1
|
Vishnivetskiy SA, Gurevich EV, Gurevich VV. The role of arrestin-1 N-edge in rhodopsin binding. Cell Signal 2025; 134:111935. [PMID: 40505845 DOI: 10.1016/j.cellsig.2025.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2025] [Revised: 06/03/2025] [Accepted: 06/08/2025] [Indexed: 06/16/2025]
Abstract
Arrestin-1, in contrast to other subtypes, demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The loop between β-strands IX and X, termed N-edge because it is located on the distal tip of the N-domain in the folded arrestin molecule, was implicated in the binding of arrestin-1 and -2 to their cognate receptors. We performed alanine scanning and charge reversal mutagenesis of all twelve residues in this element of bovine arrestin-1. The mutants were tested for the binding to phosphorylated and unphosphorylated light-activated rhodopsin in the context of wild type and "enhanced" in terms of receptor binding C-terminally truncated arrestin-1-(1-378). The data identified two phosphate-binding lysines and seven other residues enhancing arrestin-1 preference for phosphorylated rhodopsin over unphosphorylated. We deleted three of these that are absent in the other mammalian arrestins and found that this insert is generally important for rhodopsin binding, not for enhanced selectivity. Eleven out of nineteen mutations differentially affected the binding of wild type arrestin-1 and its enhanced mutant, suggesting that the prevalent form of the complex of these two arrstin-1 variants with rhodopsin is different.
Collapse
Affiliation(s)
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
3
|
Zeghal M, Laroche G, Freitas JD, Wang R, Giguère PM. Profiling of basal and ligand-dependent GPCR activities by means of a polyvalent cell-based high-throughput platform. Nat Commun 2023; 14:3684. [PMID: 37407564 DOI: 10.1038/s41467-023-39132-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Representing the most attractive and successful druggable receptors of the proteome, GPCRs regulate a myriad of physiological and pathophysiological functions. Although over half of present pharmaceuticals target GPCRs, the advancement of drug discovery is hampered by a lack of adequate screening tools, the majority of which are limited to probing agonist-induced G-protein and β-arrestin-2-mediated events as a measure of receptor activation. Here, we develop Tango-Trio, a comprehensive cell-based high-throughput platform comprising cumate-inducible expression of transducers, capable of the parallelized profiling of both basal and agonist-dependent GPCR activities. We capture the functional diversity of GPCRs, reporting β-arrestin-1/2 couplings, selectivities, and receptor internalization signatures across the GPCRome. Moreover, we present the construction of cumate-induced basal activation curves at approximately 200 receptors, including over 50 orphans. Overall, Tango-Trio's robustness is well-suited for the functional characterization and screening of GPCRs, especially for parallel interrogation, and is a valuable addition to the pharmacological toolbox.
Collapse
Affiliation(s)
- Manel Zeghal
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Julia Douglas Freitas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Rebecca Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
| |
Collapse
|
4
|
Gurevich VV, Gurevich EV. Solo vs. Chorus: Monomers and Oligomers of Arrestin Proteins. Int J Mol Sci 2022; 23:7253. [PMID: 35806256 PMCID: PMC9266314 DOI: 10.3390/ijms23137253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Three out of four subtypes of arrestin proteins expressed in mammals self-associate, each forming oligomers of a distinct kind. Monomers and oligomers have different subcellular localization and distinct biological functions. Here we summarize existing evidence regarding arrestin oligomerization and discuss specific functions of monomeric and oligomeric forms, although too few of the latter are known. The data on arrestins highlight biological importance of oligomerization of signaling proteins. Distinct modes of oligomerization might be an important contributing factor to the functional differences among highly homologous members of the arrestin protein family.
Collapse
|
5
|
Zhai R, Snyder J, Montgomery S, Sato PY. Double life: How GRK2 and β-arrestin signaling participate in diseases. Cell Signal 2022; 94:110333. [PMID: 35430346 PMCID: PMC9929935 DOI: 10.1016/j.cellsig.2022.110333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
G-protein coupled receptor (GPCR) kinases (GRKs) and β-arrestins play key roles in GPCR and non-GPCR cellular responses. In fact, GRKs and arrestins are involved in a plethora of pathways vital for physiological maintenance of inter- and intracellular communication. Here we review decades of research literature spanning from the discovery, identification of key structural elements, and findings supporting the diverse roles of these proteins in GPCR-mediated pathways. We then describe how GRK2 and β-arrestins partake in non-GPCR signaling and briefly summarize their involvement in various pathologies. We conclude by presenting gaps in knowledge and our prospective on the promising pharmacological potential in targeting these proteins and/or downstream signaling. Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and arrestins in metabolism and disease progression.
Collapse
Affiliation(s)
| | | | | | - Priscila Y. Sato
- Corresponding author at: Drexel University College of Medicine, Department of Pharmacology and Physiology, 245 N 15th Street, NCB 8152, Philadelphia, PA 19102, USA. (P.Y. Sato)
| |
Collapse
|
6
|
Ko MJ, Chiang T, Mukadam AA, Mulia GE, Gutridge AM, Lin A, Chester JA, van Rijn RM. β-Arrestin-dependent ERK signaling reduces anxiety-like and conditioned fear-related behaviors in mice. Sci Signal 2021; 14:14/694/eaba0245. [PMID: 34344831 DOI: 10.1126/scisignal.aba0245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
G protein-coupled receptors (GPCRs) are implicated in the regulation of fear and anxiety. GPCR signaling involves canonical G protein pathways but can also engage downstream kinases and effectors through scaffolding interactions mediated by β-arrestin. Here, we investigated whether β-arrestin signaling regulates anxiety-like and fear-related behavior in mice in response to activation of the GPCR δ-opioid receptor (δOR or DOR). Administration of β-arrestin-biased δOR agonists to male C57BL/6 mice revealed β-arrestin 2-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the dorsal hippocampus and amygdala and β-arrestin 1-dependent activation of ERK1/2 in the nucleus accumbens. In mice, β-arrestin-biased agonist treatment was associated with reduced anxiety-like and fear-related behaviors, with some overlapping and isoform-specific input. In contrast, applying a G protein-biased δOR agonist decreased ERK1/2 activity in all three regions as well as the dorsal striatum and was associated with increased fear-related behavior without effects on baseline anxiety. Our results indicate a complex picture of δOR neuromodulation in which β-arrestin 1- and 2-dependent ERK signaling in specific brain subregions suppresses behaviors associated with anxiety and fear and opposes the effects of G protein-biased signaling. Overall, our findings highlight the importance of noncanonical β-arrestin-dependent GPCR signaling in the regulation of these interrelated emotions.
