1
|
Abstract
Protection against neuronal damage is a major objective of current research in areas such as stroke medicine, Alzheimer's disease and other neurodegenerative conditions. Adenosine receptors are important modulators of cell survival, and thus agents targeting these receptors could be valuable therapeutic agents. Agonists at A(1) receptors and antagonists at A(2A) receptors are known to protect acutely against neuronal damage caused by toxins or ischemia-reperfusion, and these compounds can also protect against the cell damage inflicted by reactive oxygen species. Even endogenous adenosine may be neuroprotective, since its levels rise substantially in association with a period of ischemia-reperfusion. Unfortunately, there is growing evidence that the efficacy of adenosine receptor activation can be reduced by the concomitant activation of glutamate receptors responding to N-methyl-D-aspartate (NMDA), probably acting via the release of nitric oxide. Such problems will need to be resolved before adenosine receptor agonists can proceed far as neuroprotective agents. The use of receptor antagonists may prove a more valuable approach.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
2
|
Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 2009:535-87. [PMID: 19639293 DOI: 10.1007/978-3-540-89615-9_17] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine receptors modulate neuronal and synaptic function in a range of ways that may make them relevant to the occurrence, development and treatment of brain ischemic damage and degenerative disorders. A(1) adenosine receptors tend to suppress neural activity by a predominantly presynaptic action, while A(2A) adenosine receptors are more likely to promote transmitter release and postsynaptic depolarization. A variety of interactions have also been described in which adenosine A(1) or A(2) adenosine receptors can modify cellular responses to conventional neurotransmitters or receptor agonists such as glutamate, NMDA, nitric oxide and P2 purine receptors. Part of the role of adenosine receptors seems to be in the regulation of inflammatory processes that often occur in the aftermath of a major insult or disease process. All of the adenosine receptors can modulate the release of cytokines such as interleukins and tumor necrosis factor-alpha from immune-competent leukocytes and glia. When examined directly as modifiers of brain damage, A(1) adenosine receptor (AR) agonists, A(2A)AR agonists and antagonists, as well as A(3)AR antagonists, can protect against a range of insults, both in vitro and in vivo. Intriguingly, acute and chronic treatments with these ligands can often produce diametrically opposite effects on damage outcome, probably resulting from adaptational changes in receptor number or properties. In some cases molecular approaches have identified the involvement of ERK and GSK-3beta pathways in the protection from damage. Much evidence argues for a role of adenosine receptors in neurological disease. Receptor densities are altered in patients with Alzheimer's disease, while many studies have demonstrated effects of adenosine and its antagonists on synaptic plasticity in vitro, or on learning adequacy in vivo. The combined effects of adenosine on neuronal viability and inflammatory processes have also led to considerations of their roles in Lesch-Nyhan syndrome, Creutzfeldt-Jakob disease, Huntington's disease and multiple sclerosis, as well as the brain damage associated with stroke. In addition to the potential pathological relevance of adenosine receptors, there are earnest attempts in progress to generate ligands that will target adenosine receptors as therapeutic agents to treat some of these disorders.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
3
|
Saransaari P, Oja SS. GABA Release Modified by Adenosine Receptors in Mouse Hippocampal Slices under Normal and Ischemic Conditions. Neurochem Res 2005; 30:467-73. [PMID: 16076017 DOI: 10.1007/s11064-005-2682-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The excitatory glutamatergic neurons in the hippocampus are modulated by inhibitory GABA-releasing interneurons. The neuromodulator adenosine is known to inhibit the presynaptic release of neurotransmitters and to hyperpolarize postsynaptic neurons in the hippocampus, which would imply that it is an endogenous protective agent against cerebral ischemia and excitotoxic neuronal damage. Interactions of the GABAergic and adenosinergic systems in regulating neuronal excitability in the hippocampus is of crucial importance, particularly under cell-damaging conditions. We now characterized the effects of adenosine receptor agonists and antagonists on the release of preloaded [3H]GABA from hippocampal slices prepared from adult (3-month-old) mice, using a superfusion system. The effects were tested both under normal conditions and in ischemia induced by omitting glucose and oxygen from the superfusion medium. Basal and K+ -evoked GABA release in the hippocampus were depressed by adenosinergic compounds. Under normal conditions activation of both adenosine A1 and A2A receptors by the agonists R(-)N6-(2-phenylisopropyl)adenosine and CGS 21680 inhibited the K+ -evoked release, which effects were blocked by their specific antagonists, 8-cyclopentyl-1,3-dipropyl-xanthine and 3,7-dimethyl-1-propargylxanthine, respectively. Under ischemic conditions the release of both GABA and adenosine is markedly enhanced. The above receptor agonists then depressed both the basal and K+ -evoked GABA release, only the action of A2A receptors being however receptor-mediated. The demonstrated depression of GABA release by adenosine in the hippocampus could be deleterious to neurons and contribute to excitotoxicity.
