1
|
Monascus purpureus Fermented Product Ameliorates Learning and Memory Impairment in the Amyloid Precursor Protein Transgenic J20 Mouse Model of Alzheimer’s Disease. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Evidence suggests that various hallmarks such as amyloid overproduction, tau dysfunction, insulin resistance/diabetic mechanisms, and neuroinflammation are associated with Alzheimer’s disease (AD). This study investigated the bioactive functions of ankaflavin (AK) and monascin (MS) in the fermented product of Monascus purpureus and found their abilities to ameliorate AD by modifying several important pathogenic factors including improved cognitive function, reversed behavioral deficits, reduced hippocampal β-amyloid peptide (Aβ) burden, decreased tau hyper-phosphorylation, and reduced neuroinflammation in the J20 mouse model of AD compared to wild type. Monascus purpureus fermented product (MPFP) was suggested to act as a peroxisome proliferator-activated receptor (PPAR)-γ agonist and it was compared against the action of a well-known anti-diabetic PPAR-γ agonist rosiglitazone. MPFP could be a promising therapeutic strategy for disease modification in AD.
Collapse
|
2
|
Montalto G, Caudano F, Sturla L, Bruzzone S, Salis A, Damonte G, Prickaerts J, Fedele E, Ricciarelli R. Protein kinase G phosphorylates the Alzheimer's disease-associated tau protein at distinct Ser/Thr sites. Biofactors 2021; 47:126-134. [PMID: 33469985 DOI: 10.1002/biof.1705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022]
Abstract
Intraneuronal accumulation of hyperphosphorylated tau is a pathological hallmark of several neurodegenerative disorders, including Alzheimer's disease. Phosphorylation plays a crucial role in modulating the tau-microtubule interaction and the ability of the protein to aggregate, but despite efforts during the past decades, the real identity of the kynases involved in vivo remains uncertain. Here, for the first time, we demonstrate that the cGMP-dependent protein kinase G (PKG) phosphorylates tau in both in vitro and in vivo models. More intriguingly, we provide evidence that PKG phosphorylates tau at Ser214 but not at Ser202, a condition that could reduce the pathological aggregation of the protein shifting tau from a pro-aggregant to a neuroprotective anti-aggregant conformation.
Collapse
Affiliation(s)
- Giulia Montalto
- Section of General Pathology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Francesca Caudano
- Section of General Pathology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Laura Sturla
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Annalisa Salis
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Gianluca Damonte
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Jos Prickaerts
- Department of Psychiatric and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ernesto Fedele
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberta Ricciarelli
- Section of General Pathology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R. Signaling Mechanisms of Selective PPAR γ Modulators in Alzheimer's Disease. PPAR Res 2018; 2018:2010675. [PMID: 30420872 PMCID: PMC6215547 DOI: 10.1155/2018/2010675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. The continuous increase in the incidence of AD with the aged population and mortality rate indicates the urgent need for establishing novel molecular targets for therapeutic potential. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as rosiglitazone and pioglitazone reduce amyloid and tau pathologies, inhibit neuroinflammation, and improve memory impairments in several rodent models and in humans with mild-to-moderate AD. However, these agonists display poor blood brain barrier permeability resulting in inadequate bioavailability in the brain and thus requiring high dosing with chronic time frames. Furthermore, these dosing levels are associated with several adverse effects including increased incidence of weight gain, liver abnormalities, and heart failure. Therefore, there is a need for identifying novel compounds which target PPARγ more selectively in the brain and could provide therapeutic benefits without a high incidence of adverse effects. This review focuses on how PPARγ agonists influence various pathologies in AD with emphasis on development of novel selective PPARγ modulators.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nila Ghanei
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
4
|
Chong FP, Ng KY, Koh RY, Chye SM. Tau Proteins and Tauopathies in Alzheimer's Disease. Cell Mol Neurobiol 2018; 38:965-980. [PMID: 29299792 DOI: 10.1007/s10571-017-0574-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive function deficits. There are two major pathological hallmarks that contribute to the pathogenesis of AD which are the presence of extracellular amyloid plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Despite extensive research that has been done on Aβ in the last two decades, therapies targeting Aβ were not very fruitful at treating AD as the efficacy of Aβ therapies observed in animal models is not reflected in human clinical trials. Hence, tau-directed therapies have received tremendous attention as the potential treatments for AD. Tauopathies are closely correlated with dementia and immunotherapy has been effective at reducing tau pathology and improving cognitive deficits in animal models. Thus, in this review article, we discussed the pathological mechanism of tau proteins, the key factors contributing to tauopathies, and therapeutic approaches for tauopathies in AD based on the recent progress in tau-based research.
Collapse
Affiliation(s)
- Fong Ping Chong
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Wu Y, Wang L, Hu K, Yu C, Zhu Y, Zhang S, Shao A. Mechanisms and Therapeutic Targets of Depression After Intracerebral Hemorrhage. Front Psychiatry 2018; 9:682. [PMID: 30618863 PMCID: PMC6304443 DOI: 10.3389/fpsyt.2018.00682] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022] Open
Abstract
The relationship between depression and intracerebral hemorrhage (ICH) is complicated. One of the most common neuropsychiatric comorbidities of hemorrhagic stroke is Post-ICH depression. Depression, as a neuropsychiatric symptom, also negatively impacts the outcome of ICH by enhancing morbidity, disability, and mortality. However, the ICH outcome can be improved by antidepressants such as the frequently-used selective serotonin reuptake inhibitors. This review therefore presents the mechanisms of post-ICH depression, we grouped the mechanisms according to inflammation, oxidative stress (OS), apoptosis and autophagy, and explained them through their several associated signaling pathways. Inflammation is mainly related to Toll-like receptors (TLRs), the NF-kB mediated signal pathway, the PPAR-γ-dependent pathway, as well as other signaling pathways. OS is associated to nuclear factor erythroid-2 related factor 2 (Nrf2), the PI3K/Akt pathway and the MAPK/P38 pathway. Moreover, autophagy is associated with the mTOR signaling cascade and the NF-kB mediated signal pathway, while apoptosis is correlated with the death receptor-mediated apoptosis pathway, mitochondrial apoptosis pathway, caspase-independent pathways and others. Furthermore, we found that neuroinflammation, oxidative stress, autophagy, and apoptosis experience interactions with one another. Additionally, it may provide several potential therapeutic targets for patients that might suffer from depression after ICH.