Collapse
Affiliation(s)
- Mee Jung Ko
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA
| | - Terrance Chiang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Arbaaz A Mukadam
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Grace E Mulia
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA
| | - Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA
| | - Angel Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Julia A Chester
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA.,Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA. .,Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA.,Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN 47907, USA.,Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Chen Q, Zhuo Y, Sharma P, Perez I, Francis DJ, Chakravarthy S, Vishnivetskiy SA, Berndt S, Hanson SM, Zhan X, Brooks EK, Altenbach C, Hubbell WL, Klug CS, Iverson TM, Gurevich VV. An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins. J Mol Biol 2021; 433:166790. [PMID: 33387531 PMCID: PMC7870585 DOI: 10.1016/j.jmb.2020.166790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms "infinite" chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ivette Perez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Derek J Francis
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Susan M Hanson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Evan K Brooks
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Wayne L Hubbell
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
9
|
Böttke T, Ernicke S, Serfling R, Ihling C, Burda E, Gurevich VV, Sinz A, Coin I. Exploring GPCR-arrestin interfaces with genetically encoded crosslinkers. EMBO Rep 2020; 21:e50437. [PMID: 32929862 PMCID: PMC7645262 DOI: 10.15252/embr.202050437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
β-arrestins (βarr1 and βarr2) are ubiquitous regulators of G protein-coupled receptor (GPCR) signaling. Available data suggest that β-arrestins dock to different receptors in different ways. However, the structural characterization of GPCR-arrestin complexes is challenging and alternative approaches to study GPCR-arrestin complexes are needed. Here, starting from the finger loop as a major site for the interaction of arrestins with GPCRs, we genetically incorporate non-canonical amino acids for photo- and chemical crosslinking into βarr1 and βarr2 and explore binding topologies to GPCRs forming either stable or transient complexes with arrestins: the vasopressin receptor 2 (rhodopsin-like), the corticotropin-releasing factor receptor 1, and the parathyroid hormone receptor 1 (both secretin-like). We show that each receptor leaves a unique footprint on arrestins, whereas the two β-arrestins yield quite similar crosslinking patterns. Furthermore, we show that the method allows defining the orientation of arrestin with respect to the GPCR. Finally, we provide direct evidence for the formation of arrestin oligomers in the cell.
Collapse
Affiliation(s)
- Thore Böttke
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigLeipzigGermany
| | - Stefan Ernicke
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigLeipzigGermany
| | - Robert Serfling
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigLeipzigGermany
| | - Christian Ihling
- Institute of PharmacyDepartment of Pharmaceutical Chemistry and BioanalyticsCharles Tanford Protein CenterMartin Luther University Halle‐WittenbergHalle/SaaleGermany
| | - Edyta Burda
- Institute of PharmacyFaculty of MedicineUniversity of LeipzigLeipzigGermany
| | | | - Andrea Sinz
- Institute of PharmacyDepartment of Pharmaceutical Chemistry and BioanalyticsCharles Tanford Protein CenterMartin Luther University Halle‐WittenbergHalle/SaaleGermany
| | - Irene Coin
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigLeipzigGermany
| |
Collapse
|
10
|
Gurevich VV, Gurevich EV. Targeting arrestin interactions with its partners for therapeutic purposes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:169-197. [PMID: 32312421 PMCID: PMC7977737 DOI: 10.1016/bs.apcsb.2019.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most vertebrates express four arrestin subtypes: two visual ones in photoreceptor cells and two non-visuals expressed ubiquitously. The latter two interact with hundreds of G protein-coupled receptors, certain receptors of other types, and numerous non-receptor partners. Arrestins have no enzymatic activity and work by interacting with other proteins, often assembling multi-protein signaling complexes. Arrestin binding to every partner affects cell signaling, including pathways regulating cell survival, proliferation, and death. Thus, targeting individual arrestin interactions has therapeutic potential. This requires precise identification of protein-protein interaction sites of both participants and the choice of the side of each interaction which would be most advantageous to target. The interfaces involved in each interaction can be disrupted by small molecule therapeutics, as well as by carefully selected peptides of the other partner that do not participate in the interactions that should not be targeted.
Collapse
Affiliation(s)
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
11
|
Kook S, Vishnivetskiy SA, Gurevich VV, Gurevich EV. Cleavage of arrestin-3 by caspases attenuates cell death by precluding arrestin-dependent JNK activation. Cell Signal 2019; 54:161-169. [PMID: 30529266 PMCID: PMC6321783 DOI: 10.1016/j.cellsig.2018.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022]
Abstract
The two non-visual subtypes, arrestin-2 and arrestin-3, are ubiquitously expressed and bind hundreds of G protein-coupled receptors. In addition, these arrestins also interact with dozens of non-receptor signaling proteins, including c-Src, ERK and JNK, that regulate cell death and survival. Arrestin-3 facilitates the activation of JNK family kinases, which are important players in the regulation of apoptosis. Here we show that arrestin-3 is specifically cleaved at Asp366, Asp405 and Asp406 by caspases during the apoptotic cell death. This results in the generation of one main cleavage product, arrestin-3-(1-366). The formation of this fragment occurs in a dose-dependent manner with the increase of fraction of apoptotic cells upon etoposide treatment. In contrast to a caspase-resistant mutant (D366/405/406E) the arrestin-3-(1-366) fragment reduces the apoptosis of etoposide-treated cells. We found that caspase cleavage did not affect the binding of the arrestin-3 to JNK3, but prevented facilitation of its activation, in contrast to the caspase-resistant mutant, which facilitated JNK activation similar to WT arrestin-3, likely due to decreased binding of the upstream kinases ASK1 and MKK4/7. The data suggest that caspase-generated arrestin-3-(1-366) prevents the signaling in the ASK1-MKK4/7-JNK1/2/3 cascade and protects cells, thereby suppressing apoptosis.
Collapse
Affiliation(s)
- Seunghyi Kook
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sergey A Vishnivetskiy
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
12
|
Perry NA, Kaoud TS, Ortega OO, Kaya AI, Marcus DJ, Pleinis JM, Berndt S, Chen Q, Zhan X, Dalby KN, Lopez CF, Iverson TM, Gurevich VV. Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal amplification. Proc Natl Acad Sci U S A 2019; 116:810-815. [PMID: 30591558 PMCID: PMC6338856 DOI: 10.1073/pnas.1819230116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Scaffold proteins tether and orient components of a signaling cascade to facilitate signaling. Although much is known about how scaffolds colocalize signaling proteins, it is unclear whether scaffolds promote signal amplification. Here, we used arrestin-3, a scaffold of the ASK1-MKK4/7-JNK3 cascade, as a model to understand signal amplification by a scaffold protein. We found that arrestin-3 exhibited >15-fold higher affinity for inactive JNK3 than for active JNK3, and this change involved a shift in the binding site following JNK3 activation. We used systems biochemistry modeling and Bayesian inference to evaluate how the activation of upstream kinases contributed to JNK3 phosphorylation. Our combined experimental and computational approach suggested that the catalytic phosphorylation rate of JNK3 at Thr-221 by MKK7 is two orders of magnitude faster than the corresponding phosphorylation of Tyr-223 by MKK4 with or without arrestin-3. Finally, we showed that the release of activated JNK3 was critical for signal amplification. Collectively, our data suggest a "conveyor belt" mechanism for signal amplification by scaffold proteins. This mechanism informs on a long-standing mystery for how few upstream kinase molecules activate numerous downstream kinases to amplify signaling.