Collapse
Affiliation(s)
- Pirjo Saransaari
- Tampere Brain Research Center, Medical School. University of Tampere, FIN-33014, Finland.
| | | |
Collapse
|
4
|
Abstract
The activation of adenosine A1, A2 andA3 receptors can protect neurones against damage generated by mechanical or hypoxic/ischaemic insults as well as excitotoxins. A1 receptors are probably effective by suppressing transmitter release and producing neuronal hyperpolarisation. They are less likely to be of therapeutic importance due to the plethora of side effects resulting from A1 agonism, although the existence of receptor subtypes and recent synthetic chemistry efforts to increase ligand selectivity, may yet yield clinically viable compounds. Activation of A2A receptors can protect neurons, although there is much uncertainty as to whether agonists are acting centrally or via a peripheral mechanism such as altering blood flow or immune cell function. Selective antagonists at the A2A receptor, such as 4-(2-[7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)triazin-5-yl-amino]ethyl)phenol (ZM 241385) and 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), can also protect against neuronal death produced by ischaemia or excitotoxicity. In addition, A2A receptor antagonists can reduce damage produced by combinations of subthreshold doses of the endogenous excitotoxin quinolinic acid and free radicals. Since the A2A receptors do not seem to be activated by normal endogenous levels of adenosine, their blockade should not generate significant side effects, so that A2A receptor antagonists appear to be promising candidates as new drugs for the prevention of neuronal damage. Adenosine A3 receptors have received less attention to date, but agonists are clearly able to afford protection against damage when administered chronically. Given the disappointing lack of success of NMDA receptor antagonists in human stroke patients, despite their early promise in animal models, it is possible that A2A receptor antagonists could have a far greater clinical utility.
Collapse
Affiliation(s)
- Trevor W Stone
- Division of Neuroscienec and Biomedical Systems, West Medical Bldg, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Saransaari P, Oja SS. Modulation of the ischemia-induced taurine release by adenosine receptors in the developing and adult mouse hippocampus. Neuroscience 2000; 97:425-30. [PMID: 10828525 DOI: 10.1016/s0306-4522(00)00034-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The release of the inhibitory amino acid taurine is markedly enhanced under ischemic conditions in both adult and developing hippocampus, together with a pronounced increase in the release of excitatory amino acids and the neuromodulator adenosine. We studied the effects of adenosine receptor agonists and antagonists as well as adenosine transport inhibitors on hippocampal [(3)H]taurine release in normoxia and ischemia, using a superfusion system. Under standard conditions the adenosine A(1) receptor agonists N(6)-cyclohexyladenosine and R(-)N(6)-(2-phenylisopropyl)adenosine potentiated basal taurine release in developing mice and depressed the release in adults in a receptor-mediated manner. Adenosine A(2) receptor compounds had only minor effects on the basal release and the K(+)-stimulated release was not affected by these drugs. The adenosine uptake inhibitor dipyridamole enhanced basal taurine release in the developing hippocampus and reduced it in the adult. In ischemia the adenosine compounds had no marked effects on taurine release in immature animals, whereas A(1) receptor activation was still able to evoke taurine release in adults by a receptor-mediated mechanism. The results show that the basal release of taurine is modulated by A(1) receptors in both mature and immature hippocampus, whereas in ischemia these receptors potentiate taurine release only in adults. The elevated taurine levels together with the depression of excitatory amino acid release by adenosine receptor activation could be beneficial under ischemic conditions, protecting neural cells against excitotoxicity and hyperexcitation.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, University of Tampere Medical School, Box 607, FIN-33101, Tampere, Finland.
