1
|
Kim S, Shin JJ, Kang M, Yang Y, Cho YS, Paik H, Kim J, Yi Y, Lee S, Koo HY, Bok J, Bae YC, Kim JY, Kim E. Alternatively spliced mini-exon B in PTPδ regulates excitatory synapses through cell-type-specific trans-synaptic PTPδ-IL1RAP interaction. Nat Commun 2025; 16:4415. [PMID: 40360498 PMCID: PMC12075705 DOI: 10.1038/s41467-025-59685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
PTPδ, encoded by PTPRD, is implicated in various neurological, psychiatric, and neurodevelopmental disorders, but the underlying mechanisms remain unclear. PTPδ trans-synaptically interacts with multiple postsynaptic adhesion molecules, which involves its extracellular alternatively spliced mini-exons, meA and meB. While PTPδ-meA functions have been studied in vivo, PTPδ-meB has not been studied. Here, we report that, unlike homozygous PTPδ-meA-mutant mice, homozygous PTPδ-meB-mutant (Ptprd-meB-/-) mice show markedly reduced early postnatal survival. Heterozygous Ptprd-meB+/- male mice show behavioral abnormalities and decreased excitatory synaptic density and transmission in dentate gyrus granule cells (DG-GCs). Proteomic analyses identify decreased postsynaptic density levels of IL1RAP, a known trans-synaptic partner of meB-containing PTPδ. Accordingly, IL1RAP-mutant mice show decreased excitatory synaptic transmission in DG-GCs. Ptprd-meB+/- DG interneurons with minimal IL1RAP expression show increased excitatory synaptic density and transmission. Therefore, PTPδ-meB is important for survival, synaptic, and behavioral phenotypes and regulates excitatory synapses in cell-type-specific and IL1RAP-dependent manners.
Collapse
Affiliation(s)
- Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Jae Jin Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, 28119, Korea
| | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Hyojung Paik
- Center for Biomedical Computing, Korea Institute of Science and Technology Information (KISTI), Daejeon, 34141, Korea
| | - Jimin Kim
- Center for Biomedical Computing, Korea Institute of Science and Technology Information (KISTI), Daejeon, 34141, Korea
| | - Yunho Yi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Hei Yeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, 28119, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
2
|
Hassan MT, Radhakrishnan SK, Sharma S, Lytton J. Cellular and subcellular distribution of the K +-dependent Na +/Ca 2+-exchanger subtype 4, NCKX4, in mouse brain. Neuroscience 2025; 569:210-230. [PMID: 39923981 DOI: 10.1016/j.neuroscience.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
SLC24A4, the gene encoding the K+-dependent Na+/Ca2+-exchanger, NCKX4, is widely expressed in the brain and involved in many neuronal functions. Here we use immunofluorescent staining and electron microscopy to map the expression of the NCKX4 protein across the mouse brain. Our data show that NCKX4 expression is higher in forebrain with particularly intense staining in specific brain regions, including olfactory bulb, ventral pallidum, globus pallidus, hippocampal mossy fibers, substantia nigra, inferior olive and choroid plexus. These areas are closely associated with crucial functions such as learning and memory, reward processing, motor activity, and cerebrospinal fluid production. Co-immunostaining of NCKX4 with marker proteins and immuno-electron microscopy demonstrate that neuronal NCKX4 is not expressed in cell bodies but is confined to distal neuronal processes with preferential expression on the cell surface. In contrast, NCKX4 expression in epithelial cells of the choroid plexus is found exclusively at intracellular sites. We also compared NCKX4 to two other Na+/Ca2+-exchangers, NCKX2 and NCX1. NCKX4 is the only exchanger expressed in choroid plexus and hippocampal mossy fibers. In the substantia nigra, NCKX4 and NCKX2 show striking overlap while NCX1 is absent. In many other brain regions all three exchangers are present. These data suggest both distinct and redundant roles for these exchangers in different brain regions. This novel information provides valuable insight into the mechanisms underlying the contribution of NCKX4 to various physiological processes associated with different brain regions and suggests the existence of undiscovered roles for NCKX4 in the brain.
Collapse
Affiliation(s)
- Mohamed Tarek Hassan
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Sarvan Kumar Radhakrishnan
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Sunita Sharma
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Jonathan Lytton
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
3
|
Solem MA, Pelzel RG, Rozema NB, Brown TG, Reid E, Mansky RH, Gomez-Pastor R. Absence of hippocampal pathology persists in the Q175DN mouse model of Huntington's disease despite elevated HTT aggregation. J Huntingtons Dis 2025; 14:59-84. [PMID: 39973391 PMCID: PMC11974504 DOI: 10.1177/18796397251316762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundHuntington's disease (HD) is a neurodegenerative disorder causing motor, cognitive, and psychiatric impairments, with the striatum being the most affected brain region. However, the role of other regions, such as the hippocampus, in HD remains less understood.ObjectiveHere, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models.MethodsWe utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density.ResultsWe showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT in Q175DN. On the contrary, no signs of hippocampal pathology were found in zQ175 and absence of hippocampal pathology persisted in Q175DN mice despite higher levels of mHTT. In addition, Q175DN hippocampus presented increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175.ConclusionsQ175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.
Collapse
Affiliation(s)
- Melissa A Solem
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ross G Pelzel
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas B Rozema
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Taylor G Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Emma Reid
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rachel H Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Buck SA, Mabry SJ, Glausier JR, Banks-Tibbs T, Ward C, Kozel J, Fu C, Fish KN, Lewis DA, Logan RW, Freyberg Z. Aging disrupts the coordination between mRNA and protein expression in mouse and human midbrain. Mol Psychiatry 2025:10.1038/s41380-025-02909-1. [PMID: 39875589 DOI: 10.1038/s41380-025-02909-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no difference in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th+/Vglut2+ neurons, Th and Vglut2 transcripts decreased with aging. However, Th and Vglut2 protein levels in striatal synaptic release sites (e.g., terminals and axonal projections) did not differ throughout aging. Similar to the mouse, an initial study of human brain showed no effect of aging on midbrain neuron number with a concomitant decrease in TH and VGLUT2 mRNA expression. Unlike in mice, the density of striatal TH+ dopaminergic terminals was lower in aged human subjects. However, TH and VGLUT2 protein levels were unaffected in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th+ neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel J Mabry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tabitha Banks-Tibbs
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Caroline Ward
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenesis Kozel
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Pfitzer J, Pinky PD, Perman S, Redmon E, Cmelak L, Suppiramaniam V, Coric V, Qureshi IA, Gramlich MW, Reed MN. Troriluzole rescues glutamatergic deficits, amyloid and tau pathology, and synaptic and memory impairments in 3xTg-AD mice. J Neurochem 2025; 169:e16215. [PMID: 39214859 DOI: 10.1111/jnc.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition in which clinical symptoms are highly correlated with the loss of glutamatergic synapses. While later stages of AD are associated with markedly decreased glutamate levels due to neuronal loss, in the early stages, pathological accumulation of glutamate and hyperactivity contribute to AD pathology and cognitive dysfunction. There is increasing awareness that presynaptic dysfunction, particularly synaptic vesicle (SV) alterations, play a key role in mediating this early-stage hyperactivity. In the current study, we sought to determine whether the 3xTg mouse model of AD that exhibits both beta-amyloid (Aβ) and tau-related pathology would exhibit similar presynaptic changes as previously observed in amyloid or tau models separately. Hippocampal cultures from 3xTg mice were used to determine whether presynaptic vesicular glutamate transporters (VGlut) and glutamate are increased at the synaptic level while controlling for postsynaptic activity. We observed that 3xTg hippocampal cultures exhibited increased VGlut1 associated with an increase in glutamate release, similar to prior observations in cultures from tau mouse models. However, the SV pool size was also increased in 3xTg cultures, an effect not previously observed in tau mouse models but observed in Aβ models, suggesting the changes in pool size may be due to Aβ and not tau. Second, we sought to determine whether treatment with troriluzole, a novel 3rd generation tripeptide prodrug of the glutamate modulator riluzole, could reduce VGlut1 and glutamate release to restore cognitive deficits in 8-month-old 3xTg mice. Treatment with troriluzole reduced VGlut1 expression, decreased basal and evoked glutamate release, and restored cognitive deficits in 3xTg mice. Together, these findings suggest presynaptic alterations are early events in AD that represent potential targets for therapeutic intervention, and these results support the promise of glutamate-modulating drugs such as troriluzole in Alzheimer's disease.
Collapse
Affiliation(s)
- Jeremiah Pfitzer
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Priyanka D Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Savannah Perman
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Emma Redmon
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Luca Cmelak
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, Georgia, USA
| | - Vladimir Coric
- Biohaven Pharmaceuticals Inc., New Haven, Connecticut, USA
| | | | - Michael W Gramlich
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
- Department of Physics, Auburn University, Auburn, Alabama, USA
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
O'Shea MJ, Anversa RG, Ch'ng SS, Campbell EJ, Walker LC, Andrews ZB, Lawrence AJ, Brown RM. An Island of Reil excitation: Mapping glutamatergic (vGlut1+ and vGlut2+) connections in the medial insular cortex. Biochem Pharmacol 2024; 230:116637. [PMID: 39561925 DOI: 10.1016/j.bcp.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The insular cortex is a multifunctional and richly connected region of the cerebral cortex, critical in the neural integration of external stimuli and internal signals. Well-served for this role by a large network of afferent and efferent connections, the mouse insula can be simplified into an anterior, medial and posterior portion. Here we focus on the medial subregion, a once over-looked area that has gained recent attention for its involvement in an array of behaviours. Although the connections of medial insular cortex neurons have been previously identified, their precise glutamatergic phenotype remains undefined (typically defined by the presence of the subtype of vesicular glutamate transporters). Hence, we combined Cre knock-in mouse lines and adeno-associated viral tracing to distinguish between the expression of the two major vesicular glutamate transporters, type 1 (vGlut1) and 2 (vGlut2), in the subregion's neuronal inputs and outputs. Our results determined that the medial insula has extensive glutamatergic efferents expressing both vGlut1 and vGlut2 throughout the neuraxis. In contrast, a more conservative number of glutamatergic inputs were observed, with exclusively vGlut2+ projections received from hypothalamic and thalamic regions. Taken together, we demonstrate that vGlut1- and vGlut2-expressing networks of this insular subdivision have distinct connectivity patterns, including a greater abundance of vGlut1+ fibres innervating hypothalamic regions and the extended amygdala. These findings provide insight into the distinct chemo-architecture of this region, which may facilitate further investigation into the role of the medial insula in complex behaviour.