Collapse
Affiliation(s)
- Yinan Wu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangliang Wang
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Kaimin Hu
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengcheng Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanhan Zhu
- Department of Neurosurgery, Rongjun Hospital, Jiaxing, China
| | - Suzhan Zhang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Calcagno E, Caudano F, Passalacqua M, Pronzato MA, Fedele E, Ricciarelli R. Investigating the amyloid-beta enhancing effect of cGMP in neuro2a cells. Mech Ageing Dev 2017; 166:1-5. [PMID: 28789837 DOI: 10.1016/j.mad.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 10/24/2022]
Abstract
Long-term potentiation (LTP) and the process of memory formation require activation of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) pathways. Notably, recent evidence indicated that both cyclic nucleotides boost the production of amyloid-beta (Aβ) peptides. In particular, cAMP was shown to favor hippocampal LTP by stimulating the synthesis of the amyloid precursor protein APP, whereas cGMP was found to enhance LTP and to improve memory by increasing Aβ levels without affecting the expression of APP. The results of the present study substantiate that cGMP has a role in the endocytic pathway of APP and suggest a scenario where the cyclic nucleotide enhances the production of Aβ by favoring the trafficking of APP from the cell cortex to the endolysosomal compartment.
Collapse
Affiliation(s)
- Elisa Calcagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Francesca Caudano
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Maria A Pronzato
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Ernesto Fedele
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | | |
Collapse
|
7
|
Wei YP, Ye JW, Wang X, Zhu LP, Hu QH, Wang Q, Ke D, Tian Q, Wang JZ. Tau-Induced Ca 2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation. Neurosci Bull 2017. [PMID: 28646348 DOI: 10.1007/s12264-017-0148-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca2+ concentration with a simultaneous increase in the phosphorylation of Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca2+/CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca2+/calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca2+/CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.
Collapse
Affiliation(s)
- Yu-Ping Wei
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-Wang Ye
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiong Wang
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Ping Zhu
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing-Hua Hu
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Tian
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Zhi Wang
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Ministry of Education for Neurological Disorders and Hubei Provincial Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Memory-enhancing effects of GEBR-32a, a new PDE4D inhibitor holding promise for the treatment of Alzheimer's disease. Sci Rep 2017; 7:46320. [PMID: 28402318 PMCID: PMC5389348 DOI: 10.1038/srep46320] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/13/2017] [Indexed: 11/20/2022] Open
Abstract
Memory loss characterizes several neurodegenerative disorders, including Alzheimer’s disease (AD). Inhibition of type 4 phosphodiesterase (PDE4) and elevation of cyclic adenosine monophosphate (cAMP) has emerged as a promising therapeutic approach to treat cognitive deficits. However, PDE4 exists in several isoforms and pan inhibitors cannot be used in humans due to severe emesis. Here, we present GEBR-32a, a new PDE4D full inhibitor that has been characterized both in vitro and in vivo using biochemical, electrophysiological and behavioural analyses. GEBR-32a efficiently enhances cAMP in neuronal cultures and hippocampal slices. In vivo pharmacokinetic analysis shows that GEBR-32a is rapidly distributed within the central nervous system with a very favourable brain/blood ratio. Specific behavioural tests (object location and Y-maze continuous alternation tasks) demonstrate that this PDE4D inhibitor is able to enhance memory in AD transgenic mice and concomitantly rescues their hippocampal long-term potentiation deficit. Of great relevance, our preliminary toxicological analysis indicates that GEBR-32a is not cytotoxic and genotoxic, and does not seem to possess emetic-like side effects. In conclusion, GEBR-32a could represent a very promising cognitive-enhancing drug with a great potential for the treatment of Alzheimer’s disease.
Collapse
|
9
|
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 2017; 23:5-22. [PMID: 27873462 PMCID: PMC6492703 DOI: 10.1111/cns.12655] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Elham Amini
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Zahurin Mohamed
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Raymond Azman Ali
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | | | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Pioglitazone prevents tau oligomerization. Biochem Biophys Res Commun 2016; 478:1035-42. [PMID: 27543203 DOI: 10.1016/j.bbrc.2016.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 11/23/2022]
Abstract
Tau aggregation and amyloid β protein (Aβ) deposition are the main causes of Alzheimer's disease (AD). Peroxisome proliferator-activated receptor γ (PPARγ) activation modulates Aβ production. To test whether the PPARγ agonist pioglitazone (PIO) is also effective in preventing tau aggregation in AD, we used a cellular model in which wild-type tau protein (4R0N) is overexpressed (M1C cells) (Hamano et al., 2012) as well as primary neuronal cultures. PIO reduced both phosphorylated and total tau levels, and inactivated glycogen synthase kinase 3β, a major tau kinase, associated with activation of Akt. In addition, PIO decreased cleaved caspase3 and C-terminal truncated tau species by caspase, which is expected to decrease tau aggregation. A fractionation study showed that PIO reduced high molecular-weight (120 kDa), oligomeric tau species in Tris Insoluble, sarkosyl-soluble fractions. Tau decrease was reversed by adding GW9662, a PPARγ antagonist. Together, our current results support the idea that PPARγ agonists may be useful therapeutic agents for AD.