| | | |
Collapse
|
6
|
Frankiewicz T, Pilc A, Parsons CG. Differential effects of NMDA-receptor antagonists on long-term potentiation and hypoxic/hypoglycaemic excitotoxicity in hippocampal slices. Neuropharmacology 2000; 39:631-42. [PMID: 10728884 DOI: 10.1016/s0028-3908(99)00168-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Whole-cell patch clamp recording from cultured hippocampal neurones was used to investigate the NMDA antagonistic effects of the glycineB antagonist 5,7-DCKA and the competitive antagonist CGP 37849. Extracellular field potential recording from area CA1 of hippocampal slices was used to investigate their effects on the induction of LTP and hypoxia/hypoglycaemia-induced suppression of fEPSPs. Additionally, memantine and (+)MK-801 were tested in the later model. 5,7-DCKA inhibited NMDA-induced plateau currents (IC50=0.24+/-0.02 microM) with around nine times higher potency than against peak (IC50=2.14+/-0.17 microM). In contrast, CGP 37849 slowed the onset of NMDA-induced currents considerably and antagonized currents at the time point when the peak component occurred in control responses (IC50=0.18+/-0.01 microM) with around seven times higher potency than against plateau (IC50=1.26+/-0.19 microM). Both 5,7-DCKA and CGP 37849 inhibited the induction of LTP (IC50s=2.53+/-0.13 and 0.37+/-0.04 microM respectively) with potencies close to those inhibiting peak currents in patch clamp studies. 5,7-DCKA and CGP 37849 also blocked the hypoxia/hypoglycaemia-induced suppression of fEPSPs but CGP 37849 (EC50=4.3+/-0.33 microM) was far less potent than against the induction of LTP whilst 5,7-DCKA (EC50=1.47+/-0.04 microM) had similar potency in these two models. Memantine and (+)MK-801 also blocked hypoxia/hypoglycaemia-induced suppression of fEPSPs with EC50s of 14.1+/-0.52 and 0.53+/-0.02 microM respectively. Whereas memantine blocked this effect with similar potency as we previously reported for LTP, (+)MK-801 was four time less potent in this model. The calculated relative therapeutic indices (IC50 LTP over EC50 hypoxia/hypoglycaemia) for 5,7-DCKA, CGP 37849, memantine and (+)MK-801 were 1.72, 0.09, 0.82 and 0.24 respectively. These results show that even in a severe model of hypoxia/hypoglycaemia, glycineB site antagonists and moderate affinity channel blockers exhibit a better therapeutic index than competitive antagonists and high affinity channel blockers. It is likely that in milder forms of pathology the observed differences in therapeutic indices remain the same but the absolute values are expected to be higher.
Collapse
Affiliation(s)
- T Frankiewicz
- Dept. of Pharmacology, Merz and Co., Frankfurt am Main, Germany
| | | | | |
Collapse
|
7
|
Goda H, Ooboshi H, Nakane H, Ibayashi S, Sadoshima S, Fujishima M. Modulation of ischemia-evoked release of excitatory and inhibitory amino acids by adenosine A1 receptor agonist. Eur J Pharmacol 1998; 357:149-55. [PMID: 9797030 DOI: 10.1016/s0014-2999(98)00559-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Adenosine has been reported to have beneficial effects against ischemic brain damage, although the mechanisms are not fully clarified. To examine the role of adenosine on the ischemia-evoked release of neurotransmitters, we applied a highly selective agonist for adenosine A1 receptor, 2-chloro-N6-cyclopentyladenosine (CCPA), into the ischemic brain using in vivo brain dialysis, which directly delivered the agonist to the local brain area. Concentrations of extracellular amino acids (glutamate, aspartate, gamma-aminobutyric acid (GABA) and taurine) and regional blood flow in the striatum of spontaneously hypertensive rats (SHRs) were monitored during cerebral ischemia elicited by bilateral carotid artery occlusion for 40 min and recirculation. Striatal blood flow and basal levels of amino acids were not affected by direct perfusion of CCPA (10 microM or 100 microM). During ischemia, concentrations of glutamate, aspartate, GABA and taurine increased up to 37-, 30-, 96- and 31-fold, respectively, when vehicle alone was administered. Administration of CCPA did not affect the changes in regional blood flow during ischemia and reperfusion. Perfusion of CCPA (100 microM), however, significantly attenuated the ischemia-evoked release of aspartate (by 70%) and glutamate (by 73%). The ischemia-induced increase of GABA tended to be decreased by CCPA, although it was not statistically significant. In contrast, both low and high concentrations of CCPA had little effect on the release of taurine during ischemia. These results suggest that stimulation of adenosine A1 receptors selectively attenuated the ischemia-evoked release of excitatory amino acids, but not of inhibitory amino acids without affecting blood flow. This modulation of the release of amino acids by adenosine A1 receptor agonists may play a protective role against ischemic neuronal damage.
