1
|
Whittle RH, Kiarie EG, Ma DWL, Widowski TM. Feeding flaxseed to chicken hens changes the size and fatty acid composition of their chicks' brains. Front Physiol 2024; 15:1400611. [PMID: 38911324 PMCID: PMC11190958 DOI: 10.3389/fphys.2024.1400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024] Open
Abstract
Diets fed to commercial chicken breeders are high in n-6 fatty acids (n-6 FAs) and low in n-3 fatty acids (n-3 FAs). N-3 FAs are essential for embryonic brain development. In precocial birds, like chickens, brain development and brain n-3 FA accrual occur primarily before hatching. In two experiments, broiler and layer breeders were fed diets with or without flaxseed as the source of n-3 FAs from plant-based alpha-linolenic acid. Day-old broiler (n = 80) and layer (n = 96) offspring were dissected to calculate the percentage brain-to-body weight. Brain FA analyses from total lipid extracts were determined in the broiler (n = 24) and layer (n = 24) offspring brains, and the percentage FA composition and concentration (µg FAs per g brain) were calculated for each n-3 and n-6 FA. The brain size was only increased in broiler offspring from mothers fed flaxseed (χ2 = 9.22, p = 0.002). In layer offspring only, the maternal flaxseed diet increased the brain concentration and percentage of n-3 FAs and decreased n-6 FAs (p < 0.05). We showed that feeding flaxseed to mothers increased the brain size in broiler offspring and altered brain FA composition in layer offspring. These results may have implications for poultry and other captive bird species fed diets low in n-3 FAs.
Collapse
Affiliation(s)
- Rosemary H. Whittle
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, ON, Canada
| | - Elijah G. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - David W. L. Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Tina M. Widowski
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
The Polyunsaturated Fatty Acid EPA, but Not DHA, Enhances Neurotrophic Factor Expression through Epigenetic Mechanisms and Protects against Parkinsonian Neuronal Cell Death. Int J Mol Sci 2022; 23:ijms232416176. [PMID: 36555817 PMCID: PMC9788369 DOI: 10.3390/ijms232416176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
ω-3 Polyunsaturated fatty acids (PUFAs) have been found to exert many actions, including neuroprotective effects. In this regard, the exact molecular mechanisms are not well understood. Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. Emerging evidence supports the hypothesis that PD is the result of complex interactions between genetic abnormalities, environmental toxins, mitochondrial dysfunction, and other cellular processes, such as DNA methylation. In this context, BDNF (brain-derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) have a pivotal role because they are both involved in neuron differentiation, survival, and synaptogenesis. In this study, we aimed to elucidate the potential role of two PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and their effects on BDNF and GDNF expression in the SH-SY5Y cell line. Cell viability was determined using the MTT assay, and flow cytometry analysis was used to verify the level of apoptosis. Transmission electron microscopy was performed to observe the cell ultrastructure and mitochondria morphology. BDNF and GDNF protein levels and mRNA were assayed by Western blotting and RT-PCR, respectively. Finally, methylated and hydroxymethylated DNA immunoprecipitation were performed in the BDNF and GDNF promoter regions. EPA, but not DHA, is able (i) to reduce the neurotoxic effect of neurotoxin 6-hydroxydopamine (6-OHDA) in vitro, (ii) to re-establish mitochondrial function, and (iii) to increase BNDF and GDNF expression via epigenetic mechanisms.
Collapse
|
3
|
Jaramillo-Ospina A, Casanello P, Garmendia ML, Andersen R, Levitan RD, Meaney MJ, Silveira PP. Interactions between a polygenic risk score for plasma docosahexaenoic fatty acid concentration, eating behaviour, and body composition in children. Int J Obes (Lond) 2022; 46:977-985. [PMID: 35058573 DOI: 10.1038/s41366-022-01067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The relationship between eating behaviour and current body weight has been described. However little is known about the effect of polyunsaturated fatty acids (PUFA) in this relationship. Genetic contribution to a certain condition is derived from a combination of small effects from many genetic variants, and polygenic risk scores (PRS) summarize these effects. A PRS based on a GWAS for plasma docosahexaenoic fatty acid (DHA) has been created, based on SNPs from 9 genes. OBJECTIVE To analyze the interaction between the PRS for plasma DHA concentration, body composition and eating behaviour (using the Children Eating Behaviour Questionnaire) in childhood. SUBJECTS/METHODS We analyzed a subsample of children from the Maternal, Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort with PRS and measurements of eating behaviour performed at 4 years of age (n = 210), 6 y (n = 177), and body fat determined by bioelectric impedance at 4 y and 6 y or by air displacement plethysmography and dual-energy X-ray absorptiometry at 8 y (n = 42 and n = 37). PRS was based on the GWAS from Lemaitre et al. 2011 (p threshold = p < 5*10-6), and a median split created low and high PRS groups (high PRS = higher DHA level). RESULTS In ALSPAC children, we observed an association between PRS and plasma DHA concentration (β = 0.100, p < 0.01) and proportion (β = 0.107, p < 0.01). In MAVAN, there were interactions between PRS and body fat on pro-intake scores in childhood, in which low PRS and higher body fat were linked to altered behaviour. There were also interactions between PRS and pro-intake scores early in childhood on body fat later in childhood, suggesting that the genetic profile and eating behaviour influence the development of adiposity at later ages. CONCLUSIONS A lower PRS (lower plasma PUFA) can be a risk factor for developing higher body fat associated with non-adaptive eating behaviour in childhood; it is possible that the higher PRS (higher plasma PUFA) is a protective feature.
