1
|
Donoso MV, Catalán-Salas V, Pulgar-Sepúlveda R, Eugenín J, Huidobro-Toro JP. Physiology, Pathophysiology and Clinical Relevance of D-Amino Acids Dynamics: From Neurochemistry to Pharmacotherapy. CHEM REC 2024; 24:e202400013. [PMID: 39318079 DOI: 10.1002/tcr.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/18/2024] [Indexed: 09/26/2024]
Abstract
Over three decades ago, two independent groups of investigators identified free D-aspartic and later D-serine in specific brain nuclei and endocrine glands. This finding revealed a novel, non-proteinogenic role of these molecules. Moreover, the finding that aged proteins from the human eye crystallin, teeth, bone, blood vessels or the brain incorporate D-aspartic acids to specific primary protein sequences fostered the hypothesis that aging might be related to D-amino acid isomerization of body proteins. The experimental confirmation that schizophrenia and neurodegenerative diseases modify plasma free D-amino acids or tissue levelsnurtured the opportunity of using D-amino acids as therapeutic agents for several disease treatments, a strategy that prompted the successful current application of D-amino acids to human medicine.
Collapse
Affiliation(s)
- M Verónica Donoso
- Pharmacology Laboratory, Department Biology, Faculty of Chemistry and Biology, Centro Desarrollo de Nanociencias y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - Vicente Catalán-Salas
- Pharmacology Laboratory, Department Biology, Faculty of Chemistry and Biology, Centro Desarrollo de Nanociencias y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - Raúl Pulgar-Sepúlveda
- Neural System Laboratory, Department Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - Jaime Eugenín
- Neural System Laboratory, Department Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - J Pablo Huidobro-Toro
- Pharmacology Laboratory, Department Biology, Faculty of Chemistry and Biology, Centro Desarrollo de Nanociencias y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| |
Collapse
|
2
|
Kosenkov AM, Maiorov SA, Gaidin SG. Astrocytic NMDA Receptors. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1045-1060. [PMID: 38981700 DOI: 10.1134/s0006297924060063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/11/2024]
Abstract
Astrocytic NMDA receptors (NMDARs) are heterotetramers, whose expression and properties are largely determined by their subunit composition. Astrocytic NMDARs are characterized by a low sensitivity to magnesium ions and low calcium conductivity. Their activation plays an important role in the regulation of various intracellular processes, such as gene expression and mitochondrial function. Astrocytic NMDARs are involved in calcium signaling in astrocytes and can act through the ionotropic and metabotropic pathways. Astrocytic NMDARs participate in the interactions of the neuroglia, thus affecting synaptic plasticity. They are also engaged in the astrocyte-vascular interactions and contribute to the regulation of vascular tone. Astrocytic NMDARs are involved in various pathologies, such as ischemia and hyperammonemia, and their blockade prevents negative changes in astrocytes during these diseases.
Collapse
Affiliation(s)
- Artem M Kosenkov
- Pushchino Scientific Center for Biological Research, Institute of Cell Biophysics of the Russian Academy of Sciences, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergei A Maiorov
- Pushchino Scientific Center for Biological Research, Institute of Cell Biophysics of the Russian Academy of Sciences, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Sergei G Gaidin
- Pushchino Scientific Center for Biological Research, Institute of Cell Biophysics of the Russian Academy of Sciences, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
Khananshvili D. Neuronal and astrocyte NCX isoform/splice variants: How do they participate in Na + and Ca 2+ signalling? Cell Calcium 2023; 116:102818. [PMID: 37918135 DOI: 10.1016/j.ceca.2023.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
NCX1, NCX2, and NCX3 gene isoforms and their splice variants are characteristically expressed in different regions of the brain. The tissue-specific splice variants of NCX1-3 isoforms show specific expression profiles in neurons and astrocytes, whereas the relevant NCX isoform/splice variants exhibit diverse allosteric modes of Na+- and Ca2+-dependent regulation. In general, overexpression of NCX1-3 genes leads to neuroprotective effects, whereas their ablation gains the opposite results. At this end, the partial contributions of NCX isoform/splice variants to neuroprotective effects remain unresolved. The glutamate-dependent Na+ entry generates Na+ transients (in response to neuronal cell activities), whereas the Na+-driven Ca2+ entry (through the reverse NCX mode) raises Ca2+ transients. This special mode of signal coupling translates Na+ transients into the Ca2+ signals while being a part of synaptic neurotransmission. This mechanism is of general interest since disease-related conditions (ischemia, metabolic stress, and stroke among many others) trigger Na+ and Ca2+ overload with deadly outcomes of downstream apoptosis and excitotoxicity. The recently discovered mechanisms of NCX allosteric regulation indicate that some NCX variants might play a critical role in the dynamic coupling of Na+-driven Ca2+ entry. In contrast, the others are less important or even could be dangerous under altered conditions (e.g., metabolic stress). This working hypothesis can be tested by applying advanced experimental approaches and highly focused computational simulations. This may allow the development of structure-based blockers/activators that can selectively modulate predefined NCX variants to lessen the life-threatening outcomes of excitotoxicity, ischemia, apoptosis, metabolic deprivation, brain injury, and stroke.
Collapse
Affiliation(s)
- Daniel Khananshvili
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
4
|
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity. Int J Mol Sci 2023; 24:15430. [PMID: 37895110 PMCID: PMC10607805 DOI: 10.3390/ijms242015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the last two decades, there has been increasing evidence supporting non-neuronal cells as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus on the "astrocytic signature" in ALS. Here, we summarized the main pathological mechanisms characterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation, mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracellular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes can behave as "producers" and "targets" of the high extracellular glutamate levels, going through changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells, thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps that deserve further investigation.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
5
|
Bonifacino T, Mingardi J, Facchinetti R, Sala N, Frumento G, Ndoj E, Valenza M, Paoli C, Ieraci A, Torazza C, Balbi M, Guerinoni M, Muhammad N, Russo I, Milanese M, Scuderi C, Barbon A, Steardo L, Bonanno G, Popoli M, Musazzi L. Changes at glutamate tripartite synapses in the prefrontal cortex of a new animal model of resilience/vulnerability to acute stress. Transl Psychiatry 2023; 13:62. [PMID: 36806044 PMCID: PMC9938874 DOI: 10.1038/s41398-023-02366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/20/2023] Open
Abstract
Stress represents a main risk factor for psychiatric disorders. Whereas it is known that even a single trauma may induce psychiatric disorders in humans, the mechanisms of vulnerability to acute stressors have been little investigated. In this study, we generated a new animal model of resilience/vulnerability to acute footshock (FS) stress in rats and analyzed early functional, molecular, and morphological determinants of stress vulnerability at tripartite glutamate synapses in the prefrontal cortex (PFC). We found that adult male rats subjected to FS can be deemed resilient (FS-R) or vulnerable (FS-V), based on their anhedonic phenotype 24 h after stress exposure, and that these two populations are phenotypically distinguishable up to two weeks afterwards. Basal presynaptic glutamate release was increased in the PFC of FS-V rats, while depolarization-evoked glutamate release and synapsin I phosphorylation at Ser9 were increased in both FS-R and FS-V. In FS-R and FS-V rats the synaptic expression of GluN2A and apical dendritic length of prelimbic PFC layers II-III pyramidal neurons were decreased, while BDNF expression was selectively reduced in FS-V. Depolarization-evoked (carrier-mediated) glutamate release from astroglia perisynaptic processes (gliosomes) was selectively increased in the PFC of FS-V rats, while GLT1 and xCt levels were higher and GS expression reduced in purified PFC gliosomes from FS-R. Overall, we show for the first time that the application of the sucrose intake test to rats exposed to acute FS led to the generation of a novel animal model of resilience/vulnerability to acute stress, which we used to identify early determinants of maladaptive response related to behavioral vulnerability to stress.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Jessica Mingardi
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberta Facchinetti
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Nathalie Sala