Collapse
Affiliation(s)
- H Goda
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Tatlisumak T, Takano K, Carano RA, Miller LP, Foster AC, Fisher M. Delayed treatment with an adenosine kinase inhibitor, GP683, attenuates infarct size in rats with temporary middle cerebral artery occlusion. Stroke 1998; 29:1952-8. [PMID: 9731623 DOI: 10.1161/01.str.29.9.1952] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Brain ischemia is associated with a marked increase in extracellular adenosine levels. This results in activation of cell surface adenosine receptors and some degree of neuroprotection. Adenosine kinase is a key enzyme controlling adenosine metabolism. Inhibition of this enzyme enhances the levels of endogenous brain adenosine already elevated as a result of the ischemic episode. We studied a novel adenosine kinase inhibitor (AKI), GP683, in a rat focal ischemia model. METHODS Four groups of 10 adult Sprague-Dawley rats were exposed to 90 minutes of temporary middle cerebral artery (MCA) occlusion. Animals were injected intraperitoneally with vehicle, 0.5 mg/kg, 1.0 mg/kg, or 2.0 mg/kg of GP683 30, 150, and 270 minutes after the induction of ischemia by a researcher blinded to treatment group. The animals were euthanatized 24 hours after MCA occlusion, and brains were stained with 2,3,5-triphenyltetrazolium chloride. We measured brain temperatures in a separate group of 6 rats before and after administration of 1.0 mg/kg GP683. RESULTS All treated groups showed a reduction in infarct volumes, but a significant effect was observed only in the 1.0 mg/kg-dose group (44% reduction, P=0.0077). Body weight, physiological parameters, neurological scores, and mortality did not differ among the 4 groups. No apparent behavioral side effects were observed. Brain temperatures did not change after drug injection. CONCLUSIONS Our results indicate that the use of AKIs offers therapeutic potential and may represent a novel approach to the treatment of acute brain ischemia. The therapeutic effect observed was not caused by a decrease in brain temperature.
Collapse
Affiliation(s)
- T Tatlisumak
- Department of Neurology, Helsinki University Central Hospital, Finland.
| | | | | | | | | | | |
Collapse
|
9
|
MacGregor DG, Graham DI, Jones PA, Stone TW. Protection by an adenosine analogue against kainate-induced extrahippocampal neuropathology. GENERAL PHARMACOLOGY 1998; 31:233-8. [PMID: 9688465 DOI: 10.1016/s0306-3623(97)00455-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1. The glutamate analogue kainic acid produces neuronal damage in the central nervous system. We have reported that analogues of adenosine, such as R-N6-phenylisopropyladenosine (R-PIA) can, at doses as low as 10 microg/kg IP, prevent the hippocampal damage that follows the systemic administration of kainate. The present work was designed to examine purine protection against kainate in extrahippocampal regions by using histological methods. 2. The results show that R-PIA, at a dose of 25 microg/kg IP in rats, can protect against the neuronal damage caused by kainate in the basolateral amygdaloid nuclei, the pyriform cortex and around the rhinal fissure. This protection could be prevented by the simultaneous administration of the A1 adenosine receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine, confirming that the protection involved adenosine A1 receptors. No protection was observed in the posterior amygdaloid nuclei or the entorhinal cortex, suggesting the absence of relevant adenosine receptors or a different mechanism of excitotoxicity.
Collapse
Affiliation(s)
- D G MacGregor
- Division of Neuroscience and Biomedical Systems, University of Glasgow, Scotland
| | | | | | | |
Collapse
|
10
|
Dora CD, Koch S, Sanchez A, Ruenes G, Liu S, Yezierski RP. Intraspinal injection of adenosine agonists protect against L-NAME induced neuronal loss in the rat. J Neurotrauma 1998; 15:473-83. [PMID: 9674551 DOI: 10.1089/neu.1998.15.473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Intraspinal injection of the nonspecific inhibitor of nitric oxide synthase N-nitro-L-arginine methyl ester (L-NAME) results in a dose-dependent loss of neurons in the rat spinal cord. This effect is thought to result from a reduction in basal levels of nitric oxide (NO), thereby producing an ischemic reaction secondary to vasoconstriction and reduced spinal cord blood flow (SCBF). An important component of this ischemic reaction is the release of excitatory amino acids and the initiation of an excitotoxic cascade. In the present study, microinjections of adenosine A1 and A2 receptor agonists were made in the spinal cord to evaluate the neuroprotective effects of these drugs against neuronal loss produced by L-NAME. Animals were divided into six groups based on the composition of injected solutions: (a) L-NAME; (b) L-NAME + N6-cyclopentyladenosine (CPA, A1 agonist); (c) L-NAME + 5'-(N-cyclopropyl)-carboxamidoadenosine (CPCA, A2 agonist); (d) L-NAME + CPA + CPCA; (e) N-methyl D-aspartate (NMDA); and (f) NMDA + CPA. Injections of L-NAME or NMDA produced a unilateral loss of spinal neurons, a local inflammatory response, and darkly stained pyknotic nuclei surrounding the area of neuronal loss. CPA and CPCA significantly reduced the area of L-NAME-induced neuronal loss, and a synergistic effect was observed when ineffective doses of these agonists were co-injected with L-NAME. The excitotoxic effects of NMDA were not affected by CPA. The results have shown that A1 and A2 receptor agonists provide significant neuroprotection against L-NAME induced neuronal loss, presumably by inhibiting ischemia induced release of excitatory amino acids (A1 agonist), or by restoring SCBF secondary to vasodilation (A2 agonist). It is suggested by these results that the intraspinal injection of L-NAME is an effective model to study the pathological consequences of vasoconstriction, reduced SCBF, and ischemia secondary to decreased NO production in the rat spinal cord. Finally, the results provide support for the continued investigation of specific adenosine agonists as therapeutic agents directed against the ischemic and excitotoxic components of spinal injury.