Collapse
Affiliation(s)
| | - Paola Casanello
- Department of Obstetrics & Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Ross Andersen
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Robert D Levitan
- Centre for Addition and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Patricia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Darcey VL, Serafine KM. Omega-3 Fatty Acids and Vulnerability to Addiction: Reviewing Preclinical and Clinical Evidence. Curr Pharm Des 2020; 26:2385-2401. [DOI: 10.2174/1381612826666200429094158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/06/2020] [Indexed: 01/05/2023]
Abstract
Omega-3 (N3) fatty acids are dietary nutrients that are essential for human health. Arguably, one of their most critical contributions to health is their involvement in the structure and function of the nervous system. N3 fatty acids accumulate in neuronal membranes through young adulthood, becoming particularly enriched in a brain region known to be the locus of cognitive control of behavior-the prefrontal cortex (PFC). The PFC undergoes a surge in development during adolescence, coinciding with a life stage when dietary quality and intake of N3 fatty acids tend to be suboptimal. Such low intake may impact neurodevelopment and normative development of cognitive functions suggested to be protective for the risk of subsequent substance and alcohol use disorders (UD). While multiple genetic and environmental factors contribute to risk for and resilience to substance and alcohol use disorders, mounting evidence suggests that dietary patterns early in life may also modulate cognitive and behavioral factors thought to elevate UD risk (e.g., impulsivity and reward sensitivity). This review aims to summarize the literature on dietary N3 fatty acids during childhood and adolescence and risk of executive/ cognitive or behavioral dysfunction, which may contribute to the risk of subsequent UD. We begin with a review of the effects of N3 fatty acids in the brain at the molecular to cellular levels–providing the biochemical mechanisms ostensibly supporting observed beneficial effects. We continue with a review of cognitive, behavioral and neurodevelopmental features thought to predict early substance and alcohol use in humans. This is followed by a review of the preclinical literature, largely demonstrating that dietary manipulation of N3 fatty acids contributes to behavioral changes that impact drug sensitivity. Finally, a review of the available evidence in human literature, suggesting an association between dietary N3 fatty and neurodevelopmental profiles associated with risk of adverse outcomes including UD. We conclude with a brief summary and call to action for additional research to extend the current understanding of the impact of dietary N3 fatty acids and the risk of drug and alcohol UD.
Collapse
Affiliation(s)
- Valerie L. Darcey
- Georgetown University, Interdisciplinary Program in Neuroscience, Washington DC, United States
| | - Katherine M. Serafine
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968, United States
| |
Collapse
|
5
|
Di Miceli M, Bosch-Bouju C, Layé S. PUFA and their derivatives in neurotransmission and synapses: a new hallmark of synaptopathies. Proc Nutr Soc 2020; 79:1-16. [PMID: 32299516 DOI: 10.1017/s0029665120000129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PUFA of the n-3 and n-6 families are present in high concentration in the brain where they are major components of cell membranes. The main forms found in the brain are DHA (22 :6, n-3) and arachidonic acid (20:4, n-6). In the past century, several studies pinpointed that modifications of n-3 and n-6 PUFA levels in the brain through dietary supply or genetic means are linked to the alterations of synaptic function. Yet, synaptopathies emerge as a common characteristic of neurodevelopmental disorders, neuropsychiatric diseases and some neurodegenerative diseases. Understanding the mechanisms of action underlying the activity of PUFA at the level of synapses is thus of high interest. In this frame, dietary supplementation in PUFA aiming at restoring or promoting the optimal function of synapses appears as a promising strategy to treat synaptopathies. This paper reviews the link between dietary PUFA, synapse formation and the role of PUFA and their metabolites in synaptic functions.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Clémentine Bosch-Bouju
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Sophie Layé
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| |
Collapse
|
6
|
Metz VG, Segat HJ, Dias VT, Barcelos RCS, Maurer LH, Stiebe J, Emanuelli T, Burger ME, Pase CS. Omega-3 decreases D1 and D2 receptors expression in the prefrontal cortex and prevents amphetamine-induced conditioned place preference in rats. J Nutr Biochem 2019; 67:182-189. [PMID: 30951972 DOI: 10.1016/j.jnutbio.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Amphetamine (AMPH) abuse is a serious public health problem due to the high addictive potential of this drug, whose use is related to severe brain neurotoxicity and memory impairments. So far, therapies for psychostimulant addiction have had limited efficacy. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have shown beneficial influences on the prevention and treatment of several diseases that affect the central nervous system. Here, we assessed the influence of fish oil (FO), which is rich in n-3 PUFA, on withdrawal and relapse symptoms following re-exposure to AMPH. Male Wistar rats received d,l-AMPH or vehicle in the conditioned place preference (CPP) paradigm for 14 days. Then, half of each experimental group was treated with FO (3 g/kg, p.o.) for 14 days. Subsequently, animals were re-exposed to AMPH-CPP for three additional days, in order to assess relapse behavior. Our findings have evidenced that FO prevented relapse induced by AMPH reconditioning. While FO prevented AMPH-induced oxidative damages in the prefrontal cortex, molecular assays allowed us to observe that it was also able to modulate dopaminergic cascade markers (DAT, TH, VMAT-2, D1R and D2R) in the same brain area, thus preventing AMPH-induced molecular changes. To the most of our knowledge, this is the first study to show a natural alternative tool which is able to prevent psychostimulant relapse following drug withdrawal. This non-invasive and healthy nutraceutical may be considered as an adjuvant treatment in detoxification clinics.
Collapse
Affiliation(s)
- Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, RS, Brazil
| | - Hecson Jesser Segat
- Programa de Pós-Graduação em Bioquímica Toxicológica - Universidade Federal de Santa Maria, RS, Brazil
| | - Verônica Tironi Dias
- Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, RS, Brazil
| | | | - Luana Haselein Maurer
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos-Universidade Federal de Santa Maria, RS, Brazil
| | - Jéssica Stiebe
- Departamento de Tecnologia e Ciências dos Alimentos - Universidade Federal de Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos-Universidade Federal de Santa Maria, RS, Brazil
| | | | - Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, RS, Brazil.