Collapse
Affiliation(s)
- Mia Jessica O'Shea
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Roberta Goncalves Anversa
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Sarah Sulaiman Ch'ng
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Erin Jane Campbell
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Leigh Clasina Walker
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Zane Bruce Andrews
- Monash Biomedicine Discovery Institute, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Andrew John Lawrence
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Robyn Mary Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
7
|
Solem MA, Pelzel R, Rozema NB, Brown TG, Reid E, Mansky RH, Gomez-Pastor R. Enhanced Hippocampal Spare Capacity in Q175DN Mice Despite Elevated mHTT Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618355. [PMID: 39464002 PMCID: PMC11507687 DOI: 10.1101/2024.10.14.618355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Huntington's disease (HD) is a neurodegenerative disease resulting in devastating motor, cognitive, and psychiatric deficits. The striatum is a brain region that controls movement and some forms of cognition and is most significantly impacted in HD. However, despite well-documented deficits in learning and memory in HD, knowledge of the potential implication of other brain regions such as the hippocampus remains limited. Objective Here, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models. Methods We utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density. Results We showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT than hippocampal neurons in Q175DN despite high levels of mHTT in both regions. Contrary to the pathology seen in the striatum, Q175DN hippocampus presented enhanced spare capacity showing increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175. Conclusions Q175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.
Collapse
Affiliation(s)
- Melissa A Solem
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ross Pelzel
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Nicholas B. Rozema
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Taylor G. Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Emma Reid
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Rachel H. Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - R Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Carretero-Guillén A, Treviño M, Gómez-Climent MÁ, Dogbevia GK, Bertocchi I, Sprengel R, Larkum ME, Vlachos A, Gruart A, Delgado-García JM, Hasan MT. Dentate gyrus is needed for memory retrieval. Mol Psychiatry 2024; 29:2939-2950. [PMID: 38609585 PMCID: PMC11449802 DOI: 10.1038/s41380-024-02546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The hippocampus is crucial for acquiring and retrieving episodic and contextual memories. In previous studies, the inactivation of dentate gyrus (DG) neurons by chemogenetic- and optogenetic-mediated hyperpolarization led to opposing conclusions about DG's role in memory retrieval. One study used Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-mediated clozapine N-oxide (CNO)-induced hyperpolarization and reported that the previously formed memory was erased, thus concluding that denate gyrus is needed for memory maintenance. The other study used optogenetic with halorhodopsin induced hyperpolarization and reported and dentate gyrus is needed for memory retrieval. We hypothesized that this apparent discrepancy could be due to the length of hyperpolarization in previous studies; minutes by optogenetics and several hours by DREADD/CNO. Since hyperpolarization interferes with anterograde and retrograde neuronal signaling, it is possible that the memory engram in the dentate gyrus and the entorhinal to hippocampus trisynaptic circuit was erased by long-term, but not with short-term hyperpolarization. We developed and applied an advanced chemogenetic technology to selectively silence synaptic output by blocking neurotransmitter release without hyperpolarizing DG neurons to explore this apparent discrepancy. We performed in vivo electrophysiology during trace eyeblink in a rabbit model of associative learning. Our work shows that the DG output is required for memory retrieval. Based on previous and recent findings, we propose that the actively functional anterograde and retrograde neuronal signaling is necessary to preserve synaptic memory engrams along the entorhinal cortex to the hippocampal trisynaptic circuit.
Collapse
Affiliation(s)
- Alejandro Carretero-Guillén
- Division of Neuroscience, University Pablo de Olavide, Seville, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Mario Treviño
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, 44130, México
| | | | - Godwin K Dogbevia
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Health Canada, Ottawa, ON, Canada
| | - Ilaria Bertocchi
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Agnès Gruart
- Division of Neuroscience, University Pablo de Olavide, Seville, Spain
| | | | - Mazahir T Hasan
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Max Planck Institute for Medical Research, Heidelberg, Germany.
- NeuroCure, Charité - Universitätsmedizin, Berlin, Germany.
- Ikerbasque - Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
9
|
Lu WH, Chang TT, Chang YM, Liu YH, Lin CH, Suen CS, Hwang MJ, Huang YS. CPEB2-activated axonal translation of VGLUT2 mRNA promotes glutamatergic transmission and presynaptic plasticity. J Biomed Sci 2024; 31:69. [PMID: 38992696 PMCID: PMC11241979 DOI: 10.1186/s12929-024-01061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity. METHODS Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles. RESULTS Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles. CONCLUSIONS We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.
Collapse
Affiliation(s)
- Wen-Hsin Lu
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Tzu-Tung Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Yi-Hsiang Liu
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Chia-Hsuan Lin
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia Sinica, Taipei, 11529, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia Sinica, Taipei, 11529, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
10
|
Buck SA, Mabry SJ, Glausier JR, Banks-Tibbs T, Ward C, Kozel JG, Fu C, Fish KN, Lewis DA, Logan RW, Freyberg Z. Aging disrupts the coordination between mRNA and protein expression in mouse and human midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596950. [PMID: 38854057 PMCID: PMC11160743 DOI: 10.1101/2024.06.01.596950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, it remains unclear whether similar biological processes occur during healthy aging, albeit to a lesser degree. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no changes in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th +/Vglut2 + neurons, Th and Vglut2 transcripts decreased with aging. Importantly, striatal Th and Vglut2 protein expression remained unchanged. In translating our findings to humans, we found no midbrain neurodegeneration during aging and identified age-related decreases in TH and VGLUT2 mRNA expression similar to mouse. Unlike mice, we discovered diminished density of striatal TH+ dopaminergic terminals in aged human subjects. However, TH and VGLUT2 protein expression were unchanged in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th + neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.
Collapse
Affiliation(s)
- Silas A. Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel J. Mabry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tabitha Banks-Tibbs
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Caroline Ward
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenesis Gayden Kozel
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Wallace CH, Oliveros G, Xie L, Serrano P, Rockwell P, Figueiredo-Pereira M. Potential Alzheimer's early biomarkers in a transgenic rat model and benefits of diazoxide/dibenzoylmethane co-treatment on spatial memory and AD-pathology. Sci Rep 2024; 14:3730. [PMID: 38355687 PMCID: PMC10867006 DOI: 10.1038/s41598-024-54156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is the major form of dementia prevalent in older adults and with a high incidence in females. Identification of early biomarkers is essential for preventive intervention to delay its progression. Furthermore, due to its multifactorial nature, a multi-target approach could be therapeutically beneficial. Our studies included 4- (pre-pathology) and 11-month (mild-pathology) TgF344-AD rats, a transgenic Alzheimer's model that exhibits age-dependent AD progression. We identified two potential early biomarker genes for AD, early growth response 2 (EGR2) and histone 1H2AA (HIST1H2AA), in the hippocampus of 4-month females. Out of 17,168 genes analyzed by RNA sequencing, expression of these two genes was significantly altered in 4-month TgF344-AD rats compared to wild-type littermates. We also evaluated co-treatment with diazoxide (DZ), a potassium channel activator, and dibenzoylmethane (DIB), which inhibits eIF2α-P activity, on TgF344-AD and wild-type rats. DZ/DIB-treatment mitigated spatial memory deficits and buildup of hippocampal Aβ plaques and tau PHF in 11-month TgF344-AD rats but had no effect on wild-type littermates. To our knowledge, this preclinical study is the first to report EGR2 and HIST1H2AA as potential AD biomarkers in females, and the benefits of DZ/DIB-treatment in AD. Evaluations across multiple AD-related models is warranted to corroborate our findings.
Collapse
Affiliation(s)
- Charles H Wallace
- Department of Biological Sciences, Hunter College CUNY and Graduate Center, 695 Park Ave., New York, NY, USA
| | - Giovanni Oliveros
- Department of Biological Sciences, Hunter College CUNY and Graduate Center, 695 Park Ave., New York, NY, USA
| | - Lei Xie
- Department of Computer Sciences, Hunter College CUNY, New York, NY, USA
| | - Peter Serrano
- Department of Psychology, Hunter College CUNY, New York, NY, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College CUNY and Graduate Center, 695 Park Ave., New York, NY, USA
| | - Maria Figueiredo-Pereira
- Department of Biological Sciences, Hunter College CUNY and Graduate Center, 695 Park Ave., New York, NY, USA.
| |
Collapse
|
12
|
van Onselen R, Downing TG. Uptake of β-N-methylamino-L-alanine (BMAA) into glutamate-specific synaptic vesicles: Exploring the validity of the excitotoxicity mechanism of BMAA. Neurosci Lett 2024; 821:137593. [PMID: 38103629 DOI: 10.1016/j.neulet.2023.137593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The first mechanism of toxicity proposed for the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) was excitotoxicity, and this was supported by numerous in vitro studies in which overactivation of both ionotropic and metabotropic glutamate receptors was reported. However, the excitotoxicity of BMAA is weak in comparison with other known excitotoxins and on par with that of glutamate, implying that to achieve sufficient synaptic concentrations of BMAA to cause classical in vivo excitotoxicity, BMAA must either accumulate in synapses to allow persistent glutamate receptor activation or it must be released in sufficiently high concentrations into synapses to cause the overexcitation. Since it has been shown that BMAA can be readily removed from synapses, release of high concentrations of BMAA into synapses must be shown to confirm its role as an excitotoxin in in vivo systems. This study therefore sought to evaluate the uptake of BMAA into synaptic vesicles and to determine if BMAA affects the uptake of glutamate into synaptic vesicles. There was no evidence to support uptake of BMAA into glutamate-specific synaptic vesicles but there was some indication that BMAA may affect the uptake of glutamate into synaptic vesicles. The uptake of BMAA into synaptic vesicles isolated from areas other than the cerebral cortex should be investigated before definite conclusions can be drawn about the role of BMAA as an excitotoxin.