Collapse
Affiliation(s)
- C D Dora
- The Miami Project to Cure Paralysis, University of Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
11
|
Obrenovitch TP, Hardy AM, Urenjak J. High extracellular glycine does not potentiate N-methyl-D-aspartate-evoked depolarization in vivo. Brain Res 1997; 746:190-4. [PMID: 9037498 DOI: 10.1016/s0006-8993(96)01197-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As N-methyl-D-aspartate receptor (NMDA) ionophore complexes have a distinct positive, allosteric regulatory site for glycine, it has been proposed that elevated extracellular glycine during or after cerebral ischaemia may induce excessive NMDA/glutamate receptor activation and, thereby, excitotoxicity. To test this hypothesis, we have perfused increasing concentrations of glycine, either alone or with co-application of NMDA, through a microdialysis probe implanted in the striatum of halothane anaesthetized rats. Changes in the extracellular field (DC) potential indicative of depolarization were recorded precisely at the site of drug application by an electrode incorporated within dialysis fibre. Microdialysis application of up to 1 mM of glycine had no effect on the basal DC potential. Above 10 mM, glycine produced concentration-dependent depolarizations, but the amplitude of these responses remained very small (e.g. 0.52 +/- 0.05 mV for 100 mM glycine, n = 10, i.e. around 30-fold smaller than that of a wave of spreading depression). Application of 200 microM NMDA via the microdialysis probe produced consistent short-lasting depolarizations (around 2.5 mV amplitude), but these were not potentiated by co-application of up to 100 mM glycine. These data do not support the view that increased extracellular concentrations of glycine, such as those observed in ischaemia, may be potentially excitotoxic. Nevertheless, as occupation of the glycine site coupled to the NMDA-receptor is required for NMDA/glutamate receptor activation, this site remains an attractive target for potential neuroprotective agents.
Collapse
Affiliation(s)
- T P Obrenovitch
- Gough-Cooper Department of Neurological Surgery, Institute of Neurology, London, UK.
| | | | | |
Collapse
|
12
|
Novack TA, Dillon MC, Jackson WT. Neurochemical mechanisms in brain injury and treatment: a review. J Clin Exp Neuropsychol 1996; 18:685-706. [PMID: 8941854 DOI: 10.1080/01688639608408292] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article reviews cellular energy transformation processes and neurochemical events that take place at the time of brain injury and shortly thereafter emphasizing hypoxia-ischemia, cerebrovascular accident, and traumatic brain injury. New interpretations of established concepts, such as diffuse axonal injury, are discussed; specific events, such as free radical production, excess production of excitatory amino acids, and disruption of calcium homeostasis, are reviewed. Neurochemically-based interventions are also presented: calcium channel blockers, excitatory amino acid antagonists, free radical scavengers, and hypothermia treatment. Concluding remarks focus on the role of clinical neuropsychologists in validation of treatment interventions.
Collapse
Affiliation(s)
- T A Novack
- Department of Rehabilitation Medicine, University of Alabama at Birmingham 35233-7330, USA
| | | | | |
Collapse
|
13
|
Arlinghaus L, Lee KS. Endogenous adenosine mediates the sustained inhibition of excitatory synaptic transmission during moderate hypoxia. Brain Res 1996; 724:265-8. [PMID: 8828579 DOI: 10.1016/0006-8993(96)00343-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of adenosine in suppressing synaptic responses during prolonged moderate hypoxia was examined in rat hippocampal slices. The intrahypoxic loss of evoked synaptic responses could be reversed partially by an antagonist of the A1 type adenosine receptor during an entire hour of hypoxia. These findings indicate that the capacity to express synaptic transmission exists during prolonged moderate hypoxia, and that endogenous adenosine actively suppresses transmission via an action at A1 type receptors.
