1
|
Laurencin C, Lancelot S, Merida I, Costes N, Redouté J, Le Bars D, Boulinguez P, Ballanger B. Distribution of α 2-Adrenergic Receptors in the Living Human Brain Using [ 11C]yohimbine PET. Biomolecules 2023; 13:biom13050843. [PMID: 37238713 DOI: 10.3390/biom13050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The neurofunctional basis of the noradrenergic (NA) system and its associated disorders is still very incomplete because in vivo imaging tools in humans have been missing up to now. Here, for the first time, we use [11C]yohimbine in a large sample of subjects (46 healthy volunteers, 23 females, 23 males; aged 20-50) to perform direct quantification of regional alpha 2 adrenergic receptors' (α2-ARs) availability in the living human brain. The global map shows the highest [11C]yohimbine binding in the hippocampus, the occipital lobe, the cingulate gyrus, and the frontal lobe. Moderate binding was found in the parietal lobe, thalamus, parahippocampus, insula, and temporal lobe. Low levels of binding were found in the basal ganglia, the amygdala, the cerebellum, and the raphe nucleus. Parcellation of the brain into anatomical subregions revealed important variations in [11C]yohimbine binding within most structures. Strong heterogeneity was found in the occipital lobe, the frontal lobe, and the basal ganglia, with substantial gender effects. Mapping the distribution of α2-ARs in the living human brain may prove useful not only for understanding the role of the NA system in many brain functions, but also for understanding neurodegenerative diseases in which altered NA transmission with specific loss of α2-ARs is suspected.
Collapse
Affiliation(s)
- Chloé Laurencin
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | - Sophie Lancelot
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CERMEP-Imagerie du Vivant, 69500 Bron, France
- Hospices Civils de Lyon, 69677 Bron, France
| | - Inès Merida
- CERMEP-Imagerie du Vivant, 69500 Bron, France
| | | | | | - Didier Le Bars
- CERMEP-Imagerie du Vivant, 69500 Bron, France
- Hospices Civils de Lyon, 69677 Bron, France
| | - Philippe Boulinguez
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
| | - Bénédicte Ballanger
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
| |
Collapse
|
2
|
Interaction of the preferential D3 agonist (+)PHNO with dopamine D3-D2 receptor heterodimers and diverse classes of monoamine receptors: Relevance for PET imaging. Eur J Pharmacol 2022; 925:175016. [DOI: 10.1016/j.ejphar.2022.175016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
|
3
|
Laurencin C, Lancelot S, Gobert F, Redouté J, Mérida I, Iecker T, Liger F, Irace Z, Greusard E, Lamberet L, Bars DL, Costes N, Ballanger B. Modeling [ 11C]yohimbine PET human brain kinetics with test-retest reliability, competition sensitivity studies and search for a suitable reference region. Neuroimage 2021; 240:118328. [PMID: 34224852 DOI: 10.1016/j.neuroimage.2021.118328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022] Open
Abstract
Previous work introduced the [11C]yohimbine as a suitable ligand of central α2-adrenoreceptors (α2-ARs) for PET imaging. However, reproducibility of [11C]yohimbine PET measurements in healthy humans estimated with a simplified modeling method with reference region, as well as sensitivity of [11C]yohimbine to noradrenergic competition were not evaluated. The objectives of the present study were therefore to fill this gap. METHODS Thirteen healthy humans underwent two [11C]yohimbine 90-minute dynamic scans performed on a PET-MRI scanner. Seven had arterial blood sampling with metabolite assessment and plasmatic yohimbine free fraction evaluation at the first scan to have arterial input function and test appropriate kinetic modeling. The second scan was a simple retest for 6 subjects to evaluate the test-retest reproducibility. For the remaining 7 subjects the second scan was a challenge study with the administration of a single oral dose of 150 µg of clonidine 90 min before the PET scan. Parametric images of α2-ARs distribution volume ratios (DVR) were generated with two non-invasive models: Logan graphical analysis with Reference (LREF) and Simplified Reference Tissue Method (SRTM). Three reference regions (cerebellum white matter (CERWM), frontal white matter (FLWM), and corpus callosum (CC)) were tested. RESULTS We showed high test-retest reproducibility of DVR estimation with LREF and SRTM regardless of reference region (CC, CERWM, FLWM). The best fit was obtained with SRTMCC (r2=0.94). Test-retest showed that the SRTMCC is highly reproducible (mean ICC>0.7), with a slight bias (-1.8%), whereas SRTMCERWM had lower bias (-0.1%), and excellent ICC (mean>0.8). Using SRTMCC, regional changes have been observed after clonidine administration with a significant increase reported in the amygdala and striatum as well as in several posterior cortical areas as revealed with the voxel-based analysis. CONCLUSION The results add experimental support for the suitability of [11C]yohimbine PET in the quantitative assessment of α2-ARs occupancy in vivo in the human brain. Trial registration EudraCT 2018-000380-82.
Collapse
Affiliation(s)
- Chloé Laurencin
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon F-69000, France; Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon (HCL), Lyon, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon F-69000, France; Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon (HCL), Lyon, France; CERMEP, Lyon, France
| | - Florent Gobert
- Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon (HCL), Lyon, France
| | | | | | | | | | - Zacharie Irace
- CERMEP, Lyon, France; Siemens-Healthcare, SAS, Saint-Denis, France
| | - Elise Greusard
- Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon (HCL), Lyon, France; CERMEP, Lyon, France
| | - Ludovic Lamberet
- Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon (HCL), Lyon, France; CERMEP, Lyon, France
| | - Didier Le Bars
- Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon (HCL), Lyon, France; CERMEP, Lyon, France
| | - Nicolas Costes
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon F-69000, France; CERMEP, Lyon, France
| | - Bénédicte Ballanger
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, Lyon F-69000, France.
| |
Collapse
|
4
|
Liaquat Z, Xu X, Zilundu PLM, Fu R, Zhou L. The Current Role of Dexmedetomidine as Neuroprotective Agent: An Updated Review. Brain Sci 2021; 11:brainsci11070846. [PMID: 34202110 PMCID: PMC8301952 DOI: 10.3390/brainsci11070846] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Dexmedetomidine, selective α2-adrenergic agonist dexmedetomidine, has been widely used clinically for sedation and anesthesia. The role of dexmedetomidine has been an interesting topic of neonatological and anesthetic research since a series of advantages of dexmedetomidine, such as enhancing recovery from surgery, reducing opioid prescription, decreasing sympathetic tone, inhibiting inflammatory reactions, and protecting organs, were reported. Particularly, an increasing number of animal studies have demonstrated that dexmedetomidine ameliorates the neurological outcomes associated with various brain and spinal cord injuries. In addition, a growing number of clinical trials have reported the efficacy of dexmedetomidine for decreasing the rates of postoperative neurological dysfunction, such as delirium and stroke, which strongly highlights the possibility of dexmedetomidine functioning as a neuroprotective agent for future clinical use. Mechanism studies have linked dexmedetomidine’s neuroprotective properties with its modulation of neuroinflammation, apoptosis, oxidative stress, and synaptic plasticity via the α2-adrenergic receptor, dependently or independently. By reviewing recent advances and preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine, we hope to provide a complete understanding of the above mechanism and provide insights into the potential efficacy of this agent in clinical use for patients.
Collapse
Affiliation(s)
- Zaara Liaquat
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen 518100, China; (Z.L.); (L.Z.)
| | - Xiaoying Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.X.); (P.L.M.Z.)
| | - Prince Last Mudenda Zilundu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (X.X.); (P.L.M.Z.)
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen 518100, China; (Z.L.); (L.Z.)
- Correspondence: ; Tel.: +86-20-87332338
| | - Lihua Zhou
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen 518100, China; (Z.L.); (L.Z.)
| |
Collapse
|
5
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
6
|
Xie W, Cappiello M, Meng M, Rosenthal R, Zhang W. ADRA2B deletion variant and enhanced cognitive processing of emotional information: A meta-analytical review. Neurosci Biobehav Rev 2018; 92:402-416. [PMID: 29751052 DOI: 10.1016/j.neubiorev.2018.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/15/2018] [Accepted: 05/06/2018] [Indexed: 01/12/2023]
Abstract
This meta-analytical review examines whether a deletion variant in ADRA2B, a gene that encodes α2B adrenoceptor in the regulation of norepinephrine availability, influences cognitive processing of emotional information in human observers. Using a multilevel modeling approach, this meta-analysis of 16 published studies with a total of 2752 participants showed that ADRA2B deletion variant was significantly associated with enhanced perceptual and cognitive task performance for emotional stimuli. In contrast, this genetic effect did not manifest in overall task performance when non-emotional content was used. Furthermore, various study-level factors, such as targeted cognitive processes (memory vs. attention/perception) and task procedures (recall vs. recognition), could moderate the size of this genetic effect. Overall, with increased statistical power and standardized analytical procedures, this meta-analysis has established the contributions of ADRA2B to the interactions between emotion and cognition, adding to the growing literature on individual differences in attention, perception, and memory for emotional information in the general population.