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Giulia Frumento
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Elona Ndoj
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marta Valenza
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Caterina Paoli
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.5602.10000 0000 9745 6549Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Ieraci
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy ,grid.449889.00000 0004 5945 6678Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Carola Torazza
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Matilde Balbi
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Michele Guerinoni
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Nadeem Muhammad
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Isabella Russo
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy ,Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Milanese
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Caterina Scuderi
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Alessandro Barbon
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Steardo
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Giambattista Bonanno
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
6
|
Tang H, Gu Y, Jiang L, Zheng G, Pan Z, Jiang X. The role of immune cells and associated immunological factors in the immune response to spinal cord injury. Front Immunol 2023; 13:1070540. [PMID: 36685599 PMCID: PMC9849245 DOI: 10.3389/fimmu.2022.1070540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition prevalent worldwide. Where the pathological mechanisms underlying SCI are concerned, we can distinguish between primary injury caused by initial mechanical damage and secondary injury characterized by a series of biological responses, such as vascular dysfunction, oxidative stress, neurotransmitter toxicity, lipid peroxidation, and immune-inflammatory response. Secondary injury causes further tissue loss and dysfunction, and the immune response appears to be the key molecular mechanism affecting injured tissue regeneration and functional recovery from SCI. Immune response after SCI involves the activation of different immune cells and the production of immunity-associated chemicals. With the development of new biological technologies, such as transcriptomics, the heterogeneity of immune cells and chemicals can be classified with greater precision. In this review, we focus on the current understanding of the heterogeneity of these immune components and the roles they play in SCI, including reactive astrogliosis and glial scar formation, neutrophil migration, macrophage transformation, resident microglia activation and proliferation, and the humoral immunity mediated by T and B cells. We also summarize findings from clinical trials of immunomodulatory therapies for SCI and briefly review promising therapeutic drugs currently being researched.
Collapse
Affiliation(s)
- Huaguo Tang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yuanjie Gu
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Lei Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Gang Zheng
- Department of Neurosurgery, The Central Hospital Affiliated to Shaoxing University, Jiaxing, China
| | - Zhuoer Pan
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xiugui Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
7
|
Provenzano F, Nyberg S, Giunti D, Torazza C, Parodi B, Bonifacino T, Usai C, Kerlero de Rosbo N, Milanese M, Uccelli A, Shaw PJ, Ferraiuolo L, Bonanno G. Micro-RNAs Shuttled by Extracellular Vesicles Secreted from Mesenchymal Stem Cells Dampen Astrocyte Pathological Activation and Support Neuroprotection in In-Vitro Models of ALS. Cells 2022; 11:cells11233923. [PMID: 36497181 PMCID: PMC9741322 DOI: 10.3390/cells11233923] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with no effective cure. Astrocytes display a toxic phenotype in ALS and contribute to motoneuron (MN) degeneration. Modulating astrocytes' neurotoxicity can reduce MN death. Our previous studies showed the beneficial effect of mesenchymal stem cell (MSC) administration in SOD1G93A ALS mice, but the mechanisms are still unclear. We postulated that the effects could be mediated by extracellular vesicles (EVs) secreted by MSCs. We investigated, by immunohistochemical, molecular, and in vitro functional analyses, the activity of MSC-derived EVs on the pathological phenotype and neurotoxicity of astrocytes isolated from the spinal cord of symptomatic SOD1G93A mice and human astrocytes (iAstrocytes) differentiated from inducible neural progenitor cells (iNPCs) of ALS patients. In vitro EV exposure rescued mouse and human ALS astrocytes' neurotoxicity towards MNs. EVs significantly dampened the pathological phenotype and neuroinflammation in SOD1G93A astrocytes. In iAstrocytes, exposure to EVs increased the antioxidant factor Nrf2 and reduced reactive oxygen species. We previously found nine miRNAs upregulated in MSC-derived EVs. Here, the transfection of SOD1G93A astrocytes with single miRNA mimics reduced astrocytes' activation and the expression of neuroinflammatory factors. Moreover, miR-466q and miR-467f mimics downregulate Mapk11, while miR-466m-5p and miR-466i-3p mimics promote the nuclear translocation of Nrf2. In iAstrocytes, transfection with miR-29b-3p mimic upregulated NQO1 antioxidant activity and reduced neurotoxicity towards MNs. MSC-derived EVs modulate astrocytes' reactive phenotype and neurotoxicity through anti-inflammatory and antioxidant-shuttled miRNAs, thus representing a therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Sophie Nyberg
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Debora Giunti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 316132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Benedetta Parodi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 316132 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genoa, Italy
| | - Nicole Kerlero de Rosbo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- TomaLab, Institute of Nanotechnology, National Research Council (CNR), Piazzale Aldo Moro 5, 0018 Rome, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- Correspondence: (M.M.); (L.F.); Tel.: +39-01-0335-2046 (M.M.); +44-(0)114-222-2257 (L.F.)
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 316132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
- Correspondence: (M.M.); (L.F.); Tel.: +39-01-0335-2046 (M.M.); +44-(0)114-222-2257 (L.F.)
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
8
|
Activity-dependent translation dynamically alters the proteome of the perisynaptic astrocyte process. Cell Rep 2022; 41:111474. [PMID: 36261025 PMCID: PMC9624251 DOI: 10.1016/j.celrep.2022.111474] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/16/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023] Open
Abstract
Within eukaryotic cells, translation is regulated independent of transcription, enabling nuanced, localized, and rapid responses to stimuli. Neurons respond transcriptionally and translationally to synaptic activity. Although transcriptional responses are documented in astrocytes, here we test whether astrocytes have programmed translational responses. We show that seizure activity rapidly changes the transcripts on astrocyte ribosomes, some predicted to be downstream of BDNF signaling. In acute slices, we quantify the extent to which cues of neuronal activity activate translation in astrocytes and show that this translational response requires the presence of neurons, indicating that the response is non-cell autonomous. We also show that this induction of new translation extends into the periphery of astrocytes. Finally, synaptic proteomics show that new translation is required for changes that occur in perisynaptic astrocyte protein composition after fear conditioning. Regulation of translation in astrocytes by neuronal activity suggests an additional mechanism by which astrocytes may dynamically modulate nervous system functioning.
Collapse
|
9
|
Iovino L, Giusti V, Pischedda F, Giusto E, Plotegher N, Marte A, Battisti I, Di Iacovo A, Marku A, Piccoli G, Bandopadhyay R, Perego C, Bonifacino T, Bonanno G, Roseti C, Bossi E, Arrigoni G, Bubacco L, Greggio E, Hilfiker S, Civiero L. Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson's disease. Acta Neuropathol 2022; 144:81-106. [PMID: 35596783 PMCID: PMC9217889 DOI: 10.1007/s00401-022-02437-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022]
Abstract
The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic variant G2019S, a common cause of late-onset familial Parkinson’s disease (PD). In LRRK2 G2019S human brains and experimental animal models, EAAT2 protein levels are significantly decreased, which is associated with elevated gliosis. The decreased expression of the transporter correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and in Xenopus laevis oocytes expressing human LRRK2 G2019S. In LRRK2 G2019S knock-in mouse brain, the correct surface localization of the endogenous transporter is impaired, resulting in its interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane via Rabs inactivation, causing its intracellular re-localization and degradation. Taken together, our results demonstrate that pathogenic LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a possible contributor to neurodegeneration in PD.