| |
Collapse
|
7
|
Mehus AA, Dickey AM, Smith TPL, Yeater KM, Picklo MJ. Next-Generation Sequencing Identifies Polyunsaturated Fatty Acid Responsive Genes in the Juvenile Rat Cerebellum. Nutrients 2019; 11:nu11020407. [PMID: 30769946 PMCID: PMC6412889 DOI: 10.3390/nu11020407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022] Open
Abstract
Dietary n-3 polyunsaturated fatty acids (PUFA) influence postnatal brain growth and development. However, little data exist regarding the impacts of dietary n-3 PUFA in juvenile animals post weaning, which is a time of rapid growth. We tested the hypothesis that depleting dietary n-3 PUFA would result in modifications to the cerebellar transcriptome of juvenile rats. To test this hypothesis, three week old male rats (an age that roughly corresponds to an 11 month old child in brain development) were fed diets containing either soybean oil (SO) providing 1.1% energy from α-linolenic acid (ALA; 18:3n-3; ALA-sufficient) or corn oil (CO) providing 0.13% energy from ALA (ALA-deficient) for four weeks. Fatty acids (FAs) in the cerebellum were analyzed and revealed a 4-fold increase in n-6 docosapentaenoic acid (DPA; 22:5n-6), increases in arachidonic acid (AA; 20:4n-6) and docosatetraenoic acid (DTA; 22:4n-6), but no decrease in docosahexaenoic acid (DHA; 22:6n-3), in animals fed CO versus SO. Transcript abundance was then characterized to identify differentially expressed genes (DEGs) between the two diets. Upper quartile (UQ) scaling and transcripts per million (TPM) data normalization identified 100 and 107 DEGs, respectively. Comparison of DEGs from the two normalization methods identified 70 genes that overlapped, with 90% having abundance differences less than 2-fold. Nr4a3, a transcriptional activator that plays roles in neuroprotection and learning, was elevated over 2-fold from the CO diet. These data indicate that expression of Nr4a3 in the juvenile rat cerebellum is responsive to dietary n-3 PUFA, but additional studies are needed clarify the neurodevelopmental relationships between n-3 PUFA and Nr4a3 and the resulting impacts.
Collapse
Affiliation(s)
- Aaron A Mehus
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | - Aaron M Dickey
- USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.
| | - Timothy P L Smith
- USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.
| | | | - Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| |
Collapse
|
8
|
Perinatal Nutrition and Programmed Risk for Neuropsychiatric Disorders: A Focus on Animal Models. Biol Psychiatry 2019; 85:122-134. [PMID: 30293647 PMCID: PMC6309477 DOI: 10.1016/j.biopsych.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/02/2023]
Abstract
Maternal nutrition is critically important for fetal development. Recent human studies demonstrate a strong connection between diet during pregnancy and offspring risk for neuropsychiatric disorders including depression, anxiety, and attention-deficit/hyperactivity disorder. Animal models have emerged as a crucial tool for understanding maternal nutrition's contribution to prenatal programming and the later development of neuropsychiatric disorders. This review highlights preclinical studies examining how maternal consumption of the three macronutrients (protein, fats, and carbohydrates) influence offspring negative-valence behaviors relevant to neuropsychiatric disorders. We highlight the translational aspects of animal models and so examine exposure periods that mirror the neurodevelopmental stages of human gestation. Because of our emphasis on programmed changes in neurobehavioral development, studies that continue diet exposure until assessment in adulthood are not discussed. The presented research provides a strong foundation of preclinical evidence of nutritional programming of neurobehavioral impairments. Alterations in risk assessment and response were observed alongside neurodevelopmental impairments related to neurogenesis, synaptogenesis, and synaptic plasticity. To date, the large majority of studies utilized rodent models, and the field could benefit from additional study of large-animal models. Additional future directions are discussed, including the need for further studies examining how sex as a biological variable affects the contribution of maternal nutrition to prenatal programming.
Collapse
|
9
|
Healy-Stoffel M, Levant B. N-3 (Omega-3) Fatty Acids: Effects on Brain Dopamine Systems and Potential Role in the Etiology and Treatment of Neuropsychiatric Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2018; 17:216-232. [PMID: 29651972 PMCID: PMC6563911 DOI: 10.2174/1871527317666180412153612] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/01/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & OBJECTIVE A number of neuropsychiatric disorders, including Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder, and, to some extent, depression, involve dysregulation of the brain dopamine systems. The etiology of these diseases is multifactorial, involving genetic and environmental factors. Evidence suggests that inadequate levels of n-3 (omega- 3) polyunsaturated fatty acids (PUFA) in the brain may represent a risk factor for these disorders. These fatty acids, which are derived from the diet, are a major component of neuronal membranes and are of particular importance in brain development and function. Low levels of n-3 PUFAs in the brain affect the brain dopamine systems and, when combined with appropriate genetic and other factors, increase the risk of developing these disorders and/or the severity of the disease. This article reviews the neurobiology of n-3 PUFAs and their effects on dopaminergic function. CONCLUSION Clinical studies supporting their role in the etiologies of diseases involving the brain dopamine systems and the potential of n-3 PUFAs in the treatment of these disorders are discussed.
Collapse
Affiliation(s)
| | - Beth Levant
- Department of Pharmacology, Toxicology, and Therapeutics and the Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017; 76:336-362. [DOI: 10.1016/j.neubiorev.2016.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
|
11
|
Morgese MG, Trabace L. Maternal Malnutrition in the Etiopathogenesis of Psychiatric Diseases: Role of Polyunsaturated Fatty Acids. Brain Sci 2016; 6:E24. [PMID: 27472366 PMCID: PMC5039453 DOI: 10.3390/brainsci6030024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Evidence from human studies indicates that maternal metabolic state and malnutrition dramatically influence the risk for developing psychiatric complications in later adulthood. In this regard, the central role of polyunsaturated fatty acids (PUFAs), and particularly n-3 PUFAs, is emerging considering that epidemiological evidences have established a negative correlation between n-3 PUFA consumption and development of mood disorders. These findings were supported by clinical studies indicating that low content of n-3 PUFAs in diet is linked to an increased susceptibility to psychiatric disorders. PUFAs regulate membrane fluidity and exert their central action by modulating synaptogenesis and neurotrophic factor expression, neurogenesis, and neurotransmission. Moreover, they are precursors of molecules implicated in modulating immune and inflammatory processes in the brain. Importantly, their tissue concentrations are closely related to diet intake, especially to maternal consumption during embryonal life, considering that their synthesis from essential precursors has been shown to be inefficient in mammals. The scope of this review is to highlight the possible mechanisms of PUFA functions in the brain during pre- and post-natal period and to evaluate their role in the pathogenesis of psychiatric diseases.