Collapse
Affiliation(s)
- Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232
| | - Tamer S Kaoud
- Division of Chemical Biology & Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Oscar O Ortega
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 32232
| | - Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232
| | - David J Marcus
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN 32232
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 32232
| | - John M Pleinis
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505
| | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232
| | - Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232
| | - Xuanzhi Zhan
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505
| | - Kevin N Dalby
- Division of Chemical Biology & Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Carlos F Lopez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232;
- Department of Biochemistry, Vanderbilt University, Nashville, TN 32232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 32232
- Department of Bioinformatics, Vanderbilt University, Nashville, TN 32232
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232;
- Department of Biochemistry, Vanderbilt University, Nashville, TN 32232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 32232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 32232
| | | |
Collapse
|
13
|
Gurevich VV, Gurevich EV. Arrestin mutations: Some cause diseases, others promise cure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:29-45. [PMID: 30711028 PMCID: PMC6400060 DOI: 10.1016/bs.pmbts.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrestins play a key role in homologous desensitization of G protein-coupled receptors (GPCRs) and regulate several other vital signaling pathways in cells. Considering the critical roles of these proteins in cellular signaling, surprisingly few disease-causing mutations in human arrestins were described. Most of these are loss-of-function mutations of visual arrestin-1 that cause excessive rhodopsin signaling and hence night blindness. Only one dominant arrestin-1 mutation was discovered so far. It reduces the thermal stability of the protein, which likely results in photoreceptor death via unfolded protein response. In case of the two nonvisual arrestins, only polymorphisms were described, some of which appear to be associated with neurological disorders and altered response to certain treatments. Structure-function studies revealed several ways of enhancing arrestins' ability to quench GPCR signaling. These enhanced arrestins have potential as tools for gene therapy of disorders associated with excessive signaling of mutant GPCRs.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
14
|
Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 2018; 25:4-12. [PMID: 29323277 PMCID: PMC6535338 DOI: 10.1038/s41594-017-0011-7] [Citation(s) in RCA: 636] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
G-protein-coupled receptors (GPCRs) relay numerous extracellular signals by triggering intracellular signaling through coupling with G proteins and arrestins. Recent breakthroughs in the structural determination of GPCRs and GPCR-transducer complexes represent important steps toward deciphering GPCR signal transduction at a molecular level. A full understanding of the molecular basis of GPCR-mediated signaling requires elucidation of the dynamics of receptors and their transducer complexes as well as their energy landscapes and conformational transition rates. Here, we summarize current insights into the structural plasticity of GPCR-G-protein and GPCR-arrestin complexes that underlies the regulation of the receptor's intracellular signaling profile.
Collapse
Affiliation(s)
- Daniel Hilger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthieu Masureel
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
The expression of G protein-coupled receptor kinase 5 and its interaction with dendritic marker microtubule-associated protein-2 after status epilepticus. Epilepsy Res 2017; 138:62-70. [DOI: 10.1016/j.eplepsyres.2017.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/07/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
|
16
|
Zurkovsky L, Sedaghat K, Ahmed MR, Gurevich VV, Gurevich EV. Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine. Neuropharmacology 2017; 121:20-29. [PMID: 28419873 PMCID: PMC5859313 DOI: 10.1016/j.neuropharm.2017.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/17/2017] [Accepted: 04/13/2017] [Indexed: 02/09/2023]
Abstract
Arrestins play a prominent role in shutting down signaling via G protein-coupled receptors. In recent years, a signaling role for arrestins independent of their function in receptor desensitization has been discovered. Two ubiquitously expressed arrestin isoforms, arrestin-2 and arrestin-3, perform similarly in the desensitization process and share many signaling functions, enabling them to substitute for one another. However, signaling roles specific to each isoform have also been described. Mice lacking arrestin-3 (ARR3KO) were reported to show blunted acute responsiveness to the locomotor stimulatory effect of amphetamine (AMPH). It has been suggested that mice with deletion of arrestin-2 display a similar phenotype. Here we demonstrate that the AMPH-induced locomotion of male ARR3KO mice is reduced over the 7-day treatment period and during AMPH challenge after a 7-day withdrawal. The data are consistent with impaired locomotor sensitization to AMPH and suggest a role for arrestin-3-mediated signaling in the sensitization process. In contrast, male ARR2KO mice showed enhanced early responsiveness to AMPH and the lack of further sensitization, suggesting a role for impaired receptor desensitization. The comparison of mice possessing one allele of arrestin-3 and no arrestin-2 with ARR2KO littermates revealed reduced activity of the former line, consistent with a contribution of arrestin-3-mediated signaling to AMPH responses. Surprisingly, ARR3KO mice with one arrestin-2 allele showed significantly reduced locomotor responses to AMPH combined with lower novelty-induced locomotion, as compared to the ARR3KO line. These data suggest that one allele of arrestin-2 is unable to support normal locomotor behavior due to signaling and/or developmental defects.
Collapse
Affiliation(s)
- Lilia Zurkovsky
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Katayoun Sedaghat
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Research Center and Department of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - M Rafiuddin Ahmed
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
O'Hayre M, Eichel K, Avino S, Zhao X, Steffen DJ, Feng X, Kawakami K, Aoki J, Messer K, Sunahara R, Inoue A, von Zastrow M, Gutkind JS. Genetic evidence that β-arrestins are dispensable for the initiation of β 2-adrenergic receptor signaling to ERK. Sci Signal 2017. [PMID: 28634209 DOI: 10.1126/scisignal.aal3395] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The β2-adrenergic receptor (β2AR) has provided a paradigm to elucidate how G protein-coupled receptors (GPCRs) control intracellular signaling, including the discovery that β-arrestins, which bind to ligand-activated GPCRs, are central for GPCR function. We used genome editing, conditional gene deletion, and small interfering RNAs (siRNAs) to determine the roles of β-arrestin 1 (β-arr1) and β-arr2 in β2AR internalization, trafficking, and signaling to ERK. We found that only β-arr2 was essential for β2AR internalization. Unexpectedly, β-arr1 and β-arr2 and receptor internalization were dispensable for ERK activation. Instead, β2AR signaled through Gαs and Gβγ subunits through a pathway that involved the tyrosine kinase SRC, the adaptor protein SHC, the guanine nucleotide exchange factor SOS, the small GTPase RAS, and the kinases RAF and MEK, which led to ERK activation. These findings provide a molecular framework for β2AR signaling through β-arrestin-independent pathways in key physiological functions and under pathological conditions.
Collapse
Affiliation(s)
- Morgan O'Hayre
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA
| | - Kelsie Eichel
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Silvia Avino
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Xuefeng Zhao
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dana J Steffen
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaodong Feng
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Karen Messer
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roger Sunahara
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama 332-0012, Japan
| | - Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20852, USA. .,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016; 111:1-16. [PMID: 27178731 PMCID: PMC5079267 DOI: 10.1016/j.phrs.2016.05.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
Actions of the neurotransmitter dopamine in the brain are mediated by dopamine receptors that belong to the superfamily of G protein-coupled receptors (GPCRs). Mammals have five dopamine receptor subtypes, D1 through D5. D1 and D5 couple to Gs/olf and activate adenylyl cyclase, whereas D2, D3, and D4 couple to Gi/o and inhibit it. Most GPCRs upon activation by an agonist are phosphorylated by GPCR kinases (GRKs). The GRK phosphorylation makes receptors high-affinity binding partners for arrestin proteins. Arrestin binding to active phosphorylated receptors stops further G protein activation and promotes receptor internalization, recycling or degradation, thereby regulating their signaling and trafficking. Four non- visual GRKs are expressed in striatal neurons. Here we describe known effects of individual GRKs on dopamine receptors in cell culture and in the two in vivo models of dopamine-mediated signaling: behavioral response to psychostimulants and L-DOPA- induced dyskinesia. Dyskinesia, associated with dopamine super-sensitivity of striatal neurons, is a debilitating side effect of L-DOPA therapy in Parkinson's disease. In vivo, GRK subtypes show greater receptor specificity than in vitro or in cultured cells. Overexpression, knockdown, and knockout of individual GRKs, particularly GRK2 and GRK6, have differential effects on signaling of dopamine receptor subtypes in the brain. Furthermore, deletion of GRK isoforms in select striatal neuronal types differentially affects psychostimulant-induced behaviors. In addition, anti-dyskinetic effect of GRK3 does not require its kinase activity: it is mediated by the binding of its RGS-like domain to Gαq/11, which suppresses Gq/11 signaling. The data demonstrate that the dopamine signaling in defined neuronal types in vivo is regulated by specific and finely orchestrated actions of GRK isoforms.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA.