Collapse
|
10
|
Ahmadpour N, Kantroo M, Stobart JL. Extracellular Calcium Influx Pathways in Astrocyte Calcium Microdomain Physiology. Biomolecules 2021; 11:1467. [PMID: 34680100 PMCID: PMC8533159 DOI: 10.3390/biom11101467] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Astrocytes are complex glial cells that play many essential roles in the brain, including the fine-tuning of synaptic activity and blood flow. These roles are linked to fluctuations in intracellular Ca2+ within astrocytes. Recent advances in imaging techniques have identified localized Ca2+ transients within the fine processes of the astrocytic structure, which we term microdomain Ca2+ events. These Ca2+ transients are very diverse and occur under different conditions, including in the presence or absence of surrounding circuit activity. This complexity suggests that different signalling mechanisms mediate microdomain events which may then encode specific astrocyte functions from the modulation of synapses up to brain circuits and behaviour. Several recent studies have shown that a subset of astrocyte microdomain Ca2+ events occur rapidly following local neuronal circuit activity. In this review, we consider the physiological relevance of microdomain astrocyte Ca2+ signalling within brain circuits and outline possible pathways of extracellular Ca2+ influx through ionotropic receptors and other Ca2+ ion channels, which may contribute to astrocyte microdomain events with potentially fast dynamics.
Collapse
Affiliation(s)
| | | | - Jillian L. Stobart
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MG R3E 0T5, Canada; (N.A.); (M.K.)
| |
Collapse
|
11
|
Nguyen H, Zerimech S, Baltan S. Astrocyte Mitochondria in White-Matter Injury. Neurochem Res 2021; 46:2696-2714. [PMID: 33527218 PMCID: PMC8935665 DOI: 10.1007/s11064-021-03239-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the diverse structure and function of astrocytes to describe the bioenergetic versatility required of astrocytes that are situated at different locations. The intercellular domain of astrocyte mitochondria defines their roles in supporting and regulating astrocyte-neuron coupling and survival against ischemia. The heterogeneity of astrocyte mitochondria, and how subpopulations of astrocyte mitochondria adapt to interact with other glia and regulate axon function, require further investigation. It has become clear that mitochondrial permeability transition pores play a key role in a wide variety of human diseases, whose common pathology may be based on mitochondrial dysfunction triggered by Ca2+ and potentiated by oxidative stress. Reactive oxygen species cause axonal degeneration and a reduction in axonal transport, leading to axonal dystrophies and neurodegeneration including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Developing new tools to allow better investigation of mitochondrial structure and function in astrocytes, and techniques to specifically target astrocyte mitochondria, can help to unravel the role of mitochondrial health and dysfunction in a more inclusive context outside of neuronal cells. Overall, this review will assess the value of astrocyte mitochondria as a therapeutic target to mitigate acute and chronic injury in the CNS.
Collapse
Affiliation(s)
- Hung Nguyen
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sarah Zerimech
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
12
|
Marini C, Cossu V, Kumar M, Milanese M, Cortese K, Bruno S, Bellese G, Carta S, Zerbo RA, Torazza C, Bauckneht M, Venturi C, Raffa S, Orengo AM, Donegani MI, Chiola S, Ravera S, Castellani P, Morbelli S, Sambuceti G, Bonanno G. The Role of Endoplasmic Reticulum in the Differential Endurance against Redox Stress in Cortical and Spinal Astrocytes from the Newborn SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2021; 10:antiox10091392. [PMID: 34573024 PMCID: PMC8472526 DOI: 10.3390/antiox10091392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 12/01/2022] Open
Abstract
Recent studies reported that the uptake of [18F]-fluorodeoxyglucose (FDG) is increased in the spinal cord (SC) and decreased in the motor cortex (MC) of patients with ALS, suggesting that the disease might differently affect the two nervous districts with different time sequence or with different mechanisms. Here we show that MC and SC astrocytes harvested from newborn B6SJL-Tg (SOD1G93A) 1Gur mice could play different roles in the pathogenesis of the disease. Spectrophotometric and cytofluorimetric analyses showed an increase in redox stress, a decrease in antioxidant capacity and a relative mitochondria respiratory uncoupling in MC SOD1G93A astrocytes. By contrast, SC mutated cells showed a higher endurance against oxidative damage, through the increase in antioxidant defense, and a preserved respiratory function. FDG uptake reproduced the metabolic response observed in ALS patients: SOD1G93A mutation caused a selective enhancement in tracer retention only in mutated SC astrocytes, matching the activity of the reticular pentose phosphate pathway and, thus, of hexose-6P dehydrogenase. Finally, both MC and SC mutated astrocytes were characterized by an impressive ultrastructural enlargement of the endoplasmic reticulum (ER) and impairment in ER–mitochondria networking, more evident in mutated MC than in SC cells. Thus, SOD1G93A mutation differently impaired MC and SC astrocyte biology in a very early stage of life.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, 20054 Milan, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
- Correspondence:
| | - Vanessa Cossu
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (V.C.); (S.R.); (M.I.D.)
| | - Mandeep Kumar
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy; (M.K.); (M.M.); (R.A.Z.); (C.T.); (G.B.)
| | - Marco Milanese
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy; (M.K.); (M.M.); (R.A.Z.); (C.T.); (G.B.)
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy; (K.C.); (S.B.); (G.B.); (C.V.); (S.R.)
| | - Silvia Bruno
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy; (K.C.); (S.B.); (G.B.); (C.V.); (S.R.)
| | - Grazia Bellese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy; (K.C.); (S.B.); (G.B.); (C.V.); (S.R.)
| | - Sonia Carta
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (S.C.); (P.C.)
| | - Roberta Arianna Zerbo
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy; (M.K.); (M.M.); (R.A.Z.); (C.T.); (G.B.)
| | - Carola Torazza
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy; (M.K.); (M.M.); (R.A.Z.); (C.T.); (G.B.)
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
| | - Consuelo Venturi
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy; (K.C.); (S.B.); (G.B.); (C.V.); (S.R.)
| | - Stefano Raffa
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (V.C.); (S.R.); (M.I.D.)
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
| | - Maria Isabella Donegani
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (V.C.); (S.R.); (M.I.D.)
| | - Silvia Chiola
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
| | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy; (K.C.); (S.B.); (G.B.); (C.V.); (S.R.)
| | - Patrizia Castellani
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (S.C.); (P.C.)
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (V.C.); (S.R.); (M.I.D.)
| | - Gianmario Sambuceti
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, 20054 Milan, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
| | - Giambattista Bonanno
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy; (M.K.); (M.M.); (R.A.Z.); (C.T.); (G.B.)
