Tom A Gardiner
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Zvonimir S Katusic
- Department of Pharmacology and Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Denise M McDonald
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
5
|
Welsh C, Jarrin J, Daneman A, Belik J. In vivo ultrasound assessment of gastric emptying in newborn mice. J Pediatr Gastroenterol Nutr 2015; 60:322-6. [PMID: 25714576 DOI: 10.1097/mpg.0000000000000611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aim of the present study was to develop an ultrasonographic approach to comparatively assess gastric emptying in newborn wild-type and guanosine triphosphate cyclohydrolase knockout hph-1 mice, because we previously reported gastroparesis early in life in this strain. METHODS Stomach transverse, anteroposterior, and longitudinal ultrasonographic measurements were obtained with a 40-MHz transducer in pups immediately after maternal separation and 4 hours later. A conventional equation was used and the predicted values validated by obtaining postmortem gastric content volume measurements. Wild-type and hph-1 mice gastric emptying rates were comparatively evaluated at 1 to 3 and 5 to 8 days of age, respectively. RESULTS The ultrasound equation closely predicted the newborn stomach content volumes with a correlation coefficient (R) of 0.93 and 0.81 (P < 0.01) for measurements obtained on full stomach and after 4 hours of fasting, respectively. In wild-type mice, gastric emptying was age dependent and associated with a greater residual volume at 1 to 3 days (65% ± 7%), as compared with 5- to 8-day-old pups (33% ± 4%; P < 0.01), after fasting. In contrast, an equal duration of fasting resulted in a significantly greater residual gastric content volume in 5- to 8-day-old hph-1 mice (68% ± 7%; P < 0.01), as compared with same-age wild-type mice. CONCLUSIONS Ultrasonography offers a sensitive and accurate estimate of gastric content volume in newborn mice. In wild-type newborn mice, gastric emptying rate is age dependent and significantly reduced in the immediate postnatal period. The newborn hph-1 mice have a significantly higher gastric residual volume, as compared with wild-type same-age animals.
Collapse
Affiliation(s)
- Christopher Welsh
- *Physiology & Experimental Medicine Program, Department of Paediatrics †Department of Diagnostic Imaging, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
6
|
Welsh C, Shifrin Y, Pan J, Belik J. Infantile hypertrophic pyloric stenosis (IHPS): a study of its pathophysiology utilizing the newborn hph-1 mouse model of the disease. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1198-206. [PMID: 25359537 DOI: 10.1152/ajpgi.00221.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Infantile hypertrophic pyloric stenosis (IHPS) is a common disease of unknown etiology. The tetrahydrobiopterin (BH4)-deficient hyperphenylalaninemia-1 (hph-1) newborn mouse has a similar phenotype to the human condition. For hph-1 and wild-type control animals, pyloric tissue agonist-induced contractile properties, reactive oxygen species (ROS) generation, cGMP, neuronal nitric oxide synthase (nNOS) content, and Rho-associated protein kinase 2 (ROCK-2) expression and activity were evaluated. Primary pyloric smooth muscle cells from wild-type newborn animals were utilized to evaluate the effect of BH4 deficiency. One-week-old hph-1 mice exhibited a fourfold increase (P < 0.01) in the pyloric sphincter muscle contraction magnitude but similar relaxation values when compared with wild-type animals. The pyloric tissue nNOS expression and cGMP content were decreased, whereas the rate of nNOS uncoupling increased (P < 0.01) in 1-wk-old hph-1 mice when compared with wild-type animals. These changes were associated with increased pyloric tissue ROS generation and elevated ROCK-2 expression/activity (P < 0.05). At 1-3 days of age and during adulthood, the gastric emptying rate of the hph-1 mice was not altered, and there were no genotype differences in pyloric tissue ROS generation, nNOS expression, or ROCK-2 activity. BH4 inhibition in pyloric smooth muscle cells resulted in increased ROS generation (P < 0.01) and ROCK-2 activity (P < 0.05). Oxidative stress upregulated ROCK-2 activity in pyloric tissue, but no changes were observed in newborn fundal tissue in vitro. We conclude that ROS-induced upregulation of ROCK-2 expression accounts for the increased pyloric sphincter tone and nNOS downregulation in the newborn hph-1 mice. The role of ROCK-2 activation in the pathogenesis of IHPS warrants further study.
Collapse
Affiliation(s)
- Christopher Welsh
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yulia Shifrin
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jingyi Pan
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jaques Belik
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Welsh C, Enomoto M, Pan J, Shifrin Y, Belik J. Tetrahydrobiopterin deficiency induces gastroparesis in newborn mice. Am J Physiol Gastrointest Liver Physiol 2013; 305:G47-57. [PMID: 23639814 DOI: 10.1152/ajpgi.00424.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pyloric stenosis, the most common infant gastrointestinal disease, has no known etiology and clinically presents as abnormal gastric emptying with evidence of pyloric muscle hypertrophy. Whether abnormalities in gastric muscle contraction and/or relaxation have a role in this condition is poorly known, but gastroparesis is commonly observed in association with delayed gastric emptying in adults. Therefore, we evaluated the tetrahydrobiopterin (BH4)-deficient newborn mouse model of this disease (hph-1) and hypothesized that their gastric muscle properties are impaired, when compared with wild-type control animals. In vitro studies evaluating the age-dependent gastric fundus muscle contraction and relaxation potential were conducted. Compared with wild-type mice, the hph-1 stomach content/body weight ratio was significantly increased in newborn but not juvenile or adult animals, confirming abnormal gastric emptying. Gastric tissue neuronal nitric oxide synthase (nNOS) protein expression was upregulated in both newborn and adult hph-1 mice, but in the former there was evidence of enzyme uncoupling and higher tissue superoxide generation when compared with same age-matched animals. As opposed to the lack of strain differences in the U46619-induced force, the newborn hph-1 gastric muscle carbachol-induced contraction and nNOS-dependent relaxation were significantly reduced (P < 0.01). These group differences were not present in juvenile or adult mice. Preincubation with BH4 significantly enhanced the newborn hph-1, but not wild-type, gastric muscle contraction. In conclusion, changes compatible with gastroparesis are present in the newborn mouse model of pyloric stenosis. The role of BH4 deficiency and possibly associated gastroparesis in the pathogenesis of infantile pyloric stenosis warrants further investigation.
Collapse
Affiliation(s)
- Christopher Welsh
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
8
|
Nasser A, Bjerrum OJ, Heegaard AM, Møller AT, Larsen M, Dalbøge LS, Dupont E, Jensen TS, Møller LB. Impaired behavioural pain responses in hph-1 mice with inherited deficiency in GTP cyclohydrolase 1 in models of inflammatory pain. Mol Pain 2013; 9:5. [PMID: 23421753 PMCID: PMC3626862 DOI: 10.1186/1744-8069-9-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/14/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND GTP cyclohydrolase 1 (GTP-CH1), the rate-limiting enzyme in the synthesis of tetrahydrobiopterin (BH4), encoded by the GCH1 gene, has been implicated in the development and maintenance of inflammatory pain in rats. In humans, homozygous carriers of a "pain-protective" (PP) haplotype of the GCH1 gene have been identified exhibiting lower pain sensitivity, but only following pain sensitisation. Ex vivo, the PP GCH1 haplotype is associated with decreased induction of GCH1 after stimulation, whereas the baseline BH4 production is not affected. Contrary, loss of function mutations in the GCH1 gene results in decreased basal GCH1 expression, and is associated with DOPA-responsive dystonia (DRD). So far it is unknown if such mutations affect acute and inflammatory pain. RESULTS In the current study, we examined the involvement of the GCH1 gene in pain models using the hyperphenylalaninemia 1 (hph-1) mouse, a genetic model for DRD, with only 10% basal GTP-CH1 activity compared to wild type mice. The study included assays for determination of acute nociception as well as models for pain after sensitisation. Pain behavioural analysis of the hph-1 mice showed reduced pain-like responses following intraplantar injection of CFA, formalin and capsaicin; whereas decreased basal level of GTP-CH1 activity had no influence in naïve hph-1 mice on acute mechanical and heat pain thresholds. Moreover, the hph-1 mice showed no signs of motor impairment or dystonia-like symptoms. CONCLUSIONS In this study, we demonstrate novel evidence that genetic mutations in the GCH1 gene modulate pain-like hypersensitivity. Together, the present data suggest that BH4 is not important for basal heat and mechanical pain, but they support the hypothesis that BH4 plays a role in inflammation-induced hypersensitivity. Our studies suggest that the BH4 pathway could be a therapeutic target for the treatment of inflammatory pain conditions. Moreover, the hph-1 mice provide a valid model to study the consequence of congenital deficiency of GCH1 in painful conditions.