Collapse
Affiliation(s)
- Rianita van Onselen
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa; Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha, South Africa
| | - Tim G Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha, South Africa.
| |
Collapse
|
13
|
L’Esperance OJ, McGhee J, Davidson G, Niraula S, Smith A, Sosunov AA, Yan SS, Subramanian J. Functional Connectivity Favors Aberrant Visual Network c-Fos Expression Accompanied by Cortical Synapse Loss in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 101:111-131. [PMID: 39121131 PMCID: PMC11810533 DOI: 10.3233/jad-240776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, visual network dysfunction has received less attention despite compelling evidence of its significance in AD patients and mouse models. We recently reported c-Fos and synaptic dysregulation in the primary visual cortex of a pre-amyloid plaque AD-model. Objective We test whether c-Fos expression and presynaptic density/dynamics differ in cortical and subcortical visual areas in an AD-model. We also examine whether aberrant c-Fos expression is inherited through functional connectivity and shaped by light experience. Methods c-Fos+ cell density, functional connectivity, and their experience-dependent modulation were assessed for visual and whole-brain networks in both sexes of 4-6-month-old J20 (AD-model) and wildtype (WT) mice. Cortical and subcortical differences in presynaptic vulnerability in the AD-model were compared using ex vivo and in vivo imaging. Results Visual cortical, but not subcortical, networks show aberrant c-Fos expression and impaired experience-dependent modulation. The average functional connectivity of a brain region in WT mice significantly predicts aberrant c-Fos expression, which correlates with impaired experience-dependent modulation in the AD-model. We observed a subtle yet selective weakening of excitatory visual cortical synapses. The size distribution of cortical boutons in the AD-model is downscaled relative to those in WT mice, suggesting a synaptic scaling-like adaptation of bouton size. Conclusions Visual network structural and functional disruptions are biased toward cortical regions in pre-plaque J20 mice, and the cellular and synaptic dysregulation in the AD-model represents a maladaptive modification of the baseline physiology seen in WT conditions.
Collapse
Affiliation(s)
- Oliver J. L’Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Josh McGhee
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Garett Davidson
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Alexandre A. Sosunov
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Shirley Shidu Yan
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
14
|
Zhou Y, Bhatt H, Mojica CA, Xin H, Pessina MA, Rosene DL, Moore TL, Medalla M. Mesenchymal-derived extracellular vesicles enhance microglia-mediated synapse remodeling after cortical injury in aging Rhesus monkeys. J Neuroinflammation 2023; 20:201. [PMID: 37660145 PMCID: PMC10475204 DOI: 10.1186/s12974-023-02880-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke or traumatic brain injury. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys following injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. A focal lesion was induced via surgical ablation of pial blood vessels over lying the cortical hand representation of M1 of aged female rhesus monkeys, that received intravenous infusions of either vehicle (veh) or EVs 24 h and again 14 days post-injury. The current study used this same cohort to address how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high-resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC). We compared this lesion cohort to age-matched non-lesion controls (ctr). Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EVs on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglia-spine contacts. Our results suggest that EV treatment may enhance synaptic plasticity via clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic function to support functional recovery after injury.
Collapse
Affiliation(s)
- Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hrishti Bhatt
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hongqi Xin
- Department of Neurology, Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Monica A Pessina
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Zhou Y, Bhatt H, Mojica CA, Xin H, Pessina M, Rosene DL, Moore TL, Medalla M. Mesenchymal-Derived Extracellular Vesicles Enhance Microglia-mediated Synapse Remodeling after Cortical Injury in Rhesus Monkeys. RESEARCH SQUARE 2023:rs.3.rs-2917340. [PMID: 37292805 PMCID: PMC10246272 DOI: 10.21203/rs.3.rs-2917340/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys post-injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. The current study addresses how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba-1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC) of monkeys with intravenous infusions of either vehicle (veh) or EVs post-injury. We compared this lesion cohort to aged-matched non-lesion controls. Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EV on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglial-spine contacts. Our results provided evidence that EV treatment facilitated synaptic plasticity by enhancing clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic connectivity to support functional recovery after injury.
Collapse
Affiliation(s)
- Yuxin Zhou
- Boston University Chobanian & Avedisian School of Medicine
| | - Hrishti Bhatt
- Boston University Chobanian & Avedisian School of Medicine
| | | | | | - Monica Pessina
- Boston University Chobanian & Avedisian School of Medicine
| | | | - Tara L Moore
- Boston University Chobanian & Avedisian School of Medicine
| | - Maria Medalla
- Boston University Chobanian & Avedisian School of Medicine
| |
Collapse
|
16
|
Jin S, Campbell EJ, Ip CK, Layfield S, Bathgate RAD, Herzog H, Lawrence AJ. Molecular Profiling of VGluT1 AND VGluT2 Ventral Subiculum to Nucleus Accumbens Shell Projections. Neurochem Res 2023:10.1007/s11064-023-03921-z. [PMID: 37017888 DOI: 10.1007/s11064-023-03921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
The nucleus accumbens shell is a critical node in reward circuitry, encoding environments associated with reward. Long-range inputs from the ventral hippocampus (ventral subiculum) to the nucleus accumbens shell have been identified, yet their precise molecular phenotype remains to be determined. Here we used retrograde tracing to identify the ventral subiculum as the brain region with the densest glutamatergic (VGluT1-Slc17a7) input to the shell. We then used circuit-directed translating ribosome affinity purification to examine the molecular characteristics of distinct glutamatergic (VGluT1, VGluT2-Slc17a6) ventral subiculum to nucleus accumbens shell projections. We immunoprecipitated translating ribosomes from this population of projection neurons and analysed molecular connectomic information using RNA sequencing. We found differential gene enrichment across both glutamatergic projection neuron subtypes. In VGluT1 projections, we found enrichment of Pfkl, a gene involved in glucose metabolism. In VGluT2 projections, we found a depletion of Sparcl1 and Dlg1, genes known to play a role in depression- and addiction-related behaviours. These findings highlight potential glutamatergic neuronal-projection-specific differences in ventral subiculum to nucleus accumbens shell projections. Together these data advance our understanding of the phenotype of a defined brain circuit.
Collapse
Affiliation(s)
- Shubo Jin
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sharon Layfield
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
17
|
Radzicki D, Chong S, Dudek SM. Morphological and molecular markers of mouse area CA2 along the proximodistal and dorsoventral hippocampal axes. Hippocampus 2023; 33:133-149. [PMID: 36762588 PMCID: PMC10443601 DOI: 10.1002/hipo.23509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Hippocampal area CA2 is a molecularly and functionally distinct region of the hippocampus that has classically been defined as the area with large pyramidal neurons lacking input from the dentate gyrus and the thorny excrescences (TEs) characteristic of CA3 neurons. A modern definition of CA2, however, makes use of the expression of several molecular markers that distinguish it from neighboring CA3 and CA1. Using immunohistochemistry, we sought to characterize the staining patterns of commonly used CA2 markers along the dorsal-ventral hippocampal axis and determine how these markers align along the proximodistal axis. We used a region of CA2 that stained for both Regulator of G-protein Signaling 14 (RGS14) and Purkinje Cell Protein 4 (PCP4; "double-labeled zone" [DLZ]) as a reference. Here, we report that certain commonly used CA2 molecular markers may be better suited for drawing distinct boundaries between CA2/3 and CA2/1. For example, RGS14+ and STEP+ neurons showed minimal to no extension into area CA1 while areas stained with VGluT2 and Wisteria Floribunda agglutinin were consistently smaller than the DLZ/CA2 borders by ~100 μ on the CA1 or CA3 sides respectively. In addition, these patterns are dependent on position along the dorsal-ventral hippocampal axis such that PCP4 labeling often extended beyond the distal border of the DLZ into CA1. Finally, we found that, consistent with previous findings, mossy fibers innervate a subset of RGS14 positive neurons (~65%-70%) and that mossy fiber bouton number and relative size in CA2 are less than that of boutons in CA3. Unexpectedly, we did find evidence of some complex spines on apical dendrites in CA2, though much fewer in number than in CA3. Our results indicate that certain molecular markers may be better suited than others when defining the proximal and distal borders of area CA2 and that the presence or absence of complex spines alone may not be suitable as a distinguishing feature differentiating CA3 from CA2 neurons.
Collapse
Affiliation(s)
- Daniel Radzicki
- Neurobiology Laboratory, National Institute of Environmental Health SciencesNational Institute of HealthResearch Triangle ParkNorth CarolinaUSA
| | - Sarah Chong
- Neurobiology Laboratory, National Institute of Environmental Health SciencesNational Institute of HealthResearch Triangle ParkNorth CarolinaUSA
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health SciencesNational Institute of HealthResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
18
|
Vijayaragavan K, Cannon BJ, Tebaykin D, Bossé M, Baranski A, Oliveria JP, Bukhari SA, Mrdjen D, Corces MR, McCaffrey EF, Greenwald NF, Sigal Y, Marquez D, Khair Z, Bruce T, Goldston M, Bharadwaj A, Montine KS, Angelo RM, Montine TJ, Bendall SC. Single-cell spatial proteomic imaging for human neuropathology. Acta Neuropathol Commun 2022; 10:158. [PMID: 36333818 PMCID: PMC9636771 DOI: 10.1186/s40478-022-01465-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative disorders are characterized by phenotypic changes and hallmark proteopathies. Quantifying these in archival human brain tissues remains indispensable for validating animal models and understanding disease mechanisms. We present a framework for nanometer-scale, spatial proteomics with multiplex ion beam imaging (MIBI) for capturing neuropathological features. MIBI facilitated simultaneous, quantitative imaging of 36 proteins on archival human hippocampus from individuals spanning cognitively normal to dementia. Customized analysis strategies identified cell types and proteopathies in the hippocampus across stages of Alzheimer's disease (AD) neuropathologic change. We show microglia-pathologic tau interactions in hippocampal CA1 subfield in AD dementia. Data driven, sample independent creation of spatial proteomic regions identified persistent neurons in pathologic tau neighborhoods expressing mitochondrial protein MFN2, regardless of cognitive status, suggesting a survival advantage. Our study revealed unique insights from multiplexed imaging and data-driven approaches for neuropathologic analysis and serves broadly as a methodology for spatial proteomic analysis of archival human neuropathology. TEASER: Multiplex Ion beam Imaging enables deep spatial phenotyping of human neuropathology-associated cellular and disease features.