- Pharmacology and Toxycology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
13
|
Verkhratsky A, Semyanov A, Zorec R. Physiology of Astroglial Excitability. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa016. [PMID: 35330636 PMCID: PMC8788756 DOI: 10.1093/function/zqaa016] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
Classic physiology divides all neural cells into excitable neurons and nonexcitable neuroglia. Neuroglial cells, chiefly responsible for homeostasis and defense of the nervous tissue, coordinate their complex homeostatic responses with neuronal activity. This coordination reflects a specific form of glial excitability mediated by complex changes in intracellular concentration of ions and second messengers organized in both space and time. Astrocytes are equipped with multiple molecular cascades, which are central for regulating homeostasis of neurotransmitters, ionostasis, synaptic connectivity, and metabolic support of the central nervous system. Astrocytes are further provisioned with multiple receptors for neurotransmitters and neurohormones, which upon activation trigger intracellular signals mediated by Ca2+, Na+, and cyclic AMP. Calcium signals have distinct organization and underlying mechanisms in different astrocytic compartments thus allowing complex spatiotemporal signaling. Signals mediated by fluctuations in cytosolic Na+ are instrumental for coordination of Na+ dependent astrocytic transporters with tissue state and homeostatic demands. Astroglial ionic excitability may also involve K+, H+, and Cl-. The cyclic AMP signalling system is, in comparison to ions, much slower in targeting astroglial effector mechanisms. This evidence review summarizes the concept of astroglial intracellular excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK,Achucarro Center for Neuroscience, Ikerbasque, 48011 Bilbao, Spain,Address correspondence to A.V. (e-mail: )
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia,Faculty of Biology, Moscow State University, Moscow, Russia,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Robert Zorec
- Celica Biomedical, Ljubljana 1000, Slovenia,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
14
|
Shoda W, Nomura N, Ando F, Tagashira H, Iwamoto T, Ohta A, Isobe K, Mori T, Susa K, Sohara E, Rai T, Uchida S. Sodium-calcium exchanger 1 is the key molecule for urinary potassium excretion against acute hyperkalemia. PLoS One 2020; 15:e0235360. [PMID: 32603346 PMCID: PMC7326190 DOI: 10.1371/journal.pone.0235360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
The sodium (Na+)-chloride cotransporter (NCC) expressed in the distal convoluted tubule (DCT) is a key molecule regulating urinary Na+ and potassium (K+) excretion. We previously reported that high-K+ load rapidly dephosphorylated NCC and promoted urinary K+ excretion in mouse kidneys. This effect was inhibited by calcineurin (CaN) and calmodulin inhibitors. However, the detailed mechanism through which high-K+ signal results in CaN activation remains unknown. We used Flp-In NCC HEK293 cells and mice to evaluate NCC phosphorylation. We analyzed intracellular Ca2+ concentration ([Ca2+]in) using live cell Ca2+ imaging in HEK293 cells. We confirmed that high-K+-induced NCC dephosphorylation was not observed without CaN using Flp-In NCC HEK29 cells. Extracellular Ca2+ reduction with a Ca2+ chelator inhibited high-K+-induced increase in [Ca2+]in and NCC dephosphorylation. We focused on Na+/Ca2+ exchanger (NCX) 1, a bidirectional regulator of cytosolic Ca2+ expressed in DCT. We identified that NCX1 suppression with a specific inhibitor (SEA0400) or siRNA knockdown inhibited K+-induced increase in [Ca2+]in and NCC dephosphorylation. In a mouse study, SEA0400 treatment inhibited K+-induced NCC dephosphorylation. SEA0400 reduced urinary K+ excretion and induced hyperkalemia. Here, we identified NCX1 as a key molecule in urinary K+ excretion promoted by CaN activation and NCC dephosphorylation in response to K+ load.
Collapse
Affiliation(s)
- Wakana Shoda
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
- * E-mail:
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Hideaki Tagashira
- Department of pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takahiro Iwamoto
- Department of pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Akihito Ohta
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| |
Collapse
|
15
|
Rose CR, Ziemens D, Verkhratsky A. On the special role of NCX in astrocytes: Translating Na +-transients into intracellular Ca 2+ signals. Cell Calcium 2019; 86:102154. [PMID: 31901681 DOI: 10.1016/j.ceca.2019.102154] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
As a solute carrier electrogenic transporter, the sodium/calcium exchanger (NCX1-3/SLC8A1-A3) links the trans-plasmalemmal gradients of sodium and calcium ions (Na+, Ca2+) to the membrane potential of astrocytes. Classically, NCX is considered to serve the export of Ca2+ at the expense of the Na+ gradient, defined as a "forward mode" operation. Forward mode NCX activity contributes to Ca2+ extrusion and thus to the recovery from intracellular Ca2+ signals in astrocytes. The reversal potential of the NCX, owing to its transport stoichiometry of 3 Na+ to 1 Ca2+, is, however, close to the astrocytes' membrane potential and hence even small elevations in the astrocytic Na+ concentration or minor depolarisations switch it into the "reverse mode" (Ca2+ import/Na+ export). Notably, transient Na+ elevations in the millimolar range are induced by uptake of glutamate or GABA into astrocytes and/or by the opening of Na+-permeable ion channels in response to neuronal activity. Activity-related Na+ transients result in NCX reversal, which mediates Ca2+ influx from the extracellular space, thereby generating astrocyte Ca2+ signalling independent from InsP3-mediated release from intracellular stores. Under pathological conditions, reverse NCX promotes cytosolic Ca2+ overload, while dampening Na+ elevations of astrocytes. This review provides an overview on our current knowledge about this fascinating transporter and its special functional role in astrocytes. We shall delineate that Na+-driven, reverse NCX-mediated astrocyte Ca2+ signals are involved neurone-glia interaction. Na+ transients, translated by the NCX into Ca2+ elevations, thereby emerge as a new signalling pathway in astrocytes.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany.