Collapse
Affiliation(s)
- Arafat Nasser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Ole J Bjerrum
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Anette T Møller
- The Danish Pain Research Center, Århus University Hospital, Århus, Denmark
| | - Majbritt Larsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Louise S Dalbøge
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Erik Dupont
- Department of Neurology, Århus University Hospital, Århus, Denmark
| | - Troels S Jensen
- The Danish Pain Research Center, Århus University Hospital, Århus, Denmark
| | - Lisbeth B Møller
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
9
|
Santhanam AVR, d'Uscio LV, Smith LA, Katusic ZS. Uncoupling of eNOS causes superoxide anion production and impairs NO signaling in the cerebral microvessels of hph-1 mice. J Neurochem 2012; 122:1211-8. [PMID: 22784235 DOI: 10.1111/j.1471-4159.2012.07872.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we used the GTP cyclohydrolase I-deficient mice, i.e., hyperphenylalaninemic (hph-1) mice, to test the hypothesis that the loss of tetrahydrobiopterin (BH(4)) in cerebral microvessels causes endothelial nitric oxide synthase (eNOS) uncoupling, resulting in increased superoxide anion production and inhibition of endothelial nitric oxide signaling. Both homozygous mutant (hph-1(-/-)) and heterozygous mutant (hph-1(+/-) mice) demonstrated reduction in GTP cyclohydrolase I activity and reduced bioavailability of BH(4). In the cerebral microvessels of hph-1(+/-) and hph-1(-/-) mice, increased superoxide anion production was inhibited by supplementation of BH(4) or NOS inhibitor- L- N(G) -nitro arginine-methyl ester, indicative of eNOS uncoupling. Expression of 3-nitrotyrosine was significantly increased, whereas NO production and cGMP levels were significantly reduced. Expressions of antioxidant enzymes namely copper and zinc superoxide dismutase, manganese superoxide dismutase, and catalase were not affected by uncoupling of eNOS. Reduced levels of BH(4), increased superoxide anion production, as well as inhibition of NO signaling were not different between the microvessels of male and female mice. The results of our study are the first to demonstrate that, regardless of gender, reduced BH(4) bioavailability causes eNOS uncoupling, increases superoxide anion production, inhibits eNOS/cGMP signaling, and imposes significant oxidative stress in the cerebral microvasculature.
Collapse
Affiliation(s)
- Anantha Vijay R Santhanam
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | |
Collapse
|
10
|
Belik J, McIntyre BAS, Enomoto M, Pan J, Grasemann H, Vasquez-Vivar J. Pulmonary hypertension in the newborn GTP cyclohydrolase I-deficient mouse. Free Radic Biol Med 2011; 51:2227-33. [PMID: 21982896 PMCID: PMC5050525 DOI: 10.1016/j.freeradbiomed.2011.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/10/2011] [Accepted: 09/13/2011] [Indexed: 11/30/2022]
Abstract
Tetrahydrobiopterin (BH4) is a regulator of endothelial nitric oxide synthase (eNOS) activity. Deficient levels result in eNOS uncoupling, with a shift from nitric oxide to superoxide generation. The hph-1 mutant mouse has deficient GTP cyclohydrolase I (GTPCH1) activity, resulting in low BH4 tissue content. The adult hph-1 mouse has pulmonary hypertension, but whether such condition is present from birth is not known. Thus, we evaluated newborn animals' pulmonary arterial medial thickness, biopterin content (BH4+BH2), H(2)O(2) and eNOS, right ventricle-to-left ventricle+septum (RV/LV+septum) ratio, near-resistance pulmonary artery agonist-induced force, and endothelium-dependent and -independent relaxation. The lung biopterin content was inversely related to age for both types, but significantly lower in hph-1 mice, compared to wild-type animals. As judged by the RV/LV+septum ratio, newborn hph-1 mice have pulmonary hypertension and, after a 2-week 13% oxygen exposure, the ratios were similar in both types. The pulmonary arterial agonist-induced force was reduced (P<0.01) in hph-1 animals and no type-dependent difference in endothelium-dependent or -independent vasorelaxation was observed. Compared to wild-type mice, the lung H(2)O(2) content was increased, whereas the eNOS expression was decreased (P<0.01) in hph-1 animals. The pulmonary arterial medial thickness, a surrogate marker of vascular remodeling, was increased (P<0.01) in hph-1 compared to wild-type mice. In conclusion, our data suggest that pulmonary hypertension is present from birth in the GTPCH1-deficient mice, not as a result of impaired vasodilation, but secondary to vascular remodeling.
Collapse
Affiliation(s)
- Jaques Belik
- Department of Paediatrics, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
11
|
d'Uscio LV, Smith LA, Katusic ZS. Differential effects of eNOS uncoupling on conduit and small arteries in GTP-cyclohydrolase I-deficient hph-1 mice. Am J Physiol Heart Circ Physiol 2011; 301:H2227-34. [PMID: 21963838 PMCID: PMC3233811 DOI: 10.1152/ajpheart.00588.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/11/2011] [Indexed: 12/28/2022]
Abstract
In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | |
Collapse
|
12
|
Abstract
Understanding and consequently treating neuropathic pain effectively is a challenge for modern medicine, as unlike inflammation, which can be controlled relatively well, chronic pain due to nerve injury is refractory to most current therapeutics. Here we define a target pathway for a new class of analgesics, tetrahydrobiopterin (BH4) synthesis and metabolism. BH4 is an essential co-factor in the synthesis of serotonin, dopamine, epinephrine, norepinephrine and nitric oxide and as a result, its availability influences many systems, including neurons. Following peripheral nerve damage, levels of BH4 are dramatically increased in sensory neurons, consequently this has a profound effect on the physiology of these cells, causing increased activity and pain hypersensitivity. These changes are principally due to the upregulation of the rate limiting enzyme for BH4 synthesis GTP Cyclohydrolase 1 (GCH1). A GCH1 pain-protective haplotype which decreases pain levels in a variety of settings, by reducing the levels of endogenous activation of this enzyme, has been characterized in humans. Here we define the control of BH4 homeostasis and discuss the consequences of large perturbations within this system, both negatively via genetic mutations and after pathological increases in the production of this cofactor that result in chronic pain. We explain the nature of the GCH1 reduced-function haplotype and set out the potential for a ' BH4 blocking' drug as a novel analgesic.
Collapse
Affiliation(s)
- Alban Latremoliere
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, Harvard Medical School, 3 Blackfan Circle, CLS 12260, Boston, MA 02115, USA
| | - Michael Costigan
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, Harvard Medical School, 3 Blackfan Circle, CLS 12260, Boston, MA 02115, USA
| |
Collapse
|
13
|
Gil M, McKinney C, Lee MK, Eells JB, Phyillaier MA, Nikodem VM. Regulation of GTP cyclohydrolase I expression by orphan receptor Nurr1 in cell culture and in vivo. J Neurochem 2007; 101:142-50. [PMID: 17394463 DOI: 10.1111/j.1471-4159.2006.04356.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nurr1 is an orphan nuclear transcription factor essential for the terminal differentiation of dopamine (DA) neurons in the ventral midbrain (VM). To identify the Nurr1-target genes, we carried out microarray and quantitative real-time PCR analyses of Nurr1 null and wild-type mice in VM at embryonic day (E) 12.5 and shortly after birth (P0). In addition to the absence of mRNAs of DA synthesizing enzymes, the guanosine 5'-triphosphate (GTP) cyclohydrolase I (GTPCH) was also substantially reduced in the VM of Nurr1-null mice. GTPCH is the first enzyme in the synthesis pathway of tetrahydrobiopterin (BH4), an essential cofactor for tyrosine hydroxylase in DA synthesis. In the mouse, Nurr1 and GTPCH mRNA were first detected at E10.5, and GTPCH transcription paralleled that of Nurr1. Small interfering RNA targeted against Nurr1 decreases GTPCH expression in MC3T3-E1 osteoblasts in cell culture. Cotransfection of Nurr1 and the GTPCH-luciferase (luc) reporter increased the luc activity by about threefold in N2A cells. Additional analysis using 5'-deletions and mutants revealed that Nurr1 activates GTPCH transcription indirectly through the proximal promoter region, in the absence of the nerve growth factor-induced clone B (NGFI-B) responsive element-like sites, similarly, as recently reported for DA transporter regulation by Nurr1.