Collapse
Affiliation(s)
| | - Bryan J Cannon
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitry Tebaykin
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marc Bossé
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Alex Baranski
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - J P Oliveria
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Erin F McCaffrey
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Noah F Greenwald
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Diana Marquez
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Zumana Khair
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Trevor Bruce
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mako Goldston
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anusha Bharadwaj
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - R Michael Angelo
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Jin S, Maddern XJ, Campbell EJ, Lawrence AJ. Examining ventral subiculum and basolateral amygdala projections to the nucleus accumbens shell: Differential expression of VGLuT1, VGLuT2 and VGaT in the rat. Neurosci Lett 2022; 788:136858. [PMID: 36038028 DOI: 10.1016/j.neulet.2022.136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022]
Abstract
Projections to the striatum are well-identified. For example, in the ventral striatum, two major inputs to the medial nucleus accumbens shell include the ventral subiculum and basolateral amygdala. However, the chemical phenotype(s) of these projection neurons remain unclear. In this study, we examined amygdalostriatal and corticostriatal connectivity in rats using injections of the retrograde tracer cholera toxin b into the nucleus accumbens shell. To determine the neurotransmitter identity of projection neurons, we combined retrograde tracing with RNAscope in-situ hybridization, using mRNA probes against vesicular transporters associated with glutamatergic (VGluT1 - Slc17a7, VGluT2 - Slc17a6) or GABAergic (VGaT - Slc32a1) neurotransmission. Confocal imaging was used to examine vesicular transporter mRNA expression in the ventral subiculum and basolateral amygdala inputs to the nucleus accumbens shell. Both projections contained mostly VGluT1-expressing neurons. Interestingly, almost a quarter of ventral subiculum to nucleus accumbens shell projections co-expressed VGluT1 and VGluT2 compared to a relatively small number (∼3%) that were co-expressed in basolateral amygdala to nucleus accumbens shell afferents. However, almost a quarter of basolateral amygdala to nucleus accumbens shell projections were VGaT-positive. These findings highlight the diverse proportions of glutamatergic and GABAergic afferents in two major projections to the nucleus accumbens shell and raise important questions for functional studies.
Collapse
Affiliation(s)
- Shubo Jin
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Erin J Campbell
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
20
|
Upmanyu N, Jin J, Emde HVD, Ganzella M, Bösche L, Malviya VN, Zhuleku E, Politi AZ, Ninov M, Silbern I, Leutenegger M, Urlaub H, Riedel D, Preobraschenski J, Milosevic I, Hell SW, Jahn R, Sambandan S. Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. Neuron 2022; 110:1483-1497.e7. [PMID: 35263617 DOI: 10.1016/j.neuron.2022.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/08/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
Abstract
Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time.
Collapse
Affiliation(s)
- Neha Upmanyu
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jialin Jin
- European Neurosciences Institute, A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen 37077, Germany
| | - Henrik von der Emde
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Leon Bösche
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Viveka Nand Malviya
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Evi Zhuleku
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Antonio Zaccaria Politi
- Live-Cell Imaging Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Marcel Leutenegger
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Dietmar Riedel
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Julia Preobraschenski
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen 37075, Germany
| | - Ira Milosevic
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, UK; Multidisciplinary Institute of Ageing, MIA-Portugal, University of Coimbra, Coimbra 3000-370, Portugal
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69028, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sivakumar Sambandan
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
| |
Collapse
|
21
|
Pinky PD, Pfitzer JC, Senfeld J, Hong H, Bhattacharya S, Suppiramaniam V, Qureshi I, Reed MN. Recent Insights on Glutamatergic Dysfunction in Alzheimer's Disease and Therapeutic Implications. Neuroscientist 2022:10738584211069897. [PMID: 35073787 DOI: 10.1177/10738584211069897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) poses a critical public health challenge, and there is an urgent need for novel treatment options. Glutamate, the principal excitatory neurotransmitter in the human brain, plays a critical role in mediating cognitive and behavioral functions; and clinical symptoms in AD patients are highly correlated with the loss of glutamatergic synapses. In this review, we highlight how dysregulated glutamatergic mechanisms can underpin cognitive and behavioral impairments and contribute to the progression of AD via complex interactions with neuronal and neural network hyperactivity, Aβ, tau, glial dysfunction, and other disease-associated factors. We focus on the tripartite synapse, where glutamatergic neurotransmission occurs, and evidence elucidating how the tripartite synapse can be pathologically altered in AD. We also discuss promising therapeutic approaches that have the potential to rescue these deficits. These emerging data support the development of novel glutamatergic drug candidates as compelling approaches for treating AD.
Collapse
Affiliation(s)
- Priyanka D Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jeremiah C Pfitzer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jared Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Hao Hong
- Department of Pharmacy, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| | | | - Miranda N Reed
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
22
|
Hori T, Takamori S. Physiological Perspectives on Molecular Mechanisms and Regulation of Vesicular Glutamate Transport: Lessons From Calyx of Held Synapses. Front Cell Neurosci 2022; 15:811892. [PMID: 35095427 PMCID: PMC8793065 DOI: 10.3389/fncel.2021.811892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Accumulation of glutamate, the primary excitatory neurotransmitter in the mammalian central nervous system, into presynaptic synaptic vesicles (SVs) depends upon three vesicular glutamate transporters (VGLUTs). Since VGLUTs are driven by a proton electrochemical gradient across the SV membrane generated by vacuolar-type H+-ATPases (V-ATPases), the rate of glutamate transport into SVs, as well as the amount of glutamate in SVs at equilibrium, are influenced by activities of both VGLUTs and V-ATPase. Despite emerging evidence that suggests various factors influencing glutamate transport by VGLUTs in vitro, little has been reported in physiological or pathological contexts to date. Historically, this was partially due to a lack of appropriate methods to monitor glutamate loading into SVs in living synapses. Furthermore, whether or not glutamate refilling of SVs can be rate-limiting for synaptic transmission is not well understood, primarily due to a lack of knowledge concerning the time required for vesicle reuse and refilling during repetitive stimulation. In this review, we first introduce a unique electrophysiological method to monitor glutamate refilling by VGLUTs in a giant model synapse from the calyx of Held in rodent brainstem slices, and we discuss the advantages and limitations of the method. We then introduce the current understanding of factors that potentially alter the amount and rate of glutamate refilling of SVs in this synapse, and discuss open questions from physiological viewpoints.
Collapse
Affiliation(s)
- Tetsuya Hori
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Tetsuya Hori Shigeo Takamori
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- *Correspondence: Tetsuya Hori Shigeo Takamori
| |
Collapse
|
23
|
Woelfle S, Boeckers TM. Layer-Specific Vesicular Glutamate Transporter 1 Immunofluorescence Levels Delineate All Layers of the Human Hippocampus Including the Stratum lucidum. Front Cell Neurosci 2021; 15:789903. [PMID: 34955756 PMCID: PMC8696355 DOI: 10.3389/fncel.2021.789903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022] Open
Abstract
The hippocampal formation consists of the Ammon’s horn (cornu Ammonis with its regions CA1-4), dentate gyrus, subiculum, and the entorhinal cortex. The rough extension of the regions CA1-3 is typically defined based on the density and size of the pyramidal neurons without clear-cut boundaries. Here, we propose the vesicular glutamate transporter 1 (VGLUT1) as a molecular marker for the CA3 region. This is based on its strong labeling of the stratum lucidum (SL) in fluorescently stained human hippocampus sections. VGLUT1 puncta of the intense SL band co-localize with synaptoporin (SPO), a protein enriched in mossy fibers (MFs). Owing to its specific intensity profile throughout all hippocampal layers, VGLUT1 could be implemented as a pendant to Nissl-staining in fluorescent approaches with the additional demarcation of the SL. Furthermore, by high-resolution confocal microscopy, we detected VGLUT2 in the human hippocampus, thus reconciling two previous studies. Finally, by VGLUT1/SPO co-staining, we provide evidence for the existence of infrapyramidal MFs in the human hippocampus and we show that SPO expression is not restricted to MF synapses as demonstrated for rodent tissue.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm (IGradU), Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| |
Collapse
|
24
|
Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory. Acta Neuropathol 2021; 142:643-667. [PMID: 34170374 PMCID: PMC8423657 DOI: 10.1007/s00401-021-02338-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022]
Abstract
The complement system is implicated in synapse loss in the MS hippocampus, but the functional consequences of synapse loss remain poorly understood. Here, in post-mortem MS hippocampi with demyelination we find that deposits of the complement component C1q are enriched in the CA2 subfield, are linked to loss of inhibitory synapses and are significantly higher in MS patients with cognitive impairments compared to those with preserved cognitive functions. Using the cuprizone mouse model of demyelination, we corroborated that C1q deposits are highest within the demyelinated dorsal hippocampal CA2 pyramidal layer and co-localized with inhibitory synapses engulfed by microglia/macrophages. In agreement with the loss of inhibitory perisomatic synapses, we found that Schaffer collateral feedforward inhibition but not excitation was impaired in CA2 pyramidal neurons and accompanied by intrinsic changes and a reduced spike output. Finally, consistent with excitability deficits, we show that cuprizone-treated mice exhibit impaired encoding of social memories. Together, our findings identify CA2 as a critical circuit in demyelinated intrahippocampal lesions and memory dysfunctions in MS.
Collapse
|
25
|
Buck SA, De Miranda BR, Logan RW, Fish KN, Greenamyre JT, Freyberg Z. VGLUT2 Is a Determinant of Dopamine Neuron Resilience in a Rotenone Model of Dopamine Neurodegeneration. J Neurosci 2021; 41:4937-4947. [PMID: 33893220 PMCID: PMC8260163 DOI: 10.1523/jneurosci.2770-20.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive dopamine (DA) neuron loss in the SNc. In contrast, DA neurons in the VTA are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerability. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mitochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the NAc, where the majority of VGLUT2-expressing DA neurons project, exhibit greater resilience compared with DA terminals in the caudate/putamen. More broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity. Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to prevent toxicant-induced DA neurodegeneration in PD.SIGNIFICANCE STATEMENT Environmental exposures to pesticides contribute significantly to pathologic processes that culminate in Parkinson's disease (PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness, including dopamine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to rotenone; and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting that VGLUT2 expression generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to prevent toxicant-induced DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Briana R De Miranda
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, 02118
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine, 04609
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
26
|
Nakakubo Y, Abe S, Yoshida T, Takami C, Isa M, Wojcik SM, Brose N, Takamori S, Hori T. Vesicular Glutamate Transporter Expression Ensures High-Fidelity Synaptic Transmission at the Calyx of Held Synapses. Cell Rep 2021; 32:108040. [PMID: 32814044 DOI: 10.1016/j.celrep.2020.108040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/01/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
Recycling of synaptic vesicles (SVs) at presynaptic terminals is required for sustained neurotransmitter release. Although SV endocytosis is a rate-limiting step for synaptic transmission, it is unclear whether the rate of the subsequent SV refilling with neurotransmitter also influences synaptic transmission. By analyzing vesicular glutamate transporter 1 (VGLUT1)-deficient calyx of Held synapses, in which both VGLUT1 and VGLUT2 are co-expressed in wild-type situation, we found that VGLUT1 loss causes a drastic reduction in SV refilling rate down to ∼25% of wild-type values, with only subtle changes in basic synaptic parameters. Strikingly, VGLUT1-deficient synapses exhibited abnormal synaptic failures within a few seconds during high-frequency repetitive firing, which was recapitulated by manipulating presynaptic Cl- concentrations to retard SV refilling. Our data show that the speed of SV refilling can be rate limiting for synaptic transmission under certain conditions that entail reduced VGLUT levels during development as well as various neuropathological processes.