| | - Daniel Ziemens
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| |
Collapse
|
16
|
Ravera S, Torazza C, Bonifacino T, Provenzano F, Rebosio C, Milanese M, Usai C, Panfoli I, Bonanno G. Altered glucose catabolism in the presynaptic and perisynaptic compartments of SOD1 G93A mouse spinal cord and motor cortex indicates that mitochondria are the site of bioenergetic imbalance in ALS. J Neurochem 2019; 151:336-350. [PMID: 31282572 DOI: 10.1111/jnc.14819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/22/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is an adult-onset neurodegenerative disease that develops because of motor neuron death. Several mechanisms occur supporting neurodegeneration, including mitochondrial dysfunction. Recently, we demonstrated that the synaptosomes from the spinal cord of SOD1G93A mice, an in vitro model of presynapses, displayed impaired mitochondrial metabolism at early pre-symptomatic stages of the disease, whereas perisynaptic astrocyte particles, or gliosomes, were characterized by mild energy impairment only at symptomatic stages. This work aimed to understand whether mitochondrial impairment is a consequence of upstream metabolic damage. We analyzed the critical pathways involved in glucose catabolism at presynaptic and perisynaptic compartments. Spinal cord and motor cortex synaptosomes from SOD1G93A mice displayed high activity of hexokinase and phosphofructokinase, key glycolysis enzymes, and of citrate synthase and malate dehydrogenase, key Krebs cycle enzymes, but did not display high lactate dehydrogenase activity, the key enzyme in lactate fermentation. This enhancement was evident in the spinal cord from the early stages of the disease and in the motor cortex at only symptomatic stages. Conversely, an increase in glycolysis and lactate fermentation activity, but not Krebs cycle activity, was observed in gliosomes from the spinal cord and motor cortex of SOD1G93A mice although only at the symptomatic stages of the disease. The cited enzymatic activities were enhanced in spinal cord and motor cortex homogenates, paralleling the time-course of the effect observed in synaptosomes and gliosomes. The observed metabolic modifications might be considered an attempt to restore altered energetic balance and indicate that mitochondria represent the ultimate site of bioenergetic impairment.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Claudia Rebosio
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.,IRCCS San Martino Policlinic Hospital, Genoa, Italy
| |
Collapse
|
17
|
Nordström T, Andersson LC, Åkerman KE. Regulation of intracellular pH by electrogenic Na+/HCO3– co-transporters in embryonic neural stem cell-derived radial glia-like cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1037-1048. [DOI: 10.1016/j.bbamem.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 01/19/2023]
|
18
|
Verkhratsky A, Untiet V, Rose CR. Ionic signalling in astroglia beyond calcium. J Physiol 2019; 598:1655-1670. [PMID: 30734296 DOI: 10.1113/jp277478] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Astrocytes are homeostatic and protective cells of the central nervous system. Astroglial homeostatic responses are tightly coordinated with neuronal activity. Astrocytes maintain neuronal excitability through regulation of extracellular ion concentrations, as well as assisting and modulating synaptic transmission by uptake and catabolism of major neurotransmitters. Moreover, they support neuronal metabolism and detoxify ammonium and reactive oxygen species. Astroglial homeostatic actions are initiated and controlled by intercellular signalling of ions, including Ca2+ , Na+ , Cl- , H+ and possibly K+ . This review summarises current knowledge on ionic signals mediated by the major monovalent ions, which occur in microdomains, as global events, or as propagating intercellular waves and thereby represent the substrate for astroglial excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, UK.,Centre for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Verena Untiet
- Centre for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
19
|
Ravera S, Bonifacino T, Bartolucci M, Milanese M, Gallia E, Provenzano F, Cortese K, Panfoli I, Bonanno G. Characterization of the Mitochondrial Aerobic Metabolism in the Pre- and Perisynaptic Districts of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2018; 55:9220-9233. [PMID: 29656361 DOI: 10.1007/s12035-018-1059-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characterized by muscle wasting, weakness, and spasticity due to a progressive degeneration of cortical, brainstem, and spinal motor neurons. The etiopathological causes are still largely obscure, although astrocytes definitely play a role in neuronal damage. Several mechanisms have been proposed to concur to neurodegeneration in ALS, including mitochondrial dysfunction. We have previously shown profound modifications of glutamate release and presynaptic plasticity in the spinal cord of the SOD1G93A mouse model of ALS. In this work, we characterized, for the first time, the aerobic metabolism in two specific compartments actively involved in neurotransmission (i.e. the presynaptic district, using purified synaptosomes, and the perisynaptic astrocyte processes, using purified gliosomes) in SOD1G93A mice at different stages of the disease. ATP/AMP ratio was lower in synaptosomes isolated from the spinal cord, but not from other brain areas, of SOD1G93A vs. control mice. The energy impairment was linked to altered oxidative phosphorylation (OxPhos) and increment of lipid peroxidation. These metabolic dysfunctions were present during disease progression, starting at the very pre-symptomatic stages, and did not depend on a different number of mitochondria or a different expression of OxPhos proteins. Conversely, gliosomes showed a reduction of the ATP/AMP ratio only at the late stages of the disease and an increment of oxidative stress also in the absence of a significant decrement in OxPhos activity. Data suggest that the presynaptic neuronal moiety plays a pivotal role for synaptic energy metabolism dysfunctions in ALS. Changes in the perisynaptic compartment seem subordinated to neuronal damage.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Martina Bartolucci
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, 16132, Genoa, Italy
| | - Elena Gallia
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132, Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy. .,Center of Excellence for Biomedical Research, University of Genoa, 16132, Genoa, Italy.
| |
Collapse
|
20
|
Wang G, Yuan Y, Gao L, Tan X, Yang G, Zhao F, Jin Y. Disruption of Intracellular ATP Generation and Tight Junction Protein Expression during the Course of Brain Edema Induced by Subacute Poisoning of 1,2-Dichloroethane. Front Neurosci 2018; 12:12. [PMID: 29410610 PMCID: PMC5787108 DOI: 10.3389/fnins.2018.00012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/08/2018] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to explore changes in intracellular ATP generation and tight junction protein expression during the course of brain edema induced by subacute poisoning of 1,2-dichloroethane (1,2-DCE). Mice were exposed to 1.2 g/m3 1,2-DCE for 3.5 h per day for 1, 2, or 3 days, namely group A, B, and C. Na+-K+-ATPase and Ca2+-ATPase activity, ATP and lactic acid content, intracellular free Ca2+ concentration and ZO-1 and occludin expression in the brain were measured. Results of present study disclosed that Ca2+-ATPase activities in group B and C, and Na+/K+-ATPase activity in group C decreased, whereas intracellular free Ca2+ concentrations in group B and C increased significantly compared with control. Moreover, ATP content decreased, whereas lactic acid content increased significantly in group C compared with control. On the other hand, expressions of ZO-1 and occludin at both the protein and gene levels in group B and C decreased significantly compared with control. In conclusion, findings from this study suggest that calcium overload and depressed expression of tight junction associated proteins, such as ZO-1 and occludin might play an important role in the early phase of brain edema formation induced by subacute poisoning of 1,2-DCE.
Collapse
Affiliation(s)
- Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Yuan
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, China
| | - Lanyue Gao
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaoqiong Tan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Guangqian Yang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
22
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1012] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
23
|
Sun Q, Liao Y, Wang T, Wang G, Zhao F, Jin Y. Alteration in mitochondrial function and glutamate metabolism affected by 2-chloroethanol in primary cultured astrocytes. Toxicol In Vitro 2016; 37:50-60. [PMID: 27596522 DOI: 10.1016/j.tiv.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/08/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
The aim of this study was to explore the mechanisms that contribute to 1,2-dichloroethane (1,2-DCE) induced brain edema by focusing on alteration of mitochondrial function and glutamate metabolism in primary cultured astrocytes induced by 2-chloroethanol (2-CE), a metabolite of 1,2-DCE in vivo. The cells were exposed to different levels of 2-CE in the media for 24h. Mitochondrial function was evaluated by its membrane potential and intracellular contents of ATP, lactic acid and reactive oxygen species (ROS). Glutamate metabolism was indicated by expression of glutamine synthase (GS), glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) at both protein and gene levels. Compared to the control group, exposure to 2-CE could cause a dose dependent damage in astrocytes, indicated by decreased cell viability and morphological changes, and supported by decreased levels of nonprotein sulfhydryl (NPSH) and inhibited activities of Na+/K+-ATPase and Ca2+-ATPase in the cells. The present study also revealed both mitochondrial function and glutamate metabolism in astrocytes were significantly disturbed by 2-CE. Of which, mitochondrial function was much vulnerable to the effects of 2-CE. In conclusion, our findings suggested that mitochondrial dysfunction and glutamate metabolism disorder could contribute to 2-CE-induced cytotoxicity in astrocytes, which might be related to 1,2-DCE-induced brain edema.