Collapse
Affiliation(s)
- Weizhen Xie
- Department of Psychology, University of California, Riverside, United States.
| | - Marcus Cappiello
- Department of Psychology, University of California, Riverside, United States
| | - Ming Meng
- School of Psychology, South China Normal University, China
| | - Robert Rosenthal
- Department of Psychology, University of California, Riverside, United States
| | - Weiwei Zhang
- Department of Psychology, University of California, Riverside, United States
| |
Collapse
|
7
|
Cottingham C, Che P, Zhang W, Wang H, Wang RX, Percival S, Birky T, Zhou L, Jiao K, Wang Q. Diverse arrestin-recruiting and endocytic profiles of tricyclic antipsychotics acting as direct α 2A adrenergic receptor ligands. Neuropharmacology 2016; 116:38-49. [PMID: 27956055 DOI: 10.1016/j.neuropharm.2016.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Abstract
The therapeutic mechanism of action underlying many psychopharmacological agents remains poorly understood, due largely to the extreme molecular promiscuity exhibited by these agents with respect to potential central nervous system targets. Agents of the tricyclic chemical class, including both antidepressants and antipsychotics, exhibit a particularly high degree of molecular promiscuity; therefore, any clarification of how these agents interact with specific central nervous system targets is of great potential significance to the field. Here, we present evidence demonstrating that tricyclic antipsychotics appear to segregate into three distinct groups based upon their molecular interactions with the centrally-important α2A adrenergic receptor (AR). Specifically, while the α2AAR binds all antipsychotics tested with similar affinities, and none of the agents are able to induce classical heterotrimeric G protein-mediated α2AAR signaling, significant differences are observed with respect to arrestin3 recruitment and receptor endocytosis. All antipsychotics tested induce arrestin3 recruitment to the α2AAR, but with differing strengths. Both chlorpromazine and clozapine drive significant α2AAR endocytosis, but via differing clathrin-dependent and lipid raft-dependent pathways, while fluphenazine does not drive a robust response. Intriguingly, in silico molecular modeling suggests that each of the three exhibits unique characteristics in interacting with the α2AAR ligand-binding pocket. In addition to establishing these three antipsychotics as novel arrestin-biased ligands at the α2AAR, our findings provide key insights into the molecular actions of these clinically-important agents.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Pulin Che
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Zhang
- Southern Research Institute, Birmingham, AL 35205, USA
| | - Hongxia Wang
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raymond X Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stefanie Percival
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tana Birky
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qin Wang
- Department of Cell, Molecular and Developmental Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Rivero G, Martín-Guerrero I, de Prado E, Gabilondo AM, Callado LF, García-Sevilla JA, García-Orad Á, Meana JJ. Alpha2C-adrenoceptor Del322-325 polymorphism and risk of psychiatric disorders: significant association with opiate abuse and dependence. World J Biol Psychiatry 2016; 17:308-15. [PMID: 27007576 DOI: 10.3109/15622975.2016.1142608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objectives α2C-adrenoceptors (α2C-AR) are involved in behavioural responses relevant to psychiatric disorders and suicide completion. The genetic polymorphism α2CDel322-325-AR confers a loss-of-function phenotype. Functional human studies have associated α2CDel322-325-AR polymorphism with major depression pathophysiology. The aim of this study was to analyse, for the first time, the association of α2CDel322-325-AR polymorphism with suicide completion and with related psychiatric disorders: major depression, schizophrenia, opiate and alcohol abuse and dependence. Methods Post-mortem brain DNA was extracted (n = 516) and genotyping performed by HaeIII restriction endonuclease digestion of PCR products and DNA fragment analysis on capillary sequencer. Amplified products were sequenced to confirm the presence of the polymorphism. Results The frequency of α2CDel322-325-AR in suicide (9%, n = 236) and non-suicide victims (11%, n = 280) was similar. Genotype frequencies for the α2CDel322-325-AR polymorphism in depressed (15%, n = 39) and schizophrenic subjects (18%, n = 39) were higher than in controls (7%, n = 187), but these differences did not reach statistical significance (P = 0.125 and P = 0.063, respectively). A selective and significant association of α2CDel322-325-AR polymorphism with opiate abuse and dependence was found (23%, n = 35, P = 0.011). Conclusions Our results indicate that α2CDel322-325-AR may play a role in the pathophysiology of opiate abuse and dependence and raise the interest for larger genetic associative studies.
Collapse
Affiliation(s)
- Guadalupe Rivero
- a Department of Pharmacology , University of the Basque Country (UPV/EHU) and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Spain ;,c BioCruces Health Research Institute , Spain
| | - Idoia Martín-Guerrero
- b Department of Genetics, Physical Anthropology and Animal Physiology , University of the Basque Country (UPV/EHU) , Spain ;,c BioCruces Health Research Institute , Spain
| | - Elena de Prado
- b Department of Genetics, Physical Anthropology and Animal Physiology , University of the Basque Country (UPV/EHU) , Spain ;,c BioCruces Health Research Institute , Spain
| | - Ane M Gabilondo
- a Department of Pharmacology , University of the Basque Country (UPV/EHU) and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Spain ;,c BioCruces Health Research Institute , Spain
| | - Luis F Callado
- a Department of Pharmacology , University of the Basque Country (UPV/EHU) and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Spain ;,c BioCruces Health Research Institute , Spain
| | - Jesús A García-Sevilla
- d Laboratory of Neuropharmacology , IUNICS-IdISPa, University of the Balearic Islands (UIB), and Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA) , Spain
| | - África García-Orad
- b Department of Genetics, Physical Anthropology and Animal Physiology , University of the Basque Country (UPV/EHU) , Spain ;,c BioCruces Health Research Institute , Spain
| | - J Javier Meana
- a Department of Pharmacology , University of the Basque Country (UPV/EHU) and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) , Spain ;,c BioCruces Health Research Institute , Spain
| |
Collapse
|
9
|
Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci 2015; 39:e200. [PMID: 26126507 DOI: 10.1017/s0140525x15000667] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.
Collapse
|
10
|
α2 Adrenergic Receptor Trafficking as a Therapeutic Target in Antidepressant Drug Action. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:207-25. [DOI: 10.1016/bs.pmbts.2015.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Tricyclic antidepressants exhibit variable pharmacological profiles at the α(2A) adrenergic receptor. Biochem Biophys Res Commun 2014; 451:461-6. [PMID: 25128275 DOI: 10.1016/j.bbrc.2014.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/05/2014] [Indexed: 01/09/2023]
Abstract
Antidepressant mechanisms of action remain shrouded in mystery, greatly hindering our ability to develop therapeutics which can fully treat patients suffering from depressive disorders. In an attempt to shed new light on this topic, we have undertaken a series of studies investigating actions of tricyclic antidepressant drugs (TCAs) at the α2A adrenergic receptor (AR), a centrally important receptor, dysregulation of which has been linked to depression. Our previous work established a particular TCA, desipramine, as an arrestin-biased α2AAR ligand driving receptor endocytosis and downregulation but not canonical heterotrimeric G protein-mediated signaling. The present work is aimed at broadening our understanding of how members of the TCA drug class act at the α2AAR, as we have selected the closely related but subtly different TCAs imipramine and amitriptyline for evaluation. Our data demonstrate that these drugs do also function as direct arrestin-biased α2AAR ligands. However, these data reveal differences in receptor affinity and in the extent/nature of arrestin recruitment to and endocytosis of α2AARs. Specifically, amitriptyline exhibits an approximately 14-fold stronger interaction with the receptor, is a weaker driver of arrestin recruitment, and preferentially recruits a different arrestin subtype. Extent of endocytosis is similar for all TCAs studied so far, and occurs in an arrestin-dependent manner, although imipramine uniquely retains a slight ability to drive α2AAR endocytosis in arrestin-null cells. These findings signify an important expansion of our mechanistic understanding of antidepressant pharmacology, and provide useful insights for future medicinal chemistry efforts.
Collapse
|
12
|
β-Arrestins in the Central Nervous System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:267-95. [DOI: 10.1016/b978-0-12-394440-5.00011-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Cottingham C, Wang Q. α2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev 2012; 36:2214-25. [PMID: 22910678 DOI: 10.1016/j.neubiorev.2012.07.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
Abstract
Dysfunction in noradrenergic neurotransmission has long been theorized to occur in depressive disorders. The α2 adrenergic receptor (AR) family, as a group of key players in regulating the noradrenergic system, has been investigated for involvement in the neurobiology of depression and mechanisms of antidepressant therapies. However, a clear picture of the α2ARs in depressive disorders has not been established due to the existence of apparently conflicting findings in the literature. In this article, we report that a careful accounting of methodological differences within the literature can resolve the present lack of consensus on involvement of α2ARs in depression. In particular, the pharmacological properties of the radioligand (e.g. agonist versus antagonist) utilized for determining receptor density are crucial in determining study outcome. Upregulation of α2AR density detected by radiolabeled agonists but not by antagonists in patients with depressive disorders suggests a selective increase in the density of high-affinity conformational state α2ARs, which is indicative of enhanced G protein coupling to the receptor. Importantly, this high-affinity state α2AR upregulation can be normalized with antidepressant treatments. Thus, depressive disorders appear to be associated with increased α2AR sensitivity and responsiveness, which may represent a physiological basis for the putative noradrenergic dysfunction in depressive disorders. In addition, we review changes in some key α2AR accessory proteins in depressive disorders and discuss their potential contribution to α2AR dysfunction.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
14
|
Cottingham C, Li X, Wang Q. Noradrenergic antidepressant responses to desipramine in vivo are reciprocally regulated by arrestin3 and spinophilin. Neuropharmacology 2012; 62:2354-62. [PMID: 22369787 DOI: 10.1016/j.neuropharm.2012.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/09/2012] [Accepted: 02/12/2012] [Indexed: 01/21/2023]
Abstract
Many antidepressant drugs, including the tricyclic antidepressant desipramine (DMI), are broadly understood to function by modulating central noradrenergic neurotransmission. α(2) adrenergic receptors (α(2)ARs) are key regulators of the noradrenergic system, and previous work has implicated α(2)ARs in mediating the antidepressant activity of DMI in the rodent forced swim test (FST). However, little is known about intracellular regulators of antidepressant drug action. α(2)AR function is tightly regulated by its intracellular interacting partners arrestin and the dendritic protein spinophilin. We have previously established the competitive and reciprocal nature of these interacting proteins at the α(2)AR in the context of classic agonist effects, and have shown DMI to be a direct arrestin-biased ligand at the receptor. In the present study, we report that mice deficient in the α(2A)AR subtype lack DMI-induced antidepressant behavioral effects in the FST. As well, mice deficient in arrestin3 lack antidepressant response to DMI, while spinophilin-null mice have enhanced antidepressant response to DMI compared with wild-type controls, indicating that this α(2A)AR-mediated response is reciprocally regulated by arrestin and spinophilin. The characteristic of α(2A)AR-dependence and arrestin3 involvement was shared by the antidepressant effect of the classic α(2)AR agonist clonidine but not the non-tricyclic norepinephrine reuptake inhibitor reboxetine, supporting a model whereby DMI exerts its antidepressant effect through direct engagement of the α(2A)AR and arrestin3. Our results implicate arrestin- and spinophilin-mediated regulation of the α(2A)AR in the pharmacology of the noradrenergic antidepressant DMI, and suggest that manipulation of this mode of receptor regulation may represent a novel and viable therapeutic strategy.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Physiology & Biophysics, University of Alabama at Birmingham, 986 MCLM 1918 University Blvd., Birmingham, AL 35294, USA
| | | | | |
Collapse
|
15
|
Cottingham C, Chen Y, Jiao K, Wang Q. The antidepressant desipramine is an arrestin-biased ligand at the α(2A)-adrenergic receptor driving receptor down-regulation in vitro and in vivo. J Biol Chem 2011; 286:36063-36075. [PMID: 21859713 DOI: 10.1074/jbc.m111.261578] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The neurobiological mechanisms of action underlying antidepressant drugs remain poorly understood. Desipramine (DMI) is an antidepressant classically characterized as an inhibitor of norepinephrine reuptake. Available evidence, however, suggests a mechanism more complex than simple reuptake inhibition. In the present study, we have characterized the direct interaction between DMI and the α(2A)-adrenergic receptor (α(2A)AR), a key regulator of noradrenergic neurotransmission with altered expression and function in depression. DMI alone was found to be sufficient to drive receptor internalization acutely and a robust down-regulation of α(2A)AR expression and signaling following prolonged stimulation in vitro. These effects are achieved through arrestin-biased regulation of the receptor, as DMI selectively induces recruitment of arrestin but not activation of heterotrimeric G proteins. Meanwhile, a physiologically relevant concentration of endogenous agonist (norepinephrine) was unable to sustain a down-regulation response. Prolonged in vivo administration of DMI resulted in significant down-regulation of synaptic α(2A)AR expression, a response that was lost in arrestin3-null animals. We contend that direct DMI-driven arrestin-mediated α(2A)AR down-regulation accounts for the therapeutically desirable but mechanistically unexplained adaptive alterations in receptor expression associated with this antidepressant. Our results provide novel insight into both the pharmacology of this antidepressant drug and the targeting of the α(2A)AR in depression.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Yunjia Chen
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Qin Wang
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294.