Collapse
Affiliation(s)
- L Arlinghaus
- University of Virginia, Department of Neurological Surgery, Charlottesville 22908, USA
| | | |
Collapse
|
14
|
Wu G, Kim HK, Zornow MH. Transient brain ischemia in rabbits: the effect of omega-conopeptide MVIIC on hippocampal excitatory amino acids. Brain Res 1995; 692:118-22. [PMID: 8548294 DOI: 10.1016/0006-8993(95)00661-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurologic injury that occurs after ischemia results from a cascade of events involving the release of various endogenous neurotoxins. A portion of the release of excitatory neurotransmitters is calcium dependent and may be attenuated by administration of calcium channel blockers. Using an in vivo model of ischemia, we studied the effects of omega-conopeptide MVIIC, a voltage-sensitive calcium channel blocker, and hypothermia (32 degrees C) on hippocampal glutamate and aspartate release in the peri-ischemic period. Thirty-four New Zealand white rabbits of either sex were anesthetized with halothane, intubated, and mechanically ventilated. Monitored variables included blood gases, mean arterial blood pressure, and the electroencephalogram. Microdialysis catheters were transversely inserted through the anterior portion of the dorsal hippocampus and perfused with artificial cerebrospinal fluid at a rate of 2 microliters/min. After stabilization period, animals were randomly assigned to one of the following groups: Control group (n = 8), 10 microM omega-conopeptide MVIIC group (n = 7), 100 microM omega-conopeptide MVIIC group (n = 7), Hypothermia group (n = 6; cranial temperature = 32 degrees C), and omega-conopeptide MVIIC + hypothermia group (n = 6; 100 microM omega-conopeptide MVIIC and cranial temperature 32 degrees C). All the rabbits were subjected to 10 minutes of global cerebral ischemia produced by neck tourniquet inflation combined with hypotension during halothane anesthesia. Conopeptide MVIIC was administered in the artificial cerebrospinal fluid used to perfuse the microdialysis catheter. In control animals, ischemia caused a significant increase in glutamate (9.7 fold) and aspartate (11.3 fold) concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Wu
- Department of Anesthesiology, University of Texas Medical Branch, Galveston 77555-0830, USA
| | | | | |
Collapse
|
15
|
von Lubitz DK, Carter MF, Beenhakker M, Lin RC, Jacobson KA. Adenosine: a prototherapeutic concept in neurodegeneration. Ann N Y Acad Sci 1995; 765:163-78; discussion 196-7. [PMID: 7486604 PMCID: PMC3437326 DOI: 10.1111/j.1749-6632.1995.tb16573.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- D K von Lubitz
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
16
|
Bhardwaj A, Northington FJ, Koehler RC, Stiefel T, Hanley DF, Traystman RJ. Adenosine modulates N-methyl-D-aspartate-stimulated hippocampal nitric oxide production in vivo. Stroke 1995; 26:1627-33. [PMID: 7544925 DOI: 10.1161/01.str.26.9.1627] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Adenosine acts presynaptically to inhibit release of excitatory amino acids (EAAs) and is thus considered to be neuroprotective. Because EAA-stimulated synthesis of nitric oxide (NO) may play an important role in long-term potentiation and excitotoxic-mediated injury, we tested the hypotheses that adenosine agonists attenuate basal and EAA-induced NO production in the hippocampus in vivo and that adenosine A1 receptors mediate this response. METHODS Microdialysis probes were placed bilaterally into the CA3 region of the hippocampus of adult Sprague-Dawley rats under pentobarbital anesthesia. Probes were perfused for 5 hours with artificial cerebrospinal fluid containing 3 mumol/L [14C]L-arginine. Recovery of [14C]L-citrulline in the effluent was used as a marker of NO production. In 10 groups of rats, time-dependent increases in [14C]L-citrulline recovery were compared between right- and left-sided probes perfused with various combinations of N-methyl-D-aspartate (NMDA), adenosine agonists, adenosine antagonists, and the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME). RESULTS Recovery of [14C]L-citrulline during perfusion with artificial cerebrospinal fluid progressively increased to 141 +/- 27 fmol/min (+/- SEM) over 5 hours. Contralateral perfusion with 1 mmol/L NMDA augmented [14C]L-citrulline recovery to 317 +/- 62 fmol/min. Perfusion of 1 mmol/L L-NAME with NMDA inhibited [14C]L-citrulline recovery compared with NMDA alone. Perfusion with 0.1 mmol/L 2-chloroadenosine attenuated basal as well as NMDA-enhanced [14C]L-citrulline recovery. This action of 2-chloroadenosine was reversed by infusion of 0.1 mmol/L 8-cyclopentyl-1,3-dipropylxanthine, a specific A1 receptor antagonist. Infusion of 0.1 mmol/L (2S)-N6-[2-endo-norboryl]adenosine, a specific A1 receptor agonist, also attenuated the 0.1 mmol/L and 1 mmol/L NMDA-enhanced [14C]L-citrulline recovery. CONCLUSIONS Using an indirect method of assessing NO production in vivo, these data are consistent with in vitro results showing that NMDA receptor stimulation enhances NO production. Furthermore, we conclude that stimulation of A1 receptors can attenuate the basal as well as NMDA-induced production of NO. Because NMDA receptor stimulation amplifies glutamate release, our data are consistent with presynaptic A1 receptor-mediated inhibition of EAA release and consequent downregulation of NO production.