Collapse
Affiliation(s)
- Qi Sun
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yingjun Liao
- Department of Physiology, China Medical University, People's Republic of China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
24
|
Boscia F, Begum G, Pignataro G, Sirabella R, Cuomo O, Casamassa A, Sun D, Annunziato L. Glial Na(+) -dependent ion transporters in pathophysiological conditions. Glia 2016; 64:1677-97. [PMID: 27458821 DOI: 10.1002/glia.23030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Medical School
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical School.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania, 15213
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
25
|
Cheli VT, Santiago González DA, Smith J, Spreuer V, Murphy GG, Paez PM. L-type voltage-operated calcium channels contribute to astrocyte activation In vitro. Glia 2016; 64:1396-415. [PMID: 27247164 DOI: 10.1002/glia.23013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 03/11/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022]
Abstract
We have found a significant upregulation of L-type voltage-operated Ca(++) channels (VOCCs) in reactive astrocytes. To test if VOCCs are centrally involved in triggering astrocyte reactivity, we used in vitro models of astrocyte activation in combination with pharmacological inhibitors, siRNAs and the Cre/lox system to reduce the activity of L-type VOCCs in primary cortical astrocytes. The endotoxin lipopolysaccharide (LPS) as well as high extracellular K(+) , glutamate, and ATP promote astrogliosis in vitro. L-type VOCC inhibitors drastically reduce the number of reactive cells, astrocyte hypertrophy, and cell proliferation after these treatments. Astrocytes transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents as well as Cav1.2 knockout astrocytes showed reduce Ca(++) influx by ∼80% after plasma membrane depolarization. Importantly, Cav1.2 knock-down/out prevents astrocyte activation and proliferation induced by LPS. Similar results were found using the scratch wound assay. After injuring the astrocyte monolayer, cells extend processes toward the cell-free scratch region and subsequently migrate and populate the scratch. We found a significant increase in the activity of L-type VOCCs in reactive astrocytes located in the growing line in comparison to quiescent astrocytes situated away from the scratch. Moreover, the migration of astrocytes from the scratching line as well as the number of proliferating astrocytes was reduced in Cav1.2 knock-down/out cultures. In summary, our results suggest that Cav1.2 L-type VOCCs play a fundamental role in the induction and/or proliferation of reactive astrocytes, and indicate that the inhibition of these Ca(++) channels may be an effective way to prevent astrocyte activation. GLIA 2016. GLIA 2016;64:1396-1415.
Collapse
Affiliation(s)
- Veronica T Cheli
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Diara A Santiago González
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Jessica Smith
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Vilma Spreuer
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Geoffrey G Murphy
- Department of Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Pablo M Paez
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| |
Collapse
|
26
|
Parpura V, Sekler I, Fern R. Plasmalemmal and mitochondrial Na+-Ca2+exchange in neuroglia. Glia 2016; 64:1646-54. [DOI: 10.1002/glia.22975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/07/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology; Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham; Birmingham Alabama
| | - Israel Sekler
- Department of Physiology, Faculty of Health Science; Ben-Gurion University; Ben-Guion Av 84105 POB 653
| | - Robert Fern
- Peninsular School of Medicine and Dentistry; University of Plymouth; Plymouth PL6 8BU United Kingdom
| |
Collapse
|
27
|
Rose CR, Verkhratsky A. Principles of sodium homeostasis and sodium signalling in astroglia. Glia 2016; 64:1611-27. [DOI: 10.1002/glia.22964] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Alexei Verkhratsky
- Faculty of Life Sciences; the University of Manchester; Manchester United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Neurosciences; University of the Basque Country UPV/EHU and CIBERNED; Leioa Spain
- University of Nizhny Novgorod; Nizhny Novgorod Russia
| |
Collapse
|
28
|
Pappalardo LW, Black JA, Waxman SG. Sodium channels in astroglia and microglia. Glia 2016; 64:1628-45. [PMID: 26919466 DOI: 10.1002/glia.22967] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels are required for electrogenesis in excitable cells. Their activation, triggered by membrane depolarization, generates transient sodium currents that initiate action potentials in neurons, cardiac, and skeletal muscle cells. Cells that have not traditionally been considered to be excitable (nonexcitable cells), including glial cells, also express sodium channels in physiological conditions as well as in pathological conditions. These channels contribute to multiple functional roles that are seemingly unrelated to the generation of action potentials. Here, we discuss the dynamics of sodium channel expression in astrocytes and microglia, and review evidence for noncanonical roles in effector functions of these cells including phagocytosis, migration, proliferation, ionic homeostasis, and secretion of chemokines/cytokines. We also examine possible mechanisms by which sodium channels contribute to the activity of glial cells, with an eye toward therapeutic implications for central nervous system disease. GLIA 2016;64:1628-1645.
Collapse
Affiliation(s)
- Laura W Pappalardo
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Joel A Black
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
29
|
Cervetto C, Frattaroli D, Venturini A, Passalacqua M, Nobile M, Alloisio S, Tacchetti C, Maura G, Agnati LF, Marcoli M. Calcium-permeable AMPA receptors trigger vesicular glutamate release from Bergmann gliosomes. Neuropharmacology 2015; 99:396-407. [PMID: 26260232 DOI: 10.1016/j.neuropharm.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
The Bergmann glia is equipped with Ca2+-permeable AMPA receptors for glutamate, indispensable for structural and functional relations between the Bergmann glia and parallel/climbing fibers-Purkinje cell synapses. To better understand roles for the Bergmann AMPA receptors, herein we investigate on gliotransmitter release and Ca2+ signals in isolated Bergmann glia processes obtained from adult rat cerebellum. We found that: 1) the rat cerebellar purified astrocyte processes (gliosomes) expressed astrocytic and Bergmann markers and exhibited negligible contamination by nerve terminals, microglia, or oligodendrocytes; 2) activation of Ca2+-permeable AMPA receptors caused Ca2+ signals in the processes, and the release of glutamate from the processes; 3) effectiveness of rose bengal, trypan blue or bafilomycin A1, indicated that activation of the AMPA receptors evoked vesicular glutamate release. Cerebellar purified nerve terminals appeared devoid of glutamate-releasing Ca2+-permeable AMPA receptors, indicating that neuronal contamination may not be the source of the signals detected. Ultrastructural analysis indicated the presence of vesicles in the cytoplasm of the processes; confocal imaging confirmed the presence of vesicular glutamate transporters in Bergmann glia processes. We conclude that: a vesicular mechanism for release of the gliotransmitter glutamate is present in mature Bergmann processes; entry of Ca2+ through the AMPA receptors located on Bergmann processes is coupled with vesicular glutamate release. The findings would add a new role for a well-known Bergmann target for glutamate (the Ca2+-permeable AMPA receptors) and a new actor (the gliotransmitter glutamate) at the cerebellar excitatory synapses onto Purkinje cells.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Daniela Frattaroli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, Italian Institute of Biostructures and Biosystems, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Mario Nobile
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Susanna Alloisio
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Carlo Tacchetti
- Department of Experimental Medicine, University of Genova, Via L. B. Alberti 2, 16132 Genova, Italy; Experimental Imaging Center, Scientific Institute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm, Sweden
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
30
|
Dynamics of sodium channel Nav1.5 expression in astrocytes in mouse models of multiple sclerosis. Neuroreport 2015; 25:1208-15. [PMID: 25144393 DOI: 10.1097/wnr.0000000000000249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Astrocytes actively participate in the response of the central nervous system to injury, including in multiple sclerosis. Astrocytes can play both beneficial and detrimental roles in response to neuroinflammation; however, in extreme cases, astrogliosis can result in the formation of a glial scar, which can impede the regeneration of injured neurons. Although astrocytes do not express the voltage-gated sodium channel Nav1.5 in the nonpathological human brain, they exhibit robust upregulation of Nav1.5 within acute and chronic multiple sclerosis lesions. Recent work has indicated that Nav1.5 contributes to the pathways that regulate glial scar formation in vitro through modulation of intracellular Ca levels. However, the temporal dynamics of astrocytic Nav1.5 channel expression in response to neuroinflammatory pathologies has not been investigated. We examined astrocytes from mice with monophasic and chronic-relapsing (CR) experimental autoimmune encephalomyelitis (EAE) by immunohistochemical analysis to determine whether Nav1.5 is expressed in these cells, and whether the expression correlates with the severity of disease and/or phases of relapse and remission. Our results demonstrate that Nav1.5 is upregulated in astrocytes in situ in a temporal manner that correlates with disease severity in both monophasic and CR EAE. Further, in CR EAE, Nav1.5 expression is upregulated during relapses and subsequently attenuated during periods of remission. These observations are consistent with the suggestion that Nav1.5 can play a role in the response of astrocytes to inflammatory pathologies in the central nervous system and suggest Nav1.5 may be a potential therapeutic target to modulate reactive astrogliosis in vivo.