| |
Collapse
|
16
|
Spatial and temporal electroselection patterns in electric field stimulation of polarized luminescence from photosynthetic membrane vesicles. Biophys J 2010; 61:1585-94. [PMID: 19431835 DOI: 10.1016/s0006-3495(92)81962-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Electroselection processes of charge recombination are manifested in the study of electric field induced polarized emission from photosynthetic membrane vesicles. The study explores the coupled spatial-temporal characteristics of electric field induced charge recombination by examining the dependence of the integrated polarized emission and the time dependent polarization on electric field strength. The experimental results were fitted to theoretical models by computer simulations employing empirical parameters. Simulation of the dependence of the integrated polarized components of emission on electric field strength, suggests field-dependent increased ratio between radiative and nonradiative rates of charge recombination. The observation that the initial polarization values are independent of electric field strength supports the assumption that electric field induced emission originates from the pole area and then spreads away from it towards the equator. The propagation rate of this electric field induced charge recombination from the pole area towards the equator is reflected by the decay of polarization which increases upon raising the electric field strength. Simulation of the polarization's decay, based on a calculated angle of 26.3 +/- 0.4 degrees between the transition moment of emission and the plane of the membrane, establishes coupled temporal spatial patterns of electroselection in intramembrane electron transfer invoked by exposing preilluminated photosynthetic vesicles to a homogeneous electric field.
Collapse
|
17
|
Gyires K, Zádori ZS, Török T, Mátyus P. α2-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochem Int 2009; 55:447-53. [DOI: 10.1016/j.neuint.2009.05.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/16/2009] [Accepted: 05/18/2009] [Indexed: 11/29/2022]
|
18
|
Abstract
PURPOSE OF REVIEW Cytoarchitectonical brain mapping is of growing interest as a powerful tool for localization of activated brain regions in functional neuroimaging. Mapping of neurotransmitter receptors can provide novel molecular and functionally relevant information to the available cytoarchitectonical brain maps, because receptors are key molecules of neurotransmission. This review highlights the relation between cytoarchitectonical parcellations and the regionally inhomogeneous distribution of receptors. It will demonstrate the potential of receptor mapping for novel and functionally relevant insights into the regional organization of the human cortex. RECENT FINDINGS Mapping of a single receptor type can already reveal borders of functionally and cytoarchitectonically distinct cortical regions. The combined mapping of various receptors in each cortical area (receptor fingerprint) represents the balance between different neurotransmitter systems and often reveals hitherto unknown parcellations. Different brain regions are identified as parts of distinct functional systems. SUMMARY Receptor mapping of the human brain, particularly multireceptor mapping, provides a novel and multimodal view of its anatomical, functional and molecular organization. It reveals organizational principles of the segregation of cortical and subcortical structures. It improves our understanding of the brain's architecture beyond the limits of cytoarchitectonics and serves as a basis for clinical and pharmacological studies of brain diseases.
Collapse
|
19
|
Fagerholm V, Rokka J, Nyman L, Sallinen J, Tiihonen J, Tupala E, Haaparanta M, Hietala J. Autoradiographic characterization of α2C-adrenoceptors in the human striatum. Synapse 2008; 62:508-15. [DOI: 10.1002/syn.20520] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Easton N, Shah YB, Marshall FH, Fone KC, Marsden CA. Guanfacine produces differential effects in frontal cortex compared with striatum: assessed by phMRI BOLD contrast. Psychopharmacology (Berl) 2006; 189:369-85. [PMID: 17016709 DOI: 10.1007/s00213-006-0558-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 08/02/2006] [Indexed: 02/02/2023]
Abstract
RATIONALE Guanfacine (an alpha-(2A) adrenoreceptor agonist) is a drug of benefit in the treatment of attention deficit hyperactivity disorder (ADHD) (Taylor FB, Russo J, J Clin Psychopharmacol 21:223-228, 2001). Assessment of this drug using neuroimaging will provide information about the brain regions involved in its effects. OBJECTIVES The pharmacological magnetic resonance imaging blood oxygenation level dependent (BOLD) response was determined in rat brain regions following administration of guanfacine. METHODS Male rats were individually placed into a 2.35 T Bruker magnet for 60 min to achieve basal recording of changes in signal intensity. Either saline (n = 9) or guanfacine (0.3 mg/kg, i.p.; n = 9) was then administered and recording was continued for a further 90 min. Data were analysed for BOLD effects using statistical parametric maps. Respiration rate, blood pressure and blood gases were monitored and remained constant throughout scanning. RESULTS The main changes observed were negative BOLD effects in the caudate putamen and nucleus accumbens with positive BOLD effects in frontal association, prelimbic and motor cortex areas. CONCLUSIONS These data suggest that guanfacine can decrease neuronal activity in the caudate while increasing frontal cortex activity. This ability to change neuronal activity in specific areas of rat brain that are known to be impaired in ADHD (Solanto MV, Behav Brain Res 130:65-71, 2002) may contribute to guanfacine's beneficial effects.
Collapse
Affiliation(s)
- Neil Easton
- School of Biomedical Sciences, Medical School, Institute of Neuroscience, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| | | | | | | | | |
Collapse
|
21
|
SCHAMBRA UB, MACKENSEN GB, STAFFORD-SMITH M, HAINES DE, SCHWINN DA. Neuron specific alpha-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neuroscience 2006; 135:507-23. [PMID: 16112482 PMCID: PMC2277099 DOI: 10.1016/j.neuroscience.2005.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 06/06/2005] [Accepted: 06/15/2005] [Indexed: 12/13/2022]
Abstract
Recent data suggest novel functional roles for cerebellar involvement in a number of neurologic diseases. Function of cerebellar neurons is known to be modulated by norepinephrine and adrenergic receptors. The distribution of adrenergic receptor subtypes has been described in experimental animals, but corroboration of such studies in the human cerebellum, necessary for drug treatment, is still lacking. In the present work we studied cell-specific localizations of alpha1 adrenergic receptor subtype mRNA (alpha 1a, alpha 1b, alpha 1d), and alpha2 adrenergic receptor subtype mRNA (alpha 2a, alpha 2b, alpha 2c) by in situ hybridization on cryostat sections of human cerebellum (cortical layers and dentate nucleus). We observed unique neuron-specific alpha1 adrenergic receptor and alpha2 adrenergic receptor subtype distribution in human cerebellum. The cerebellar cortex expresses mRNA encoding all six alpha adrenergic receptor subtypes, whereas dentate nucleus neurons express all subtype mRNAs, except alpha 2a adrenergic receptor mRNA. All Purkinje cells label strongly for alpha 2a and alpha 2b adrenergic receptor mRNA. Additionally, Purkinje cells of the anterior lobe vermis (lobules I to V) and uvula/tonsil (lobules IX/HIX) express alpha 1a and alpha 2c subtypes, and Purkinje cells in the ansiform lobule (lobule HVII) and uvula/tonsil express alpha 1b and alpha 2c adrenergic receptor subtypes. Basket cells show a strong signal for alpha 1a, moderate signal for alpha 2a and light label for alpha 2b adrenergic receptor mRNA. In stellate cells, besides a strong label of alpha 2a adrenergic receptor mRNA in all and moderate label of alpha 2b message in select stellate cells, the inner stellate cells are also moderately positive for alpha 1b adrenergic receptor mRNA. Granule and Golgi cells express high levels of alpha 2a and alpha 2b adrenergic receptor mRNAs. These data contribute new information regarding specific location of adrenergic receptor subtypes in human cerebellar neurons. We discuss our observations in terms of possible modulatory roles of adrenergic receptor subtypes in cerebellar neurons responding to sensory and autonomic input signals, and review species differences in cerebellar adrenergic receptor expression.
Collapse
Affiliation(s)
- U. B. SCHAMBRA
- Department of Anatomy and Cell Biology, Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN 37614-0582, USA
- *Corresponding author. Tel: +1-423-439-2014; fax: +1-423-439-2017. E-mail address: (U. B. Schambra)
| | - G. B. MACKENSEN
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - M. STAFFORD-SMITH
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - D. E. HAINES
- Department of Anatomy, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - D. A. SCHWINN
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology/Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- *Corresponding author. Tel: +1-423-439-2014; fax: +1-423-439-2017. E-mail address: (U. B. Schambra)
| |
Collapse
|
22
|
Díez-Alarcia R, Pilar-Cuéllar F, Paniagua MA, Meana JJ, Fernández-López A. Pharmacological characterization and autoradiographic distribution of α2-adrenoceptor antagonist [3H]RX 821002 binding sites in the chicken brain. Neuroscience 2006; 141:357-69. [PMID: 16697114 DOI: 10.1016/j.neuroscience.2006.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 03/10/2006] [Accepted: 03/16/2006] [Indexed: 11/23/2022]
Abstract
Knowledge about the noradrenergic system in birds is very scarce even though their biological diversity and complex social behavior make them an excellent model for studying neuronal functions and developmental biology. While the role of norepinephrine has been described in depth in a large number of central and peripheral functions in mammals, reports for avian species are limited. The radioligand [(3)H]RX 821002 ([(3)H]1,4-[6,7(n)3H]-benzodioxan-2-methoxy-2-yl)-2-imidazol) has been used to map and characterize alpha(2)-adrenoceptors through the chicken brain using in vitro autoradiography and membrane homogenates binding assays. [(3)H]RX 821002 showed a saturable and high affinity binding to a site compatible with alpha(2)-adrenoceptor, and to a serotonergic component. The autoradiographic assays displayed a similar alpha(2)-adrenoceptor distribution than those previously reported in birds using other radioligands such as [(3)H]UK 14304 ([(3)H]5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine) or [(3)H]clonidine. [(3)H]RX 821002 binding pharmacological characterization was carried out in different chicken brain regions using membrane homogenates for competition assays with different alpha(2)-adrenoceptor agonists and antagonists drugs (oxymetazoline, BRL 44408 [2-(2H-(1-methyl-1,3-dihydroisoindole)methyl)-4,5-dihydroimidazole] ARC 239 [2-(2-4-(O-methoxyphenyl)-piperazin-1-yl)-ethyl-4,4-dimethyl-1,3-(2H,4H)-isoquinolindione], prazosin, UK 14304 and RX 821002). The results showed alpha(2A) as the predominant alpha(2)-adrenoceptor subtype in the chicken brain while alpha(2B)- and/or alpha(2C)-adrenoceptor subtypes were detected only in the telencephalon. RX 821002, serotonin (5-HT) and 8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] competition assays, and competition binding assays performed in the presence of serotonin demonstrated that [(3)H]RX 821002 binds with higher affinity to a serotonergic component, probably 5-HT(1A) receptors, than to the alpha(2)-adrenoceptors. Similar pharmacological properties for the alpha(2)-adrenoceptor component were observed both in rat and chicken brain. The results demonstrate that the different alpha(2)-adrenoceptor subtypes are present in chicken brain and suggest that these receptors are highly conserved through evolution.