Collapse
Affiliation(s)
- A Bhardwaj
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Md 21287-7840, USA
| | | | | | | | | | | |
Collapse
|
17
|
Marsala M, Sorkin LS, Yaksh TL. Transient spinal ischemia in rat: characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage. J Cereb Blood Flow Metab 1994; 14:604-14. [PMID: 8014207 DOI: 10.1038/jcbfm.1994.75] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extracellular concentrations of amino acids in halothane-anesthetized rats were measured using a microdialysis fiber inserted transversely through the dorsal spinal cord at the level of the lumbar enlargement in conjunction with HPLC and ultraviolet detection. After a 2-h washout and a 1-h control period, 20 min of reversible spinal cord ischemia was achieved by the inflation of a Fogarty F2 catheter passed through the femoral artery to the descending thoracic aorta. After 2 h of postischemic reperfusion, animals were transcardially perfused with saline followed by 10% formalin or 4% paraformaldehyde. The glutamate concentration in the dialysate was significantly elevated after 10 min of occlusion and returned to near-baseline during the first 30 min of reperfusion. Taurine was elevated significantly 0.5 h postocclusion and continued to increase throughout the 2 h of reperfusion. Glycine concentrations showed a tendency to be slightly above baseline during the reperfusion period. Glutamine concentrations modestly increased following 2 h of reperfusion. No significant changes in aspartate, asparagine, and serine were detected. In control animals no significant changes in any amino acids were detected. To assess the role of complete spinal ischemia on spinal glutamate release, studies were carried out using cardiac arrest. Twenty minutes after induction of cardiac arrest, the glutamate concentration was increased about 350-400%. In a separate group of animals, spinal cord blood flow (SCBF) and its response to decreased CO2 were measured using a laser probe implanted into the epidural space at the level of the L2 vertebral segment. SCBF decreased to 5-6% of the control during aortic occlusion. After reversible ischemia, marked hyperemia was seen for the first 15 min, followed by hypoperfusion at 60 min. Under control-preischemic conditions a decrease in arterial CO2 content caused a decrease in SCBF of about 25%. This autoregulatory response was almost completely absent when assessed 60 min after a 20-min interval of aortic occlusion. Histopathological analysis of spinal cord tissue from these animals demonstrated heavy neuronal argyrophilia affecting small and medium-sized neurons located predominantly in laminae III-V. These changes corresponded to signs of irreversible damage at the ultrastructural level. Occasionally, small areas of focal necrosis, located in the dorsolateral part of the dorsal horn and anterolateral part of the ventral horn, were found. The results are consistent with a role for glutamate in ischemically induced spinal cord damage and suggest that taurine elevation detected during the early reperfusion period may serve as an important indicator of irreversible spinal cord neuronal damage.
Collapse
Affiliation(s)
- M Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice
| | | | | |
Collapse
|
18
|
Abstract
Neuronal injury resulting from glutamate receptor-mediated excitotoxicity has been implicated in a wide spectrum of neurological disease states, including ischemia, central nervous system trauma, and some types of neurodegenerative diseases. Excitotoxicity may interact with other pathophysiological processes to enhance neuronal injury; for example, excess glutamate release due to free radicals generated during the immune response to infection might initiate secondary excitotoxicity, and intracellular pathways that contribute to neuronal destruction may be common to both excitotoxic and nonexcitotoxic injury processes. Defining the contribution of excitotoxicity to neuronal damage in acute zoster infection and post-herpetic neuralgia may provide one means of reducing morbidity from this often debilitating disease.
Collapse
Affiliation(s)
- L L Dugan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
19
|
Higgins MJ, Hosseinzadeh H, MacGregor DG, Ogilvy H, Stone TW. Release and actions of adenosine in the central nervous system. PHARMACY WORLD & SCIENCE : PWS 1994; 16:62-8. [PMID: 8032343 DOI: 10.1007/bf01880657] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenosine is released from active neurons into the extracellular fluid at a concentration of about 1 mumol/l. Neither the precise cellular origin nor the biochemical form of release has been firmly established, though the nucleotide is probably released partly directly, as a result of raised intracellular levels, and partly as nucleotides, which are subsequently hydrolysed. Once in the extracellular medium, adenosine markedly inhibits the release of excitatory neurotransmitters and modulatory peptides and has direct inhibitory effects on postsynaptic excitability via A1 receptors. A population of A2 receptors may mediate depolarization and enhanced transmitter release. Adenosine also modulates neuronal sensitivity to acetylcholine and catecholamines, all these effects probably contributing to the behavioural changes observed in conscious animals. As a result of their many actions, adenosine analogues are being intensively investigated for use as anticonvulsant, anxiolytic, and neuroprotective agents.