Collapse
MESH Headings
- Animals
- Biopterins/analogs & derivatives
- Biopterins/biosynthesis
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dopamine/biosynthesis
- Down-Regulation/genetics
- Enzyme Activation/genetics
- Female
- GTP Cyclohydrolase/genetics
- GTP Cyclohydrolase/metabolism
- Gene Expression Regulation, Enzymologic/physiology
- Genes, Reporter/genetics
- Male
- Mice
- Mice, Knockout
- Mutation/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- RNA, Small Interfering
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Minchan Gil
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for the aromatic amino acid hydroxylases, which are essential in the formation of neurotransmitters, and for nitric oxide synthase. It is presently used clinically to treat some forms of phenylketonuria (PKU) that can be ameliorated by BH4 supplementation. Recent evidence supports potential cardiovascular benefits from BH4 replacement for the treatment of hypertension, ischemia-reperfusion injury, and cardiac hypertrophy with chamber remodeling. Such disorders exhibit BH4 depletion because of its oxidation and/or reduced synthesis, which can result in functional uncoupling of nitric oxide synthase (NOS). Uncoupled NOS generates more oxygen free radicals and less nitric oxide, shifting the nitroso-redox balance and having adverse consequences on the cardiovascular system. While previously difficult to use as a treatment because of chemical instability and cost, newer methods to synthesize stable BH4 suggest its novel potential as a therapeutic agent. This review discusses the biochemistry, physiology, and evolving therapeutic potential of BH4 for cardiovascular disease.
Collapse
Affiliation(s)
- An L Moens
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | |
Collapse
|
15
|
Eells JB, Misler JA, Nikodem VM. Reduced tyrosine hydroxylase and GTP cyclohydrolase mRNA expression, tyrosine hydroxylase activity, and associated neurochemical alterations in Nurr1-null heterozygous mice. Brain Res Bull 2006; 70:186-95. [PMID: 16782508 DOI: 10.1016/j.brainresbull.2006.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 05/05/2006] [Accepted: 05/06/2006] [Indexed: 10/24/2022]
Abstract
The nuclear receptor Nurr1 is essential for the development of midbrain dopamine neurons and appears to be an important regulator of dopamine levels as adult Nurr1-null heterozygous (+/-) mice have reduced mesolimbic/mesocortical dopamine levels. The mechanism(s) through which reduced Nurr1 expression affects dopamine levels has not been determined. Quantitative real-time PCR revealed a significant reduction in tyrosine hydroxylase (TH) and GTP cyclohydrolase (GTPCH) mRNA in ventral midbrain of +/- mice as compared to wild-type mice (+/+). The effect on TH expression was only observed at birth, while reduced GTP cyclohydrolase was also observed in the adult ventral tegemental area. No differences in dopamine transporter, vesicular monoamine transporter, dopamine D2 receptor or aromatic amino acid decarboxylase were observed. Since TH and GTPCH are both involved in dopamine synthesis, regulation of in vivo TH activity was measured in these mice. In vivo TH activity was reduced in nucleus accumbens and striatum of the +/- mice (24.7% and 15.7% reduction, respectively). In the striatum, gamma-butyrolactone exacerbated differences on +/- striatal TH activity (29.8% reduction) while haloperidol equalized TH activity between the +/+ and +/-. TH activity in the nucleus accumbens was significantly reduced in all conditions measured. Furthermore, dopamine levels in the striatum of +/- mice were significantly reduced after inhibition of dopamine synthesis or after haloperidol treatment but not under basal conditions while dopamine levels in the nucleus accumbens were reduced under basal conditions. Based on these data the +/- genotype results in changes in gene expression and impairs dopamine synthesis which can affect the maintenance of dopamine levels, although with differential effects between mesolimbic/mesocortical and nigrostriatal dopamine neurons. Together, these data suggest that Nurr1 may function to modify TH and GTPCH expression and dopamine synthesis.
Collapse
Affiliation(s)
- Jeffrey B Eells
- National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
16
|
Wang CH, Li SH, Weisel RD, Fedak PWM, Hung A, Li RK, Rao V, Hyland K, Cherng WJ, Errett L, Leclerc Y, Bonneau D, Latter DA, Verma S. Tetrahydrobiopterin deficiency exaggerates intimal hyperplasia after vascular injury. Am J Physiol Regul Integr Comp Physiol 2005; 289:R299-304. [PMID: 15774769 DOI: 10.1152/ajpregu.00269.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decreased levels of tetrahydrobiopterin (BH4), an absolute cofactor for nitric oxide synthase (NOS), lead to uncoupling of NOS into a superoxide v. nitric oxide producing enzyme, and it is this uncoupling that links it to the development of vascular disease. However, the effects of in vivo deficiency of BH4 on neointimal formation after vascular injury have not been previously investigated. Hph-1 mice, which display 90% deficiency in guanine triphosphate cyclohydrolase I, the rate limiting enzyme in BH4 synthesis, were used. Hph-1 and wild-type mice, treated with either vehicle or BH4 (n = 15 per group), were subjected to wire-induced femoral artery injury, and NOS expression and activity, inflammation, cell proliferation, superoxide production, and neointimal formation were assessed. The major form of NOS expressed over vessel wall after vascular injury was endothelial NOS. Hph-1 mice exhibited lower NOS activity (2.8 +/- 0.3 vs. 4.5 +/- 0.4 pmol/min/mg protein, P < 0.01), and higher aortic superoxide content (5.2 +/- 2.0 x 10(5) cpm vs. 1.6 +/- 0.7 x 10(5) cpm, P < 0.01) compared with wild-type controls, indicating uncoupling of NOS. Treatment of hph-1 mice with BH4 significantly increased NOS activity (from 2.8 +/- 0.3 to 4.1 +/- 0.4 pmol.min(-1).mg protein(-1), P < 0.05), and attenuated superoxide production (from 5.2 +/- 2.0 x 10(5) cpm to 0.8 +/- 0.7 x 10(5) cpm, P < 0.05). Hph-1 mice also had higher inflammatory reactions and more cell proliferation after vascular injury. Furthermore, hph-1 mice responded by a marked increase in neointimal formation at 4 wk after vascular injury, compared with wild-type controls (intima:media ratio: 4.5 +/- 0.5 vs. wild-type 0.7 +/- 0.1, P < 0.001). Treatment of hph-1 mice with BH4 prevented vascular injury-induced increase in neointimal formation (intima:media ratio: 1.4 +/- 0.1 vs. hph-1, P < 0.001). Treatment had no effect on wild-type controls. In summary, we describe, for the first time, that in vivo BH4 deficiency facilitates neointimal formation after vascular injury. Modulation of BH4 bioavailability is an important therapeutic target for restenosis.