Collapse
Affiliation(s)
- R Díez-Alarcia
- Department of Cell Biology and Anatomy, Faculty of Biological and Environmental Sciences, University of Leon, Leon 24071, Spain
| | | | | | | | | |
Collapse
|
23
|
Zikopoulos B, Dermon CR. Comparative anatomy of α2 and β adrenoceptors in the adult and developing brain of the marine teleost the red porgy (Pagrus pagrus, Sparidae): [3H]clonidine and [3H]dihydroalprenolol quantitative autoradiography and receptor subtypes immunohistochemistry. J Comp Neurol 2005; 489:217-40. [PMID: 15984005 DOI: 10.1002/cne.20641] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study aimed to determine the anatomic distribution and developmental profile of alpha(2) and beta adrenoceptors (AR) in marine teleost brain. Alpha 2 and beta adrenoceptors were studied at different developmental stages by using [(3)H]clonidine and [(3)H]dihydroalprenolol, respectively, by means of in vitro quantitative autoradiography. Furthermore, immunohistochemical localization of the receptor subtypes was performed to determine their cellular distribution. Saturation studies determined a high-affinity component of [(3)H]clonidine and [(3)H]dihydroalprenolol binding sites. High levels of both receptors were found in preglomerular complex, ventral hypothalamus, and lateral torus. Dorsal hypothalamus and isthmus included high levels of alpha(2) AR, whereas pretectum and molecular and proliferative zone of cerebellum were specifically characterized by high densities of beta AR. From the first year of life, adult levels of both AR were found in most medial telencephalic, hypothalamic, and posterior tegmental areas. Decreases in both receptors densities with age were prominent in ventral and posterior telencephalic, pretectal, ventral thalamic, hypothalamic, and tegmental brain regions. Immunohistochemical data were well correlated with autoradiography and demonstrated the presence of alpha(2A), alpha(2C), beta(1), and beta(2) AR subtype-like immunoreactivity. Both the neuronal (perikaryal or dendritic) and the glial localization of receptors was revealed. The localization and age-dependent alterations in alpha(2) and beta AR were parallel to plasticity mechanisms, such as cell proliferation in periventricular thalamus, hypothalamus, and cerebellum. In addition, the biochemical characteristics, distribution pattern, and neuronal or glial specificity of the receptors in teleost brain support a similar profile of noradrenergic transmission in vertebrate brain evolution.
Collapse
Affiliation(s)
- Basileios Zikopoulos
- Laboratory of Neurobiology and Physiology, Department of Biology, University of Crete, Heraklion 71409, Crete, Greece
| | | |
Collapse
|
24
|
Ozawa Y, Takashima S, Tada H. α2-Adrenergic receptor subtype alterations in the brainstem in the sudden infant death syndrome. PATHOPHYSIOLOGY 2004. [DOI: 10.1016/j.pathophys.2004.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
25
|
Ozawa Y, Takashima S, Tada H. Alpha2-adrenergic receptor subtype alterations in the brainstem in the sudden infant death syndrome. Early Hum Dev 2003; 75 Suppl:S129-38. [PMID: 14693399 DOI: 10.1016/j.earlhumdev.2003.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The sudden infant death syndrome (SIDS) is still the main cause of postneonatal infant death. However, the causes and mechanisms of SIDS have never been completely elucidated. Catecholamines, via alpha2-adrenergic receptor (alpha2-AR) interactions, are known to influence brainstem autonomic and respiratory activity. AIMS To examine the catecholaminergic system abnormalities in SIDS victims, we investigated the alterations of alpha2-AR subtypes. SUBJECTS AND METHODS We examined the developmental changes of alpha2-AR subtypes in the brainstem, especially in cardiorespiratory nuclei, in 21 SIDS victims and 17 age-matched controls by means of immunohistochemical methods. For statistical analysis, the chi2-test or Fisher's exact probability test was performed. RESULTS There was a significant decrease in alpha2A-AR immunoreactivity in the solitary nucleus and ventrolateral medulla (VLM) in the medulla oblongata in SIDS victims compared with in control cases, but there were no significant differences of the alpha2B and alpha2C-AR immunoreactivity in the brainstem between SIDS victims and controls. CONCLUSION Alpha2A-AR immunoreactivity was selectively decreased in the solitary nucleus and VLM in the medulla oblongata in SIDS victims, so there was no possibility that it was secondary to chronic hypoxia or repeated ischemia. It may be related to some impairment of the cardiorespiratory neuronal system. Therefore, SIDS victims may be vulnerable to asphyxia, hypoxia, and/or hypercapnia, and fail to exhibit brainstem responses.
Collapse
Affiliation(s)
- Yuri Ozawa
- Department of Neonatology, Toho University School of Medicine, 6-11-1 Ohmorinishi, Ohta, Tokyo 143-8541, Japan.
| | | | | |
Collapse
|
26
|
Korchounov A, Ilić TV, Ziemann U. The α2-adrenergic agonist guanfacine reduces excitability of human motor cortex through disfacilitation and increase of inhibition. Clin Neurophysiol 2003; 114:1834-40. [PMID: 14499745 DOI: 10.1016/s1388-2457(03)00192-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To test the acute effects of the alpha2-adrenoceptor agonist guanfacine (GFC) on motor excitability in intact humans. METHODS Eight healthy right-handed adults received a single oral dose of 2 mg of GFC. Motor cortex excitability was tested by focal transcranial magnetic stimulation of the hand area of the left motor cortex. Motor evoked potentials (MEP) were recorded from the right abductor pollicis brevis muscle. In addition, spinal and neuromuscular excitability were tested. All measures were obtained immediately before GFC intake (baseline), and 2, 6, and 24 h later. RESULTS GFC decreased the slope of the MEP intensity curve, increased paired-pulse short-interval intracortical inhibition, and decreased paired-pulse intracortical facilitation and I-wave facilitation. These effects were maximal at 2-6 h and returned to baseline at 24 h. Motor threshold, cortical silent period, and the measures of spinal (peripheral silent period, F waves) and neuromuscular excitability (maximum M wave) remained unaffected. CONCLUSIONS This is the first study on the effects of an anti-noradrenergic drug on human motor cortex excitability. GFC reduced cortical excitability by disfacilitation and increased inhibition. These findings support the idea that anti-noradrenergic drugs are detrimental for cortical plasticity and learning which are down-regulated by disfacilitation or increased inhibition.
Collapse
Affiliation(s)
- Alexei Korchounov
- Clinic of Neurology, Johann Wolfgang Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | | | | |
Collapse
|
27
|
González-Maeso J, Rodríguez-Puertas R, Meana JJ, García-Sevilla JA, Guimón J. Neurotransmitter receptor-mediated activation of G-proteins in brains of suicide victims with mood disorders: selective supersensitivity of alpha(2A)-adrenoceptors. Mol Psychiatry 2003; 7:755-67. [PMID: 12192620 DOI: 10.1038/sj.mp.4001067] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Revised: 12/11/2001] [Accepted: 12/17/2001] [Indexed: 11/08/2022]
Abstract
Abnormalities in the density of neuroreceptors that regulate norepinephrine and serotonin release have been repeatedly reported in brains of suicide victims with mood disorders. Recently, the modulation of the [(35)S]GTPgammaS binding to G-proteins has been introduced as a suitable measure of receptor activity in postmortem human brain. The present study sought to evaluate the function of several G-protein coupled receptors in postmortem brain of suicide victims with mood disorders. Concentration-response curves of the [(35)S]GTPgammaS binding stimulation by selective agonists of alpha(2)-adrenoceptors, 5-HT(1A) serotonin, mu-opioid, GABA(B), and cholinergic muscarinic receptors were performed in frontal cortical membranes from 28 suicide victims with major depression or bipolar disorder and 28 subjects who were matched for gender, age and postmortem delay. The receptor-independent [(35)S]GTPgammaS binding stimulation by mastoparan and the G-protein density were also examined. The alpha(2A)-adrenoceptor-mediated stimulation of [(35)S]GTPgammaS binding with the agonist UK14304 displayed a 4.6-fold greater sensitivity in suicide victims than in controls, without changes in the maximal stimulation. No significant differences were found in parameters of 5-HT(1A) serotonin receptor and other receptor-mediated [(35)S]GTPgammaS binding stimulations. The receptor-independent activation of G-proteins was similar in both groups. Immunoreactive densities of G(alphai1/2)-, G(alphai3)-, G(alphao)-, and G(alphas)-proteins did not differ between suicide victims and controls. In conclusion, alpha(2A)-adrenoceptor sensitivity is increased in the frontal cortex of suicide victims with mood disorders. This receptor supersensitivity is not related to an increased amount or enhanced intrinsic activity of G-proteins. The new finding provides functional support to the involvement of alpha(2)-adrenoceptors in the pathogenesis of mood disorders.