Collapse
Affiliation(s)
- M J Higgins
- Department of Pharmacology, University of Glasgow, Scotland
| | | | | | | | | |
Collapse
|
20
|
Héron A, Lekieffre D, Le Peillet E, Lasbennes F, Seylaz J, Plotkine M, Boulu RG. Effects of an A1 adenosine receptor agonist on the neurochemical, behavioral and histological consequences of ischemia. Brain Res 1994; 641:217-24. [PMID: 8012824 DOI: 10.1016/0006-8993(94)90149-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Untreated rats and rats given the A1 receptor adenosine agonist, R-phenylisopropyladenosine (R-PIA), were subjected to four vessel ischemia. The effect of R-PIA on hippocampal amino acid release, hippocampal neuronal damage, exploratory behavior, learning capacity and global neurological score were evaluated. R-PIA decreased by half the glutamate released during ischemia and improved the global neurological scores 3, 24, 48, 78 h and 7 days after ischemia. But R-PIA had no effect on taurine/GABA release (during ischemia), hippocampal neuronal damage (7 days post-ischemia), exploratory behavior (48 h post-ischemia) or learning capacity (7 days post-ischemia). Thus, a decrease in glutamate release by R-PIA is not systematically correlated with an improvement of histological damage or learning capacity. Reduced glutamate release is not therefore a sufficient criterion on which to evaluate the neuroprotective capacity of a drug.
Collapse
Affiliation(s)
- A Héron
- Laboratoire de Recherches Cérébrovasculaires, URA 641 CNRS, Faculté de Médecine Villemin, UFR Lariboisière-Saint-Louis, Université Paris, VII, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Kano T, Katayama Y, Kawamata T, Hirota H, Tsubokawa T. Propentofylline administered by microdialysis attenuates ischemia-induced hippocampal damage but not excitatory amino acid release in gerbils. Brain Res 1994; 641:149-54. [PMID: 8019841 DOI: 10.1016/0006-8993(94)91829-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Systemic administration of propentofylline (PPF), an adenosine uptake inhibitor, has been demonstrated to protect CA1 pyramidal cells from death following transient cerebral ischemia in gerbils. In order to examine the direct effects of this inhibitor, we tested whether or not PPF administered into the hippocampus in situ through a microdialysis probe could attenuate ischemia-induced excitatory amino acid (EAA) release and prevent subsequent death of CA1 pyramidal cells in the gerbil. The EAA release and death of CA1 pyramidal cells observed in the hippocampus were compared with those in the contralateral hippocampus of the same animal into which vehicle alone was administered. The results indicated that pre- as well as post-treatments with PPF inhibited the death of CA1 pyramidal cells after 5-min ischemia in a dose-dependent manner, but did not significantly alter the EAA release during ischemia and reperfusion in the same animals. While the neuroprotective effect of PPF against ischemic damage has commonly been ascribed to attenuation of EAA release during ischemia, other actions of adenosine such as those influencing the synaptic responses, neuronal excitation, and local cerebral circulation, or as yet unidentified actions may be involved in the observed neuroprotective effects of PPF.
Collapse
Affiliation(s)
- T Kano
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
22
|
MacGregor DG, Miller WJ, Stone TW. Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor. Br J Pharmacol 1993; 110:470-6. [PMID: 8220909 PMCID: PMC2175967 DOI: 10.1111/j.1476-5381.1993.tb13834.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Systemic injections of kainic acid, 10 mg kg-1, into adult rats resulted in lesions in the hippocampus, as assessed by peripheral benzodiazepine ligand binding. Co-administration of clonazepam at 1 mg kg-1 or 0.2 mg kg-1 prevented major seizures associated with kainate injections, but did not alter significantly the production of hippocampal damage. 2. The co-administration of the adenosine A1 agonist R-phenylisopropyladenosine (R-PIA, 25 micrograms kg-1, i.p.) abolished the lesions induced by kainic acid. 3. The presence of the selective A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (250 or 50 micrograms kg-1, i.p.) abolished the R-PIA neuroprotective action. 4. The A1/A2 antagonist, 8-(p-sulphophenyl)theophylline (20 mg kg-1, i.p.) which cannot cross the blood brain barrier, did not alter significantly the neuroprotective action of R-PIA, indicating that the neuroprotective action of the purine may be predominantly central. 5. The time course of the neuroprotection was also examined. R-PIA was effective when administered 2 h before or after kainate administration. 6. The results emphasise the potential utility of systemically active adenosine A1 receptor ligands in reducing CNS gliosis induced by the activation of excitatory amino acid receptors.
Collapse
|