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; Skolkovo Institute of Science and Technology, Skolkovo, 143025, Moscow, Russia
| | | |
Collapse
|
19
|
Gurevich EV, Gainetdinov RR, Gurevich VV. Regulation of Dopamine-Dependent Behaviors by G Protein-Coupled Receptor Kinases. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3798-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Thyroid Hormone-Induced Differentiation of Astrocytes is Associated with Transcriptional Upregulation of β-arrestin-1 and β-adrenergic Receptor-Mediated Endosomal Signaling. Mol Neurobiol 2015; 53:5178-90. [DOI: 10.1007/s12035-015-9422-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
|
21
|
Zhang Y, Shen GL, Shangguan LJ, Yu Y, He ML. Involvement of NFκB signaling in mediating the effects of GRK5 on neural stem cells. Brain Res 2015; 1608:31-9. [DOI: 10.1016/j.brainres.2015.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 02/14/2015] [Accepted: 02/21/2015] [Indexed: 11/26/2022]
|
22
|
Li L, Homan KT, Vishnivetskiy SA, Manglik A, Tesmer JJG, Gurevich VV, Gurevich EV. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs). J Biol Chem 2015; 290:10775-10790. [PMID: 25770216 PMCID: PMC4409243 DOI: 10.1074/jbc.m115.644773] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/04/2015] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.
Collapse
Affiliation(s)
- Lingyong Li
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Kristoff T Homan
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, and
| | | | - Aashish Manglik
- the Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - John J G Tesmer
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, and
| | - Vsevolod V Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Eugenia V Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232,
| |
Collapse
|
23
|
Gurevich VV, Gurevich EV. Arrestins: Critical Players in Trafficking of Many GPCRs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:1-14. [PMID: 26055052 PMCID: PMC5841159 DOI: 10.1016/bs.pmbts.2015.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arrestins specifically bind active phosphorylated G protein-coupled receptors (GPCRs). Receptor binding induces the release of the arrestin C-tail, which in non-visual arrestins contains high-affinity binding sites for clathrin and its adaptor AP2. Thus, serving as a physical link between the receptor and key components of the internalization machinery of the coated pit is the best-characterized function of non-visual arrestins in GPCR trafficking. However, arrestins also regulate GPCR trafficking less directly by orchestrating their ubiquitination and deubiquitination. Several reports suggest that arrestins play additional roles in receptor trafficking. Non-visual arrestins appear to be required for the recycling of internalized GPCRs, and the mechanisms of their function in this case remain to be elucidated. Moreover, visual and non-visual arrestins were shown to directly bind N-ethylmaleimide-sensitive factor, an important ATPase involved in vesicle trafficking, but neither molecular details nor the biological role of these interactions is clear. Considering how many different proteins arrestins appear to bind, we can confidently expect the elucidation of additional trafficking-related functions of these versatile signaling adaptors.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Vishnivetskiy SA, Zhan X, Chen Q, Iverson TM, Gurevich VV. Arrestin expression in E. coli and purification. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 67:2.11.1-2.11.19. [PMID: 25446290 PMCID: PMC4260927 DOI: 10.1002/0471141755.ph0211s67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purified arrestin proteins are necessary for biochemical, biophysical, and crystallographic studies of these versatile regulators of cell signaling. Described herein is a basic protocol for arrestin expression in E. coli and purification of the tag-free wild-type and mutant arrestins. The method includes ammonium sulfate precipitation of arrestins from cell lysates, followed by heparin-Sepharose chromatography. Depending on the arrestin type and/or mutations, the next step is Q-Sepharose or SP-Sepharose chromatography. In many cases the nonbinding column is used as a filter to bind contaminants without retaining arrestin. In some cases both chromatographic steps must be performed sequentially to achieve high purity. Purified arrestins can be concentrated up to 10 mg/ml, remain fully functional, and withstand several cycles of freezing and thawing, provided that overall salt concentration is maintained at or above physiological levels.
Collapse
Affiliation(s)
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
25
|
Gurevich VV, Gurevich EV. Overview of different mechanisms of arrestin-mediated signaling. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 67:2.10.1-2.10.9. [PMID: 25446289 PMCID: PMC4260930 DOI: 10.1002/0471141755.ph0210s67] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arrestins are characterized by their ability to selectively bind active, phosphorylated GPCRs and suppress (arrest) receptor coupling to G proteins. Nonvisual arrestins are also signaling proteins in their own right, activating a variety of cellular pathways. Arrestins are highly flexible proteins that can assume many distinct conformations. In their receptor-bound conformation, arrestins have higher affinity for a subset of partners. This explains how receptor activation regulates certain branches of arrestin-dependent signaling via arrestin recruitment to GPCRs. However, free arrestins are also active molecular entities that act in other pathways and localize signaling proteins to particular subcellular compartments, such as cytoskeleton. These functions are regulated by the enhancement or reduction of arrestin affinity for target proteins by other binding partners and by proteolytic cleavage. Recent findings suggest that the two visual arrestins, arrestin-1 and arrestin-4, which are expressed in photoreceptor cells, do not regulate signaling solely via binding to photopigments but also interact with a variety of nonreceptor partners, critically affecting the health and survival of photoreceptor cells. Detailed in this overview are GPCR-dependent and independent modes of arrestin-mediated regulation of cellular signaling pathways.