Collapse
Affiliation(s)
- J González-Maeso
- Department of Pharmacology, University of the Basque Country, Leioa, Bizkaia, Spain
| | | | | | | | | |
Collapse
|
28
|
Mansouri J, Panigrahy A, Assmann SF, Kinney HC. Distribution of alpha 2-adrenergic receptor binding in the developing human brain stem. Pediatr Dev Pathol 2001; 4:222-36. [PMID: 11370260 DOI: 10.1007/s100240010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rapid and dramatic changes occur in cardiorespiratory function during early human life. Catecholamines within select brain stem nuclei are implicated in the control of autonomic and respiratory function, including in the nucleus of the solitary tract and the dorsal motor nucleus of X. Animal and adult human studies have shown high binding to alpha 2-adrenergic receptors in these regions. To determine the developmental profile of brainstem alpha 2-adrenergic binding across early human life, we studied brain stems from five fetuses at midgestation, three newborns (37-38 postconceptional weeks), and six infants (44-61 postconceptional weeks). We used quantitative tissue receptor autoradiography with [3H]para-aminoclonidine as the radioligand and phentolamine as the displacer. In the fetal group, binding was high (63-93 fmol/mg tissue) in the nucleus of the solitary tract, dorsal motor nucleus of X, locus coeruleus, and reticular formation; it was low (< 32 fmol/mg tissue) in the principal inferior olive and basis pontis. Binding decreased in all regions with age: in infancy, the highest binding was in the intermediate range (32-62 fmol/mg tissue) and was localized to the nucleus of the solitary tract and dorsal motor nucleus of X. The most substantial decrease in binding (75%-85%) between the fetal and infant periods occurred in the pontine and medullary reticular formation and hypoglossal nucleus. Binding remained low in the principal inferior olive and basis pontis. The decreases in binding with age remained significant after quench correction. These data suggest that rapid and dramatic changes occur in early human life in the brain stem catecholaminergic system in regions related to cardiorespiratory control.
Collapse
Affiliation(s)
- J Mansouri
- Department of Pathology, Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
29
|
Schaak S, Cayla C, Lymperopoulos A, Flordellis C, Cussac D, Denis C, Paris H. Transcriptional down-regulation of the human alpha2C-adrenergic receptor by cAMP. Mol Pharmacol 2000; 58:821-7. [PMID: 10999953 DOI: 10.1124/mol.58.4.821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The heterologous regulation of the alpha2C-adrenergic receptor (alpha2C-AR) was investigated in the HepG2 cell line. Binding of [(3)H]MK912 (alpha2-antagonist) to membranes from cells submitted to various treatments showed that exposure to insulin, phorbol 12-myristate 13-acetate, or dexamethasone did not affect receptor density. On the other hand, treatment with forskolin resulted in a large reduction of alpha2C-AR number. The effect of forskolin was mimicked by 8-br-cAMP and was abolished by the protein kinase A inhibitor, H89. The action of cAMP was slow (t(1/2) = 23 h), dose-dependent, and additive to the receptor down-regulation elicited by the alpha2-agonist, UK14304. Furthermore, the diminution of receptor was not caused by an increased rate of its degradation but resulted from a decrease in the steady state amounts of alpha2C4-mRNA. As assessed by experiments in the presence of actinomycin D, the stability of alpha2C4-mRNA was not affected by 8-br-cAMP or forskolin. By contrast, the activity of a luciferase construct containing the entire promoter region of the alpha2C4 gene (1.9 kilobase pairs) was inhibited, indicating that the primary mechanism of action of the two compounds is at the transcriptional level. Deletions in the 5'-end of this construct showed that the elements responsible for cAMP responsiveness lie within a 242-base-pair fragment of the gene promoter (nucleotides -236/+6 relative to transcription start). Band-shift experiments indicated that nuclear factors bind to this region in a cAMP-dependent manner. The determination of the actual cis- and trans-acting elements involved will be the object of future investigation, but the present study provides evidence for transcriptional regulation of human alpha2C-AR by cAMP.
Collapse
Affiliation(s)
- S Schaak
- Institut National de la Santé et de la Recherche Médicale Unit 388, Institut L. Bugnard, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Molderings GJ, Bönisch H, Brüss M, Likungu J, Göthert M. Species-specific pharmacological properties of human alpha(2A)-adrenoceptors. Hypertension 2000; 36:405-10. [PMID: 10988273 DOI: 10.1161/01.hyp.36.3.405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
On the basis of data obtained in rabbits, the imidazoline receptor ligand rilmenidine has been suggested to decrease blood pressure in humans by activating central alpha(2A)-adrenoceptors. A prerequisite for this hypothesis was the unproved assumption that rabbit and human alpha(2A)-adrenoceptors are equally activated by rilmenidine. Because alpha(2A)-adrenoceptors in the brain and on cardiovascular sympathetic nerve terminals are identical, the latter were used as a model for the former to confirm or disprove this assumption. Human atrial appendages and rabbit pulmonary arteries were used to determine the potencies of alpha(2)-adrenoceptor agonists in inhibiting the electrically (2 Hz) evoked [(3)H]norepinephrine release and of antagonists in counteracting the alpha(2)-adrenoceptor-mediated inhibition induced by moxonidine. In the rabbit pulmonary artery, rilmenidine and oxymetazoline are potent full agonists, whereas in the human atrial appendages they are antagonists at the alpha(2)-autoreceptors, sharing this property with rauwolscine, phentolamine, and idazoxan. In contrast, prazosin is ineffective. In addition, a partial nucleotide and amino acid sequence of the rabbit alpha(2A)-adrenoceptor (a region known to substantially influence the pharmacological characteristics of the alpha(2)-adrenoceptor) revealed marked differences between the rabbit and the human alpha(2A)-adrenoceptor. The sympathetic nerves of both the human atrial appendages and rabbit pulmonary artery are endowed with alpha(2A)-autoreceptors, at which, however, both rilmenidine and oxymetazoline exhibit different properties (antagonism and agonism, respectively). The antagonistic property of rilmenidine at human alpha(2A)-adrenoceptors indicates that in contrast to the suggestion based on rabbit data, the hypotensive property of the drug in humans is not due to activation of alpha(2A)-adrenoceptors but other, presumably I(1)-imidazoline receptors, are probably involved.
Collapse
Affiliation(s)
- G J Molderings
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
31
|
Callado LF, Gabilondo AM, Meana JJ. Differential modulation of alpha2-adrenoceptor subtypes in rat kidney by chronic desipramine treatment. Life Sci 1999; 64:2327-39. [PMID: 10374896 DOI: 10.1016/s0024-3205(99)00186-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The profile of [3H]RX821002 (2-methoxy idazoxan) binding to alpha2-adrenoceptor subtypes in rat kidney membranes was evaluated in controls and after chronic treatment with desipramine (10 mg/kg, i.p., every 12 h, 7 days) or clorgyline (2 mg/kg, i.p., every 24 h, 21 days). [3H]RX821002 recognized with high affinity (Kd=1.5+/-0.2 nM in controls) a single and saturable population of binding sites (Bmax=57+/-5 fmol/mg protein in controls). The competitions by (-)-adrenaline, the alpha2B-adrenoceptor selective drug ARC239 (2-[2-[4-(o-methoxyphenyl)-piperazin-1-yl]-ethyl]-4,4-dimethyl-1,3 (2H,4H)-isoquinolindione) and the alpha2A-adrenoceptor selective drug BRL44408 (2-[2H-(1-methyl-1,3-dihydroisoindole)methyl]-4,5-dihydroimidaz ole) suggested the existence of both alpha2A- and alpha2B-adrenoceptors together with a non-adrenoceptor binding site. After chronic desipramine but not after chronic clorgyline treatments, the density (Bmax) of alpha2-adrenoceptors was increased (46%). In the presence of ARC239 (50 nM), the density of alpha2A-adrenoceptors increased (44%) in the desipramine-treated group without changes in the clorgyline-treated group. Conversely, in the presence of BRL44408 (100 nM), the density of alpha2B-adrenoceptors was not affected by the treatments. The selective upregulation of the alpha2A-adrenoceptor subtype following chronic desipramine administration is compatible with a differential location and function of the alpha2-adrenoceptor subtypes in the rat kidney.
Collapse
Affiliation(s)
- L F Callado
- Department of Pharmacology, University of the Basque Country, Bizkaia, Spain.
| | | | | |
Collapse
|
32
|
Ali A, Cheng HY, Ting KN, Wilson VG. Rilmenidine reveals differences in the pharmacological characteristics of prejunctional alpha2-adrenoceptors in the guinea-pig, rat and pig. Br J Pharmacol 1998; 125:127-35. [PMID: 9776352 PMCID: PMC1565583 DOI: 10.1038/sj.bjp.0702016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The alpha2A and alpha2D-adrenoceptor subtypes are thought to be species homologs most easily differentiated on the basis of the potency of antagonists. In the present study we have compared the effect of rilmenidine with two other selective alpha2-adrenoceptor agonists, UK-14304 (5-bromo-6- [2-imidazolin-2-ylamino]-quinoxaline) and clonidine, against electrically-evoked contractions in five isolated preparations from the rat, guinea-pig and pig, and, where possible, determined the receptor subtype involved. 2. UK-14034, clonidine and rilmenidine produced concentration-dependent inhibition of the electrically-evoked contractions of the rat isolated vas deferens and tail artery and the guinea-pig ileum. These inhibitory effects were reversed by the selective alpha2-adrenoceptor antagonist, RX-811058 (1 microM), except in the rat tail artery preparations where the remaining neurogenic response was inhibited; evidence for the involvement of 'innervated' alpha2-adrenoceptors. Both clonidine and UK-14304 produced concentration-dependent inhibition of responses in the porcine isolated tail artery and urinary bladder but clonidine was markedly less efficacious in these preparations. In contrast, rilmenidine failed to inhibit the neurogenic contractions in either preparation. 3. Although rilmenidine failed to elicit a detectable response in either the porcine isolated tail artery or urinary bladder, it (10 microM and 30 microM, respectively) competitively antagonised the inhibitory effects of UK-14304 with an estimated dissociation constant of (pK(B)) 5.82 and 5.93, respectively. 4. Prazosin (1 microM) failed to alter the effect of UK-14304 against neurogenic contractions in the porcine isolated urinary bladder, while rauwolscine (pK(B) 8.87) was 10 fold more potent than phentolamine (pK(B) 7.56). On the other hand, phentolamine (pK(B) 8.42) was only marginally more potent than rauwolscine (pK 8.05) against clonidine-induced inhibition of electrically-evoked contractions of the guinea-pig isolated ileum. This pharmacological evidence with antagonists supports the presence of alpha2D-adrenoceptors in the rat and guinea-pig and the alpha2A-adrenoceptors in the pig. 5. We have demonstrated that rilmenidine, unlike clonidine and UK-14304, is devoid of any agonist activity at prejunctional alpha2A-adrenoceptors in the pig, but is an efficacious agonist at alpha2D-adrenoceptors in the rat and guinea-pig.