Collapse
Affiliation(s)
- Chao-Hung Wang
- Division of Cardiac Surgery, St. Michael's Hospital, 30 Bond St., Queen Wing, Suite 8-003H, Toronto, Ontario, Canada M5B 1W8
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Khoo JP, Zhao L, Alp NJ, Bendall JK, Nicoli T, Rockett K, Wilkins MR, Channon KM. Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation 2005; 111:2126-33. [PMID: 15824200 DOI: 10.1161/01.cir.0000162470.26840.89] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary hypertension is a fatal disease characterized by vasoconstriction and vascular remodeling. Loss of endothelial nitric oxide bioavailability is implicated in pulmonary hypertension pathogenesis. Recent evidence suggests that the cofactor tetrahydrobiopterin (BH4) is an important regulator of nitric oxide synthase enzymatic function. METHODS AND RESULTS In the hph-1 mouse with deficient BH4 biosynthesis, BH4 deficiency caused pulmonary hypertension, even in normoxic conditions, and greatly increased susceptibility to hypoxia-induced pulmonary hypertension. In contrast, augmented BH4 synthesis in the endothelium, by targeted transgenic overexpression of GTP-cyclohydrolase I (GCH), prevented hypoxia-induced pulmonary hypertension. Furthermore, specific augmentation of endothelial BH4 in hph-1 mice by crossing with GCH transgenic mice rescued pulmonary hypertension induced by systemic BH4 deficiency. Lung BH4 availability controlled pulmonary vascular tone, right ventricular hypertrophy, and vascular structural remodeling in a dose-dependent manner in both normoxia and hypoxia. Furthermore, BH4 availability had striking effects on the immediate vasoconstriction response to acute hypoxia. These effects of BH4 were mediated through the regulation of nitric oxide compared with superoxide synthesis by endothelial nitric oxide synthase. CONCLUSIONS Endothelial BH4 availability is essential for maintaining pulmonary vascular homeostasis, is a critical mediator in the pathogenesis of pulmonary hypertension, and is a novel therapeutic target.
Collapse
Affiliation(s)
- Jeffrey P Khoo
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zeng BY, Heales SJR, Canevari L, Rose S, Jenner P. Alterations in expression of dopamine receptors and neuropeptides in the striatum of GTP cyclohydrolase-deficient mice. Exp Neurol 2004; 190:515-24. [PMID: 15530890 DOI: 10.1016/j.expneurol.2004.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/30/2004] [Accepted: 08/23/2004] [Indexed: 11/21/2022]
Abstract
The hph-1 mice have defective tetrahydrobiopterin biosynthesis and share many neurochemical similarities with l-dopa-responsive dystonia (DRD) in humans. In both, there are deficiencies in GTP cyclohydrolase I and low brain levels of dopamine (DA). Striatal tyrosine hydroxylase (TH) levels are decreased while the number of DA neurones in substantia nigra (SN) appears normal. The hph-1 mouse is therefore a useful model in which to investigate the biochemical mechanisms underlying dystonia in DRD. In the present study, the density of striatal DA terminals and DA receptors and the expression of D-1, D-2, and D-3 receptors, preproenkephalin (PPE-A), preprotachykinin (PPT), and nitric oxide synthase (NOS) mRNAs in the striatum and nucleus accumbens and nigral TH mRNA expression were examined. Striatal DA terminal density as judged by specific [3H]mazindol binding was not altered while the levels of TH mRNA were elevated in the SN of hph-1 mice compared to control (C57BL) mice. Total and subregional analysis of the striatum and nucleus accumbens showed that D-2 receptor ([3H]spiperone) binding density was increased while D-1 receptor ([3H]SCH 23390) and D-3 receptor ([3H]7-OH-DPAT) binding density was not altered. In the striatum and nucleus accumbens, expression of PPT mRNA was elevated but PPE-A mRNA, D-1, D-2 receptor, and nNOS mRNA were not changed in hph-1 mice compared to controls. These findings suggest that an imbalance between the direct strionigral and indirect striopallidal output pathways may be relevant to the genesis of DRD. However, the pattern of changes observed is not that expected as a result of striatal dopamine deficiency and suggests that other effects of GTP cyclohydrolase I deficiency may be involved.
Collapse
Affiliation(s)
- B-Y Zeng
- Neurodegenerative Disease Research Centre, GKT School of Biomedical Sciences, King's College, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
19
|
Abstract
In vascular disease states such as atherosclerosis and diabetes, endothelial nitric oxide (NO) bioactivity is reduced and oxidative stress is increased, resulting in endothelial dysfunction. Recent studies suggest that changes in the activity and regulation of endothelial NO synthase by its cofactor tetrahydrobiopterin (BH4) is an important contributor to endothelial dysfunction. Pharmacologic studies and more recent insights from genetically modified mouse models have improved the understanding of the mechanistic role and importance of BH4 in vascular disease pathogenesis. Targeting BH4 may provide new therapeutic strategies in vascular disease.
Collapse
Affiliation(s)
- Keith M Channon
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
20
|
Abel RM, Dorè CJ, Bishop AE, Facer P, Polak JM, Spitz L. A histological study of the hph-1 mouse mutant: an animal model of phenylketonuria and infantile hypertrophic pyloric stenosis. Anat Histol Embryol 2004; 33:125-30. [PMID: 15144277 DOI: 10.1111/j.1439-0264.2004.00390.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To quantify the chronological sequence of changes in the morphology and immunoreactivity for neurotransmitters in the pylorus of an animal model of infantile hypertrophic pyloric stenosis and phenylketonuria. METHOD Thirty specimens of pylorus from hph-1 mice and age/sex matched controls (age range: 10-180 days) were examined using conventional histology and immunohistochemistry for a variety of antigens: protein gene product 9.5, a pan neuronal marker; vasoactive intestinal polypeptide; nitric oxide synthase two antigens coalesced to the same inhibitory neurons in humans; substance P, a potent excitatory neurotransmitter; and calcitonin gene related peptide, a neurotransmitter implicated in the somatic afferent innervation of the stomach. The changes in the morphology of the muscle layers were quantified and statistically analysed for each age group (10, 20, 40, 90 and 180 days). RESULTS Between 10 and 90 days of age, all muscle layers of the hph-1 mice were hypertrophied, for example, 10 days, hph-1 longitudinal muscle mean diameter = 3.4, control = 1.8; hph-1 circular muscle width = 11.5, control = 4.7. The hph-1 mice were significantly smaller during this period (40 days, hph-1 weight = 10 g, control = 25 g). There was no change in the pattern of expression of the antigens examined within the hph-1 mice compared with the controls. CONCLUSION Hph-1 mice develop a transient smooth muscle hypertrophy of the pylorus attended by gastric distension and failure to gain weight. These changes resolve as the pyloric muscle hypertrophy resolves.
Collapse
Affiliation(s)
- R M Abel
- Department of Paediatric Surgery, Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | | | | | | | | | | |
Collapse
|
21
|
Khoo JP, Nicoli T, Alp NJ, Fullerton J, Flint J, Channon KM. Congenic mapping and genotyping of the tetrahydrobiopterin-deficient hph-1 mouse. Mol Genet Metab 2004; 82:251-4. [PMID: 15234340 DOI: 10.1016/j.ymgme.2004.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 04/06/2004] [Accepted: 04/08/2004] [Indexed: 11/25/2022]
Abstract
The hph-1 ENU-mutant mouse provides a model of tetrahydrobiopterin deficiency for studying hyperphenylalaninaemia, dopa-response dystonia, and vascular dysfunction. We have successively localized the hph-1 mutation to a congenic interval of 1.6-2.8 Mb, containing the GCH gene encoding GTP cyclohydrolase I (GTP-CH I). We used these data to establish a PCR method for genotyping wild type, hph-1 and heterozygote mice, and found that heterozygote animals have partial tetrahydrobiopterin deficiency. These new findings will extend the utility of the hph-1 mouse in studies of GTP-CH I deficiency.
Collapse
Affiliation(s)
- Jeffrey P Khoo
- Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | |
Collapse
|
22
|
Hyland K, Kasim S, Egami K, Arnold LA, Jinnah HA. Tetrahydrobiopterin deficiency and dopamine loss in a genetic mouse model of Lesch-Nyhan disease. J Inherit Metab Dis 2004; 27:165-78. [PMID: 15159647 DOI: 10.1023/b:boli.0000028728.93113.4d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) is an enzyme that catalyses the conversion of hypoxanthine and guanine into their respective nucleotides. Inherited deficiency of the enzyme is associated with a loss of striatal dopamine in both mouse and man. Although HPRT is not directly involved in the metabolism of dopamine, it contributes to the supply of GTP, which is used in the first and rate-limiting step in the synthesis of tetrahydrobiopterin (BH4). Since BH4 is required as a cofactor for tyrosine hydroxylase in the synthesis of dopamine, any limitation in the supply of GTP could interfere with the synthesis of dopamine. The current studies were designed to address the hypothesis that the reduced striatal dopamine in mice with HPRT deficiency results from reduced availability of BH4. The mutant mice had small reductions in striatal BH4, with normal BH4 levels in other brain regions. Liver BH4 was normal in HPRT-deficient mutant mice, and a phenylalanine challenge test failed to reveal any evidence for impaired hepatic phenylalanine hydroxylase, another BH4-dependent enzyme. Although striatal BH4 content is not normal, supplementation with BH4 or L-dopa failed to correct the striatal dopamine deficiency of the mutant mice, suggesting that BH4 limitation is not responsible for the dopamine loss.