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy.
| |
Collapse
|
12
|
Essential role of docosahexaenoic acid towards development of a smarter brain. Neurochem Int 2015; 89:51-62. [DOI: 10.1016/j.neuint.2015.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 01/25/2023]
|
13
|
Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015; 1597:220-46. [PMID: 25498862 PMCID: PMC4339314 DOI: 10.1016/j.brainres.2014.11.059] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; New York Medical College, Valhalla, NY, USA
| | - Pnina Green
- Laboratory of Metabolic Research, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Polyunsaturated fatty acid associations with dopaminergic indices in major depressive disorder. Int J Neuropsychopharmacol 2014; 17:383-91. [PMID: 24300434 PMCID: PMC3956108 DOI: 10.1017/s1461145713001399] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dopaminergic function is thought to be altered in major depression and, in animal studies, is reduced in omega-3 polyunsaturated fatty acid (PUFA) deficiency states. Therefore we studied PUFAs and resting prolactin, a marker for dopaminergic tone, and cerebrospinal fluid homovanillic acid (HVA), the chief dopamine metabolite. In medication-free adults (n = 23) with DSM-IV major depressive disorder (MDD), we measured plasma phospholipid levels of omega-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the omega-6 PUFA arachidonic acid (AA), and plasma prolactin levels before and after administration of dl-fenfluramine (FEN). In a subset of patients (n = 14), cerebrospinal fluid levels of HVA and the serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were obtained through lumbar puncture. Baseline prolactin was negatively correlated with omega-3 PUFAs (logDHA, F(1,21) = 20.380, p < 0.001; logEPA, F(1,21) = 10.051, p = 0.005) and positively correlated with logAA:DHA (F(1,21) = 15.263, p = 0.001), a measure of omega-6/omega-3 balance. LogDHA was negatively correlated with CSF HVA (Spearman's ρ = -0.675, p = 0.008) but not 5-HIAA (Spearman's ρ = -0.143, p = 0.626) after controlling for sex and HVA - 5-HIAA correlation. PUFAs did not predict the magnitude of the FEN-stimulated change in prolactin, considered to be a serotonin effect. The robust relationship of omega-3 PUFAs with dopaminergic but not serotonergic indices suggests that omega-6:omega-3 balance may impact depression pathophysiology through effects on the dopaminergic system.
Collapse
|
15
|
English JA, Harauma A, Föcking M, Wynne K, Scaife C, Cagney G, Moriguchi T, Cotter DR. Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus. Front Genet 2013; 4:208. [PMID: 24194745 PMCID: PMC3809566 DOI: 10.3389/fgene.2013.00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/30/2013] [Indexed: 11/13/2022] Open
Abstract
Omega-3 fatty acid (n-3 FA) deficiency is an environmental risk factor for schizophrenia, yet characterization of the consequences of deficiency at the protein level in the brain is limited. We aimed to identify the protein pathways disrupted as a consequence of chronic n-3 deficiency in the hippocampus of mice. Fatty acid analysis of the hippocampus following chronic dietary deficiency revealed a 3-fold decrease (p < 0.001) in n-3 FA levels. Label free LC-MS/MS analysis identified and profiled 1008 proteins, of which 114 were observed to be differentially expressed between n-3 deficient and control groups (n = 8 per group). The cellular processes that were most implicated were neuritogenesis, endocytosis, and exocytosis, while specific protein pathways that were most significantly dysregulated were mitochondrial dysfunction and clathrin mediated endocytosis (CME). In order to characterize whether these processes and pathways are ones influenced by antipsychotic medication, we used LC-MS/MS to test the differential expression of these 114 proteins in the hippocampus of mice chronically treated with the antipsychotic agent haloperidol. We observed 23 of the 114 proteins to be differentially expressed, 17 of which were altered in the opposite direction to that observed following n-3 deficiency. Overall, our findings point to disturbed synaptic function, neuritogenesis, and mitochondrial function as a consequence of dietary deficiency in n-3 FA. This study greatly aids our understanding of the molecular mechanism by which n-3 deficiency impairs normal brain function, and provides clues as to how n-3 FA exert their therapeutic effect in early psychosis.
Collapse
Affiliation(s)
- Jane A English
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital Dublin, Ireland ; Proteome Research Centre, School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College of Dublin Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res Rev 2013; 12:579-94. [PMID: 23395782 DOI: 10.1016/j.arr.2013.01.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
Abstract
The increasing life expectancy in the populations of rich countries raises the pressing question of how the elderly can maintain their cognitive function. Cognitive decline is characterised by the loss of short-term memory due to a progressive impairment of the underlying brain cell processes. Age-related brain damage has many causes, some of which may be influenced by diet. An optimal diet may therefore be a practical way of delaying the onset of age-related cognitive decline. Nutritional investigations indicate that the ω-3 poyunsaturated fatty acid (PUFA) content of western diets is too low to provide the brain with an optimal supply of docosahexaenoic acid (DHA), the main ω-3 PUFA in cell membranes. Insufficient brain DHA has been associated with memory impairment, emotional disturbances and altered brain processes in rodents. Human studies suggest that an adequate dietary intake of ω-3 PUFA can slow the age-related cognitive decline and may also protect against the risk of senile dementia. However, despite the many studies in this domain, the beneficial impact of ω-3 PUFA on brain function has only recently been linked to specific mechanisms. This review examines the hypothesis that an optimal brain DHA status, conferred by an adequate ω-3 PUFA intake, limits age-related brain damage by optimizing endogenous brain repair mechanisms. Our analysis of the abundant literature indicates that an adequate amount of DHA in the brain may limit the impact of stress, an important age-aggravating factor, and influences the neuronal and astroglial functions that govern and protect synaptic transmission. This transmission, particularly glutamatergic neurotransmission in the hippocampus, underlies memory formation. The brain DHA status also influences neurogenesis, nested in the hippocampus, which helps maintain cognitive function throughout life. Although there are still gaps in our knowledge of the way ω-3 PUFA act, the mechanistic studies reviewed here indicate that ω-3 PUFA may be a promising tool for preventing age-related brain deterioration.
Collapse
|
17
|
Blum K, Chen ALC, Giordano J, Borsten J, Chen TJH, Hauser M, Simpatico T, Femino J, Braverman ER, Barh D. The addictive brain: all roads lead to dopamine. J Psychoactive Drugs 2012; 44:134-43. [PMID: 22880541 DOI: 10.1080/02791072.2012.685407] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This article will touch on theories, scientific research and conjecture about the evolutionary genetics of the brain function and the impact of genetic variants called polymorphisms on drug-seeking behavior. It will cover the neurological basis of pleasure-seeking and addiction, which affects multitudes in a global atmosphere where people are seeking "pleasure states".