Collapse
Affiliation(s)
- Yutaro Nakakubo
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Saeka Abe
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Tomofumi Yoshida
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Chihiro Takami
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Masayuki Isa
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen 37075, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen 37075, Germany
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan.
| | - Tetsuya Hori
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| |
Collapse
|
27
|
Lippman-Bell JJ, Handy M, Nieder CG, Getzfread M, Jensen FE. Altered hippocampal dendritic spine maturation after hypoxia-induced seizures in neonatal rats. Mol Cell Neurosci 2021; 113:103629. [PMID: 34015497 DOI: 10.1016/j.mcn.2021.103629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/01/2022] Open
Abstract
Cognitive comorbidities often follow early-life seizures (ELS), especially in the setting of autism and other neurodevelopmental syndromes. However, there is an incomplete understanding of whether neuronal and synaptic development are concomitantly dysregulated. We have previously shown that hypoxia-induced seizures (HS) in postnatal day (P)10 rats increase acute and later-life hippocampal glutamatergic neurotransmission and spontaneous recurrent seizures, and impair cognition and behavior. As dendritic spines critically regulate synaptic function, we hypothesized that ELS can induce developmentally specific changes in dendritic spine maturation. At intervals during one month following HS in P10 rats, we assessed dendritic spine development on pyramidal neurons in the stratum radiatum of hippocampal area CA1. Compared to control rats in which spine density significantly decreased from P10 to early adulthood (P38), post-seizure rats failed to show a developmental decrease in spine density, and spines from P38 post-seizure rats appeared more immature-shaped (long, thin). In addition, compared to P38 control rats, post-seizure P38 rats expressed significantly more synaptic PSD-95, a marker of mature synapses. These changes were preceded by a transient increase in hippocampal expression of cofilin phosphorylated at Ser3, representing a decrease in cofilin activity. These results suggest that early-life seizures may impair normal dendritic spine maturation and pruning in CA1 during development, resulting in an excess of less efficient synapses, via activity-dependent modification of actin-regulating proteins such as cofilin. Given that multiple neurodevelopmental disorders show similar failures in developmental spine pruning, the current findings may represent a deficit in structural plasticity that could be a component of a mechanism leading to later-life cognitive consequences associated with early-life seizures.
Collapse
Affiliation(s)
- Jocelyn J Lippman-Bell
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Marcus Handy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cassidy G Nieder
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Mollie Getzfread
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
28
|
Kim S, Kim HK, Baek AR, Sung B, Yang BW, Kim YH, Lee JJ, Yang JU, Shin CH, Jung H, Kim M, Cho AE, Lee T, Chang Y. Rose bengal conjugated gadolinium complex as a new multimodal imaging agent targeting presynaptic vesicular glutamate transporters. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Deletion of VGLUT2 in midbrain dopamine neurons attenuates dopamine and glutamate responses to methamphetamine in mice. Pharmacol Biochem Behav 2021; 202:173104. [DOI: 10.1016/j.pbb.2021.173104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 01/26/2023]
|
30
|
Ibrahim KS, Abd-Elrahman KS, El Mestikawy S, Ferguson SSG. Targeting Vesicular Glutamate Transporter Machinery: Implications on Metabotropic Glutamate Receptor 5 Signaling and Behavior. Mol Pharmacol 2020; 98:314-327. [PMID: 32873747 DOI: 10.1124/molpharm.120.000089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 11/22/2022] Open
Abstract
Cross talk between both pre- and postsynaptic components of glutamatergic neurotransmission plays a crucial role in orchestrating a multitude of brain functions, including synaptic plasticity and motor planning. Metabotropic glutamate receptor (mGluR) 5 exhibits promising therapeutic potential for many neurodevelopmental and neurodegenerative disorders as a consequence of its modulatory control over diverse neuronal networks required for memory, motor coordination, neuronal survival, and differentiation. Given these crucial roles, mGluR5 signaling is under the tight control of glutamate release machinery mediated through vesicular glutamate transporters (VGLUTs) that ultimately dictate glutamatergic output. A particular VGLUT isoform, VGLUT3, exhibits an overlapping, but unique, distribution with mGluR5, and the dynamic cross talk between mGluR5 and VGLUT3 is key for the function of specific neuronal networks involved in motor coordination, emotions, and cognition. Thus, aberrant signaling of the VGLUT3-mGluR5 axis is linked to various pathologies including, but not limited to, Parkinson disease, anxiety disorders, and drug addiction. We argue that a comprehensive profiling of how coordinated VGLUT3-mGluR5 signaling influences overall glutamatergic neurotransmission is warranted. SIGNIFICANCE STATEMENT: Vesicular glutamate receptor (VGLUT) 3 machinery orchestrates glutamate release, and its distribution overlaps with metabotropic glutamate receptor (mGluR) 5 in regional brain circuitries, including striatum, hippocampus, and raphe nucleus. Therefore, VGLUT3-mGluR5 cross talk can significantly influence both physiologic and pathophysiologic glutamatergic neurotransmission. Pathological signaling of the VGLUT3-mGluR5 axis is linked to Parkinson disease, anxiety disorders, and drug addiction. However, it is also predicted to contribute to other motor and cognitive disorders.
Collapse
Affiliation(s)
- Karim S Ibrahim
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| | - Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| | - Salah El Mestikawy
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Institute (K.S.I., K.S.A.-E., S.S.G.F.) and Department of Cellular and Molecular Medicine (K.S.I., K.S.A.-E., S.S.G.F.), University of Ottawa, Ottawa, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (K.S.I., K.S.A.-E.); Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France (S.E.M.); and Department of Psychiatry, Douglas Hospital Research Center, McGill University, Verdun, Quebec, Canada (S.E.M.)
| |
Collapse
|
31
|
Li ZH, Zhang CK, Qiao Y, Ge SN, Zhang T, Li JL. Coexpression of VGLUT1 and VGLUT2 in precerebellar neurons in the lateral reticular nucleus of the rat. Brain Res Bull 2020; 162:94-106. [PMID: 32562720 DOI: 10.1016/j.brainresbull.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Vesicular glutamate transporter (VGLUT) 1 and VGLUT2 have been reported to distribute complementally in most brain regions and have been assumed to define distinct functional elements. Previous studies have shown the expression of VGLUT1 mRNA and VGLUT2 mRNA in the lateral reticular nucleus (LRN), a key precerebellar nucleus sending mossy fibers to the cerebellum. In the present study, we firstly examined the coexpression of VGLUT1 and VGLUT2 mRNA in the LRN of the rat by dual-fluorescence in situ hybridization. About 81.89 % of glutamatergic LRN neurons coexpressed VGLUT1 and VGLUT2 mRNA, and the others expressed either VGLUT1 or VGLUT2 mRNA. We then injected the retrograde tracer Fluogold (FG) into the vermal cortex of cerebellum, and observed that 95.01 % and 86.80 % of FG-labeled LRN neurons expressed VGLUT1 or VGLUT2 mRNA respectively. We further injected the anterograde tracer biotinylated dextran amine (BDA) into the LRN, and found about 82.6 % of BDA labeled axon terminals in the granular layer of cerebellar cortex showed both VGLUT1- and VGLUT2-immunoreactivities. Afterwards, we observed under electron microscopy that anterogradely labeled axon terminals showing immunoreactivity for VGLUT1 or VGLUT2 made asymmetric synapses with dendritic profiles of cerebellar neurons. Finally, we selectively down-regulated the expression of VGLUT1 mRNA or VGLUT2 mRNA by using viral vector mediated siRNA transfection and detected that the fine movements of the forelimb of rats were disturbed. These results indicated that LRN neurons coexpressing VGLUT1 and VGLUT2 project to the cerebellar cortex and these neurons might be critical in mediating the forelimb movements.
Collapse
Affiliation(s)
- Zhi-Hong Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China; Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, No.1 of Xinyi Road, Baqiao District, Xi'an, 710038, China
| | - Chun-Kui Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China
| | - Yu Qiao
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China
| | - Shun-Nan Ge
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China; Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, No.1 of Xinyi Road, Baqiao District, Xi'an, 710038, China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China; Department of Anatomy, School of Medicine, Northwest University, No.229 of North Taibai Road, Beilin District, Xi'an, 710069, China.
| |
Collapse
|
32
|
Du X, Li J, Li M, Yang X, Qi Z, Xu B, Liu W, Xu Z, Deng Y. Research progress on the role of type I vesicular glutamate transporter (VGLUT1) in nervous system diseases. Cell Biosci 2020; 10:26. [PMID: 32158532 PMCID: PMC7057577 DOI: 10.1186/s13578-020-00393-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Glutamate (Glu) is the predominant excitatory neurotransmitter in the central nervous system (CNS). Glutamatergic transmission is critical for controlling neuronal activity. In presynaptic neurons, Glu is stored in synaptic vesicles and released by stimulation. The homeostasis of glutamatergic system is maintained by a set of transporters in the membrane of synaptic vesicles. The family of vesicular Glu transporters in mammals is comprised of three highly homologous proteins: VGLUT1-3. Among them, VGLUT1 accounts for the largest proportion. However, most of the Glu is transported into the synaptic vesicles via the type 1 vesicle Glu transporter (VGLUT1). So, the expression of particular VGLUT1 is largely complementary with limited overlap and so far it is most specific markers for neurons that use Glu as neurotransmitter. Controlling the activity of VGLUT1 could potentially modulate the efficiency of excitatory neuro-transmission and change the filling level of synaptic vesicles. This review summarizes the recent knowledge concerning molecular and functional characteristic of VGLUT1, their development, contribution to a series of central nervous system and peripheral nervous system diseases such as learning and memory disorders, Alzheimer's disease, Parkinson's disease and sensitized nociception or pain pathology et al.