Collapse
|
26
|
Li X, Feng R, Huang C, Wang H, Wang J, Zhang Z, Yan H, Wen T. MicroRNA-351 regulates TMEM 59 (DCF1) expression and mediates neural stem cell morphogenesis. RNA Biol 2014; 9:292-301. [DOI: 10.4161/rna.19100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS. Identification of receptor binding-induced conformational changes in non-visual arrestins. J Biol Chem 2014; 289:20991-21002. [PMID: 24867953 PMCID: PMC4110305 DOI: 10.1074/jbc.m114.560680] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/13/2014] [Indexed: 12/25/2022] Open
Abstract
The non-visual arrestins, arrestin-2 and arrestin-3, belong to a small family of multifunctional cytosolic proteins. Non-visual arrestins interact with hundreds of G protein-coupled receptors (GPCRs) and regulate GPCR desensitization by binding active phosphorylated GPCRs and uncoupling them from heterotrimeric G proteins. Recently, non-visual arrestins have been shown to mediate G protein-independent signaling by serving as adaptors and scaffolds that assemble multiprotein complexes. By recruiting various partners, including trafficking and signaling proteins, directly to GPCRs, non-visual arrestins connect activated receptors to diverse signaling pathways. To investigate arrestin-mediated signaling, a structural understanding of arrestin activation and interaction with GPCRs is essential. Here we identified global and local conformational changes in the non-visual arrestins upon binding to the model GPCR rhodopsin. To detect conformational changes, pairs of spin labels were introduced into arrestin-2 and arrestin-3, and the interspin distances in the absence and presence of the receptor were measured by double electron electron resonance spectroscopy. Our data indicate that both non-visual arrestins undergo several conformational changes similar to arrestin-1, including the finger loop moving toward the predicted location of the receptor in the complex as well as the C-tail release upon receptor binding. The arrestin-2 results also suggest that there is no clam shell-like closure of the N- and C-domains and that the loop containing residue 136 (homolog of 139 in arrestin-1) has high flexibility in both free and receptor-bound states.
Collapse
Affiliation(s)
- Ya Zhuo
- From the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Sergey A Vishnivetskiy
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Xuanzhi Zhan
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Vsevolod V Gurevich
- the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Candice S Klug
- From the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
28
|
Abstract
Non-visual arrestins were initially appreciated for the roles they play in the negative regulation of G protein-coupled receptors through the processes of desensitisation and endocytosis. The arrestins are also now known as protein scaffolding platforms that act downstream of multiple types of receptors, ensuring relevant transmission of information for an appropriate cellular response. They function as regulatory hubs in several important signalling pathways that are often dysregulated in human cancers. Interestingly, several recent studies have documented changes in expression and localisation of arrestins that occur during cancer progression and that correlate with clinical outcome. Here, we discuss these advances and how changes in expression/localisation may affect functional outputs of arrestins in cancer biology.
Collapse
|
29
|
Kook S, Zhan X, Cleghorn WM, Benovic JL, Gurevich VV, Gurevich EV. Caspase-cleaved arrestin-2 and BID cooperatively facilitate cytochrome C release and cell death. Cell Death Differ 2014; 21:172-184. [PMID: 24141717 PMCID: PMC3857626 DOI: 10.1038/cdd.2013.143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/27/2013] [Accepted: 09/09/2013] [Indexed: 12/22/2022] Open
Abstract
Apoptosis is programmed cell death triggered by activation of death receptors or cellular stress. Activation of caspases is the hallmark of apoptosis. Arrestins are best known for their role in homologous desensitization of G protein-coupled receptors (GPCRs). Arrestins quench G protein activation by binding to activated phosphorylated GPCRs. Recently, arrestins have been shown to regulate multiple signalling pathways in G protein-independent manner via scaffolding signalling proteins. Here we demonstrate that arrestin-2 isoform is cleaved by caspases during apoptosis induced via death receptor activation or by DNA damage at evolutionarily conserved sites in the C-terminus. Caspase-generated arrestin-2-(1-380) fragment translocates to mitochondria increasing cytochrome C release, which is the key checkpoint in cell death. Cells lacking arrestin-2 are significantly more resistant to apoptosis. The expression of wild-type arrestin-2 or its cleavage product arrestin-2-(1-380), but not of its caspase-resistant mutant, restores cell sensitivity to apoptotic stimuli. Arrestin-2-(1-380) action depends on tBID: at physiological concentrations, arrestin-2-(1-380) directly binds tBID and doubles tBID-induced cytochrome C release from isolated mitochondria. Arrestin-2-(1-380) does not facilitate apoptosis in BID knockout cells, whereas its ability to increase caspase-3 activity and facilitate cytochrome C release is rescued when BID expression is restored. Thus, arrestin-2-(1-380) cooperates with another product of caspase activity, tBID, and their concerted action significantly contributes to cell death.
Collapse
Affiliation(s)
- S Kook
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - X Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - W M Cleghorn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - J L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - V V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - E V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Abstract
Programmed cell death (apoptosis) is a coordinated set of events eventually leading to the massive activation of specialized proteases (caspases) that cleave numerous substrates, orchestrating fairly uniform biochemical changes than culminate in cellular suicide. Apoptosis can be triggered by a variety of stimuli, from external signals or growth factor withdrawal to intracellular conditions, such as DNA damage or ER stress. Arrestins regulate many signaling cascades involved in life-or-death decisions in the cell, so it is hardly surprising that numerous reports document the effects of ubiquitous nonvisual arrestins on apoptosis under various conditions. Although these findings hardly constitute a coherent picture, with the same arrestin subtypes, sometimes via the same signaling pathways, reported to promote or inhibit cell death, this might reflect real differences in pro- and antiapoptotic signaling in different cells under a variety of conditions. Recent finding suggests that one of the nonvisual subtypes, arrestin-2, is specifically cleaved by caspases. Generated fragment actively participates in the core mechanism of apoptosis: it assists another product of caspase activity, tBID, in releasing cytochrome C from mitochondria. This is the point of no return in committing vertebrate cells to death, and the aspartate where caspases cleave arrestin-2 is evolutionary conserved in vertebrate, but not in invertebrate arrestins. In contrast to wild-type arrestin-2, its caspase-resistant mutant does not facilitate cell death.
Collapse
Affiliation(s)
- Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Nashville, TN, 37232, USA
| | | | | |
Collapse
|
31
|
Chen Q, Zhuo Y, Kim M, Hanson SM, Francis DJ, Vishnivetskiy SA, Altenbach C, Klug CS, Hubbell WL, Gurevich VV. Self-association of arrestin family members. Handb Exp Pharmacol 2014; 219:205-23. [PMID: 24292832 DOI: 10.1007/978-3-642-41199-1_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammals express four arrestin subtypes, three of which have been shown to self-associate. Cone photoreceptor-specific arrestin-4 is the only one that is a constitutive monomer. Visual arrestin-1 forms tetramers both in crystal and in solution, but the shape of its physiologically relevant solution tetramer is very different from that in the crystal. The biological role of the self-association of arrestin-1, expressed at very high levels in rod and cone photoreceptors, appears to be protective, reducing the concentration of cytotoxic monomers. The two nonvisual arrestin subtypes are highly homologous, and self-association of both is facilitated by IP6, yet they form dramatically different oligomers. Arrestin-2 apparently self-associates into "infinite" chains, very similar to those observed in IP6-soaked crystals, where IP6 connects the concave sides of the N- and C-domains of adjacent protomers. In contrast, arrestin-3 only forms dimers, in which IP6 likely connects the C-domains of two arrestin-3 molecules. Thus, each of the three self-associating arrestins does it in its own way, forming three different types of oligomers. The physiological role of the oligomerization of arrestin-1 and both nonvisual arrestins might be quite different, and in each case it remains to be definitively elucidated.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN, 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kook S, Zhan X, Kaoud TS, Dalby KN, Gurevich VV, Gurevich EV. Arrestin-3 binds c-Jun N-terminal kinase 1 (JNK1) and JNK2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding. J Biol Chem 2013; 288:37332-37342. [PMID: 24257757 PMCID: PMC3873585 DOI: 10.1074/jbc.m113.510412] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/07/2013] [Indexed: 12/29/2022] Open
Abstract
Non-visual arrestins scaffold mitogen-activated protein kinase (MAPK) cascades. The c-Jun N-terminal kinases (JNKs) are members of MAPK family. Arrestin-3 has been shown to enhance the activation of JNK3, which is expressed mainly in neurons, heart, and testes, in contrast to ubiquitous JNK1 and JNK2. Although all JNKs are activated by MKK4 and MKK7, both of which bind arrestin-3, the ability of arrestin-3 to facilitate the activation of JNK1 and JNK2 has never been reported. Using purified proteins we found that arrestin-3 directly binds JNK1α1 and JNK2α2, interacting with the latter comparably to JNK3α2. Phosphorylation of purified JNK1α1 and JNK2α2 by MKK4 or MKK7 is increased by arrestin-3. Endogenous arrestin-3 interacted with endogenous JNK1/2 in different cell types. Arrestin-3 also enhanced phosphorylation of endogenous JNK1/2 in intact cells upon expression of upstream kinases ASK1, MKK4, or MKK7. We observed a biphasic effect of arrestin-3 concentrations on phosphorylation of JNK1α1 and JNK2α2 both in vitro and in vivo. Thus, arrestin-3 acts as a scaffold, facilitating JNK1α1 and JNK2α2 phosphorylation by MKK4 and MKK7 via bringing JNKs and their activators together. The data suggest that arrestin-3 modulates the activity of ubiquitous JNK1 and JNK2 in non-neuronal cells, impacting the signaling pathway that regulates their proliferation and survival.