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL 32610-3424, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies. Neuropharmacology 2012; 64:550-65. [PMID: 22841917 DOI: 10.1016/j.neuropharm.2012.07.019] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/06/2012] [Accepted: 07/08/2012] [Indexed: 01/15/2023]
Abstract
Omega-(n)-3 polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are major components of neuronal membranes and have a wide range of functions, from modulating synaptic plasticity and neurochemistry, to neuroimmune-modulation and neuroprotection. Thus, it is not surprising that n-3 PUFA are widely acknowledged to have cognitive-enhancing effects. Although clinical evidence is somewhat conflicting, probably in large part due to methodological issues, animal studies have consistently demonstrated that n-3 PUFA are indispensable for proper brain development, may enhance cognitive function in healthy, adult individuals and attenuate cognitive impairment in aging and age-related disorders, such as dementia. This review discusses and integrates up to date evidence from clinical and animal studies investigating the cognitive-enhancing effects of n-3 PUFA during development, child- and adult-hood, as well as old-age with associated neurodegenerative diseases, such as Alzheimer's disease. Furthermore, we cover the major underlying biochemical and neurophysiological mechanisms by which n-3 PUFA mediate these effects on cognition. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
|
19
|
Begg DP, Puskás LG, Kitajka K, Ménesi D, Allen AM, Li D, Mathai ML, Shi JR, Sinclair AJ, Weisinger RS. Hypothalamic gene expression in ω-3 PUFA-deficient male rats before, and following, development of hypertension. Hypertens Res 2011; 35:381-7. [PMID: 22072108 DOI: 10.1038/hr.2011.194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dietary deficiency of ω-3 fatty acids (ω-3 DEF) produces hypertension in later life. This study examined the effect of ω-3 DEF on blood pressure and hypothalamic gene expression in young rats, before the development of hypertension, and in older rats following the onset of hypertension. Animals were fed experimental diets that were deficient in ω-3 fatty acids, sufficient in short-chain ω-3 fatty acids or sufficient in short- and long-chain ω-3 fatty acids, from the prenatal period until 10 or 36 weeks-of-age. There was no difference in blood pressure between groups at 10 weeks-of-age; however, at 36 weeks-of-age ω-3 DEF animals were hypertensive in relation to sufficient groups. At 10 weeks, expression of angiotensin-II(1A) receptors and dopamine D(3) receptors were significantly increased in the hypothalamic tissue of ω-3 DEF animals. In contrast, at 36 weeks, α(2a) and β(1) adrenergic receptor expression was significantly reduced in the ω-3 DEF group. Brain docosahexaenoic acid was significantly lower in ω-3 DEF group compared with sufficient groups. This study demonstrates that dietary ω-3 DEF causes changes both in the expression of key genes involved in central blood pressure regulation and in blood pressure. The data may indicate that hypertension resulting from ω-3 DEF is mediated by the central adrenergic system.
Collapse
Affiliation(s)
- Denovan P Begg
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Balanzá-Martínez V, Fries GR, Colpo GD, Silveira PP, Portella AK, Tabarés-Seisdedos R, Kapczinski F. Therapeutic use of omega-3 fatty acids in bipolar disorder. Expert Rev Neurother 2011; 11:1029-47. [PMID: 21721919 DOI: 10.1586/ern.11.42] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bipolar disorder (BD) is a severe, chronic affective disorder, associated with significant disability, morbidity and premature mortality. Omega-3 polyunsaturated fatty acids (PUFAs) play several important roles in brain development and functioning. Evidence from animal models of dietary omega-3 (n-3) PUFA deficiency suggest that these fatty acids are relevant to promote brain development and to regulate behavioral and neurochemical aspects related to mood disorders, such as stress responses, depression and aggression, as well as dopaminergic content and function. Preclinical and clinical evidence suggests roles for PUFAs in BD. n-3 PUFAs seem to be an effective adjunctive treatment for unipolar and bipolar depression, but further large-scale, well-controlled trials are needed to examine its clinical utility in BD. The use of n-3 as a mood stabilizer among BD patients is discussed here. This article summarizes the molecular pathways related to the role of n-3 as a neuroprotective and neurogenic agent, with a specific focus on BDNF. It is proposed that the n-3-BDNF association is involved in the pathophysiology of BD and represents a promising target for developing a novel class of rationally devised therapies.
Collapse
Affiliation(s)
- Vicent Balanzá-Martínez
- Section of Psychiatry, Department of Medicine, CIBERSAM University of Valencia Medical School, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
21
|
Brand A, Crawford MA, Yavin E. Retailoring docosahexaenoic acid-containing phospholipid species during impaired neurogenesis following omega-3 alpha-linolenic acid deprivation. J Neurochem 2010; 114:1393-404. [PMID: 20557429 DOI: 10.1111/j.1471-4159.2010.06866.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Diminished levels of docosahexaenoic acid (22:6n-3), the major fatty acid (FA) synthesized from alpha-linolenic acid (18:3n-3), have been implicated in functional impairment in the developing and adult brain. We have now examined the changes in phospholipid (PL) molecular species in the developing postnatal cortex, a region recently shown to be affected by a robust aberration in neuronal cell migration, after maternal diet alpha-linolenic acid deprivation (Yavin et al. (2009)Neuroscience162(4),1011). The frontal cortex PL composition of 1- to 4-week-old rats was analyzed by gas chromatography and electrospray ionization/tandem mass spectrometry. Changes in the cortical PL molecular species profile by dietary means appear very specific as 22:6n-3 was exclusively substituted by docosapentaenoic acid (22:5n-6). However, molecular species were conserved with respect to the combination of specific polar head groups (i.e. ethanolamine and serine) in sn-3 and defined saturated/mono-unsaturated FA in sn-1 position even when the sn-2 FA moiety underwent diet-induced changes. Our results suggest that substitution of docosahexaenoic acid by docosapentaenoic acid is tightly regulated presumably to maintain a proper biophysical characteristic of membrane PL molecular species. The importance of this conservation may underscore the possible biochemical consequences of this substitution in regulating certain functions in the developing brain.