Collapse
Affiliation(s)
- A Ali
- School of Biomedical Sciences, The Medical School, Queen's Medical Centre, Nottingham
| | | | | | | |
Collapse
|
33
|
Blake TJ, Tillery CE, Reynolds GP. Antipsychotic drug affinities at alpha2-adrenoceptor subtypes in post-mortem human brain. J Psychopharmacol 1998; 12:151-4. [PMID: 9694027 DOI: 10.1177/026988119801200206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although there is substantial interest in the possible role of alpha2-adrenoceptors in the antipsychotic efficacy of clozapine, there has so far been no systematic investigation of antipsychotic drug affinities for alpha2-adrenoceptor subtypes in the human brain. We have assessed the ability of three classical and four 'atypical' antipsychotic drugs to displace binding of [3H]RX821002 to alpha2-adrenoceptors in human post-mortem brain tissue. All seven drugs displaced radioligand from an apparent single site in the frontal cortex, consistent with the sole presence of the alpha2A-subtype in this region. In the caudate nucleus, all drugs except risperidone differentiated two sites, of which one was equivalent to the cortical alpha2A-subtype and the second, accounting for approximately two-thirds of specific radioligand binding, showed higher affinity for the antipsychotics. This second site, on the basis of prazosin's relatively high affinity, is consistent with an alpha2B-adrenoceptor identity. The new antipsychotic quetiapine showed the greatest selectivity for this receptor site; both quetiapine and clozapine had affinities for the alpha2B site which were greater than their affinities for human D2 dopamine receptors. The possible role of this site in the mechanisms underlying aspects of antipsychotic drug atypicality is discussed.
Collapse
Affiliation(s)
- T J Blake
- Department of Biomedical Science, University of Sheffield, Western Bank, UK
| | | | | |
Collapse
|
34
|
Polm M, Brettel K. Secondary pair charge recombination in photosystem I under strongly reducing conditions: temperature dependence and suggested mechanism. Biophys J 1998; 74:3173-81. [PMID: 9635770 PMCID: PMC1299657 DOI: 10.1016/s0006-3495(98)78023-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Photoinduced electron transfer in photosystem I (PS I) proceeds from the excited primary electron donor P700 (a chlorophyll a dimer) via the primary acceptor A0 (chlorophyll a) and the secondary acceptor A1 (phylloquinone) to three [4Fe-4S] clusters, Fx, FA, and FB. Prereduction of the iron-sulfur clusters blocks electron transfer beyond A1. It has been shown previously that, under such conditions, the secondary pair P700+A1- decays by charge recombination with t1/2 approximately 250 ns at room temperature, forming the P700 triplet state (3P700) with a yield exceeding 85%. This reaction is unusual, as the secondary pair in other photosynthetic reaction centers recombines much slower and forms directly the singlet ground state rather than the triplet state of the primary donor. Here we studied the temperature dependence of secondary pair recombination in PS I from the cyanobacterium Synechococcus sp. PCC6803, which had been illuminated in the presence of dithionite at pH 10 to reduce all three iron-sulfur clusters. The reaction P700+A1- --> 3P700 was monitored by flash absorption spectroscopy. With decreasing temperature, the recombination slowed down and the yield of 3P700 decreased. In the range between 303 K and 240 K, the recombination rates could be described by the Arrhenius law with an activation energy of approximately 170 meV. Below 240 K, the temperature dependence became much weaker, and recombination to the singlet ground state became the dominating process. To explain the fast activated recombination to the P700 triplet state, we suggest a mechanism involving efficient singlet to triplet spin evolution in the secondary pair, thermally activated repopulation of the more closely spaced primary pair P700+A0- in a triplet spin configuration, and subsequent fast recombination (intrinsic rate on the order of 10(9) s(-1)) forming 3P700.
Collapse
Affiliation(s)
- M Polm
- Section de Bioénergétique and CNRS-URA 2096, Département de Biologie Cellulaire et Moléculaire, CEA Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
35
|
Lu L, Ordway GA. Reduced expression of alpha2C-adrenoceptors in rat striatum following antisense oligodeoxynucleotide infusion. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:267-74. [PMID: 9221925 DOI: 10.1016/s0169-328x(97)00057-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The predominate subtypes of alpha2-adrenoceptors in the brain are alpha2A and alpha2C. The lack of selective ligands for these receptors hampers their functional characterization. We exploited an antisense strategy as an alternative pharmacological tool to study alpha2C-adrenoceptors. In rat striatum (caudate-putamen), alpha2-adrenoceptors were characterized using the subtype-non-selective antagonist [3H]2-(2-methoxy-1,4-benzodioxan-2-yl)-2-imidazoline ([3H]RX821002). Specific [3H]RX821002 binding was saturable and to a single class of high-affinity sites. Curves for the inhibition of [3H]RX821002 binding by the alpha2C-selective compound, prazosin, were fit best by a model assuming binding to two sites, presumably reflecting binding to alpha2A- and alpha2C-adrenoceptors. A 15-mer phosphorothioate oligodeoxynucleotide (alpha2C AS) complementary to the alpha2C-adrenoceptor mRNA, or a random sequence (RS) was administered to rats continuously for 4.5 days directly into the striatum. Compared to RS infusions, alpha2C AS infusions induced a 35% reduction in the Bmax of [3H]RX821002 in striatal homogenates (P < 0.05). Curves for the inhibition of [3H]RX821002 binding by prazosin were fit best by a model assuming a single interaction in alpha2C AS-infused rats and to a model assuming two sites in RS-infused rats. These results are consistent with the conjecture that both alpha2A- and alpha2C-adrenoceptors occur in the rat striatum and also demonstrate the feasibility of an antisense approach to examine the functional role of subtypes of alpha2C-adrenoceptors in the brain.
Collapse
Affiliation(s)
- L Lu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 39216, USA
| | | |
Collapse
|
36
|
Geyer S, Schleicher A, Zilles K. The somatosensory cortex of human: cytoarchitecture and regional distributions of receptor-binding sites. Neuroimage 1997; 6:27-45. [PMID: 9245653 DOI: 10.1006/nimg.1997.0271] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of this study is to characterize the regional and laminar distribution patterns of various neurotransmitter binding sites in areas 3a, 3b, 1, and 2 of the human primary somatosensory cortex, and to compare these receptor-based "maps" with the cytoarchitectonic parcelation. Cryostat sections from a dorsomedial region of the postcentral gyrus close to the interhemispheric fissure and from a ventrolateral region close to the Sylvian fissure were examined. Neurotransmitter-binding sites were analyzed with quantitative in vitro receptor autoradiography. Different muscarinic-binding sites were labeled with [3H]pirenzepine and [3H]oxotremorine-M, noradrenergic-binding sites with [3H]prazosin, different serotoninergic-binding sites with [3H]5-hydroxytryptamine and [3H]ketanserine, glutamate-binding sites with l-[3H]glutamate, and GABA-binding sites with [3H]muscimol. Adjacent sections were stained with a modified Nissl method for cytoarchitectonic analysis. The binding sites either were preferentially localized in the superficial layers ([3H]5-hydroxytryptamine, [3H]prazosin, l-[3H]glutamate, [3H]muscimol, and [3H]pirenzepine) or were more homogeneously distributed with highest densities in layers III-V ([3H]oxotremorine-M and [3H]ketanserine). Changes in the distribution patterns of [3H]oxotremorine-M- and [3H]ketanserine-binding sites precisely matched the borders between areas 4/3a, 3b/1, and 1/2, as defined cytoarchitectonically. In addition, the autoradiographs showed that area 1 possibly consists of two subregions which cannot be distinguished cytoarchitectonically. The results demonstrate that the regional and laminar distribution patterns of some, but not all, transmitter-binding sites are precisely correlated with the cytoarchitectonic parcelation of the human primary somatosensory cortex. In addition, binding sites may reveal new borders not detectable in Nissl-stained sections. Finally, the human primary somatosensory cortex differs clearly from the primary motor cortex due to higher densities of l-[3H]glutamate-, [3H]muscimol-, [3H]pirenzepine-, [3H]oxotremorine-M-, and [3H]ketanserine-binding sites.
Collapse
Affiliation(s)
- S Geyer
- Department of Neuroanatomy, University of Düsseldorf, Düsseldorf, D-40001, Germany
| | | | | |
Collapse
|
37
|
De Paermentier F, Mauger JM, Lowther S, Crompton MR, Katona CL, Horton RW. Brain alpha-adrenoceptors in depressed suicides. Brain Res 1997; 757:60-8. [PMID: 9200499 DOI: 10.1016/s0006-8993(97)00138-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
alpha1-Adrenoceptors and alpha2-adrenoceptors were measured by radioligand binding to homogenates of brain samples obtained at post-mortem from suicides with a retrospective diagnosis of depression, and age and gender-matched controls. Suicides were subdivided into those who had been free of antidepressant drugs for at least three months, and those in whom prescription of antidepressant drugs was clearly documented. The number of alpha1-adrenoceptors (or alpha1A + alpha1D-adrenoceptors) did not differ significantly between antidepressant-free or antidepressant-treated suicides and controls. In antidepressant-free suicides, the number of alpha2-adrenoceptors was significantly higher in temporal cortex (Ba 21/22). alpha2A-Adrenoceptors did not differ significantly from controls in this brain region, suggesting the involvement of other alpha2-adrenoceptor subtypes. In antidepressant-treated suicides, significantly lower numbers of alpha2-adrenoceptors were found in occipital cortex and hippocampus (and for alpha2A-adrenoceptors in caudate and amygdala) compared to controls.
Collapse
Affiliation(s)
- F De Paermentier
- Department of Pharmacology and Clinical Pharmacology, St. George's Hospital Medical School, London, UK
| | | | | | | | | | | |
Collapse
|
38
|
Fernández-López A, Revilla V, Candelas MA, González-Gil J, Díaz A, Pazos A. A comparative study of alpha2- and beta-adrenoceptor distribution in pigeon and chick brain. Eur J Neurosci 1997; 9:871-83. [PMID: 9182940 DOI: 10.1111/j.1460-9568.1997.tb01438.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The pharmacological properties and anatomical distribution of alpha2-, beta1- and beta2-adrenoceptors in pigeon and chick brains were studied by both homogenate binding and tissue section autoradiography. [3H]Bromoxidine (alpha2-adrenoceptor-), [3H]CGP 12177 (beta-adrenoceptor) and [125I]cyanopindolol (beta-adrenoceptor) were used as radioligands. In both species, [3H]bromoxidine binding to avian brain tissue showed a pharmacological profile similar to that previously reported for alpha2-adrenoceptors in mammals. Regarding the anatomical distribution, the areas with the highest densities of alpha2-adrenoceptors in the pigeon brain included the hyperstriatum, nuclei septalis, tectum opticum and some brainstem nuclei. Most beta-adrenoceptors found in tissue membranes and sections from chick and pigeon brain were of the beta2 subtype, in contrast to what has been reported in the mammalian brain, where the beta1 subtype is predominant. A striking difference was found between the two species regarding the densities of these receptors: while pigeon brain was extremely rich in [125I]cyanopindolol binding throughout the brain (mainly cerebellum) in the pigeon, the levels of labelling in the chick brain were much lower; the exception was the cerebellum, which displayed a higher density than other parts of the brain in both species. Overall, our results support the proposed anatomical equivalences between a number of structures in the avian and mammalian encephalon.