Collapse
Affiliation(s)
- Seunghyi Kook
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Xuanzhi Zhan
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Tamer S. Kaoud
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt, and
- Division of Medicinal Chemistry, The University of Texas, Austin, Texas 78712
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas, Austin, Texas 78712
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Eugenia V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
33
|
Song X, Seo J, Baameur F, Vishnivetskiy SA, Chen Q, Kook S, Kim M, Brooks EK, Altenbach C, Hong Y, Hanson SM, Palazzo MC, Chen J, Hubbell WL, Gurevich EV, Gurevich VV. Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant. Cell Signal 2013; 25:2613-2624. [PMID: 24012956 PMCID: PMC3833262 DOI: 10.1016/j.cellsig.2013.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Arrestin-1 binds light-activated phosphorhodopsin and ensures timely signal shutoff. We show that high transgenic expression of an arrestin-1 mutant with enhanced rhodopsin binding and impaired oligomerization causes apoptotic rod death in mice. Dark rearing does not prevent mutant-induced cell death, ruling out the role of arrestin complexes with light-activated rhodopsin. Similar expression of WT arrestin-1 that robustly oligomerizes, which leads to only modest increase in the monomer concentration, does not affect rod survival. Moreover, WT arrestin-1 co-expressed with the mutant delays retinal degeneration. Thus, arrestin-1 mutant directly affects cell survival via binding partner(s) other than light-activated rhodopsin. Due to impaired self-association of the mutant its high expression dramatically increases the concentration of the monomer. The data suggest that monomeric arrestin-1 is cytotoxic and WT arrestin-1 protects rods by forming mixed oligomers with the mutant and/or competing with it for the binding to non-receptor partners. Thus, arrestin-1 self-association likely serves to keep low concentration of the toxic monomer. The reduction of the concentration of harmful monomer is an earlier unappreciated biological function of protein oligomerization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miyeon Kim
- University of California Los Angeles, Los Angeles, CA 90095
| | - Evan K. Brooks
- University of California Los Angeles, Los Angeles, CA 90095
| | | | - Yuan Hong
- Vanderbilt University, Nashville, TN 37232
| | | | | | - Jeannie Chen
- University of Southern California, Los Angeles, California 90033
| | | | | | | |
Collapse
|
34
|
Zhan X, Kaoud TS, Kook S, Dalby KN, Gurevich VV. JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases. J Biol Chem 2013; 288:28535-28547. [PMID: 23960075 PMCID: PMC3789954 DOI: 10.1074/jbc.m113.508085] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Indexed: 12/29/2022] Open
Abstract
Arrestin-3 was previously shown to bind JNK3α2, MKK4, and ASK1. However, full JNK3α2 activation requires phosphorylation by both MKK4 and MKK7. Using purified proteins we show that arrestin-3 directly interacts with MKK7 and promotes JNK3α2 phosphorylation by both MKK4 and MKK7 in vitro as well as in intact cells. The binding of JNK3α2 promotes an arrestin-3 interaction with MKK4 while reducing its binding to MKK7. Interestingly, the arrestin-3 concentration optimal for scaffolding the MKK7-JNK3α2 module is ∼10-fold higher than for the MKK4-JNK3α2 module. The data provide a mechanistic basis for arrestin-3-dependent activation of JNK3α2. The opposite effects of JNK3α2 on arrestin-3 interactions with MKK4 and MKK7 is the first demonstration that the kinase components in mammalian MAPK cascades regulate each other's interactions with a scaffold protein. The results show how signaling outcomes can be affected by the relative expression of scaffolding proteins and components of signaling cascades that they assemble.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Tamer S. Kaoud
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas 78712
| | - Seunghyi Kook
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas 78712
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| |
Collapse
|
35
|
Breivogel CS, Puri V, Lambert JM, Hill DK, Huffman JW, Razdan RK. The influence of beta-arrestin2 on cannabinoid CB1receptor coupling to G-proteins and subcellular localization and relative levels of beta-arrestin1 and 2 in mouse brain. J Recept Signal Transduct Res 2013; 33:367-79. [DOI: 10.3109/10799893.2013.838787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
36
|
Moaven H, Koike Y, Jao CC, Gurevich VV, Langen R, Chen J. Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina. Proc Natl Acad Sci U S A 2013; 110:9463-9468. [PMID: 23690606 PMCID: PMC3677467 DOI: 10.1073/pnas.1301126110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arrestins bind ligand-activated, phosphorylated G protein-coupled receptors (GPCRs) and terminate the activation of G proteins. Additionally, nonvisual arrestin/GPCR complex can initiate G protein-independent intracellular signals through their ability to act as scaffolds that bring other signaling molecules to the internalized GPCR. Like nonvisual arrestins, vertebrate visual arrestin (ARR1) terminates G protein signaling from light-activated, phosphorylated GPCR, rhodopsin. Unlike nonvisual arrestins, its role as a transducer of signaling from internalized rhodopsin has not been reported in the vertebrate retina. Formation of signaling complexes with arrestins often requires recruitment of the endocytic adaptor protein, AP-2. We have previously shown that Lys296 → Glu (K296E), which is a naturally occurring rhodopsin mutation in certain humans diagnosed with autosomal dominant retinitis pigmentosa, causes toxicity through forming a stable complex with ARR1. Here we investigated whether recruitment of AP-2 by the K296E/ARR1 complex plays a role in generating the cell death signal in a transgenic mouse model of retinal degeneration. We measured the binding affinity of ARR1 for AP-2 and found that, although the affinity is much lower than that of the other arrestins, the unusually high concentration of ARR1 in rods would favor this interaction. We further demonstrate that p44, a splice variant of ARR1 that binds light-activated, phosphorylated rhodopsin but lacks the AP-2 binding motif, prevents retinal degeneration and rescues visual function in K296E mice. These results reveal a unique role of ARR1 in a G protein-independent signaling cascade in the vertebrate retina.