Collapse
|
11
|
New insights into selective PDE4D inhibitors: 3-(Cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl) oxime (GEBR-7b) structural development and promising activities to restore memory impairment. Eur J Med Chem 2016; 124:82-102. [PMID: 27560284 DOI: 10.1016/j.ejmech.2016.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
Abstract
Phosphodiesterase type 4D (PDE4D) has been indicated as a promising target for treating neurodegenerative pathologies such as Alzheimer's Disease (AD). By preventing cAMP hydrolysis, PDE4 inhibitors (PDE4Is) increase the cAMP response element-binding protein (CREB) phosphorylation, synaptic plasticity and long-term memory formation. Pharmacological and behavioral studies on our hit GEBR-7b demonstrated that selective PDE4DIs could improve memory without causing emesis and sedation. The hit development led to new molecule series, herein reported, characterized by a catechol structure bonded to five member heterocycles. Molecular modeling studies highlighted the pivotal role of a polar alkyl chain in conferring selective enzyme interaction. Compound 8a showed PDE4D3 selective inhibition and was able to increase intracellular cAMP levels in neuronal cells, as well as in the hippocampus of freely moving rats. Furthermore, 8a was able to readily cross the blood-brain barrier and enhanced memory performance in mice without causing any emetic-like behavior. These data support the view that PDE4D is an adequate molecular target to restore memory deficits in different neuropathologies, including AD, and also indicate compound 8a as a promising candidate for further preclinical development.
Collapse
|
12
|
Therapeutic Actions of the Thiazolidinediones in Alzheimer's Disease. PPAR Res 2015; 2015:957248. [PMID: 26587016 PMCID: PMC4637502 DOI: 10.1155/2015/957248] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial metabolic brain disorder characterized by protein aggregates, synaptic failure, and cognitive impairment. In the AD brain is common to observe the accumulation of senile plaques formed by amyloid-beta (Aβ) peptide and the neurofibrillary tangles composed of modified tau protein, which both lead to cellular damage and progressive neurodegeneration. Currently, there is no effective therapy for AD; however several studies have shown that the treatments with the peroxisome proliferators activated receptor-gamma (PPARγ) agonists known as thiazolidinedione drugs (TZDs), like rosiglitazone and pioglitazone, attenuate neurodegeneration and improve cognition in mouse models and patients with mild-to-moderate AD. Furthermore, studies on animal models have shown that TZDs inhibit neuroinflammation, facilitate amyloid-β plaque clearance, enhance mitochondrial function, improve synaptic plasticity, and, more recently, attenuate tau hyperphosphorylation. How TZDs may improve or reduce these pathologic signs of AD and what the mechanisms and the implicated pathways in which these drugs work are are questions that remain to be answered. However, in this review, we will discuss several cellular targets, in which TZDs can be acting against the neurodegeneration.
Collapse
|
13
|
Brullo C, Massa M, Villa C, Ricciarelli R, Rivera D, Pronzato MA, Fedele E, Barocelli E, Bertoni S, Flammini L, Bruno O. Synthesis, biological activities and pharmacokinetic properties of new fluorinated derivatives of selective PDE4D inhibitors. Bioorg Med Chem 2015; 23:3426-35. [PMID: 25936260 DOI: 10.1016/j.bmc.2015.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 01/21/2023]
Abstract
A new series of selective PDE4D inhibitors has been designed and synthesized by replacing 3-methoxy group with 3-difluoromethoxy isoster moiety in our previously reported cathecolic structures. All compounds showed a good PDE4D3 inhibitory activity, most of them being inactive toward other PDE4 isoforms (PDE4A4, PDE4B2 and PDE4C2). Compound 3b, chosen among the synthesized compounds as the most promising in terms of inhibitory activity, selectivity and safety, showed an improved pharmacokinetic profile compared to its non fluorinated analogue. Spontaneous locomotor activity, assessed in an open field apparatus, showed that, differently from rolipram and diazepam, selective PDE4D inhibitors, such as compounds 3b, 5b and 7b, did not affect locomotion, whereas compound 1b showed a tendency to reduce the distance traveled and to prolong the immobility period, possibly due to a poor selectivity.
Collapse
Affiliation(s)
- Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Matteo Massa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Carla Villa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Roberta Ricciarelli
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, Via LB Alberti, 2, 16132 Genoa, Italy
| | - Daniela Rivera
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, Via LB Alberti, 2, 16132 Genoa, Italy
| | - Maria Adelaide Pronzato
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, Via LB Alberti, 2, 16132 Genoa, Italy
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano, 4, 16147 Genoa, Italy
| | - Elisabetta Barocelli
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Simona Bertoni
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Lisa Flammini
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Olga Bruno
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy.