Collapse
Affiliation(s)
- A Fernández-López
- Departamento de Biología Celular y Anatomia, Facultad de Biología, Universidad de León, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Meana JJ, Callado LF, Pazos A, Grijalba B, García-Sevilla JA. The subtype-selective alpha 2-adrenoceptor antagonists BRL 44408 and ARC 239 also recognize 5-HT1A receptors in the rat brain. Eur J Pharmacol 1996; 312:385-8. [PMID: 8894622 DOI: 10.1016/0014-2999(96)00598-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several alpha 2-adrenoceptor compounds have been reported to recognize 5-HT1A receptors. The interaction of the alpha 2A/D- and alpha 2B/C-adrenoceptor antagonists BRL 44408 (2-[2H-(1-methyl-1,3-dihydroisoindole) methyl]-4,5-dihydroimidazole) and ARC 239 (2-[2-[4-(o-methoxyphenyl)piperazin-1-yl] ethyl]-4,4-dimethyl-1,3-(2H,4H)-isoquinolinedione) with 5-HT1A receptors was evaluated in rat brain. Competition experiments in cortex with both compounds against the specific binding of the 5-HT1A receptor radioligand [3H]8-OH-DPAT (8-hydroxy-2-(n-dipropyl-amine)-tetralin) yielded Ki values in the nanomolar range, fairly close to their previously reported affinities for alpha 2-adrenoceptors. Similar Ki values were obtained under alpha 2-adrenoceptor masking conditions by competition assays of these compounds against the alpha 2-adrenoceptor and 5-HT1A receptor radioligand [3H]RX 821002 (2-methoxy idazoxan) specific binding in hippocampus. The results indicate that BRL 44408 and ARC 239 recognize 5-HT1A receptors in addition to alpha 2-adrenoceptors. The fact should be considered when using these compounds to study alpha 2-adrenoceptor subtypes.
Collapse
Affiliation(s)
- J J Meana
- Department of Pharmacology, University of the Basque Country, Leioa, Bizkaia, Spain.
| | | | | | | | | |
Collapse
|
40
|
Mizobe T, Maghsoudi K, Sitwala K, Tianzhi G, Ou J, Maze M. Antisense technology reveals the alpha2A adrenoceptor to be the subtype mediating the hypnotic response to the highly selective agonist, dexmedetomidine, in the locus coeruleus of the rat. J Clin Invest 1996; 98:1076-80. [PMID: 8787667 PMCID: PMC507526 DOI: 10.1172/jci118887] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alpha2 adrenergic agonists are used in the anesthetic management of the surgical patient for their sedative/hypnotic properties although the alpha2 adrenoceptor subtype responsible for these anesthetic effects is not known. Using a gene-targeting strategy, it is possible to specifically reduce the expression of the individual adrenoceptors expressed in the central nervous system and to thereby determine their role in hypnotic action. Stably transfected cell lines (PC 124D for rat alpha2A; NIH3T3 for rat alpha2C adrenoceptors) were exposed to 5 microM antisense oligodeoxynucleotides (ODNs) for alpha2A and alpha2C adrenergic receptor subtypes for 3 d. Individual receptor subtype expression, as determined by radiolabeled ligand binding, was selectively decreased only by the appropriate antisense ODNs and not by the "scrambled" ODNs. These antisense ODNs were then administered three times, on alternate days, into the locus coeruleus of chronically cannulated rats and their hypnotic response to dexmedetomidine (an alpha2 agonist) was determined. Only the alpha2A antisense ODNs significantly change the hypnotic response causing both an increase in latency to, and a decrease in duration of, the loss of righting reflex following dexmedetomidine; hypnotic response had normalized 8 d after stopping the ODNs. Therefore, the alpha2A adrenoceptor subtype is responsible for the hypnotic response to dexmedetomidine in the locus coeruleus of the rat.
Collapse
Affiliation(s)
- T Mizobe
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, California, 94304 USA
| | | | | | | | | | | |
Collapse
|
41
|
Grijalba B, Callado LF, Javier Meana J, García-Sevilla JA, Pazos A. Alpha 2-adrenoceptor subtypes in the human brain: a pharmacological delineation of [3H]RX-821002 binding to membranes and tissue sections. Eur J Pharmacol 1996; 310:83-93. [PMID: 8880071 DOI: 10.1016/0014-2999(96)00381-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to study the characterization and localization of [3H]RX-821002 (2-methoxy-idazoxan) binding to alpha 2-adrenoceptor subtypes in several regions of the human brain, we have carried out competition studies using both autoradiography and membrane binding assays. The alpha 2A-adrenoceptor subtype was found to be predominant in the different layers of the frontal cortex, cerebellum and hippocampal formation, while in the neostriatum it was the non-alpha 2A- (alpha 2B- and alpha 2C-) adrenoceptor subtype. In the frontal cortex, in addition to binding to the alpha 2A-adrenoceptor subtype, [3H]RX-821002 bound also to a small portion of alpha 2B- and alpha 2C-adrenoceptors in layer III, and to an unidentified binding site in the external layers. In the hippocampus, both alpha 2A- and non-alpha 2A- (alpha 2B- and alpha 2C-) adrenoceptors were labelled in the dentate gyrus and the CA1 field, together with 5-HT1A receptors. 5-HT1A receptors were labelled predominantly in the stratum pyramidale layer. These results, in addition to delineate the relative presence of alpha 2-adrenoceptor subtypes, indicate that caution is needed when analyzing RX 821002 binding to human brain tissue.
Collapse
Affiliation(s)
- B Grijalba
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | | | | | | | | |
Collapse
|
42
|
[High-dose intrathecal clonidine in the treatment of neuropathic tumor pain. Two case reports.]. Schmerz 1995; 9:305-11. [PMID: 18415522 DOI: 10.1007/bf02530157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1995] [Accepted: 05/23/1995] [Indexed: 10/23/2022]
Abstract
Two cases with perineal pain caused by recurrent carcinoma of the rectum are reported. Initially both patients suffered from predominantly nociceptive pain, which was treated adequately with spinal opioids. Tumor growth with epidural spread and infiltration of the plexus lumbosacralis caused severe neuropathic pain. Both patients were free of pain with a combination of spinal clonidine and opioids. Clonidine doses had to be increased up to 1.31 and 1.46 mg daily in order to provide adequate analgesia. Outpatient treatment was possible for several weeks with stable dosage. Bradycardia and hypotension occurred with initial dose titration and after dose increases and were treated with parasympathicolytic drugs and vasopressor agents. Both patients were given spinal clonidine until their death 4 1/2 and 4 months later. In the final stages, adjuvant systemic administration of morphine was necessary to control dyspnea.
Collapse
|
43
|
Schmidt ME, Matochik JA, Risinger RC, Schouten JL, Zametkin AJ, Cohen RM, Potter WZ. Regional brain glucose metabolism after acute alpha 2-blockade by idazoxan. Clin Pharmacol Ther 1995; 57:684-95. [PMID: 7781269 DOI: 10.1016/0009-9236(95)90232-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Several classes of antidepressant drugs act on alpha 2-adrenergic receptors. Studies of patients with disorders responsive to treatment with these drugs report group differences in ex vivo measures of alpha 2-binding and in vivo responses mediated by alpha 2-receptors. Measurement of regional brain metabolic response to an alpha 2-antagonist may be a useful method for further definition of the role alpha 2-receptor regulation plays in the treatment of neuropsychiatric disorders. METHODS Regional brain glucose metabolism was measured before and after infusion with 200 micrograms/kg idazoxan with use of 18F-fluoro-2-deoxyglucose positron emission tomography in 13 healthy men. Arterial drug concentration, behavioral responses, and cardiovascular responses were also measured. RESULTS The absolute and normalized glucose metabolic rate significantly increased in primary visual cortex. Significant increases and decreases occurred in normalized metabolic rates in prefrontal cortical regions. Measurement of metabolic effects occurred during the peak cardiovascular response. CONCLUSIONS Our findings are consistent with regionally specific effects of alpha 2-blockade. This method may be useful for the study of alpha 2-receptor function in humans.
Collapse
Affiliation(s)
- M E Schmidt
- Section on Clinical Pharmacology, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Sigfridsson K, Hansson O, Brzezinski P. Electrogenic light reactions in photosystem I: resolution of electron-transfer rates between the iron-sulfur centers. Proc Natl Acad Sci U S A 1995; 92:3458-62. [PMID: 11607528 PMCID: PMC42186 DOI: 10.1073/pnas.92.8.3458] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flash-induced voltage changes (electrogenic events) in photosystem I particles from spinach, oriented in a phospholipid layer, have been studied at room temperature on a time scale ranging from 1 micros to several seconds. A phospholipid layer containing photosystem I particles was adsorbed to a Teflon film separating two aqueous compartments. Voltage changes were measured across electrodes immersed in the compartments. In the absence of added electron donors and acceptors, a multiphasic voltage increase, associated with charge separation, was followed by a decrease, associated with charge recombination. Several kinetic phases were resolved: a rapid (<1 micros) increase, ascribed to electron transfer from the primary electron donor P700 to the iron-sulfur electron acceptor FB, was followed by a slower, biphasic increase with time constants of 30 and 200 micros. The 30-micros phase is assigned to electron transfer from FB to the iron-sulfur center FA. The voltage decrease had a time constant of 90 ms, ascribed to charge recombination from FA to P700. Upon chemical prereduction of FA and FB the 30- and 200-micros phases disappeared and the decay time constant was accelerated to 330 micros, assigned to charge recombination from the phylloquinone electron acceptor (A1) or the iron-sulfur center FX to P700.