Collapse
Affiliation(s)
- Annette Brand
- Institute of Brain Chemistry and Human Nutrition, London Metropolitan University, London, UK
| | | | | |
Collapse
|
22
|
Delayed cell migration in the developing rat brain following maternal omega 3 alpha linolenic acid dietary deficiency. Neuroscience 2009; 162:1011-22. [DOI: 10.1016/j.neuroscience.2009.05.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 12/18/2022]
|
23
|
MOTOHASHI K, YAMAMOTO Y, SHIODA N, KONDO H, OWADA Y, FUKUNAGA K. Role of Heart-type Fatty Acid Binding Protein in the Brain Function. YAKUGAKU ZASSHI 2009; 129:191-5. [DOI: 10.1248/yakushi.129.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiju MOTOHASHI
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yui YAMAMOTO
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Norifumi SHIODA
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Hisatake KONDO
- Department of Histology, Graduate School of Medicine, Tohoku University
| | - Yuji OWADA
- Department of Organ Anatomy, Graduate School of Medicine, Yamaguchi University
| | - Kohji FUKUNAGA
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University
- Thohoku University 21st Century COE Program “CRESCENDO”
| |
Collapse
|
24
|
Ménesi D, Kitajka K, Molnár E, Kis Z, Belleger J, Narce M, Kang JX, Puskás LG, Das UN. Gene and protein expression profiling of the fat-1 mouse brain. Prostaglandins Leukot Essent Fatty Acids 2009; 80:33-42. [PMID: 19138887 DOI: 10.1016/j.plefa.2008.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 01/07/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential structural components of all cell membranes and, more so, of the central nervous system. Several studies revealed that n-3 PUFAs possess anti-inflammatory actions and are useful in the treatment of dyslipidemia. These actions explain the beneficial actions of n-3 PUFAs in the management of cardiovascular diseases, inflammatory conditions, neuronal dysfunction, and cancer. But, the exact molecular targets of these beneficial actions of n-3 PUFAs are not known. Mice engineered to carry a fat-1 gene from Caenorhabditis elegans add a double bond into an unsaturated fatty acid hydrocarbon chain and convert n-6 to n-3 fatty acids. This results in an abundance of n-3 eicosapentaenoic acid and docosapentaenoic acid specifically in the brain and a reduction in n-6 fatty acids of these mice that can be used to evaluate the actions of n-3 PUFAs. Gene expression profile, RT-PCR and protein microarray studies in the hippocampus and whole brain of wild-type and fat-1 transgenic mice revealed that genes and proteins concerned with inflammation, apoptosis, neurotransmission, and neuronal growth and synapse formation are specifically modulated in fat-1 mice. These results may explain as to why n-3 PUFAs are of benefit in the prevention and treatment of diseases such as Alzheimer's disease, schizophrenia and other diseases associated with neuronal dysfunction, low-grade systemic inflammatory conditions, and bronchial asthma. Based on these data, it is evident that n-3 PUFAs act to modulate specific genes and formation of their protein products and thus, bring about their various beneficial actions.
Collapse
Affiliation(s)
- Dalma Ménesi
- Functional Genomics Laboratory, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kuperstein F, Eilam R, Yavin E. Altered expression of key dopaminergic regulatory proteins in the postnatal brain following perinatal n-3 fatty acid dietary deficiency. J Neurochem 2008; 106:662-71. [DOI: 10.1111/j.1471-4159.2008.05418.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Vancassel S, Leman S, Hanonick L, Denis S, Roger J, Nollet M, Bodard S, Kousignian I, Belzung C, Chalon S. n-3 Polyunsaturated fatty acid supplementation reverses stress-induced modifications on brain monoamine levels in mice. J Lipid Res 2008; 49:340-8. [DOI: 10.1194/jlr.m700328-jlr200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Vancassel S, Blondeau C, Lallemand S, Cador M, Linard A, Lavialle M, Dellu-Hagedorn F. Hyperactivity in the rat is associated with spontaneous low level of n-3 polyunsaturated fatty acids in the frontal cortex. Behav Brain Res 2007; 180:119-26. [PMID: 17397943 DOI: 10.1016/j.bbr.2007.02.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/16/2007] [Accepted: 02/23/2007] [Indexed: 11/26/2022]
Abstract
Inattention, hyperactivity and impulsiveness are the main symptoms of the heterogeneous attention-deficit/hyperactivity disorder (ADHD). It has been suggested that ADHD is associated with an imbalance in polyunsaturated fatty acid (PUFA) composition, with abnormal low levels of the main n-3 PUFA, DHA (22: 6n-3). DHA is highly accumulated in nervous tissue membranes and is implicated in neural function. Animal studies have shown that diet-induced lack of DHA in the brain leads to alterations in cognitive processes, but the relationship between DHA and hyperactivity is unclear. We examined the membrane phospholipid fatty acid profile in frontal cortex of rats characterized for attention, impulsiveness and motricity in various environmental contexts to determine the relationship between brain PUFA composition and the symptoms of ADHD. The amounts of n-3 PUFA in the PE were significantly correlated with nocturnal locomotor activity and the locomotor response to novelty: hyperactive individuals had less n-3 PUFA than hypoactive ones. We conclude that spontaneous hyperactivity in rats is the symptom of ADHD that best predicts the n-3 PUFA content of the frontal cortex. This differential model in rats should help to better understand the role of PUFA in several psychopathologies in which PUFA composition is modified.
Collapse
Affiliation(s)
- S Vancassel
- Unité de Nutrition et Régulation Lipidique des Fonctions Cérébrales, NuRéLiCe, INRA, domaine de Vilvert, 78352 Jouy-en-Josas cedex, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Das UN. Is metabolic syndrome X a disorder of the brain with the initiation of low-grade systemic inflammatory events during the perinatal period? J Nutr Biochem 2007; 18:701-13. [PMID: 17475465 DOI: 10.1016/j.jnutbio.2007.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/28/2006] [Accepted: 01/23/2007] [Indexed: 11/19/2022]
Abstract
An imbalance between pro- and anti-inflammatory molecules occurs in metabolic syndrome X. High-energy diet, saturated fats and trans-fats during perinatal period could suppress Delta(6) and Delta(5) desaturases both in the maternal and fetal tissues, resulting in a decrease in the concentrations of long-chain polyunsaturated fatty acids (LCPUFAs): arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that have a negative feedback control on inflammation. EPA, DHA and AA augment endothelial nitric oxide synthesis, potentiate insulin action both in the peripheral tissues and brain and alter leptin production. LCPUFAs are essential for brain growth and development and synaptogenesis and modulate the action of several neurotransmitters and hypothalamic peptides. This suggests that metabolic syndrome X could be a disorder of the brain due to suboptimal LCPUFAs during perinatal period that triggers low-grade systemic inflammation, implying that perinatal strategies are needed to prevent its development.