Collapse
|
31
|
Shenoda B. The role of Na+/Ca2+ exchanger subtypes in neuronal ischemic injury. Transl Stroke Res 2015; 6:181-90. [PMID: 25860439 DOI: 10.1007/s12975-015-0395-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
The Na(+)/Ca(2+) exchanger (NCX) plays an important role in the maintenance of Na(+) and Ca(2+) homeostasis in most cells including neurons under physiological and pathological conditions. It exists in three subtypes (NCX1-3) with different tissue distributions but all of them are present in the brain. NCX transports Na(+) and Ca(2+) in either Ca(2+)-efflux (forward) or Ca(2+)-influx (reverse) mode, depending on membrane potential and transmembrane ion gradients. During neuronal ischemia, Na(+) and Ca(2+) ionic disturbances favor NCX to work in reverse mode, giving rise to increased intracellular Ca(2+) levels, while it may regain its forward mode activity on reperfusion. The exact significance of NCX in neuronal ischemic and reperfusion states remains unclear. The differential role of NCX subtypes in ischemic neuronal injury has been extensively investigated using various pharmacological tools as well as genetic models. This review discusses the mode of action of NCX in ischemic and reperfusion states, the differential roles played by NCX subtypes in these states as well as the role of NCX in pre- and postconditioning. NCX subtypes carry variable roles in ischemic injury. Furthermore, the mode of action of each subtype varies in ischemia and reperfusion states. Thus, therapeutic targeting of NCX in stroke should be based on appropriate timing of the administration of NCX subtype-specific strategies.
Collapse
Affiliation(s)
- Botros Shenoda
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Mail Stop #488, Philadelphia, PA, 19102, USA,
| |
Collapse
|
32
|
Astrocyte sodium signaling and neuro-metabolic coupling in the brain. Neuroscience 2015; 323:121-34. [PMID: 25791228 DOI: 10.1016/j.neuroscience.2015.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
Abstract
At tripartite synapses, astrocytes undergo calcium signaling in response to release of neurotransmitters and this calcium signaling has been proposed to play a critical role in neuron-glia interaction. Recent work has now firmly established that, in addition, neuronal activity also evokes sodium transients in astrocytes, which can be local or global depending on the number of activated synapses and the duration of activity. Furthermore, astrocyte sodium signals can be transmitted to adjacent cells through gap junctions and following release of gliotransmitters. A main pathway for activity-related sodium influx into astrocytes is via high-affinity sodium-dependent glutamate transporters. Astrocyte sodium signals differ in many respects from the well-described glial calcium signals both in terms of their temporal as well as spatial distribution. There are no known buffering systems for sodium ions, nor is there store-mediated release of sodium. Sodium signals thus seem to represent rather direct and unbiased indicators of the site and strength of neuronal inputs. As such they have an immediate influence on the activity of sodium-dependent transporters which may even reverse in response to sodium signaling, as has been shown for GABA transporters for example. Furthermore, recovery from sodium transients through Na(+)/K(+)-ATPase requires a measurable amount of ATP, resulting in an activation of glial metabolism. In this review, we present basic principles of sodium regulation and the current state of knowledge concerning the occurrence and properties of activity-related sodium transients in astrocytes. We then discuss different aspects of the relationship between sodium changes in astrocytes and neuro-metabolic coupling, putting forward the idea that indeed sodium might serve as a new type of intracellular ion signal playing an important role in neuron-glia interaction and neuro-metabolic coupling in the healthy and diseased brain.
Collapse
|
33
|
Carney KE, Milanese M, van Nierop P, Li KW, Oliet SHR, Smit AB, Bonanno G, Verheijen MHG. Proteomic analysis of gliosomes from mouse brain: identification and investigation of glial membrane proteins. J Proteome Res 2014; 13:5918-27. [PMID: 25308431 DOI: 10.1021/pr500829z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes are being increasingly recognized as crucial contributors to neuronal function at synapses, axons, and somas. Reliable methods that can provide insight into astrocyte proteins at the neuron-astrocyte functional interface are highly desirable. Here, we conducted a mass spectrometry analysis of Percoll gradient-isolated gliosomes, a viable preparation of glial subcellular particles often used to study mechanisms of astrocytic transmitter uptake and release and their regulation. Gliosomes were compared with synaptosomes, a preparation containing the neurotransmitter release machinery, and, accordingly, synaptosomes were enriched for proteins involved in synaptic vesicle-mediated transport. Interestingly, gliosome preparations were found to be enriched for different classes of known astrocyte proteins, such as VAMP3 (involved in astrocyte exocytosis), Ezrin (perisynaptic astrocyte cytoskeletal protein), and Basigin (astrocyte membrane glycoprotein), as well as for G-protein-mediated signaling proteins. Mass spectrometry data are available via ProteomeXchange with the identifier PXD001375. Together, these data provide the first detailed description of the gliosome proteome and show that gliosomes can be a useful preparation to study glial membrane proteins and associated processes.
Collapse
Affiliation(s)
- Karen E Carney
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam , 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Stifanese R, Averna M, De Tullio R, Pedrazzi M, Milanese M, Bonifacino T, Bonanno G, Salamino F, Pontremoli S, Melloni E. Role of calpain-1 in the early phase of experimental ALS. Arch Biochem Biophys 2014; 562:1-8. [PMID: 25151305 DOI: 10.1016/j.abb.2014.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/29/2014] [Accepted: 08/07/2014] [Indexed: 01/01/2023]
Abstract
Elevation in [Ca(2+)]i and activation of calpain-1 occur in central nervous system of SOD1(G93A) transgenic mice model of amyotrophic lateral sclerosis (ALS), but few data are available about the early stage of ALS. We here investigated the level of activation of the Ca(2+)-dependent protease calpain-1 in spinal cord of SOD1(G93A) mice to ascertain a possible role of the protease in the aetiology of ALS. Comparing the events occurring in the 120 day old mice, we found that [Ca(2+)]i and activation of calpain-1 were also increased in the spinal cord of 30 day old mice, as indicated by the digestion of some substrates of the protease such as nNOS, αII-spectrin, and the NR2B subunit of NMDA-R. However, the digestion pattern of these proteins suggests that calpain-1 may play different roles depending on the phase of ALS. In fact, in spinal cord of 30 day old mice, activation of calpain-1 produces high amounts of nNOS active species, while in 120 day old mice enhanced-prolonged activation of calpain-1 inactivates nNOS and down-regulates NR2B. Our data reveal a critical role of calpain-1 in the early phase and during progression of ALS, suggesting new therapeutic approaches to counteract its onset and fatal course.