Collapse
Affiliation(s)
- K Hyland
- Institute for Metabolic Diseases, Baylor University Medical Center, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
23
|
Hyland K, Gunasekara RS, Munk-Martin TL, Arnold LA, Engle T. The hph-1 mouse: a model for dominantly inherited GTP-cyclohydrolase deficiency. Ann Neurol 2003; 54 Suppl 6:S46-8. [PMID: 12891653 DOI: 10.1002/ana.10695] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dominantly inherited guanosine triphosphate (GTP)-cyclohydrolase deficiency, otherwise known as Segawa's disease or dopa-responsive dystonia, has a wide spectrum of phenotypic expression ranging from asymptomatic to very severe. Penetrance is more frequent in women as compared with men, and there is a variable occurrence of diurnal variation in symptom intensity. Biochemical characterization of the disease has demonstrated lower cerebrospinal fluid levels of tetrahydrobiopterin (BH4), neopterin, and homovanillic acid and low levels of tyrosine hydroxylase protein in the striatum. To investigate the pathophysiology, we have begun to characterize biogenic amine and BH4 metabolism in the GTP cyclohydrolase deficient hph-1 mouse. The data show low brain levels of BH4, catecholamines, serotonin, and their metabolites together with low levels of tyrosine hydroxylase protein within the striatum. The hph-1 mouse therefore provides a good model system in which to study the human disease.
Collapse
Affiliation(s)
- Keith Hyland
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, TX 75226, USA.
| | | | | | | | | |
Collapse
|
24
|
Paigen K. One hundred years of mouse genetics: an intellectual history. II. The molecular revolution (1981-2002). Genetics 2003; 163:1227-35. [PMID: 12702670 PMCID: PMC1462511 DOI: 10.1093/genetics/163.4.1227] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kenneth Paigen
- The Jackson Laboratory, Bar Harbor, Maine 04609-1517, USA
| |
Collapse
|
25
|
Cosentino F, Barker JE, Brand MP, Heales SJ, Werner ER, Tippins JR, West N, Channon KM, Volpe M, Lüscher TF. Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21:496-502. [PMID: 11304463 DOI: 10.1161/01.atv.21.4.496] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(6R)-5,6,7,8-Tetrahydro-biopterin (H(4)B) is essential for the catalytic activity of all NO synthases. The hyperphenylalaninemic mouse mutant (hph-1) displays 90% deficiency of the GTP cyclohydrolase I, the rate-limiting enzyme in H(4)B synthesis. A relative shortage of H(4)B may shift the balance between endothelial NO synthase (eNOS)-catalyzed generation of NO and reactive oxygen species. Therefore, the hph-1 mouse represents a unique model to assess the effect of chronic H(4)B deficiency on endothelial function. Aortas from 8-week-old hph-1 and wild-type mice (C57BLxCBA) were compared. H(4)B levels were determined by high-performance liquid chromatography and NO synthase activity by [(3)H]citrulline assay in homogenized tissue. Superoxide production by the chemiluminescence method was measured. Isometric tension was continuously recorded. The intracellular levels of H(4)B as well as constitutive NO synthase activity were significantly lower in hph-1 compared with wild-type mice. Systolic blood pressure was increased in hph-1 mice. However, endothelium-dependent relaxations to acetylcholine were present in both groups and abolished by inhibition of NO synthase with N(G)-nitro-L-arginine methyl ester as well. Only in hph-1 mice were the relaxations inhibited by catalase and enhanced by superoxide dismutase. After incubation with exogenous H(4)B, the differences between the 2 groups disappeared. Our findings demonstrate that H(4)B deficiency leads to eNOS dysfunction with the formation of reactive oxygen species, which become mediators of endothelium-dependent relaxations. A decreased availability of H(4)B may favor an impaired activity of eNOS and thus contribute to the development of vascular diseases.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/physiology
- Biopterins/analogs & derivatives
- Biopterins/deficiency
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Catalase/metabolism
- Catalase/physiology
- Chromatography, High Pressure Liquid
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Male
- Mice
- Mice, Inbred Strains
- Mice, Mutant Strains
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase/physiology
- Nitroprusside/pharmacology
- Norepinephrine/pharmacology
- Reactive Oxygen Species/metabolism
- Reactive Oxygen Species/physiology
- Superoxide Dismutase/metabolism
- Superoxide Dismutase/physiology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- F Cosentino
- Cardiology, Cardiovascular Research, University Hospital, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Maeda T, Haeno S, Oda K, Mori D, Ichinose H, Nagatsu T, Suzuki T. Studies on the genotype-phenotype relation in the hph-1 mouse mutant deficient in guanosine triphosphate (GTP) cyclohydrolase I activity. Brain Dev 2000; 22 Suppl 1:S50-3. [PMID: 10984661 DOI: 10.1016/s0387-7604(00)00133-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The guanosine triphosphate (GTP) cyclohydrolase I (GTP-CHI) catalyses the rate-limiting step in the de novo synthesis of tetrahydrobiopterin, a cofactor of three aromatic amino acid hydroxylases, one of which is phenylalanine hydroxylase. The hph-1 mouse mutant deficient in GTP-CHI activity exhibits hyperphenylalaninemia which peculiarly disappears at 3 weeks of age, thus corresponding to the increase in liver GTP-CHI activity. The present gas chromatographic-mass spectrometric analysis of the phenylalanine and catecholamine metabolisms demonstrated the former metabolism to remain disturbed even in adult hph-1, which demonstrated a metabolic basis for sensitivity to the phenylalanine challenge in adult hph-1. A Northern blot analysis showed the hepatic GTP-CHI RNA expression in hph-1 at 2, 3 and 4 weeks of age to parallel the peculiar time course of the enzyme activity previously reported. No mutation was detected in either the coding region or the 5' flanking region (nt.-1 to -746) of the GTP-CHI gene of the hph-1. Further molecular genetic analyses are therefore required to elucidate the mechanism of the peculiar phenotype of hph-1.
Collapse
Affiliation(s)
- T Maeda
- The Department of Clinical Genetics, The Institute of Bioregulation, Kyushu University, Beppu Tsurumihara 4546, 874-0838, Oita, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Canevari L, Land JM, Clark JB, Heales SJ. Stimulation of the brain NO/cyclic GMP pathway by peripheral administration of tetrahydrobiopterin in the hph-1 mouse. J Neurochem 1999; 73:2563-8. [PMID: 10582619 DOI: 10.1046/j.1471-4159.1999.0732563.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in GTP-cyclohydrolase I (GTP-CH) have been identified as causing a range of inborn errors of metabolism, including dopa-responsive dystonia. GTP-CH catalyses the first step in the biosynthesis of tetrahydrobiopterin (BH4), a cofactor necessary for the synthesis of catecholamines and serotonin. Current therapy based on monoamine neurotransmitter replacement may be only partially successful in correcting the neurological deficits. The reason might be that BH4 is also a cofactor for nitric oxide synthase. Using a strain of mutant GTP-CH-deficient (hph-1) mice, we demonstrate that in addition to impaired monoamine metabolism, BH4 deficiency is also associated with diminished nitric oxide synthesis in the brain (as evaluated by measuring the levels of cyclic GMP), when compared with wild-type animals. We have found a decline in the levels of BH4 with age in all animals, but no gender-related differences. We found a strong association between the levels of BH4 and cyclic GMP in hph-1 mice but not in wild-type animals. We also demonstrate that acute peripheral administration of BH4 (100 micromol/kg s.c.) in hph-1 mice significantly elevated the brain BH4 concentration and subsequently cyclic GMP levels in cerebellum, with peaks at 2 and 3 h, respectively. We suggest that BH4 administration should be considered in BH4 deficiency states in addition to monoamine replacement therapy.