Collapse
Affiliation(s)
- Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 Liaoning People’s Republic of China
| |
Collapse
|
33
|
Shahjin F, Guda RS, Schaal VL, Odegaard K, Clark A, Gowen A, Xiao P, Lisco SJ, Pendyala G, Yelamanchili SV. Brain-Derived Extracellular Vesicle microRNA Signatures Associated with In Utero and Postnatal Oxycodone Exposure. Cells 2019; 9:cells9010021. [PMID: 31861723 PMCID: PMC7016745 DOI: 10.3390/cells9010021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022] Open
Abstract
Oxycodone (oxy) is a semi-synthetic opioid commonly used as a pain medication that is also a widely abused prescription drug. While very limited studies have examined the effect of in utero oxy (IUO) exposure on neurodevelopment, a significant gap in knowledge is the effect of IUO compared with postnatal oxy (PNO) exposure on synaptogenesis—a key process in the formation of synapses during brain development—in the exposed offspring. One relatively unexplored form of cell–cell communication associated with brain development in response to IUO and PNO exposure are extracellular vesicles (EVs). EVs are membrane-bound vesicles that serve as carriers of cargo, such as microRNAs (miRNAs). Using RNA-Seq analysis, we identified distinct brain-derived extracellular vesicle (BDEs) miRNA signatures associated with IUO and PNO exposure, including their gene targets, regulating key functional pathways associated with brain development to be more impacted in the IUO offspring. Further treatment of primary 14-day in vitro (DIV) neurons with IUO BDEs caused a significant reduction in spine density compared to treatment with BDEs from PNO and saline groups. In summary, our studies identified for the first time, key BDE miRNA signatures in IUO- and PNO-exposed offspring, which could impact their brain development as well as synaptic function.
Collapse
Affiliation(s)
- Farah Shahjin
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Rahul S. Guda
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Victoria L. Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Katherine Odegaard
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Alexander Clark
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Austin Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Peng Xiao
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Steven J. Lisco
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
- Correspondence: (G.P.); (S.V.Y.); Tel.: +1-402-559-8690 (G.P.); +1-402-559-5348 (S.V.Y.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (F.S.); (R.S.G.); (V.L.S.); (K.O.); (A.C.); (A.G.); (S.J.L.)
- Correspondence: (G.P.); (S.V.Y.); Tel.: +1-402-559-8690 (G.P.); +1-402-559-5348 (S.V.Y.)
| |
Collapse
|
34
|
Zhang XM, François U, Silm K, Angelo MF, Fernandez-Busch MV, Maged M, Martin C, Bernard V, Cordelières FP, Deshors M, Pons S, Maskos U, Bemelmans AP, Wojcik SM, El Mestikawy S, Humeau Y, Herzog E. A proline-rich motif on VGLUT1 reduces synaptic vesicle super-pool and spontaneous release frequency. eLife 2019; 8:50401. [PMID: 31663854 PMCID: PMC6861006 DOI: 10.7554/elife.50401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/27/2019] [Indexed: 12/29/2022] Open
Abstract
Glutamate secretion at excitatory synapses is tightly regulated to allow for the precise tuning of synaptic strength. Vesicular Glutamate Transporters (VGLUT) accumulate glutamate into synaptic vesicles (SV) and thereby regulate quantal size. Further, the number of release sites and the release probability of SVs maybe regulated by the organization of active-zone proteins and SV clusters. In the present work, we uncover a mechanism mediating an increased SV clustering through the interaction of VGLUT1 second proline-rich domain, endophilinA1 and intersectin1. This strengthening of SV clusters results in a combined reduction of axonal SV super-pool size and miniature excitatory events frequency. Our findings support a model in which clustered vesicles are held together through multiple weak interactions between Src homology three and proline-rich domains of synaptic proteins. In mammals, VGLUT1 gained a proline-rich sequence that recruits endophilinA1 and turns the transporter into a regulator of SV organization and spontaneous release.
Collapse
Affiliation(s)
- Xiao Min Zhang
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France.,Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Urielle François
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Kätlin Silm
- Neuroscience Paris Seine NPS, Université Pierre et Marie Curie INSERM U1130 CNRS UMR8246, Paris, France
| | - Maria Florencia Angelo
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Maria Victoria Fernandez-Busch
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Mona Maged
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Christelle Martin
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Véronique Bernard
- Neuroscience Paris Seine NPS, Université Pierre et Marie Curie INSERM U1130 CNRS UMR8246, Paris, France
| | - Fabrice P Cordelières
- Bordeaux Imaging Center, Université de Bordeaux, CNRS UMS 3420, INSERM US4, Bordeaux, France
| | - Melissa Deshors
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Stéphanie Pons
- Institut Pasteur, CNRS UMR 3571, Unité NISC, Paris, France
| | - Uwe Maskos
- Institut Pasteur, CNRS UMR 3571, Unité NISC, Paris, France
| | - Alexis Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de laRecherche Fondamentale (DRF), Institut de Biologie François Jacob (IBFJ), MolecularImaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Salah El Mestikawy
- Neuroscience Paris Seine NPS, Université Pierre et Marie Curie INSERM U1130 CNRS UMR8246, Paris, France.,Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Etienne Herzog
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| |
Collapse
|
35
|
Wang W, Zeng F, Hu Y, Li X. A Mini-Review of the Role of Glutamate Transporter in Drug Addiction. Front Neurol 2019; 10:1123. [PMID: 31695674 PMCID: PMC6817614 DOI: 10.3389/fneur.2019.01123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022] Open
Abstract
Goals: The development of new treatment for drug abuse requires identification of targetable molecular mechanisms. The pathology of glutamate neurotransmission system in the brain reward circuit is related to the relapse of multiple drugs. Glutamate transporter regulates glutamate signaling by removing excess glutamate from the synapse. And the mechanisms between glutamate transporter and drug addiction are still unclear. Methods: A systematic review of the literature searched in Pubmed and reporting drug addiction in relation to glutamate transporter. Studies were screened by title, abstract, and full text. Results: This review is to highlight the effects of drug addiction on glutamate transporter and glutamate uptake, and targeting glutamate transporter as an addictive drug addiction treatment. We focus on the roles of glutamate transporter in different brain regions in drug addiction. More importantly, we suggest the functional roles of glutamate transporter may prove beneficial in the treatment of drug addiction. Conclusion: Overall, understanding how glutamate transporter impacts central nervous system may provide a new insight for treatment of drug addiction.
Collapse
Affiliation(s)
- Wenjun Wang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yingying Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
36
|
Yamawaki N, Corcoran KA, Guedea AL, Shepherd GMG, Radulovic J. Differential Contributions of Glutamatergic Hippocampal→Retrosplenial Cortical Projections to the Formation and Persistence of Context Memories. Cereb Cortex 2019; 29:2728-2736. [PMID: 29878069 PMCID: PMC6519694 DOI: 10.1093/cercor/bhy142] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/02/2018] [Indexed: 12/20/2022] Open
Abstract
Learning to associate stressful events with specific environmental contexts depends on excitatory transmission in the hippocampus, but how this information is transmitted to the neocortex for lasting memory storage is unclear. We identified dorsal hippocampal (DH) projections to the retrosplenial cortex (RSC), which arise mainly from the subiculum and contain either the vesicular glutamate transporter 1 (vGlut1) or vGlut2. Both vGlut1+ and vGlut2+ axons strongly excite and disynaptically inhibit RSC pyramidal neurons in superficial layers, but vGlut2+ axons trigger greater inhibition that spreads to deep layers, indicating that these pathways engage RSC circuits via partially redundant, partially differentiated cellular mechanisms. Using contextual fear conditioning in mice to model contextual associative memories, together with chemogenetic axonal silencing, we found that vGlut1+ projections are principally involved in processing recent context memories whereas vGlut2+ projections contribute to their long-lasting storage. Thus, within the DH→RSC pathway, engagement of vGlut1+ and vGlut2+ circuits differentially contribute to the formation and persistence of fear-inducing context memories.
Collapse
Affiliation(s)
- Naoki Yamawaki
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kevin A Corcoran
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Anita L Guedea
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Gordon M G Shepherd
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jelena Radulovic
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
37
|
GABAergic Medial Septal Neurons with Low-Rhythmic Firing Innervating the Dentate Gyrus and Hippocampal Area CA3. J Neurosci 2019; 39:4527-4549. [PMID: 30926750 PMCID: PMC6554630 DOI: 10.1523/jneurosci.3024-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
The medial septum implements cortical theta oscillations, a 5–12 Hz rhythm associated with locomotion and paradoxical sleep reflecting synchronization of neuronal assemblies such as place cell sequence coding. Highly rhythmic burst-firing parvalbumin-positive GABAergic medial septal neurons are strongly coupled to theta oscillations and target cortical GABAergic interneurons, contributing to coordination within one or several cortical regions. However, a large population of medial septal neurons of unidentified neurotransmitter phenotype and with unknown axonal target areas fire with a low degree of rhythmicity. We investigated whether low-rhythmic-firing neurons (LRNs) innervated similar or different cortical regions to high-rhythmic-firing neurons (HRNs) and assessed their temporal dynamics in awake male mice. The majority of LRNs were GABAergic and parvalbumin-immunonegative, some expressing calbindin; they innervated interneurons mostly in the dentate gyrus (DG) and CA3. Individual LRNs showed several distinct firing patterns during immobility and locomotion, forming a parallel inhibitory stream for the modulation of cortical interneurons. Despite their fluctuating firing rates, the preferred firing phase of LRNs during theta oscillations matched the highest firing probability phase of principal cells in the DG and CA3. In addition, as a population, LRNs were markedly suppressed during hippocampal sharp-wave ripples, had a low burst incidence, and several of them did not fire on all theta cycles. Therefore, CA3 receives GABAergic input from both HRNs and LRNs, but the DG receives mainly LRN input. We propose that distinct GABAergic LRNs contribute to changing the excitability of the DG and CA3 during memory discrimination via transient disinhibition of principal cells. SIGNIFICANCE STATEMENT For the encoding and recall of episodic memories, nerve cells in the cerebral cortex are activated in precisely timed sequences. Rhythmicity facilitates the coordination of neuronal activity and these rhythms are detected as oscillations of different frequencies such as 5–12 Hz theta oscillations. Degradation of these rhythms, such as through neurodegeneration, causes memory deficits. The medial septum, a part of the basal forebrain that innervates the hippocampal formation, contains high- and low-rhythmic-firing neurons (HRNs and LRNs, respectively), which may contribute differentially to cortical neuronal coordination. We discovered that GABAergic LRNs preferentially innervate the dentate gyrus and the CA3 area of the hippocampus, regions important for episodic memory. These neurons act in parallel with the HRNs mostly via transient inhibition of inhibitory neurons.