Collapse
Affiliation(s)
- Undurti N Das
- Department of Molecular and Clinical Medicine, Care Hospital, The Institute of Medical Sciences, Banjara Hills, Hyderabad-500 034, India; UND Life Sciences, Shaker Heights, OH 44120, USA
| |
Collapse
|
29
|
Abstract
The (n-3) fatty acids are essential dietary nutrients, and one of their important roles is providing docosahexaenoic acid [22:6(n-3)] (DHA) for growth and function of nervous tissue. Reduced DHA is associated with impairments in cognitive and behavioral performance, effects which are particularly important during brain development. Recent studies suggest that DHA functions in neurogenesis, neurotransmission, and protection against oxidative stress. These functions relate to the roles of DHA within the hydrophobic core of neural membranes and effects of unesterified DHA. Reviewed here are some of the recent studies that have begun to elucidate the role of DHA in brain development and function. A better understanding of development and age-specific changes in DHA transfer and function in the developing brain may provide important insight into the role of DHA in developmental disorders in infants and children, as well as at other stages of the lifespan.
Collapse
Affiliation(s)
- Sheila M Innis
- Nutrition Research Program, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
30
|
Rao JS, Ertley RN, Lee HJ, DeMar JC, Arnold JT, Rapoport SI, Bazinet RP. n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 2007; 12:36-46. [PMID: 16983391 DOI: 10.1038/sj.mp.4001888] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/13/2006] [Accepted: 07/24/2006] [Indexed: 11/08/2022]
Abstract
Decreased docosahexaenoic acid (DHA) and brain-derived neurotrophic factor (BDNF) have been implicated in bipolar disorder. It also has been reported that dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) for 15 weeks in rats, increased their depression and aggression scores. Here, we show that n-3 PUFA deprivation for 15 weeks decreased the frontal cortex DHA level and reduced frontal cortex BDNF expression, cAMP response element binding protein (CREB) transcription factor activity and p38 mitogen-activated protein kinase (MAPK) activity. Activities of other CREB activating protein kinases were not significantly changed. The addition of DHA to rat primary cortical astrocytes in vitro, induced BDNF protein expression and this was blocked by a p38 MAPK inhibitor. DHA's ability to regulate BDNF via a p38 MAPK-dependent mechanism may contribute to its therapeutic efficacy in brain diseases having disordered cell survival and neuroplasticity.
Collapse
Affiliation(s)
- J S Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Liu QY, Sooknanan RR, Malek LT, Ribecco-Lutkiewicz M, Lei JX, Shen H, Lach B, Walker PR, Martin J, Sikorska M. Novel subtractive transcription-based amplification of mRNA (STAR) method and its application in search of rare and differentially expressed genes in AD brains. BMC Genomics 2006; 7:286. [PMID: 17090317 PMCID: PMC1637111 DOI: 10.1186/1471-2164-7-286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 11/07/2006] [Indexed: 01/14/2023] Open
Abstract
Background Alzheimer's disease (AD) is a complex disorder that involves multiple biological processes. Many genes implicated in these processes may be present in low abundance in the human brain. DNA microarray analysis identifies changed genes that are expressed at high or moderate levels. Complementary to this approach, we described here a novel technology designed specifically to isolate rare and novel genes previously undetectable by other methods. We have used this method to identify differentially expressed genes in brains affected by AD. Our method, termed Subtractive Transcription-based Amplification of mRNA (STAR), is a combination of subtractive RNA/DNA hybridization and RNA amplification, which allows the removal of non-differentially expressed transcripts and the linear amplification of the differentially expressed genes. Results Using the STAR technology we have identified over 800 differentially expressed sequences in AD brains, both up- and down- regulated, compared to age-matched controls. Over 55% of the sequences represent genes of unknown function and roughly half of them were novel and rare discoveries in the human brain. The expression changes of nearly 80 unique genes were further confirmed by qRT-PCR and the association of additional genes with AD and/or neurodegeneration was established using an in-house literature mining tool (LitMiner). Conclusion The STAR process significantly amplifies unique and rare sequences relative to abundant housekeeping genes and, as a consequence, identifies genes not previously linked to AD. This method also offers new opportunities to study the subtle changes in gene expression that potentially contribute to the development and/or progression of AD.
Collapse
Affiliation(s)
- Qing Yan Liu
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| | - Roy R Sooknanan
- Alethia Biotheraputics Inc., 8475 Christophe-Colomb Avenue, Suite 1000 Montreal, Quebec, H2M 2N9, Canada
| | - Lawrence T Malek
- Osteopharm Inc., Unit 14, 1155 North Service Road, Oakville, Ontario, L6M 3E3, Canada
| | - Maria Ribecco-Lutkiewicz
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| | - Joy X Lei
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| | - Hui Shen
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| | - Boleslaw Lach
- Hamilton Health Sciences, Hamilton General Hospital, Laboratory Medicine, 237 Barton Str East, Hamilton, Ontario, L8L-2X2, Canada
| | - P Roy Walker
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| | - Joel Martin
- Interactive Information Group, Institute for Information Technology, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Marianna Sikorska
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6,Canada
| |
Collapse
|
32
|
Abstract
We proposed several years ago that the behavioral effects of n-3 PUFA deficiency observed in animal models might be mediated through the dopaminergic and serotonergic systems that are very involved in the modulation of attention, motivation and emotion. We evaluated this hypothesis in an extended series of experiments on rats chronically diet-deficient in alpha-linolenic acid, the precursor of long-chain n-3 PUFA, in which we studied several parameters of these neurotransmission systems. The present paper synthesizes the main data we obtained on interactions between n-3 PUFA status and neurotransmission in animal models. We demonstrated that several parameters of neurotransmission were affected, such as the vesicular pool of dopamine and serotonin, thus inducing several regulatory processes such as modification of cerebral receptors in specific brain areas. We also demonstrated that (i) a reversal diet with adequate n-6 and n-3 PUFA given during the lactating period to rats originating from alpha-linolenic acid-deficient dams was able to restore both the fatty acid composition of brain membranes and several parameters of the dopaminergic and serotonergic neurotransmission, and (ii) when given from weaning, this reversal diet allowed partial recovery of biochemical parameters, but no recovery of neurochemical factors. The occurrence of profound n-3 PUFA deficiency during the lactating period could therefore be an environmental insult leading to irreversible damage to specific brain functions. Strong evidence is now showing that a profound n-3 PUFA experimental deficiency is able to alter several neurotransmission systems, at least the dopaminergic and serotonergic. Whether these experimental findings can be transposed to human pathophysiology must be taken cautiously, but reinforces the hypothesis that strong links exist between the PUFA status, aspects of brain function such as neurotransmission processes and behavior.