| |
Collapse
|
14
|
Rivera D, Fedele E, Marinari UM, Pronzato MA, Ricciarelli R. Evaluating the role of hnRNP-C and FMRP in the cAMP-induced APP metabolism. Biofactors 2015; 41:121-6. [PMID: 25809670 DOI: 10.1002/biof.1207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/27/2015] [Indexed: 11/09/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) modulates synaptic plasticity and memory and manipulation of the cAMP/protein kinase A/cAMP responsive element binding protein pathway significantly affects cognitive functions. Notably, cAMP can increase the expression of the amyloid precursor protein (APP), whose proteolytic processing gives rise to amyloid beta (Aβ) peptides. Despite playing a pathogenic role in Alzheimer's disease, physiological concentrations of Aβ are necessary for the cAMP-mediated regulation of long-term potentiation, supporting the existence of a novel cAMP/APP/Aβ cascade with a crucial role in memory formation. However, the molecular mechanisms by which cAMP stimulates APP expression and Aβ production remain unclear. Here, we investigated whether hnRNP-C and FMRP, two RNA-binding proteins largely involved in the expression of APP, are the cAMP effectors inducing the protein synthesis of APP. Using RNA immunoprecipitation and RNA-silencing approaches, we found that neither hnRNP-C nor FMRP is required for cAMP to stimulate APP and Aβ production.
Collapse
Affiliation(s)
- D Rivera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | |
Collapse
|
15
|
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-secretases. mTOR, an inhibitor of autophagy, decreases Aβ clearance by scissoring autophagy function. mTOR regulates Aβ generation or Aβ clearance by regulating several key signaling pathways, including phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt), glycogen synthase kinase 3 [GSK-3], AMP-activated protein kinase (AMPK), and insulin/insulin-like growth factor 1 (IGF-1). The activation of mTOR is also a contributor to aberrant hyperphosphorylated tau. Rapamycin, the inhibitor of mTOR, may mitigate cognitive impairment and inhibit the pathologies associated with amyloid plaques and neurofibrillary tangles by promoting autophagy. Furthermore, the upstream and downstream components of mTOR signaling are involved in the pathogenesis and progression of AD. Hence, inhibiting the activation of mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
16
|
Abstract
Amyloid-β plaques and neurofibrillary tangles are the main neuropathological hallmarks in Alzheimer's disease (AD), the most common cause of dementia in the elderly. However, it has become increasingly apparent that neuroinflammation plays a significant role in the pathophysiology of AD. This review summarizes the current status of neuroinflammation research related to AD, focusing on the connections between neuroinflammation and some inflammation factors in AD. Among these connections, we discuss the dysfunctional blood-brain barrier and alterations in the functional responses of microglia and astrocytes in this process. In addition, we summarize and discuss the role of intracellular signaling pathways involved in inflammatory responses in astrocytes and microglia, including the mitogen-activated protein kinase pathways, nuclear factor-kappa B cascade, and peroxisome proliferator-activated receptor-gamma transcription factors. Finally, the dysregulation of the control and release of pro- and anti-inflammatory cytokines and classic AD pathology (amyloid plaques and neurofibrillary tangles) in AD is also reviewed.
Collapse
Affiliation(s)
- Fengjin Zhang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China ; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou City, People's Republic of China
| | - Linlan Jiang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China
| |
Collapse
|
17
|
Brullo C, Massa M, Rocca M, Rotolo C, Guariento S, Rivera D, Ricciarelli R, Fedele E, Fossa P, Bruno O. Synthesis, biological evaluation, and molecular modeling of new 3-(cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl) Oxime (GEBR-7b) related phosphodiesterase 4D (PDE4D) inhibitors. J Med Chem 2014; 57:7061-72. [PMID: 25126889 DOI: 10.1021/jm500855w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new series of 3-(cyclopentyloxy)-4-methoxyphenyl derivatives, structurally related to our hit GEBR-4a (1) and GEBR-7b (2), has been designed by changing length and functionality of the chain linking the catecholic moiety to the terminal cycloamine portion. Among the numerous molecules synthesized, compounds 8, 10a, and 10b showed increased potency as PDE4D enzyme inhibitors with respect to 2 and a good selectivity against PDE4A4, PDE4B2, and PDE4C2 enzymes, without both cytotoxic and genotoxic effects. The ability to enhance cAMP level in neuronal cells was assessed for compound 8. SAR considerations, also confirmed by in silico docking simulations, evidenced that both chain and amino terminal function characterized by higher hydrophilicity are required for a good and selective inhibitor-catalytic pocket interaction.
Collapse
Affiliation(s)
- Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa , Viale Benedetto XV, 3, 16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang HT, Sheen YJ, Kao CD, Chang CA, Hu YC, Lin JL. Association between the characteristics of metabolic syndrome and Alzheimer's disease. Metab Brain Dis 2013; 28:597-604. [PMID: 23644927 DOI: 10.1007/s11011-013-9406-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
Various epidemiological studies have shown that type 2 diabetes and metabolic syndrome are highly correlated with Alzheimer's disease (AD). Here, we sought to assess the impact of metabolic syndrome characteristics on the progression of AD. Five-week-old male, spontaneously hypertensive (n = 32) and Wistar Kyoto (abbreviated WKY; n = 8) rats were divided into 5 groups (each n = 8): WKY, hypertension (HTN), streptozotocin-induced diabetes (STZ), high-fat diet (HFD), and STZ + high-fat diet-induced diabetes mellitus (DM). All animals were sacrificed and samples of the blood, liver, and brain were collected for further biological analysis. During the 15-week period of induction, the STZ and DM groups (animals injected with low-dose STZ) had significantly higher fasting glucose levels; the HFD group had elevated insulin levels, but normal blood glucose levels. The HFD and DM groups had hypercholesterolemia and higher hepatic levels of triglycerides and cholesterol. Additionally, correlations between HFD and elevated brain amyloid-beta 42 (Aβ-42), hyperglycemia and down-regulation of brain insulin receptor, and serum Aβ-42 and hepatic triglyceride concentrations (r(2) = 0.41, p < 0.05) were observed. Serum C-reactive protein and malondialdehyde did not appear to have a significant influence on the association with biomarkers of AD. Thus, our study demonstrated that rats with characteristics of metabolic syndrome had a large number of biomarkers predicting AD; however, no relationship between traditional inflammatory and oxidative markers and AD was found. Further studies are necessary to prove that these findings in rats are relevant to AD processes in humans.