Collapse
Affiliation(s)
- L Canevari
- Department of Neurochemistry, Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, England
| | | | | | | |
Collapse
|
28
|
Montañez CS, McDonald JD. Linkage analysis of the hph-1 mutation and the GTP cyclohydrolase I structural gene. Mol Genet Metab 1999; 68:91-2. [PMID: 10479487 DOI: 10.1006/mgme.1999.2887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our research establishes genetic linkage between the hph-1 mutation and the GTP-CH I structural gene. Our results indicate that these two loci are within an 8 cM region with 95% confidence. This finding lends additional support for the use of the hph-1 mouse mutant as a bona fide model system for the human disorder GTP-CH I to further our understanding of the molecular mechanisms involved in the disease pathology of GTP-CH I deficiency.
Collapse
Affiliation(s)
- C S Montañez
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0026, USA
| | | |
Collapse
|
29
|
Shimoji M, Hirayama K, Hyland K, Kapatos G. GTP cyclohydrolase I gene expression in the brains of male and female hph-1 mice. J Neurochem 1999; 72:757-64. [PMID: 9930750 DOI: 10.1046/j.1471-4159.1999.0720757.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hph-1 mouse is characterized by low levels of GTP cyclohydrolase I (GTPCH) and tetrahydrobiopterin. A quantitative double-label in situ hybridization technique was used to examine CNS GTPCH mRNA expression within serotonin, dopamine, and norepinephrine neurons of male and female wild-type and hph-1 mice. In wild-type male and female animals the highest levels of GTPCH mRNA expression were observed within serotonin neurons, followed by norepinephrine and then dopamine neurons. Wild-type female animals were found to express lower levels of GTPCH mRNA in each cell type when compared with levels seen in wild-type males. GTPCH mRNA abundance in all three cell types was lower in hph-1 male than in wild-type male mice, with the greatest reduction in serotonin neurons. GTPCH mRNA levels were also lower in hph-1 female than in wild-type female mice, again with the greatest reduction occurring in serotonin neurons. Comparison of hph-1 male and hph-1 female mice revealed that the sex-linked difference in GTPCH mRNA expression observed in wild-type neurons was only present within female dopamine neurons. Overall, these results indicate that not only are basal levels of GTPCH mRNA expression heterogeneous across wild-type murine monoamine cell types but that gene expression is also modified in a sex-linked and cell-specific fashion by the hph-1 gene locus. The hph-1 mutation does not lie within the GTPCH mRNA coding region. The 5' flanking region of the GTPCH gene was cloned and sequenced and shown to be identical for both wild-type and hph-1 genomic DNA. Transient transfection assays performed in PC12 cells demonstrated that this 5' flanking region was sufficient to initiate transcription of a luciferase reporter gene. Although the hph-1 mutation does not lie within the 5' flanking region of the GTPCH gene, this region of the gene can function as a core promoter and is thus crucial to the control of GTPCH gene expression.
Collapse
Affiliation(s)
- M Shimoji
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
30
|
Barker JE, Strangward HM, Brand MP, Hurst RD, Land JM, Clark JB, Heales SJ. Increased inducible nitric oxide synthase protein but limited nitric oxide formation occurs in astrocytes of the hph-1 (tetrahydrobiopterin deficient) mouse. Brain Res 1998; 804:1-6. [PMID: 9729234 DOI: 10.1016/s0006-8993(98)00603-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been suggested that decreased tetrahydrobiopterin (BH4) availability may be a useful tool for limiting excessive nitric oxide (NO) formation. In order to test this hypothesis we utilised cultured astrocytes derived from the brain of the hph-1 (BH4 deficient) mouse. In response to treatment with lipopolysaccharide and interferon-gamma (LPS/gammaIFN) levels of BH4 doubled in both wild type and hph-1 astrocytes. However, levels of BH4 in hph-1 astrocytes remained only 25% of the wild type astrocytes. Nitric oxide formation, measured with an NO-electrode, was 45% less from LPS/gammaIFN stimulated hph-1 astrocytes compared with wild type stimulated astrocytes. In contrast, iNOS specific activity and iNOS protein were enhanced in hph-1 stimulated astrocytes by 40 and 60%, respectively when compared with wild type. In conclusion it appears that whilst a decrease in BH4 may limit NO release per se, the possibility and consequences of long term 'over' induction of iNOS protein requires further consideration.
Collapse
Affiliation(s)
- J E Barker
- Department of Neurochemistry, Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Dystonia is a common movement disorder which is thought to represent a disease of the basal ganglia. However, the pathogenesis of the idiopathic dystonias, i.e. the neuroanatomic and neurochemical basis, is still a mystery. Research in dystonia is complicated by the existence of various phenotypic and genotypic subtypes of idiopathic dystonia, probably related to heterogeneous dysfunctions. In neurological diseases in which no obvious neuronal degeneration can be found, such as in idiopathic dystonia, the identification of a primary defect is difficult, because of the large number of chemically distinct, but functionally interrelated, neurotransmitter systems in the brain. The variable response to pharmacological agents in patients with idiopathic dystonia supports the notion that the underlying biochemical dysfunctions vary in the subtypes of idiopathic dystonia. Hence, in basic research it is important to clearly define the involved type of dystonia. Animal models of dystonias were described as limited. However, over the last years, there has been considerable progress in the evaluation of animal models for different types of dystonia. Apart from animal models of symptomatic dystonia, genetic animal models with inherited dystonia which occurs in the absence of pathomorphological alterations in brain and spinal cord are describe. This review will focus mainly on genetic animal models of different idiopathic dystonias and pathophysiological findings. In particular, in the case of the mutant dystonic (dt) rat, a model of generalized dystonia, and in the case of the genetically dystonic hamster (dt(sz)), a model of paroxysmal dystonic choreoathetosis has been used, as these show great promise in contributing to the identification of underlying mechanisms in idiopathic dystonias, although even a proper animal model will probably never be equivalent to a human disease. Several pathophysiological findings from animal models are in line with clinical observations in dystonic patients, indicating abnormalities not only in the basal ganglia and thalamic nuclei, but also in the cerebellum and brainstem. Through clinical studies and neurochemical data several similarities were found in the genetic animal models, although the current data indicates different defects in dystonic animals which is consistent with the notion that dystonia is a heterogenous disorder. Different supraspinal dysfunctions appear to lead to manifestation of dystonic movements and postures. In addition to increasing our understanding of the pathophysiology of idiopathic dystonia, animal models may help to improve therapeutic strategies for this movement disorder.
Collapse
Affiliation(s)
- A Richter
- Department of Pharmacology, Toxicology and Pharmacy, School of Veterinary Medicine, Hannover, Germany.
| | | |
Collapse
|
32
|
Brand MP, Briddon A, Land JM, Clark JB, Heales SJ. Impairment of the nitric oxide/cyclic GMP pathway in cerebellar slices prepared from the hph-1 mouse. Brain Res 1996; 735:169-72. [PMID: 8905183 DOI: 10.1016/0006-8993(96)00892-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, the effect of tetrahydrobiopterin deficiency on the nitric oxide/cGMP pathway has been investigated in cerebellar slices derived from the hph-1 mouse. This animal displays a partial deficiency of tetrahydrobiopterin. Basal levels of cGMP were significantly reduced (-29.5%) in the hph-1 mouse cerebellum compared to controls. Following kainate stimulation (500 microM) cGMP levels increased in both control and hph-1 preparations but were again significantly lower (-29.1%) in the hph-1 mouse. Exposure of slices to the nitric oxide donors, S-nitroso-N-acetylpenicillamine and S-nitroso-glutathione, revealed no difference in cGMP accumulation between the two groups. These findings suggest that the cerebellar nitric oxide/cGMP pathway may be impaired in partial tetrahydrobiopterin deficiency states due to diminished nitric oxide formation.