Collapse
|
33
|
Antalis CJ, Stevens LJ, Campbell M, Pazdro R, Ericson K, Burgess JR. Omega-3 fatty acid status in attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids 2006; 75:299-308. [PMID: 16962757 DOI: 10.1016/j.plefa.2006.07.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lower levels of long-chain polyunsaturated fatty acids, particularly omega-3 fatty acids, in blood have repeatedly been associated with a variety of behavioral disorders including attention-deficit/hyperactivity disorder (ADHD). The exact nature of this relationship is not yet clear. We have studied children with ADHD who exhibited skin and thirst symptoms classically associated with essential fatty acid (EFA) deficiency, altered plasma and red blood cell fatty acid profiles, and dietary intake patterns that do not differ significantly from controls. This led us to focus on a potential metabolic insufficiency as the cause for the altered fatty acid phenotype. Here we review previous work and present new data expanding our observations into the young adult population. The frequency of thirst and skin symptoms was greater in newly diagnosed individuals with ADHD (n = 35) versus control individuals without behavioral problems (n = 112) drawn from the Purdue student population. A follow up case-control study with participants willing to provide a blood sample, a urine sample, a questionnaire about their general health, and dietary intake records was conducted with balancing based on gender, age, body mass index, smoking and ethnicity. A number of biochemical measures were analyzed including status markers for several nutrients and antioxidants, markers of oxidative stress, inflammation markers, and fatty acid profiles in the blood. The proportion of omega-3 fatty acids was found to be significantly lower in plasma phospholipids and erythrocytes in the ADHD group versus controls whereas saturated fatty acid proportions were higher. Intake of saturated fat was 30% higher in the ADHD group, but intake of all other nutrients was not different. Surprisingly, no evidence of elevated oxidative stress was found based on analysis of blood and urine samples. Indeed, serum ferritin, magnesium, and ascorbate concentrations were higher in the ADHD group, but iron, zinc, and vitamin B6 were not different. Our brief survey of biochemical and nutritional parameters did not give us any insight into the etiology of lower omega-3 fatty acids, but considering the consistency of the observation in multiple ADHD populations continued research in this field is encouraged.
Collapse
Affiliation(s)
- Caryl J Antalis
- Department of Foods and Nutrition, West Lafayette IN 47909-2059, USA
| | | | | | | | | | | |
Collapse
|
34
|
Yavin E. Versatile roles of docosahexaenoic acid in the prenatal brain: from pro- and anti-oxidant features to regulation of gene expression. Prostaglandins Leukot Essent Fatty Acids 2006; 75:203-11. [PMID: 16839753 DOI: 10.1016/j.plefa.2006.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Docosahexaenoic acid (DHA) is the most ubiquitous polyunsaturated fatty acid (FA) in brain tissue. It is selectively esterified to amino phospholipids (PL) and therefore it is highly prevalent at the cytofacial site of the plasma membrane where it may specifically participate in intracellular events. A highly selective DHA accumulation prior to birth is the result of maternal supply via the placenta through a bio-magnification process. Supplements of DHA via the intra-amniotic route to the fetal rat increase brain DHA levels and also confer neuroprotection to fetuses subjected to global ischemic stress. The protective effect has been attributed to an enhanced free radical scavenging capacity of DHA. Dietary deprivation of linolenic acid (LNA) during the perinatal life on the other hand, resulted in losses of DHA from cerebral PLs [M. Schiefermeier, E. Yavin, n-3 deficient and DHA-enriched diets during critical periods of the developing prenatal rat brain, J. Lipid Res. 43 (2002) 124-131]. LNA deprivation also caused changes in a number of gene markers the identification of which was attained by a labor-intensive suppression subtractive hybridization protocol using mRNA from 2-week-old postnatal brains [E. Yakubov, P. Dinerman, F. Kuperstein, S. Saban, E. Yavin, Improved representation of gene markers on microarray by PCR-select subtracted cDNA targets, Mol. Brain Res. 137 (2005) 110-118]. Most notable was a remarkable elevation of dopamine (DA) receptor (D1 and D2) genes as evaluated by quantitative RT-PCR, SDS-PAGE gel electrophoresis and immunochemical staining [F. Kuperstein, E. Yakubov, P. Dinerman, S. Gil, R. Eylam, N. Salem Jr., E. Yavin, Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 FA dietary deficiency, J. Neurochem. 95 (2005) 1550-1562]. Over-expression of DA receptors has been attributed to a compensatory mechanism resulting from impairment in DA neurotransmitter production, storage and processing. In conclusion, DHA is a versatile molecule with a wide range of actions spanning from participation in cellular oxidative processes and intracellular signaling to modulatory roles in gene expression and growth regulation.
Collapse
Affiliation(s)
- Ephraim Yavin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
35
|
Yavin E. Docosahexaenoic acid: a pluripotent molecule acting as a membrane fluidizer, a cellular antioxidant and a modulator of gene expression. Nutr Health 2006; 18:261-2. [PMID: 17180871 DOI: 10.1177/026010600601800308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- E Yavin
- Department of Neurobiology, Weizmann Institute of Science, Israel
| |
Collapse
|