Collapse
Affiliation(s)
- Hui-Ting Yang
- Department of Nutrition, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan, 40402, Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Kashani L, Omidvar T, Farazmand B, Modabbernia A, Ramzanzadeh F, Tehraninejad ES, Ashrafi M, Tabrizi M, Akhondzadeh S. Does pioglitazone improve depression through insulin-sensitization? Results of a randomized double-blind metformin-controlled trial in patients with polycystic ovarian syndrome and comorbid depression. Psychoneuroendocrinology 2013; 38:767-76. [PMID: 22999261 DOI: 10.1016/j.psyneuen.2012.08.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022]
Abstract
Thiazolidinediones have shown beneficial effects in short-term treatment of depression. However, it is unclear whether the antidepressant efficacy of these agents is related to their insulin-sensitizing action. We conducted the present study to compare the antidepressant efficacy of pioglitazone with another insulin-sensitizer, metformin, in obese patients with concomitant polycystic ovarian syndrome (PCOS) and major depressive disorder (MDD). In a six-week double-blind study, 50 patients with PCOS and MDD (DSM-IV-TR criteria) with Hamilton depression rating scale (HDRS) score of <20, randomly received pioglitazone (15 mg twice daily; PO) or metformin (750 mg twice daily; PO). Assessment was done using HDRS (weeks 0, 3, 6) together with fasting Insulin, glucose, and lipid profile, liver enzymes, homeostatic model assessment of insulin resistance (HOMA-IR), anthropometric measures, and serum androgens (weeks 0 and 6). Pioglitazone was superior to metformin in reducing HDRS scores at the end of the study [38.3% versus 8.3% reduction from baseline scores, F(1, 37) = 73.513, P<0.001]. Changes from baseline in HOMA-IR values at week 6 were not significantly different between the two groups (P = 0.888). Baseline (but not follow-up) HDRS and HOMA-IR values were significantly correlated (r = 0.393, P = 0.012). In multiple regression analysis, treatment with pioglitazone independent of HOMA-IR values predicted greater score reduction on HDRS at week 6 (standardized beta = 0.801, P<0.001). Biochemical and hormonal profile did not differ between the two groups at week 6. Metformin was associated with higher frequency of gastrointestinal side effects (P = 0.014). In summary, we showed that pioglitazone improved depression with mechanisms largely unrelated to its insulin-sensitizing action (registration number: IRCT201106081556N23).
Collapse
Affiliation(s)
- Ladan Kashani
- Infertility Ward, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Searcy JL, Phelps JT, Pancani T, Kadish I, Popovic J, Anderson KL, Beckett TL, Murphy MP, Chen KC, Blalock EM, Landfield PW, Porter NM, Thibault O. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease. J Alzheimers Dis 2013; 30:943-61. [PMID: 22495349 DOI: 10.3233/jad-2012-111661] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimer's disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. Starting at 10 months of age, the triple transgenic mouse model of AD (3xTg-AD) with accelerated amyloid-β (Aβ) deposition and tau pathology was treated with the TZD pioglitazone (PIO-Actos) at 18 mg/Kg body weight/day. After four months, PIO-treated animals showed multiple beneficial effects, including improved learning on the active avoidance task, reduced serum cholesterol, decreased hippocampal amyloid-β and tau deposits, and enhanced short- and long-term plasticity. Electrophysiological membrane properties and post-treatment blood glucose levels were unchanged by PIO. Gene microarray analyses of hippocampal tissue identified predicted transcriptional responses following TZD treatment as well as potentially novel targets of TZDs, including facilitation of estrogenic processes and decreases in glutamatergic and lipid metabolic/cholesterol dependent processes. Taken together, these results confirm prior animal studies showing that TZDs can ameliorate cognitive deficits associated with AD-related pathology, but also extend these findings by pointing to novel molecular targets in the brain.