Collapse
Affiliation(s)
- M P Brand
- Department of Neurochemistry, Institute of Neurology, London, UK
| | | | | | | | | |
Collapse
|
33
|
Abel RM. The ontogeny of the peptide innervation of the human pylorus, with special reference to understanding the aetiology and pathogenesis of infantile hypertrophic pyloric stenosis. J Pediatr Surg 1996; 31:490-7. [PMID: 8801298 DOI: 10.1016/s0022-3468(96)90481-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pyloric stenosis (PS) is a common condition in infancy, which is associated with smooth muscle hypertrophy that results in pyloric outlet obstruction. The author examines the ontogeny of the peptide innervation of the pylorus in fetal tissues and an experimental model in mice and evaluates the histochemical and morphological changes in the pylorus. The data suggest that PS is an intrauterine lesion that occurs by 12 weeks' gestation. This is associated with diminished nitric oxide in human tissues and reduced enzyme activity (resulting from a deficiency in an enzyme cofactor) in mice. Increased vasoactive intestinal polypeptide expression in pyloric myenteric ganglia may be an intrinsic mechanism for resolving this condition.
Collapse
Affiliation(s)
- R M Abel
- Institute of Child Health, London, England
| |
Collapse
|
34
|
Pontoglio M, Barra J, Hadchouel M, Doyen A, Kress C, Bach JP, Babinet C, Yaniv M. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell 1996; 84:575-85. [PMID: 8598044 DOI: 10.1016/s0092-8674(00)81033-8] [Citation(s) in RCA: 423] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HNF1 is a transcriptional activator of many hepatic genes including albumin, alpha1-antitrypsin, and alpha- and beta-fibrinogen. It is related to the homeobox gene family and is predominantly expressed in liver and kidney. Mice lacking HNF1 fail to thrive and die around weaning after a progressive wasting syndrome with a marked liver enlargement. The transcription rate of genes like albumin and alpha1-antitrypsin is reduced, while the gene coding for phenylalanine hydroxylase is totally silent, giving rise to phenylketonuria. Mutant mice also suffer from severe Fanconi syndrome caused by renal proximal tubular dysfunction. The resulting massive urinary glucose loss leads to energy and water wasting. HNF1-deficient mice may provide a model for human renal Fanconi syndrome.
Collapse
Affiliation(s)
- M Pontoglio
- Unité des Virus Oncogènes, Département des Biotechnologies, InstitutPasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ichinose H, Ohye T, Matsuda Y, Hori T, Blau N, Burlina A, Rouse B, Matalon R, Fujita K, Nagatsu T. Characterization of mouse and human GTP cyclohydrolase I genes. Mutations in patients with GTP cyclohydrolase I deficiency. J Biol Chem 1995; 270:10062-71. [PMID: 7730309 DOI: 10.1074/jbc.270.17.10062] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
GTP cyclohydrolase I is the first and rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin in mammals. Previously, we reported three species of human GTP cyclohydrolase I cDNA in a human liver cDNA library (Togari, A., Ichinose, H., Matsumoto, S., Fujita, K., and Nagatsu, T. (1992) Biochem. Biophys. Res. Commun. 187, 359-365). Furthermore, very recently, we found that the GTP cyclohydrolase I gene is causative for hereditary progressive dystonia with marked diurnal fluctuation, also known as DOPA-responsive dystonia (Ichinose, H., Ohye, T., Takahashi, E., Seki, N., Hori, T., Segawa, M., Nomura, Y., Endo, K., Tanaka, H., Tsuji, S., Fujita, K., and Nagatsu, T. (1994) Nature Genetics 8, 236-242). To clarify the mechanisms that regulate transcription of the GTP cyclohydrolase I gene and to generate multiple species of mRNA, we isolated genomic DNA clones for the human and mouse GTP cyclohydrolase I genes. Structural analysis of the isolated clones revealed that the GTP cyclohydrolase I gene is encoded by a single copy gene and is composed of six exons spanning approximately 30 kilobases. We sequenced all exon/intron boundaries of the human and mouse genes. Structural analysis also demonstrated that the heterogeneity of GTP cyclohydrolase I mRNA is caused by an alternative usage of the splicing acceptor site at the sixth exon. The transcription start site of the mouse GTP cyclohydrolase I gene and the 5'-flanking sequences of the mouse and human genes were determined. We performed regional mapping of the mouse gene by fluorescence in situ hybridization, and the mouse GTP cyclohydrolase I gene was assigned to region C2-3 of mouse chromosome 14. We identified missense mutations in patients with GTP cyclohydrolase I deficiency and expressed mutated enzymes in Escherichia coli to confirm alterations in the enzyme activity.
Collapse
Affiliation(s)
- H Ichinose
- Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brand MP, Heales SJ, Land JM, Clark JB. Tetrahydrobiopterin deficiency and brain nitric oxide synthase in the hph1 mouse. J Inherit Metab Dis 1995; 18:33-9. [PMID: 7542713 DOI: 10.1007/bf00711370] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tetrahydrobiopterin (BH4) is the cofactor for the aromatic amino acid monoxygenase group of enzymes and for all known isoforms of nitric oxide synthase (NOS). Inborn errors of BH4 metabolism lead to hyperphenylalaninaemia and impaired catecholamine and serotonin turnover. The effects of BH4 deficiency on brain nitric oxide (NO) metabolism are not known. In this study we have used the hph-1 mouse, which displays GTP cyclohydrolase deficiency, to study the effects of BH4 deficiency on brain NOS. In the presence of exogenous BH4, NOS specific activity was virtually identical in the control and hph-1 preparations. However, omission of BH4 from the reaction buffer led to a significant 20% loss of activity in the hph-1 preparations only. The Km for arginine was virtually identical for the control and hph-1 NOS when BH4 was present in the reaction buffer. In the absence of cofactor, the Km for arginine was 3-fold greater for control and 5-fold greater for hph-1 preparations. It is concluded that (a) BH4 does not regulate the intracellular concentration of brain NOS; (b) less binding of BH4 to NOS occurs in BH4 deficiency states; (c) BH4 has a potent effect on the affinity of NOS for arginine; and (d) the availability of arginine for NOS activity may become severely limiting in BH4 deficiency states. Since, in the presence of suboptimal concentrations of BH4 or arginine, NOS may additionally form oxygen free-radicals, it is postulated that in severe BH4 deficiency states NO formation is impaired and the central nervous system is subjected to increased oxidative stress.
Collapse
Affiliation(s)
- M P Brand
- Department of Neurochemistry, University of London, UK
| | | | | | | |
Collapse
|
37
|
McDonald JD. The PKU mouse project: its history, potential and implications. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 1994; 407:122-3. [PMID: 7766947 DOI: 10.1111/j.1651-2227.1994.tb13470.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To produce genetic-based animal models for the human disease phenylketonuria (PKU), we treated mice with the powerful germline mutagen ethylnitrosourea and screened the progeny of these animals for the symptom hyperphenylalaninemia (HPH). Six independent mutant strains have been produced to date that exhibit heritable HPH. The first mutation isolated was found to cause a reduced level of GTP-cyclohydrolase I activity and, as such, yields a model for tetrahydrobiopterin-dependent HPH. The next two mutations have yet to be fully characterized but cause syndromes that appear distinct from any PKU or HPH syndromes yet reported for humans and they are allelic. Next we isolated a mutation that caused a marked reduction in hepatic phenylalanine hydroxylase activity levels. The enzyme deficiency was not sufficient to cause a PKU syndrome but instead produced a mild HPH syndrome. This strain played an instrumental role, however, in the identification of two additional mutant strains that appear to model human PKU very accurately in the laboratory mouse. These latter strains have levels of HPH very similar to human PKU patients, exhibit a phenylalanine-dependent hypopigmentation, and have reproductive difficulties that resemble human maternal PKU.