Collapse
Affiliation(s)
| | | | - Christine C. Jao
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and
| | | |
Collapse
|
37
|
Jiang T, Yu JT, Tan MS, Zhu XC, Tan L. β-Arrestins as potential therapeutic targets for Alzheimer's disease. Mol Neurobiol 2013; 48:812-8. [PMID: 23677646 DOI: 10.1007/s12035-013-8469-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/02/2013] [Indexed: 12/30/2022]
Abstract
β-arrestins represent a small family of G protein-coupled receptors (GPCRs) regulators, which provide modulating effects by facilitating desensitization and internalization of GPCRs as well as initiating their own signalings. Recent reports have demonstrated that β-arrestins levels were correlated with amyloid-β peptide (Aβ) pathology in brains of Alzheimer's disease (AD) patients and animal models. β-arrestins could enhance the activity of γ-secretase via interacting with anterior pharynx defective 1 subunit, which increased Aβ production and contributed to the pathogenesis of AD. In addition, Aβ-induced internalization of β2-adrenergic receptor internalization and loss of dendritic spine in neurons were proven to be mediated by β-arrestins, further establishing their pathogenic role in AD. More importantly, deletion of β-arrestins markedly attenuated AD pathology, without causing any gross abnormality. Here, we review the evidence about the roles of β-arrestins in the progression of AD. In addition, the established and postulated mechanisms by which β-arrestins mediated in AD pathogenesis are also discussed. Based on the role of β-arrestins in AD pathogenesis, genetically or pharmacologically targeting β-arrestins might provide new opportunities for AD treatment.
Collapse
Affiliation(s)
- Teng Jiang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
38
|
Vishnivetskiy SA, Chen Q, Palazzo MC, Brooks EK, Altenbach C, Iverson TM, Hubbell WL, Gurevich VV. Engineering visual arrestin-1 with special functional characteristics. J Biol Chem 2013; 288:3394-3405. [PMID: 23250748 PMCID: PMC3561558 DOI: 10.1074/jbc.m112.445437] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 01/31/2023] Open
Abstract
Arrestin-1 preferentially binds active phosphorylated rhodopsin. Previously, a mutant with enhanced binding to unphosphorylated active rhodopsin (Rh*) was shown to partially compensate for lack of rhodopsin phosphorylation in vivo. Here we showed that reengineering of the receptor binding surface of arrestin-1 further improves the binding to Rh* while preserving protein stability. In mammals, arrestin-1 readily self-associates at physiological concentrations. The biological role of this phenomenon can only be elucidated by replacing wild type arrestin-1 in living animals with a non-oligomerizing mutant retaining all other functions. We demonstrate that constitutively monomeric forms of arrestin-1 are sufficiently stable for in vivo expression. We also tested the idea that individual functions of arrestin-1 can be independently manipulated to generate mutants with the desired combinations of functional characteristics. Here we showed that this approach is feasible; stable forms of arrestin-1 with high Rh* binding can be generated with or without the ability to self-associate. These novel molecular tools open the possibility of testing of the biological role of arrestin-1 self-association and pave the way to elucidation of full potential of compensational approach to gene therapy of gain-of-function receptor mutations.
Collapse
Affiliation(s)
| | - Qiuyan Chen
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Maria C. Palazzo
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Evan K. Brooks
- the University of California Los Angeles, Los Angeles, California 90095
| | | | - Tina M. Iverson
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Wayne L. Hubbell
- the University of California Los Angeles, Los Angeles, California 90095
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| |
Collapse
|
39
|
Bychkov E, Zurkovsky L, Garret MB, Ahmed MR, Gurevich EV. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum. PLoS One 2012; 7:e48912. [PMID: 23139825 PMCID: PMC3490921 DOI: 10.1371/journal.pone.0048912] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.
Collapse
Affiliation(s)
| | | | | | | | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
40
|
Gurevich VV, Gurevich EV. Synthetic biology with surgical precision: targeted reengineering of signaling proteins. Cell Signal 2012; 24:1899-1908. [PMID: 22664341 PMCID: PMC3404258 DOI: 10.1016/j.cellsig.2012.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 01/14/2023]
Abstract
The complexity of living systems exceeds everything else studied by natural sciences. Sophisticated networks of intimately intertwined signaling pathways coordinate cellular functions. Clear understanding how the integration of multiple inputs produces coherent behavior is one of the major challenges of cell biology. Integration via perfectly timed highly regulated protein-protein interactions and precise targeting of the "output" proteins to particular substrates is emerging as a common theme of signaling regulation. This often involves specialized scaffolding proteins, whose key function is to ensure that correct partners come together in an appropriate place at the right time. Defective or faulty signaling underlies many congenital and acquired human disorders. Several pioneering studies showed that ectopic expression of existing proteins or their elements can restore functions destroyed by mutations or normalize the signaling pushed out of balance by disease and/or current small molecule-based therapy. Several recent studies show that proteins with new functional modalities can be generated by mixing and matching existing domains, or via functional recalibration and fine-tuning of existing proteins by precisely targeted mutations. Using arrestins as an example, we describe how manipulation of individual functions yields signaling-biased proteins. Creative protein redesign generates novel tools valuable for unraveling the intricacies of cell biology. Engineered proteins with specific functional changes also have huge therapeutic potential in disorders associated with inherited or acquired signaling errors.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
41
|
Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 2012; 287:29495-29505. [PMID: 22787152 PMCID: PMC3436164 DOI: 10.1074/jbc.m112.366674] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/09/2012] [Indexed: 01/14/2023] Open
Abstract
Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.