Collapse
Affiliation(s)
- James L Searcy
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, KY 40536-0084, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cho DH, Lee EJ, Kwon KJ, Shin CY, Song KH, Park JH, Jo I, Han SH. Troglitazone, a thiazolidinedione, decreases tau phosphorylation through the inhibition of cyclin-dependent kinase 5 activity in SH-SY5Y neuroblastoma cells and primary neurons. J Neurochem 2013; 126:685-95. [DOI: 10.1111/jnc.12264] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/11/2013] [Accepted: 04/10/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Du-Hyong Cho
- Department of Neurology; Konkuk University Medical Center; Konkuk University; Seoul South Korea
- Department of Pharmacology; Center for Geriatric Neuroscience Research; SMART Institute of Advanced Biomedical Science School of Medicine; Konkuk University; Seoul South Korea
| | - Eun Joo Lee
- Department of Neurology; Konkuk University Medical Center; Konkuk University; Seoul South Korea
- Department of Pharmacology; Center for Geriatric Neuroscience Research; SMART Institute of Advanced Biomedical Science School of Medicine; Konkuk University; Seoul South Korea
| | - Kyoung Ja Kwon
- Department of Neurology; Konkuk University Medical Center; Konkuk University; Seoul South Korea
- Department of Pharmacology; Center for Geriatric Neuroscience Research; SMART Institute of Advanced Biomedical Science School of Medicine; Konkuk University; Seoul South Korea
| | - Chan Young Shin
- Department of Neurology; Konkuk University Medical Center; Konkuk University; Seoul South Korea
- Department of Pharmacology; Center for Geriatric Neuroscience Research; SMART Institute of Advanced Biomedical Science School of Medicine; Konkuk University; Seoul South Korea
| | - Kee-Ho Song
- Department of Internal Medicine; Konkuk University School of Medicine; Seoul South Korea
| | - Jung-Hyun Park
- Department of Molecular Medicine; Ewha Womans University Medical School; Seoul South Korea
| | - Inho Jo
- Department of Molecular Medicine; Ewha Womans University Medical School; Seoul South Korea
| | - Seol-Heui Han
- Department of Neurology; Konkuk University Medical Center; Konkuk University; Seoul South Korea
- Department of Pharmacology; Center for Geriatric Neuroscience Research; SMART Institute of Advanced Biomedical Science School of Medicine; Konkuk University; Seoul South Korea
| |
Collapse
|
22
|
Canepa E, Domenicotti C, Marengo B, Passalacqua M, Marinari UM, Pronzato MA, Fedele E, Ricciarelli R. Cyclic adenosine monophosphate as an endogenous modulator of the amyloid-β precursor protein metabolism. IUBMB Life 2013; 65:127-33. [PMID: 23297063 DOI: 10.1002/iub.1109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/05/2012] [Indexed: 01/23/2023]
Abstract
Besides playing a pathogenic role in Alzheimer disease, amyloid-beta peptides are normally produced in low amounts in the brain, and several lines of evidence suggest that they can modulate synaptic plasticity and memory. As cyclic adenosine monophosphate (cAMP) is known to be involved in the same processes and the blockade of its degradation by phosphodiesterase 4 inhibitors has consistently shown beneficial effects on cognition, we investigated the possible correlation between this second messenger and Aβ peptides in neuronal N2a cells overexpressing the amyloid-β precursor protein (APP). We herein report that the elevation of endogenous cAMP by rolipram increased APP protein expression and both its amyloidogenic and nonamyloidogenic processing. The effects of rolipram were reproduced by both the cAMP membrane-permeant analog 8Br-cAMP and the forskolin-induced activation of adenylyl cyclase but were not affected by the PKA inhibitor H-89. Our results demonstrate that, in neuronal cells, APP metabolism is physiologically modulated by cAMP and suggest that this might represent an additional mechanism through which the second messenger could influence memory functions.
Collapse
Affiliation(s)
- Elisa Canepa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova N, Calingasan NY, Yang L, Tampellini D, Starkov AA, Chan RB, Di Paolo G, Pujol A, Beal MF. Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum Mol Genet 2012; 21:5091-105. [PMID: 22922230 PMCID: PMC3490516 DOI: 10.1093/hmg/dds355] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-mediated transcription factors, which control both lipid and energy metabolism and inflammation pathways. PPARγ agonists are effective in the treatment of metabolic diseases and, more recently, neurodegenerative diseases, in which they show promising neuroprotective effects. We studied the effects of the pan-PPAR agonist bezafibrate on tau pathology, inflammation, lipid metabolism and behavior in transgenic mice with the P301S human tau mutation, which causes familial frontotemporal lobar degeneration. Bezafibrate treatment significantly decreased tau hyperphosphorylation using AT8 staining and the number of MC1-positive neurons. Bezafibrate treatment also diminished microglial activation and expression of both inducible nitric oxide synthase and cyclooxygenase 2. Additionally, the drug differentially affected the brain and brown fat lipidome of control and P301S mice, preventing lipid vacuoles in brown fat. These effects were associated with behavioral improvement, as evidenced by reduced hyperactivity and disinhibition in the P301S mice. Bezafibrate therefore exerts neuroprotective effects in a mouse model of tauopathy, as shown by decreased tau pathology and behavioral improvement. Since bezafibrate was given to the mice before tau pathology had developed, our data suggest that bezafibrate exerts a preventive effect on both tau pathology and its behavioral consequences. Bezafibrate is therefore a promising agent for the treatment of neurodegenerative diseases associated with tau pathology.
Collapse
Affiliation(s)
- Magali Dumont
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kume K, Hanyu H, Sakurai H, Takada Y, Onuma T, Iwamoto T. Effects of telmisartan on cognition and regional cerebral blood flow in hypertensive patients with Alzheimer's disease. Geriatr Gerontol Int 2011; 12:207-14. [DOI: 10.1111/j.1447-0594.2011.00746.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
To AWM, Ribe EM, Chuang TT, Schroeder JE, Lovestone S. The ε3 and ε4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulinemic and pioglitazone treated mice. PLoS One 2011; 6:e16991. [PMID: 21347323 PMCID: PMC3037394 DOI: 10.1371/journal.pone.0016991] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/18/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment. METHODS Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle. RESULTS All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone.