Collapse
Affiliation(s)
- K Sigfridsson
- Department of Biochemistry and Biophysics, Göteborg University, Göteborg, Sweden
| | | | | |
Collapse
|
45
|
Kiss JP, Zsilla G, Mike A, Zelles T, Toth E, Lajtha A, Vizi ES. Subtype-specificity of the presynaptic alpha 2-adrenoceptors modulating hippocampal norepinephrine release in rat. Brain Res 1995; 674:238-44. [PMID: 7796102 DOI: 10.1016/0006-8993(94)01447-p] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In vivo brain microdialysis and high-performance liquid chromatography with electrochemical detection were used to study the effect of different selective alpha 2-antagonists on hippocampal norepinephrine (NE) release in freely moving awake rat. Systemic administration (0.5 mg/kg i.p.) of either the alpha 2AD-antagonist BRL 44408 or the alpha 2BC-antagonist ARC 239 did not significantly change the basal release of NE. At a higher dose (5 mg/kg i.p.) ARC 239 was still ineffective, whereas BRL 4408 caused a significant increase of the extracellular level of NF. Similar results were obtained from in vitro perfusion experiments. Rat hippocampal slices were loaded with [3H]NE and the electrical stimulation-evoked release of [3H]NE was determined. The alpha 2-antagonists were applied in a concentration range of 10(-8) to 10(-6) M, ARC 239 was ineffective, whereas BRL 44408 significantly increased the electrically induced release of [3H]NE. In agreement with the data of microdialysis and perfusion experiments, BRL 44408 displaced [3H]yohimbine from hippocampal and cortical membranes of rat brain with high affinity whereas ARC 239 was less effective. The pKi values of eight different alpha 2-adrenergic compounds showed a very good correlation (r = 0.98, slope = 1.11 P < 0.0001) in hippocampus and frontal cortex have the alpha 2-adrenoceptors have been characterized as alpha 2d-subtype. Our data indicate that hippocampal NE release in rat is regulated by alpha 2D-adrenoceptors, a species variation of the human alpha 2A-subtype.
Collapse
Affiliation(s)
- J P Kiss
- Department of Pharmacology, Institute of Experimental Medicine, Hunagarian Academy of Sciences, Budapest
| | | | | | | | | | | | | |
Collapse
|
46
|
A convenient synthesis of 2-amino-2-oxazolines and their pharmacological evaluation at cloned human α adrenergic receptors. Bioorg Med Chem Lett 1994. [DOI: 10.1016/0960-894x(94)85032-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Wallace DR, Muskardin DT, Zahniser NR. Pharmacological characterization of [3H]idazoxan, [3H]RX821002 and p-[125I]iodoclonidine binding to alpha 2-adrenoceptors in rat cerebral cortical membranes. Eur J Pharmacol 1994; 258:67-76. [PMID: 7925601 DOI: 10.1016/0014-2999(94)90058-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Binding characteristics of alpha 2-adrenoceptors in rat cerebral cortical membranes were compared using the antagonist radioligands [3H]idazoxan, [3H]2-(2-methoxy-1,4-benzodioxan-2-yl)-2-imidazoline ([3H]RX821002), and the partial agonist radioligand [125I]2-[2,6-(dichloro-4-iodophenyl)imino]imidazoline ([125I]iodoclonidine). With [3H]RX821002 and alpha 2-adrenoceptor subtype-selective competitors, both alpha 2A/D- and alpha 2C-adrenoceptor subtypes were detected, suggesting rat cortical membranes contain approximately 90% alpha 2A/D-adrenoceptor subtype and 10% alpha 2C-adrenoceptor subtype. Only alpha 2A/D-adrenoceptors were detected with [3H]idazoxan and [125I]iodoclonidine. All three radioligands bound to a single high affinity site (Kd = 0.3-1.6 nM). However, the densities of sites labeled by [3H]idazoxan and [125I]iodoclonidine were 50% greater than the density labeled by [3H]RX821002, likely representing non-adrenoceptor binding sites. The density of [125I]iodoclonidine binding sites in glycylglycine buffer was similar to that labeled by [3H]RX821002. These results suggest that: (1) alpha 2A/D-adrenoceptors are the predominant subtype in rat cerebral cortex, (2) demonstrate that the small number of alpha 2C-adrenoceptors in this tissue can be detected using prazosin to displace [3H]RX821002 binding, and (3) non-adrenoceptor binding with [125I]iodoclonidine can be minimized with the use of glycylglycine buffer.
Collapse
Affiliation(s)
- D R Wallace
- Department of Pharmacology, University of Colorado Health Science Center, Denver
| | | | | |
Collapse
|
48
|
Gabilondo AM, Meana JJ, Barturen F, Sastre M, García-Sevilla JA. mu-Opioid receptor and alpha 2-adrenoceptor agonist binding sites in the postmortem brain of heroin addicts. Psychopharmacology (Berl) 1994; 115:135-40. [PMID: 7862885 DOI: 10.1007/bf02244763] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The biochemical status of human brain mu-opioid receptors and alpha 2-adrenoceptors during opiate dependence was studied by means of the binding of [3H] [D-Ala2, MePhe4, Gly-ol5] enkephalin (DAGO) and [3H]clonidine, respectively, in postmortem brains of heroin addicts who had died by opiate overdose or other causes. In the frontal cortex, thalamus and caudate of heroin addicts the density (Bmax) and affinity (KD) of mu-opioid receptors were similar to those in controls. In contrast, the density of alpha 2-adrenoceptors in heroin addicts was found to be significantly decreased in frontal cortex (Bmax 31% lower), hypothalamus (Bmax 40% lower) and caudate (Bmax 32% lower) without changes in KD values. When heroin addicts were divided into two subgroups according to the presence or absence of morphine in body fluids, only the group with positive screening for morphine showed relevant decreases in brain alpha 2-adrenoceptor density (Bmax 36-48% lower), whereas the decreases in receptor density observed in the subgroup with negative screening for morphine did not reach statistical significance. The results suggest that desensitization of brain alpha 2A-adrenceptors is a relevant adaptative receptor mechanism during opiate addiction in humans.
Collapse
Affiliation(s)
- A M Gabilondo
- Department of Pharmacology, University of the Basque Country, Leioa, Bizkaia, Spain
| | | | | | | | | |
Collapse
|
49
|
Noyer M, de Laveleye F, Vauquelin G, Gobert J, Wülfert E. Mivazerol, a novel compound with high specificity for alpha 2 adrenergic receptors: binding studies on different human and rat membrane preparations. Neurochem Int 1994; 24:221-9. [PMID: 8025531 DOI: 10.1016/0197-0186(94)90079-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mivazerol, 3-[1(H-imidazol-4-yl)methyl]-2-hydroxybenzamide hydrochloride, a new potential anti-ischemic drug designed by UCB S.A. Pharma Sector, has been studied in binding experiments on adrenergic, dopaminergic, serotoninergic, muscarinic and idazoxan binding sites. Our results indicate that this compound displays high affinity and marked specificity for alpha 2 adrenoceptors. Mivazerol displaced the binding of the alpha 2 adrenoceptor antagonist [3H]RX 821002 to the alpha 2A adrenoceptors in human frontal cortex membranes with an apparent Ki value of 37 nM. The competition curve was shallow (nH = 0.55), suggesting that this compound acts as an alpha 2 adrenergic agonist. Mivazerol was also a potent competitor for [3H]RX 821002 binding to human platelet membranes (containing alpha 2A adrenoceptors) and rat kidney membranes (75% of the alpha 2 adrenoceptors of the alpha 2B subtype), indicating that this compound is not alpha 2 adrenoceptor subtype selective. Equilibrium dissociation constants for alpha 1 adrenoceptors (displacement of [3H]prazosin) and 5-HT1A receptors (displacement of [3H]rauwolscine) were respectively about 120 times (Ki = 4.4 microM) and 14 times (Ki = 530 nM) higher than that for the alpha 2 adrenoceptors. Equilibrium dissociation constants were approximately 1000 times higher for all other receptors tested in this study; namely beta 1 and beta 2 adrenoceptors, D1- and D2-dopamine receptors, M1-, M2- and M3-muscarinic receptors, 5-HT2 receptors and non-adrenergic idazoxan binding sites.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Binding, Competitive
- Blood Platelets/metabolism
- Cell Membrane/metabolism
- Dioxanes/metabolism
- Frontal Lobe/metabolism
- Humans
- Idazoxan
- Imidazoles/metabolism
- Male
- Middle Aged
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/metabolism
- Receptors, Dopamine/metabolism
- Receptors, Muscarinic/metabolism
- Receptors, Serotonin/metabolism
Collapse
Affiliation(s)
- M Noyer
- UCB S.A. Pharma Sector, Chemin du Foriest, Braine-l'Alleud, Belgium
| | | | | | | | | |
Collapse
|
50
|
Devedjian JC, Esclapez F, Denis-Pouxviel C, Paris H. Further characterization of human alpha 2-adrenoceptor subtypes: [3H]RX821002 binding and definition of additional selective drugs. Eur J Pharmacol 1994; 252:43-9. [PMID: 7908642 DOI: 10.1016/0014-2999(94)90573-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The characteristics of [3H]RX821002 binding to the different human alpha 2-adrenoceptor subtypes were studied on membranes from COS-7 cells transfected with the genes: alpha 2C2, alpha 2C4 and alpha 2C10. Saturation experiments indicated that the radioligand labels the three adrenoceptors with high affinity. A difference was however observed between the subtypes. The affinity of [3H]RX821002 for alpha 2C10-adrenoceptors (KD = 1.41 +/- 0.15 nM) was 3-fold higher than for alpha 2C4-adrenoceptors (KD = 4.42 +/- 0.63 nM) and 7-fold higher than for alpha 2C2-adrenoceptors (KD = 10.2 +/- 0.9 nM). Inhibition experiments with a series of 17 competitors confirmed that prazosin, oxymetazoline, WB4101, ARC239, corynanthine and chlorpromazine are subtype-selective drugs. They also demonstrated that BRL44408 and guanfacine are selective for the alpha 2C10-receptor, whereas BRL41992 and imiloxan are selective for the alpha 2C2. Given that these two latter drugs were previously shown to be specific for the alpha 2B pharmacological subtype originally defined in neonatal rat lung, these results confirm that the alpha 2C2 gene encodes for the human homolog of this receptor subtype. It is concluded that the combined use of [3H]RX821002 and of these new selective drugs may be useful for the identification of the alpha 2-adrenoceptor subtypes in human tissues.
Collapse
Affiliation(s)
- J C Devedjian
- INSERM U317, Institut Louis Bugnard, Toulouse, France
| | | | | | | |
Collapse
|