Collapse
Affiliation(s)
- Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Faiza Baameur
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
42
|
Zhao J, Xin X, Xie GX, Palmer PP, Huang YG. Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance. Mol Pain 2012; 8:38. [PMID: 22612909 PMCID: PMC3517334 DOI: 10.1186/1744-8069-8-38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/09/2012] [Indexed: 01/17/2023] Open
Abstract
The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and tolerance are actually age-dependent. For example, the expression and functions of endogenous opioid peptides, multiple types of opioid receptors, G protein subunits that couple to opioid receptors, and regulators of G protein signaling (RGS proteins) change with development and age. Other signaling systems that are critical to opioid tolerance development, such as N-methyl-D-aspartic acid (NMDA) receptors, also undergo age-related changes. It is plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance development.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Anesthesia, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | | | | | | |
Collapse
|
43
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2012; 133:40-69. [PMID: 21903131 PMCID: PMC3241883 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
44
|
Zhan X, Kaoud TS, Dalby KN, Gurevich VV. Nonvisual arrestins function as simple scaffolds assembling the MKK4-JNK3α2 signaling complex. Biochemistry 2011; 50:10520-10529. [PMID: 22047447 PMCID: PMC3227541 DOI: 10.1021/bi201506g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Arrestins make up a small family of proteins with four mammalian members that play key roles in the regulation of multiple G protein-coupled receptor-dependent and -independent signaling pathways. Although arrestins were reported to serve as scaffolds for MAP kinase cascades, promoting the activation of JNK3, ERK1/2, and p38, the molecular mechanisms involved were not elucidated, and even the direct binding of arrestins with MAP kinases was never demonstrated. Here, using purified proteins, we show that both nonvisual arrestins directly bind JNK3α2 and its upstream activator MKK4, and that the affinity of arrestin-3 for these kinases is higher than that of arrestin-2. Reconstitution of the MKK4-JNK3α2 signaling module from pure proteins in the presence of different arrestin-3 concentrations showed that arrestin-3 acts as a "true" scaffold, facilitating JNK3α2 phosphorylation by bringing the two kinases together. Both the level of JNK3α2 phosphorylation by MKK4 and JNK3α2 activity toward its substrate ATF2 increase at low and then decrease at high arrestin-3 levels, yielding a bell-shaped concentration dependence expected with true scaffolds that do not activate the upstream kinase or its substrate. Thus, direct binding of both kinases and true scaffolding is the molecular mechanism of action of arrestin-3 on the MKK4-JNK3α2 signaling module.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Tamer S. Kaoud
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712
| | | |
Collapse
|
45
|
Bychkov ER, Ahmed MR, Gurevich VV, Benovic JL, Gurevich EV. Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder. Neurobiol Dis 2011; 44:248-258. [PMID: 21784156 PMCID: PMC3166984 DOI: 10.1016/j.nbd.2011.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/14/2011] [Accepted: 07/08/2011] [Indexed: 11/30/2022] Open
Abstract
Alterations of multiple G protein-mediated signaling pathways are detected in schizophrenia. G protein-coupled receptor kinases (GRKs) and arrestins terminate signaling by G protein-coupled receptors exerting a powerful influence on receptor functions. Modifications of arrestin and/or GRKs expression may contribute to schizophrenia pathology. Cortical expression of arrestins and GRKs was measured postmortem in control and subjects with schizophrenia or schizoaffective disorder. Additionally, arrestin/GRK expression was determined in elderly patients with schizophrenia and age-matched control. Patients with schizophrenia, but not schizoaffective disorder, displayed a reduced concentration of arrestin and GRK mRNAs and GRK3 protein. Arrestins and GRK significantly decreased with age. In elderly patients, GRK6 was reduced, with other GRKs and arrestins unchanged. A reduced cortical concentration of GRKs in schizophrenia (resembling that in aging) may result in altered G protein-dependent signaling, thus contributing to prefrontal deficits in schizophrenia. The data suggest distinct molecular mechanisms underlying schizophrenia and schizoaffective disorder.
Collapse
Affiliation(s)
- ER Bychkov
- Department of Pharmacology, Vanderbilt University, Nashville TN, USA
| | - MR Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville TN, USA
| | - VV Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville TN, USA
| | - JL Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - EV Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville TN, USA
| |
Collapse
|
46
|
Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011; 30:405-430. [PMID: 21824527 PMCID: PMC3196764 DOI: 10.1016/j.preteyeres.2011.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/14/2023]
Abstract
Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, PRB, Rm 417D, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
47
|
Seo J, Tsakem EL, Breitman M, Gurevich VV. Identification of arrestin-3-specific residues necessary for JNK3 kinase activation. J Biol Chem 2011; 286:27894-27901. [PMID: 21715332 PMCID: PMC3151035 DOI: 10.1074/jbc.m111.260448] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/17/2011] [Indexed: 12/29/2022] Open
Abstract
Arrestins bind active phosphorylated G protein-coupled receptors, blocking G protein activation and channeling the signaling to G protein-independent pathways. Free arrestin-3 and receptor-bound arrestin-3 scaffold the ASK1-MKK4-JNK3 module, promoting JNK3 phosphorylation, whereas highly homologous arrestin-2 does not. Here, we used arrestin-2/3 chimeras and mutants to identify key residues of arrestin-3 responsible for its ability to facilitate JNK3 activation. Our data demonstrate that both arrestin domains are involved in JNK3 activation, with the C-terminal domain being more important than the N-terminal domain. We found that Val-343 is the key contributor to this function, whereas Leu-278, Ser-280, His-350, Asp-351, His-352, and Ile-353 play supporting roles. We also show that the arrestin-3-specific difference in the arrangement of the β-strands in the C-terminal domain that underlies its lower selectivity for active phosphoreceptors does not play an appreciable role in its ability to enhance JNK3 activation. Importantly, the strength of the binding of ASK1 or JNK3, as revealed by the efficiency of co-immunoprecipitation, does not correlate with the ability of arrestin proteins to promote ASK1-dependent JNK3 phosphorylation. Thus, multiple residues on the non-receptor-binding side of arrestin-3 are crucial for JNK3 activation, and this function and the receptor-binding characteristics of arrestin can be manipulated independently by targeted mutagenesis.
Collapse
Affiliation(s)
- Jungwon Seo
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Elviche L. Tsakem
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Maya Breitman
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
48
|
Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 2011; 286:24288-99. [PMID: 21471193 PMCID: PMC3129209 DOI: 10.1074/jbc.m110.213835] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/25/2011] [Indexed: 01/25/2023] Open
Abstract
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.
Collapse
Affiliation(s)
| | - Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Derek J. Francis
- the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Susan M. Hanson
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Wayne L. Hubbell
- the Jules Stein Eye Institute and Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Candice S. Klug
- the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
49
|
Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 2011; 50:3749-63. [PMID: 21466165 PMCID: PMC3091828 DOI: 10.1021/bi200175q] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmunoprecipitation of endogenous proteins from brain tissue and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both nonvisual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology.
Collapse
Affiliation(s)
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Xiufeng Song
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | | |
Collapse
|
50
|
Kim M, Hanson SM, Vishnivetskiy SA, Song X, Cleghorn WM, Hubbell WL, Gurevich VV. Robust self-association is a common feature of mammalian visual arrestin-1. Biochemistry 2011; 50:2235-42. [PMID: 21288033 PMCID: PMC3062689 DOI: 10.1021/bi1018607] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arrestin-1 binds light-activated phosphorhodopsin and ensures rapid signal termination. Its deficiency in humans and mice results in prolonged signaling and rod degeneration. However, most of the biochemical studies were performed on bovine arrestin-1, which was shown to self-associate forming dimers and tetramers, although only the monomer binds rhodopsin. It is unclear whether self-association is a property of arrestin-1 in all mammals or a specific feature of bovine protein. To address this issue, we compared self-association parameters of purified human and mouse arrestin-1 with those of its bovine counterpart using multiangle light scattering. We found that mouse and human arrestin-1 also robustly self-associate, existing in a monomer-dimer-tetramer equilibrium. Interestingly, the combination of dimerization and tetramerization constants in these three species is strikingly different. While tetramerization of bovine arrestin-1 is highly cooperative (K(D,dim)(4) > K(D,tet)), K(D,dim) ∼ K(D,tet) in the mouse form and K(D,dim) ≪ K(D,tet) in the human form. Importantly, in all three species at very high physiological concentrations of arrestin-1 in rod photoreceptors, most of it is predicted to exist in oligomeric form, with a relatively low concentration of the free monomer. Thus, it appears that maintenance of low levels of the active monomer is the biological role of arrestin-1 self-association.
Collapse
Affiliation(s)
- Miyeon Kim
- University of California Los Angeles, Los Angeles, CA 90095
| | | | | | | | | | | | | |
Collapse
|