Collapse
Affiliation(s)
- Alvina W. M. To
- King's College London, Institute of Psychiatry, London, United Kingdom
| | - Elena M. Ribe
- King's College London, Institute of Psychiatry, London, United Kingdom
| | - Tsu Tshen Chuang
- Stem Cell DPU, GlaxoSmithKline, Cambridge, Massachusetts, United States of America
| | | | - Simon Lovestone
- King's College London, Institute of Psychiatry, London, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Abstract
Alzheimer's disease (AD) is characterized histopathologically by numerous neurons with neurofibrillary tangles and neuritic (senile) amyloid-beta (Abeta) plaques, and clinically by progressive dementia. Although Abeta is the primary trigger of AD according to the amyloid cascade hypothesis, neurofibrillary degeneration of abnormally hyperphosphorylated tau is apparently required for the clinical expression of this disease. Furthermore, while approximately 30% of normal aged individuals have as much compact plaque burden in the neocortex as is seen in typical cases of AD, in several tauopathies, such as cortical basal degeneration and Pick's disease, neurofibrillary degeneration of abnormally hyperphosphorylated tau in the absence of Abeta plaques is associated with dementia. To date, all AD clinical trials based on Abeta as a therapeutic target have failed. In addition to the clinical pathological correlation of neurofibrillary degeneration with dementia in AD and related tauopathies, increasing evidence from in vitro and in vivo studies in experimental animal models provides a compelling case for this lesion as a promising therapeutic target. A number of rational approaches to inhibiting neurofibrillary degeneration include inhibition of one or more tau protein kinases, such as glycogen synthase kinase-3beta and cyclin-dependent protein kinase 5, activation of the major tau phosphatase protein phosphatase-2A, elevation of beta-N-acetylglucosamine modification of tau through inhibition of beta-N-acetylglucosaminidase or increase in brain glucose uptake, and promotion of the clearance of the abnormally hyperphosphorylated tau by autophagy or the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | | | |
Collapse
|
27
|
Escribano L, Simón AM, Gimeno E, Cuadrado-Tejedor M, López de Maturana R, García-Osta A, Ricobaraza A, Pérez-Mediavilla A, Del Río J, Frechilla D. Rosiglitazone rescues memory impairment in Alzheimer's transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology 2010; 35:1593-604. [PMID: 20336061 PMCID: PMC3055461 DOI: 10.1038/npp.2010.32] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clinical studies suggest that agonists at peroxisome proliferator-activated receptor gamma (PPARgamma) may exert beneficial effects in patients with mild-to-moderate Alzheimer's disease (AD), but the mechanism for the potential therapeutic interest of this class of drugs has not yet been elucidated. Here, in mice overexpressing mutant human amyloid precursor protein, we found that chronic treatment with rosiglitazone, a high-affinity agonist at PPARgamma, facilitated beta-amyloid peptide (Abeta) clearance. Rosiglitazone not only reduced Abeta burden in the brain but, importantly, almost completely removed the abundant amyloid plaques observed in the hippocampus and entorhinal cortex of 13-month-old transgenic mice. In the hippocampus, neuropil threads containing phosphorylated tau, probably corresponding to dystrophic neurites, were also decreased by the drug. Rosiglitazone switched on the activated microglial phenotype, promoting its phagocytic ability, reducing the expression of proinflammatory markers and inducing factors for alternative differentiation. The decreased amyloid pathology may account for the reduction of p-tau-containing neuropil threads and for the rescue of impaired recognition and spatial memory in the transgenic mice. This study provides further insights into the mechanisms for the beneficial effect of rosiglitazone in AD patients.
Collapse
Affiliation(s)
- Luis Escribano
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | - Ana-María Simón
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | - Esther Gimeno
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | - Mar Cuadrado-Tejedor
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | | | - Ana García-Osta
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | - Ana Ricobaraza
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | | | - Joaquín Del Río
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain
| | - Diana Frechilla
- Division of Neurosciences, CIMA, University of Navarra, Pamplona, CIBERNED, Spain,Division of Neurosciences, CIMA, University of Navarra, CIBERNED, Av. Pio XII 55, Pamplona 31008, Spain, Tel: +349 4819 4700, Fax: +349 4819 4715, E-mail:
| |
Collapse
|
28
|
Structure-based design of a thiazolidinedione which targets the mitochondrial protein mitoNEET. Bioorg Med Chem Lett 2010; 20:819-23. [DOI: 10.1016/j.bmcl.2009.12.088] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/22/2009] [Accepted: 12/24/2009] [Indexed: 12/24/2022]
|
29
|
Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 2009; 32:1626-33. [PMID: 19923038 DOI: 10.1016/j.neurobiolaging.2009.10.009] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/18/2009] [Accepted: 10/14/2009] [Indexed: 12/24/2022]
Abstract
To test the effects of the PPAR-γ agonist pioglitazone on cognition, regional cerebral blood flow (rCBF), and plasma levels of Aβ40 and Aβ42, we conducted a 6-month, randomized, open-controlled trial in patients with mild Alzheimer disease (AD) accompanied with type II diabetes mellitus. We randomly assigned 42 patients to either the group treated with 15-30 mg pioglitazone daily (n=21, pioglitazone group) or not (n=21, control group). The pioglitazone group improved cognition and rCBF in the parietal lobe, while the control group showed no such improvement. The plasma Aβ40/Aβ42 ratio increased in the control group, but showed no significant change in the pioglitazone group. Both groups showed good control of diabetes during the study. In addition, pioglitazone treatment resulted in a decrease in fasting plasma insulin levels, indicating enhanced insulin sensitivity. The results of this pilot study demonstrated that pioglitazone exhibited cognitive and functional improvements, and stabilization of the disease in diabetic patients with AD. Pioglitazone may offer a novel strategy for the treatment of AD.