Collapse
Affiliation(s)
- J D McDonald
- Wichita State University, Department of Biological Sciences, Kansas, USA
| |
Collapse
|
38
|
Hirayama K, Lentz SI, Kapatos G. Tetrahydrobiopterin cofactor biosynthesis: GTP cyclohydrolase I mRNA expression in rat brain and superior cervical ganglia. J Neurochem 1993; 61:1006-14. [PMID: 8103077 DOI: 10.1111/j.1471-4159.1993.tb03614.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin, the reduced pteridine cofactor required for catecholamine (CA), indoleamine, and nitric oxide biosynthesis. We have used the reverse transcription-polymerase chain reaction technique, based on the published cDNA sequence for rat liver GTPCH, to clone a portion of the GTPCH transcript from rat adrenal gland mRNA and have used this clone for the analysis of GTPCH mRNA in brain and other tissues of the rat by northern blot, nuclease protection assay, and in situ hybridization. Two GTPCH mRNA transcripts of 1.2 and 3.8 kb in length were detected by northern blot, with the 1.2-kb form predominating in the liver and the 3.8-kb form in the pineal gland, adrenal gland, brainstem, and hypothalamic neurons maintained in culture. In situ hybridization studies localized GTPCH mRNA to CA-containing perikarya in the locus ceruleus, ventral tegmental area, and substantia nigra, pars compacta. Levels of GTPCH mRNA in central and peripheral catecholamine neurons determined by nuclease protection assay were increased twofold 24 h after a single injection of the CA-depleting drug reserpine; both the 1.2- and 3.8-kb transcripts were increased in the adrenal gland. Low levels of GTPCH mRNA were also detected by nuclease protection assay in the striatum, hippocampus, and cerebellum, brain regions that do not contain monoaminergic perikarya.
Collapse
Affiliation(s)
- K Hirayama
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
39
|
Kapatos G, Hirayama K, Lentz SI, Zhu M, Stegenga S. Differential metabolism of tetrahydrobiopterin in monoamine neurons: a hypothesis based upon clinical and basic research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:217-22. [PMID: 8304113 DOI: 10.1007/978-1-4615-2960-6_43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This chapter has attempted to describe and integrate some of the clinical and basic research that support our hypothesis that the metabolism of BH4 is normally heterogeneous across different populations of monoamine-containing neurons. Based upon this hypothesis, there may now be reason to support the idea that certain neuropsychiatric illnesses, which are though to be the result (at least in part) of altered monoamine metabolism, might find their roots in an abnormal metabolism of BH4 within specific monoaminergic cell groups. Such a specific dysfunction might not be apparent in the rest of the brain or peripheral nervous system, thereby being difficult to detect. Perhaps the application of molecular biological techniques to studies of BH4 metabolism in man will shed new light on these problems.
Collapse
Affiliation(s)
- G Kapatos
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | | | | | |
Collapse
|
40
|
Cha K, Jacobson K, Yim J. Isolation and characterization of GTP cyclohydrolase I from mouse liver. Comparison of normal and the hph-1 mutant. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98895-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Abstract
Despite two decades of investigating the potential for somatic gene therapy in curing human disease, few clinical trials are being proposed. This delay is due in part to limitations of existing methods for gene transfer and to the recognized need to proceed judiciously into this controversial arena. Delay is also caused by a disjunction between the traditional precedents and principles of clinical investigation and the procedures instituted to regulate somatic gene therapy. The premise of this report is twofold: first, that more extensive clinical investigation of gene transfer technologies would be beneficial to patients, medicine, and basic science and second, that clinical investigations could be expedited by appealing to the established experience in clinical investigation without compromising the scientific excellence and discipline essential for this highly public process. This report develops a clinical perspective on potential applications of existing gene transfer technologies and the issues involved in developing experimental protocols. The initiation of clinical trials should be a primary goal of gene therapy research programs.
Collapse
Affiliation(s)
- F D Ledley
- Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine Houston, TX 77030
| |
Collapse
|
42
|
Allanson J, McInnes R, Bradley L, Tarby T, Naylor E, Nardella M. Combined transient and peripheral defects in tetrahydrobiopterin synthesis. J Pediatr 1991; 118:261-3. [PMID: 1993959 DOI: 10.1016/s0022-3476(05)80498-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J Allanson
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Ledley FD, Grenett HE, Dunbar BS, Woo SL. Mouse phenylalanine hydroxylase. Homology and divergence from human phenylalanine hydroxylase. Biochem J 1990; 267:399-405. [PMID: 2334400 PMCID: PMC1131302 DOI: 10.1042/bj2670399] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The laboratory mouse represents an important model for the study of phenylalanine metabolism and the pathochemistry of phenylketonuria, yet mouse phenylalanine hydroxylase (PAH) has not been extensively studied. We report the cloning and sequencing of a mouse PAH cDNA, the expression of enzymic activity from the mouse PAH cDNA clone and the identification of mouse PAH and human PAH by two-dimensional PAGE of liver samples. These data confirm the expected homology of mouse PAH and human PAH and suggest differences in the primary sequence and the phosphorylation state of the two enzymes.
Collapse
Affiliation(s)
- F D Ledley
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | | | | | | |
Collapse
|
44
|
McDonald JD, Bode VC, Dove WF, Shedlovsky A. Pahhph-5: a mouse mutant deficient in phenylalanine hydroxylase. Proc Natl Acad Sci U S A 1990; 87:1965-7. [PMID: 2308957 PMCID: PMC53605 DOI: 10.1073/pnas.87.5.1965] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutant mice exhibiting heritable hyperphenylalaninemia have been isolated after ethylnitrosourea mutagenesis of the germ line. We describe one mutant pedigree in which phenylalanine hydroxylase activity is severely deficient in homozygotes and reduced in heterozygotes while other biochemical components of phenylalanine catabolism are normal. In homozygotes, injection of phenylalanine causes severe hyperphenylalaninemia and urinary excretion of phenylketones but not hypertyrosinemia. Severe chronic hyperphenylalaninemia can be produced when mutant homozygotes are given phenylalanine in their drinking water. Genetic mapping has localized the mutation to murine chromosome 10 at or near the Pah locus, the structural gene for phenylalanine hydroxylase. This mutant provides a useful genetic animal model affected in the same enzyme as in human phenylketonuria.
Collapse
Affiliation(s)
- J D McDonald
- McArdle Laboratory, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
45
|
Jacobson KB, Manos RE. Effects of sepiapterin and 6-acetyldihydrohomopterin on the guanosine triphosphate cyclohydrolase I of mouse, rat and the fruit-fly Drosophila. Biochem J 1989; 260:135-41. [PMID: 2775176 PMCID: PMC1138636 DOI: 10.1042/bj2600135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The regulation of GTP cyclohydrolase I would lead to the regulation of tetrahydrobiopterin, an important cofactor for synthesis of neurotransmitters. In an attempt to extend a previous finding [Bellahsene, Dhondt, & Farriaux (1984) Biochem. J. 217, 59-65] that GTP cyclohydrolase I of rat liver is inhibited by subnanomolar concentrations of reduced biopterin and sepiapterin, we found that this could not be verified with the enzyme from mouse liver, fruit-fly (Drosophila) heads or, indeed, from rat liver. It was shown, however, that 12 microM-sepiapterin inhibited mouse liver GTP cyclohydrolase I. Another compound, namely 6-acetyldihydrohomopterin, was also employed in the present study to explore its effect on enzymes that lead to its synthesis in Drosophila and for effects on mammalian systems; at 2-5 microM this compound was shown to stimulate one form of mouse liver GTP cyclohydrolase I and then to inhibit at higher concentrations (40 microM). Neither sepiapterin nor 6-acetyldihydrohomopterin caused any effect on the Drosophila head enzyme. On the other hand, the sigmoid GTP concentration curve for the Drosophila enzyme may indicate a regulatory characteristic of this enzyme. Another report, on the lower level of GTP cyclohydrolase I in mutant mouse liver [McDonald, Cotton, Jennings, Ledley, Woo & Bode (1988) J. Neurochem. 50, 655-657], was confirmed and extended. Instead of having 10% activity, we find that the hph-1 mouse mutant has less than 2% activity in the liver. These studies demonstrate that micromolar levels of reduced pterins may have regulatory effects on GTP cyclohydrolase I and that a mouse mutant is available that has low enough activity to be considered as a model for human atypical phenylketonuria.
Collapse
Affiliation(s)
- K B Jacobson
- Biology Division, Oak Ridge National Laboratory, TN 37831
| | | |
Collapse
|