Collapse
|
38
|
Synaptic Organization of VGLUT3 Expressing Low-Threshold Mechanosensitive C Fiber Terminals in the Rodent Spinal Cord. eNeuro 2019; 6:eN-NWR-0007-19. [PMID: 30783617 PMCID: PMC6378328 DOI: 10.1523/eneuro.0007-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
Low-threshold mechanosensitive C fibers (C-LTMRs) that express the vesicular glutamate transporter VGLUT3 are thought to signal affective touch, and may also play a role in mechanical allodynia. However, the nature of the central termination of C-LTMRs in the dorsal horn remains largely unexplored. Here, we used light and electron microscopy in combination with VGLUT3 immunolabeling as a marker of C-LTMR terminations to investigate this issue. VGLUT3+ C-LTMRs formed central terminals of Type II glomeruli in the inner part of lamina II of the dorsal horn, often establishing multiple asymmetric synapses with postsynaptic dendrites but also participating in synaptic configurations with presynaptic axons and dendrites. Unexpectedly, essentially all VGLUT3+ C-LTMR terminals showed substantial VGLUT1 expression in the rat, whereas such terminals in mice lacked VGLUT1. Most VGLUT3+ C-LTMR terminals exhibited weak-to-moderate VGLUT2 expression. Further, C-LTMR terminals formed numerous synapses with excitatory protein kinase Cγ (PKCγ) interneurons and inhibitory parvalbumin neurons, whereas synapses with calretinin neurons were scarce. C-LTMR terminals rarely if ever established synapses with neurokinin 1 receptor (NK1R)-possessing dendrites traversing lamina II. Thus, VGLUT3+ C-LTMR terminals appear to largely correspond to neurofilament-lacking central terminals of Type II glomeruli in inner lamina II and can thus be identified at the ultrastructural level by morphological criteria. The participation of C-LTMR terminals in Type II glomeruli involving diverse populations of interneuron indicates highly complex modes of integration of C-LTMR mediated signaling in the dorsal horn. Furthermore, differences in VGLUT1 expression indicate distinct species differences in synaptic physiology of C-LTMR terminals.
Collapse
|
39
|
Singer W, Manthey M, Panford-Walsh R, Matt L, Geisler HS, Passeri E, Baj G, Tongiorgi E, Leal G, Duarte CB, Salazar IL, Eckert P, Rohbock K, Hu J, Strotmann J, Ruth P, Zimmermann U, Rüttiger L, Ott T, Schimmang T, Knipper M. BDNF-Live-Exon-Visualization (BLEV) Allows Differential Detection of BDNF Transcripts in vitro and in vivo. Front Mol Neurosci 2018; 11:325. [PMID: 30319348 PMCID: PMC6170895 DOI: 10.3389/fnmol.2018.00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Bdnf exon-IV and exon-VI transcripts are driven by neuronal activity and are involved in pathologies related to sleep, fear or memory disorders. However, how their differential transcription translates activity changes into long-lasting network changes is elusive. Aiming to trace specifically the network controlled by exon-IV and -VI derived BDNF during activity-dependent plasticity changes, we generated a transgenic reporter mouse for B DNF- l ive- e xon- v isualization (BLEV), in which expression of Bdnf exon-IV and -VI can be visualized by co-expression of CFP and YFP. CFP and YFP expression was differentially activated and targeted in cell lines, primary cultures and BLEV reporter mice without interfering with BDNF protein synthesis. CFP and YFP expression, moreover, overlapped with BDNF protein expression in defined hippocampal neuronal, glial and vascular locations in vivo. So far, activity-dependent BDNF cannot be explicitly monitored independent of basal BDNF levels. The BLEV reporter mouse therefore provides a new model, which can be used to test whether stimulus-induced activity-dependent changes in BDNF expression are instrumental for long-lasting plasticity modifications.
Collapse
Affiliation(s)
- Wibke Singer
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marie Manthey
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Rama Panford-Walsh
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Institute of Pharmacy, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Eleonora Passeri
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Gabriele Baj
- B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Enrico Tongiorgi
- B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Graciano Leal
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ivan L. Salazar
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Philipp Eckert
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Karin Rohbock
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Jing Hu
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Jörg Strotmann
- Department of Physiology, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Peter Ruth
- Department of Pharmacology, Institute of Pharmacy, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Thomas Ott
- Transgenic Facility Tübingen, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Chen BH, Park JH, Lee YL, Kang IJ, Kim DW, Hwang IK, Lee CH, Yan BC, Kim YM, Lee TK, Lee JC, Won MH, Ahn JH. Melatonin improves vascular cognitive impairment induced by ischemic stroke by remyelination via activation of ERK1/2 signaling and restoration of glutamatergic synapses in the gerbil hippocampus. Biomed Pharmacother 2018; 108:687-697. [PMID: 30245469 DOI: 10.1016/j.biopha.2018.09.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023] Open
Abstract
Vascular dementia affects cognition by damaging axons and myelin. Melatonin is pharmacologically associated with various neurological disorders. In this study, effects of melatonin on cognitive impairment and related mechanisms were investigated in an animal model of ischemic vascular dementia (IVD). Melatonin was intraperitoneally administered to adult gerbils after transient global cerebral ischemia (tGCI) for 25 days beginning 5 days after tGCI. Cognitive impairment was examined using a passive avoidance test and the Barnes maze test. To investigate mechanisms of restorative effects by melatonin, neuronal damage/death, myelin basic protein (MBP, a marker for myelin), Rip (a marker for oligodendrocyte), extracellular signal-regulated protein kinase1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2), and vesicular glutamate transporter (VGLUT)-1 (a glutamatergic synaptic marker) in the hippocampal Cornu Ammonis 1 area (CA1) were evaluated using immunohistochemistry. Melatonin treatment significantly improved tGCI-induced cognitive impairment. Death of CA1 pyramidal neurons after tGCI was not affected by melatonin treatment. However, melatonin treatment significantly increased MBP immunoreactivity and numbers of Rip-immunoreactive oligodendrocytes in the ischemic CA1. In addition, melatonin treatment significantly increased ERK1/2 and p-ERK1/2 immunoreactivities in oligodendrocytes in the ischemic CA1. Furthermore, melatonin treatment significantly increased VGLUT-1 immunoreactive structures in the ischemic CA1. These results indicate that long-term melatonin treatment after tGCI improves cognitive deficit via restoration of myelin, increase of oligodendrocytes which is closely related to the activation of ERK1/2 signaling, and increase of glutamatergic synapses in the ischemic brain area.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Gangwon, 24252, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, Gangwon, 25457, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam, 31116, Republic of Korea
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| |
Collapse
|
41
|
Soteros BM, Cong Q, Palmer CR, Sia GM. Sociability and synapse subtype-specific defects in mice lacking SRPX2, a language-associated gene. PLoS One 2018; 13:e0199399. [PMID: 29920554 PMCID: PMC6007900 DOI: 10.1371/journal.pone.0199399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023] Open
Abstract
The FoxP2 transcription factor and its target genes have been implicated in developmental brain diseases with a prominent language component, such as developmental verbal dyspraxia and specific language impairment. How FoxP2 affects neural circuitry development remains poorly understood. The sushi domain protein SRPX2 is a target of FoxP2, and mutations in SRPX2 are associated with language defects in humans. We have previously shown that SRPX2 is a synaptogenic protein that increases excitatory synapse density. Here we provide the first characterization of mice lacking the SRPX2 gene, and show that these mice exhibit defects in both neural circuitry and communication and social behaviors. Specifically, we show that mice lacking SRPX2 show a specific reduction in excitatory VGlut2 synapses in the cerebral cortex, while VGlut1 and inhibitory synapses were largely unaffected. SRPX2 KO mice also exhibit an abnormal ultrasonic vocalization ontogenetic profile in neonatal pups, and reduced preference for social novelty. These data demonstrate a functional role for SRPX2 during brain development, and further implicate FoxP2 and its targets in regulating the development of vocalization and social circuits.
Collapse
Affiliation(s)
- Breeanne M. Soteros
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Qifei Cong
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Christian R. Palmer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Gek-Ming Sia
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|
42
|
Jung HY, Yoo DY, Park JH, Kim JW, Chung JY, Kim DW, Won MH, Yoon YS, Hwang IK. Age-dependent changes in vesicular glutamate transporter 1 and 2 expression in the gerbil hippocampus. Mol Med Rep 2018. [PMID: 29532891 PMCID: PMC5928628 DOI: 10.3892/mmr.2018.8705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glutamate is a major excitatory neurotransmitter that is stored in vesicles located in the presynaptic terminal. Glutamate is transported into vesicles via the vesicular glutamate transporter (VGLUT). In the present study, the age‑associated changes of the major VGLUTs, VGLUT1 and VGLUT2, in the hippocampus were investigated, based on immunohistochemistry and western blot analysis at postnatal month 1 (PM1; adolescent), PM6, PM12 (adult group), PM18 and PM24 (the aged groups). VGLUT1 immunoreactivity was primarily detected in the mossy fibers, Schaffer collaterals and stratum lacunosum‑moleculare. By contrast, VGLUT2 immunoreactivity was observed in the granule cell layer and the outer molecular layer of the dentate gyrus, stratum pyramidale, Schaffer collaterals and stratum lacunosum‑moleculare in the hippocampal CA1‑3 regions. VGLUT1 immunoreactivity and protein levels remained constant across all age groups. However, VGLUT2 immunoreactivity and protein levels decreased in the PM3 group when compared with the PM1 group. VGLUT2 immunoreactivity and protein levels were not altered in the PM12 group; however, they increased in the PM18 group. In addition, in the PM18 group, highly immunoreactive VGLUT2 cells were also identified in the stratum radiatum and oriens of the hippocampal CA1 region. In the PM24 group, VGLUT2 immunoreactivity and protein levels were significantly decreased and were the lowest levels observed amongst the different groups. These results suggested that VGLUT1 may be less susceptible to the aging process; however, the increase of VGLUT2 in the non‑pyramidal cells in the PM18 group, and the consequent decrease in VGLUT2, may be closely linked to age‑associated memory impairment in the hippocampus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
43
|
Horváth HR, Fazekas CL, Balázsfi D, Jain SK, Haller J, Zelena D. Contribution of Vesicular Glutamate Transporters to Stress Response and Related Psychopathologies: Studies in VGluT3 Knockout Mice. Cell Mol Neurobiol 2018; 38:37-52. [PMID: 28776199 PMCID: PMC11482036 DOI: 10.1007/s10571-017-0528-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Maintenance of the homeostasis in a constantly changing environment is a fundamental process of life. Disturbances of the homeostatic balance is defined as stress response and is induced by wide variety of challenges called stressors. Being the main excitatory neurotransmitter of the central nervous system glutamate is important in the adaptation process of stress regulating both the catecholaminergic system and the hypothalamic-pituitary-adrenocortical axis. Data are accumulating about the role of different glutamatergic receptors at all levels of these axes, but little is known about the contribution of different vesicular glutamate transporters (VGluT1-3) characterizing the glutamatergic neurons. Here we summarize basic knowledge about VGluTs, their role in physiological regulation of stress adaptation, as well as their contribution to stress-related psychopathology. Most of our knowledge comes from the VGluT3 knockout mice, as VGluT1 and 2 knockouts are not viable. VGluT3 was discovered later than, and is not as widespread as the VGluT1 and 2. It may co-localize with other transmitters, and participate in retrograde signaling; as such its role might be unique. Previous reports using VGluT3 knockout mice showed enhanced anxiety and innate fear compared to wild type. Moreover, these knockout animals had enhanced resting corticotropin-releasing hormone mRNA levels in the hypothalamus and disturbed glucocorticoid stress responses. In conclusion, VGluT3 participates in stress adaptation regulation. The neuroendocrine changes observed in VGluT3 knockout mice may contribute to their anxious, fearful phenotype.