Collapse
|
30
|
Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 2008; 15:2321-8. [PMID: 18855662 DOI: 10.2174/092986708785909111] [Citation(s) in RCA: 391] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in adults. The current therapy for AD has only moderate efficacy in controlling symptoms, and it does not cure the disease. Recent studies have suggested that abnormal hyperphosphorylation of tau in the brain plays a vital role in the molecular pathogenesis of AD and in neurodegeneration. This article reviews the current advances in understanding of tau protein, regulation of tau phosphorylation, and the role of its abnormal hyperphosphorylation in neurofibrillary degeneration. Furthermore, several therapeutic strategies for treating AD on the basis of the important role of tau hyperphosphorylation in the pathogenesis of the disease are described. These strategies include (1) inhibition of glycogen synthase kinase-3beta (GSK-3beta), cyclin-dependent kinase 5 (cdk5), and other tau kinases; (2) restoration of PP2A activity; and (3) targeting tau O-GlcNAcylation. Development of drugs on the basis of these strategies is likely to lead to disease-modifying therapies for AD.
Collapse
Affiliation(s)
- C-X Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.
| | | |
Collapse
|
31
|
Zhou XW, Gustafsson JA, Tanila H, Bjorkdahl C, Liu R, Winblad B, Pei JJ. Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A. Neurobiol Dis 2008; 31:386-94. [PMID: 18586097 DOI: 10.1016/j.nbd.2008.05.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/06/2008] [Accepted: 05/20/2008] [Indexed: 12/18/2022] Open
Abstract
The down-regulation of protein phosphatase 2A (PP2A) activity is thought to play an important role in the formation of tau hyperphosphorylation in the Alzheimer's disease (AD) brain. Methylation of the PP2A catalytic subunit at the L309 site can potently activate PP2A for some substrates via the increasing recruitment of its regulatory subunits into the holoenzyme. Abeta is overproduced yet estrogen is deficient in the brains of the menopausal AD patients. Both Abeta and estrogen deficiency can interact with tau kinases such as protein kinase B and glycogen synthase kinase 3. In the current study, levels of demethylated (-m) PP2A (L309) were significantly increased, and methylated (+m) PP2A (L309) were significantly decreased, which corresponded with the increased tau phosphorylation at the Tau-1 and PHF-1 sites in both mouse N2a cells carrying the human APP with Swedish mutation (APPswe) and transgenic APPswe/presenilin (PS) 1 (A246E) mice. These findings were replicated in wild-type N2a cells treated with Abeta25-35, and to a relatively larger extent, in both wild-type N2a cells and APPswe treated by okadaic acid, as well as in the brains of estrogen receptor (ER) alpha-/- and ERbeta-/- mice that mimic the status of estrogen deficiency in menopausal AD patients. Together, these findings suggested that the increased demethylation of PP2A (L309) mediated by Abeta overproduction or estrogen deficiency (ERalpha-/- and ERbeta-/-) may contribute to the reduced PP2A activity observed in the AD brain, resulting in the compromised dephosphorylation of abnormally hyperphosphorylated tau.
Collapse
Affiliation(s)
- Xin-Wen Zhou
- Karolinska Institutet, KI-Alzheimer Disease Research Center (KI-ADRC), Novum, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The deleterious effects of diabetes mellitus on the retinal, renal, cardiovascular, and peripheral nervous systems are widely acknowledged. Less attention has been given to the effect of diabetes on cognitive function. Both type 1 and type 2 diabetes mellitus have been associated with reduced performance on numerous domains of cognitive function. The exact pathophysiology of cognitive dysfunction in diabetes is not completely understood, but it is likely that hyperglycemia, vascular disease, hypoglycemia, and insulin resistance play significant roles. Modalities to study the effect of diabetes on the brain have evolved over the years, including neurocognitive testing, evoked response potentials, and magnetic resonance imaging. Although much insightful research has examined cognitive dysfunction in patients with diabetes, more needs to be understood about the mechanisms and natural history of this complication in order to develop strategies for prevention and treatment.
Collapse
Affiliation(s)
- Christopher T Kodl
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
33
|
Abstract
The deleterious effects of diabetes mellitus on the retinal, renal, cardiovascular, and peripheral nervous systems are widely acknowledged. Less attention has been given to the effect of diabetes on cognitive function. Both type 1 and type 2 diabetes mellitus have been associated with reduced performance on numerous domains of cognitive function. The exact pathophysiology of cognitive dysfunction in diabetes is not completely understood, but it is likely that hyperglycemia, vascular disease, hypoglycemia, and insulin resistance play significant roles. Modalities to study the effect of diabetes on the brain have evolved over the years, including neurocognitive testing, evoked response potentials, and magnetic resonance imaging. Although much insightful research has examined cognitive dysfunction in patients with diabetes, more needs to be understood about the mechanisms and natural history of this complication in order to develop strategies for prevention and treatment.
Collapse
Affiliation(s)
- Christopher T Kodl
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
34
|
Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res Rev 2008; 7:126-36. [PMID: 18313368 DOI: 10.1016/j.arr.2008.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 11/22/2022]
Abstract
Evidence from many recent studies has linked uncontrolled inflammatory processes to aging and aging-related diseases. Decreased a nuclear receptor subfamily of transcription factors, peroxisome proliferator-activated receptors (PPARs) activity is closely associated with increased levels of inflammatory mediators during the aging process. The anti-inflammatory action of PPARs is substantiated by both in vitro and in vivo studies that signify the importance of PPARs as major players in the pathogenesis of many inflammatory diseases. In this review, we highlight the molecular mechanisms and roles of PPARalpha, gamma in regulation of age-related inflammation. By understanding these current findings of PPARs, we open up the possibility of developing new therapeutic agents that modulate these nuclear receptors to control various inflammatory diseases such as atherosclerosis, vascular diseases, Alzheimer's disease, and cancer.
Collapse
|