Collapse
Affiliation(s)
- Hanga Réka Horváth
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Diána Balázsfi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 26, Üllői út, 1085, Budapest, Hungary
| | | | - József Haller
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary.
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
44
|
Soligo M, Piccinin S, Protto V, Gelfo F, De Stefano ME, Florenzano F, Berretta E, Petrosini L, Nisticò R, Manni L. Recovery of hippocampal functions and modulation of muscarinic response by electroacupuncture in young diabetic rats. Sci Rep 2017; 7:9077. [PMID: 28831054 PMCID: PMC5567336 DOI: 10.1038/s41598-017-08556-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023] Open
Abstract
The muscarinic receptor response to acetylcholine regulates the hippocampal-related learning, memory, neural plasticity and the production and processing of the pro-nerve growth factor (proNGF) by hippocampal cells. The development and progression of diabetes generate a mild cognitive impairment reducing the functions of the septo-hippocampal cholinergic circuitry, depressing neural plasticity and inducing proNGF accumulation in the brain. Here we demonstrate, in a rat model of early type-1 diabetes, that a physical therapy, the electroacupuncture, counteracts the diabetes-induced deleterious effects on hippocampal physiology by ameliorating hippocampal-related memory functions; recovering the impaired long-term potentiation at the dentate gyrus (DG-LTP) and the lowered expression of the vesicular glutamate transporter 1; normalizing the activity-dependent release of proNGF in diabetic rat hippocampus. Electroacupuncture exerted its therapeutic effects by regulating the expression and activity of M1- and M2-acetylcholine muscarinic receptors subtypes in the dentate gyrus of hippocampus. Our results suggest that a physical therapy based on repetitive sensory stimulation could promote hippocampal neural activity, neuronal metabolism and functions, and conceivably improve the diabetes-induced cognitive impairment. Our data can support the setup of therapeutic protocols based on a better integration between physical therapies and pharmacology for the cure of diabetes-associated neurodegeneration and possibly for Alzheimer’s disease.
Collapse
Affiliation(s)
- Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Sonia Piccinin
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome, Italy
| | - Virginia Protto
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Francesca Gelfo
- I.R.C.C.S., Santa Lucia Foundation, Rome, Italy.,Department of Systemic Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Fulvio Florenzano
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome, Italy
| | - Erica Berretta
- I.R.C.C.S., Santa Lucia Foundation, Rome, Italy.,Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome, Rome, Italy
| | - Laura Petrosini
- I.R.C.C.S., Santa Lucia Foundation, Rome, Italy.,Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome, Rome, Italy
| | - Robert Nisticò
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy.
| |
Collapse
|
45
|
Roles of Cbln1 in Non-Motor Functions of Mice. J Neurosci 2017; 36:11801-11816. [PMID: 27852787 DOI: 10.1523/jneurosci.0322-16.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/23/2016] [Accepted: 10/10/2016] [Indexed: 01/16/2023] Open
Abstract
The cerebellum is thought to be involved in cognitive functions in addition to its well established role in motor coordination and motor learning in humans. Cerebellin 1 (Cbln1) is predominantly expressed in cerebellar granule cells and plays a crucial role in the formation and function of parallel fiber-Purkinje cell synapses. Although genes encoding Cbln1 and its postsynaptic receptor, the delta2 glutamate receptor (GluD2), are suggested to be associated with autistic-like traits and many psychiatric disorders, whether such cognitive impairments are caused by cerebellar dysfunction remains unclear. In the present study, we investigated whether and how Cbln1 signaling is involved in non-motor functions in adult mice. We show that acquisition and retention/retrieval of cued and contextual fear memory were impaired in Cbln1-null mice. In situ hybridization and immunohistochemical analyses revealed that Cbln1 is expressed in various extracerebellar regions, including the retrosplenial granular cortex and the hippocampus. In the hippocampus, Cbln1 immunoreactivity was present at the molecular layer of the dentate gyrus and the stratum lacunosum-moleculare without overt mRNA expression, suggesting that Cbln1 is provided by perforant path fibers. Retention/retrieval, but not acquisition, of cued and contextual fear memory was impaired in forebrain-predominant Cbln1-null mice. Spatial learning in the radial arm water maze was also abrogated. In contrast, acquisition of fear memory was affected in cerebellum-predominant Cbln1-null mice. These results indicate that Cbln1 in the forebrain and cerebellum mediates specific aspects of fear conditioning and spatial memory differentially and that Cbln1 signaling likely regulates motor and non-motor functions in multiple brain regions. SIGNIFICANCE STATEMENT Despites its well known role in motor coordination and motor learning, whether and how the cerebellum is involved in cognitive functions remains less clear. Cerebellin 1 (Cbln1) is highly expressed in the cerebellum and serves as an essential synaptic organizer. Although genes encoding Cbln1 and its receptor are associated with many psychiatric disorders, it remains unknown whether such cognitive impairments are caused by cerebellar dysfunction. Here, we show that Cbln1 is also expressed in the forebrain, including the hippocampus and retrosplenial granular cortex. Using forebrain- and cerebellum-predominant conditional Cbln1-null mice, we show that Cbln1 in the forebrain and cerebellum mediates specific aspects of fear conditioning and spatial memory differentially, indicating that Cbln1 signaling regulates both motor and non-motor functions in multiple brain regions.
Collapse
|
46
|
Pellegrino RM, Boda E, Montarolo F, Boero M, Mezzanotte M, Saglio G, Buffo A, Roetto A. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse. Sci Rep 2016; 6:30725. [PMID: 27477597 PMCID: PMC4967901 DOI: 10.1038/srep30725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022] Open
Abstract
The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits.
Collapse
Affiliation(s)
- Rosa Maria Pellegrino
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,AOU San Luigi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Martina Boero
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,AOU San Luigi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Mariarosa Mezzanotte
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,AOU San Luigi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,AOU San Luigi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Regione Gonzole 10043 Orbassano Turin, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy.,AOU San Luigi Regione Gonzole 10043 Orbassano Turin, Italy
| |
Collapse
|
47
|
Rodriguez-Perdigon M, Tordera RM, Gil-Bea FJ, Gerenu G, Ramirez MJ, Solas M. Down-regulation of glutamatergic terminals (VGLUT1) driven by Aβ in Alzheimer's disease. Hippocampus 2016; 26:1303-12. [PMID: 27258819 DOI: 10.1002/hipo.22607] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is characterized phenotypically by memory impairment, histologically by accumulation of pTau and β-amyloid peptide and morphologically by a loss of nerve terminals in cortical and hippocampal regions. As glutamate is the principle excitatory neurotransmitter of the central nervous system (CNS), the glutamatergic system may play an important role in AD. To date, not many studies have addressed the deleterious effects of Aβ on glutamatergic terminals; therefore the aim of this study was to investigate how Aβ affects glutamatergic terminals and to assess the extent to which alterations in the glutamatergic neurotransmission could impact susceptibility to the illness. The present study shows that Aβ caused a loss of glutamatergic terminals, measured by VGLUT1 protein levels, in Tg2576 primary cell cultures, Tg2576 mice and AD patient brains, and also when Aβ was added exogenously to hippocampal cell cultures. Interestingly, no correlation was found between cognition and decreased VGLUT1 levels. Moreover, when Aβ1-42 was intracerebroventricularlly administered into VGLUT1+/- mice, altered synaptic plasticity and increased neuroinflammation was observed in the hippocampus of those animals. In conclusion, the present study not only revealed susceptibility of glutamatergic nerve terminals to Aβ induced toxicity but also underlined the importance of VGLUT1 in the progression of AD, as the decrease of this protein levels could increase the susceptibility to subsequent deleterious inputs by exacerbating Aβ induced neuroinflammation and synaptic plasticity disruption. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Rosa María Tordera
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona 31008, Spain.,IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Francisco Javier Gil-Bea
- Center for Applied Medical Research (CIMA), Neuroscience, University of Navarra, Pamplona, Spain
| | - Gorka Gerenu
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona 31008, Spain
| | - Maria Javier Ramirez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona 31008, Spain.,IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona 31008, Spain. .,IdiSNA Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
48
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
49
|
Münster-Wandowski A, Zander JF, Richter K, Ahnert-Hilger G. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters. Front Synaptic Neurosci 2016; 8:4. [PMID: 26909036 PMCID: PMC4754932 DOI: 10.3389/fnsyn.2016.00004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/01/2016] [Indexed: 01/25/2023] Open
Abstract
The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH+ driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters.
Collapse
Affiliation(s)
| | | | - Karin Richter
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
50
|
|