Collapse
Affiliation(s)
- R Stifanese
- National Research Council (C.N.R.), Institute of Marine Sciences (I.S.MAR.), U.O.S. of Genoa, Via De Marini, 6, 16149 Genoa, Italy; University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy.
| | - M Averna
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - R De Tullio
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - M Pedrazzi
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - M Milanese
- University of Genoa, Genoa, Italy; Department of Pharmacy (DI.FAR.), Pharmacology and Toxicology Unit, Viale Cembrano, 4, 16147 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - T Bonifacino
- University of Genoa, Genoa, Italy; Department of Pharmacy (DI.FAR.), Pharmacology and Toxicology Unit, Viale Cembrano, 4, 16147 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - G Bonanno
- University of Genoa, Genoa, Italy; Department of Pharmacy (DI.FAR.), Pharmacology and Toxicology Unit, Viale Cembrano, 4, 16147 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - F Salamino
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - S Pontremoli
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| | - E Melloni
- University of Genoa, Genoa, Italy; Department of Experimental Medicine (DI.ME.S.), Section of Biochemistry, Viale Benedetto XV, 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (C.E.B.R.), Viale Benedetto XV, 9, 16132 Genoa, Italy
| |
Collapse
|
35
|
Pappalardo LW, Samad OA, Black JA, Waxman SG. Voltage-gated sodium channel Nav 1.5 contributes to astrogliosis in an in vitro model of glial injury via reverse Na+ /Ca2+ exchange. Glia 2014; 62:1162-75. [PMID: 24740847 DOI: 10.1002/glia.22671] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/19/2022]
Abstract
Astrogliosis is a prominent feature of many, if not all, pathologies of the brain and spinal cord, yet a detailed understanding of the underlying molecular pathways involved in the transformation from quiescent to reactive astrocyte remains elusive. We investigated the contribution of voltage-gated sodium channels to astrogliosis in an in vitro model of mechanical injury to astrocytes. Previous studies have shown that a scratch injury to astrocytes invokes dual mechanisms of migration and proliferation in these cells. Our results demonstrate that wound closure after mechanical injury, involving both migration and proliferation, is attenuated by pharmacological treatment with tetrodotoxin (TTX) and KB-R7943, at a dose that blocks reverse mode of the Na(+) /Ca(2+) exchanger (NCX), and by knockdown of Nav 1.5 mRNA. We also show that astrocytes display a robust [Ca(2+) ]i transient after mechanical injury and demonstrate that this [Ca(2+) ]i response is also attenuated by TTX, KB-R7943, and Nav 1.5 mRNA knockdown. Our results suggest that Nav 1.5 and NCX are potential targets for modulation of astrogliosis after injury via their effect on [Ca(2+) ]i .
Collapse
Affiliation(s)
- Laura W Pappalardo
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut
| | | | | | | |
Collapse
|
36
|
Joshi P, Turola E, Ruiz A, Bergami A, Libera DD, Benussi L, Giussani P, Magnani G, Comi G, Legname G, Ghidoni R, Furlan R, Matteoli M, Verderio C. Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ 2013; 21:582-93. [PMID: 24336048 DOI: 10.1038/cdd.2013.180] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/15/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by extracellular amyloid-β (Aβ) deposition, which activates microglia, induces neuroinflammation and drives neurodegeneration. Recent evidence indicates that soluble pre-fibrillar Aβ species, rather than insoluble fibrils, are the most toxic forms of Aβ. Preventing soluble Aβ formation represents, therefore, a major goal in AD. We investigated whether microvesicles (MVs) released extracellularly by reactive microglia may contribute to AD degeneration. We found that production of myeloid MVs, likely of microglial origin, is strikingly high in AD patients and in subjects with mild cognitive impairment and that AD MVs are toxic for cultured neurons. The mechanism responsible for MV neurotoxicity was defined in vitro using MVs produced by primary microglia. We demonstrated that neurotoxicity of MVs results from (i) the capability of MV lipids to promote formation of soluble Aβ species from extracellular insoluble aggregates and (ii) from the presence of neurotoxic Aβ forms trafficked to MVs after Aβ internalization into microglia. MV neurotoxicity was neutralized by the Aβ-interacting protein PrP and anti-Aβ antibodies, which prevented binding to neurons of neurotoxic soluble Aβ species. This study identifies microglia-derived MVs as a novel mechanism by which microglia participate in AD degeneration, and suggest new therapeutic strategies for the treatment of the disease.
Collapse
Affiliation(s)
- P Joshi
- 1] Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy [2] Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32, Milano 20129, Italy
| | - E Turola
- 1] Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy [2] Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32, Milano 20129, Italy
| | - A Ruiz
- Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy
| | - A Bergami
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - D D Libera
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - L Benussi
- Proteomics Unit, IRCCS Istituto centro San Giovanni di Dio Fatebenefratelli, via Pilastroni, Brescia 4 25125, Italy
| | - P Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy
| | - G Magnani
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - G Comi
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - G Legname
- SISSA, Department of Neuroscience, Via Bonomea 265, Trieste I-34136, Italy
| | - R Ghidoni
- Proteomics Unit, IRCCS Istituto centro San Giovanni di Dio Fatebenefratelli, via Pilastroni, Brescia 4 25125, Italy
| | - R Furlan
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, Milano 20132, Italy
| | - M Matteoli
- 1] Department of Biotechnology and Translational Medicine, University of Milano, via Vanvitelli 32, Milano 20129, Italy [2] IRCCS Humanitas,via Manzoni 56, Rozzano 20089, Italy
| | - C Verderio
- 1] Department of Medicine, CNR Institute of Neuroscience, via Vanvitelli 32, Milano 20129, Italy [2] IRCCS Humanitas,via Manzoni 56, Rozzano 20089, Italy
| |
Collapse
|
37
|
Black J, Waxman S. Noncanonical Roles of Voltage-Gated Sodium Channels. Neuron 2013; 80:280-91. [DOI: 10.1016/j.neuron.2013.09.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 12/19/2022]
|
38
|
Ionic transporter activity in astrocytes, microglia, and oligodendrocytes during brain ischemia. J Cereb Blood Flow Metab 2013; 33:969-82. [PMID: 23549380 PMCID: PMC3705429 DOI: 10.1038/jcbfm.2013.44] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 01/09/2023]
Abstract
Glial cells constitute a large percentage of cells in the nervous system. During recent years, a large number of studies have critically attributed to glia a new role which no longer reflects the long-held view that glia constitute solely a silent and passive supportive scaffolding for brain cells. Indeed, it has been hypothesized that glia, partnering neurons, have a much more actively participating role in brain function. Alteration of intraglial ionic homeostasis in response to ischemic injury has a crucial role in inducing and maintaining glial responses in the ischemic brain. Therefore, glial transporters as potential candidates in stroke intervention are becoming promising targets to enhance an effective and additional therapy for brain ischemia. In this review, we will describe in detail the role played by ionic transporters in influencing astrocyte, microglia, and oligodendrocyte activity and the implications that these transporters have in the progression of ischemic lesion.
Collapse
|
39
|
Rose CR, Karus C. Two sides of the same coin: sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia 2013; 61:1191-205. [PMID: 23553639 DOI: 10.1002/glia.22492] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/06/2013] [Indexed: 11/07/2022]
Abstract
The intracellular sodium concentration of astrocytes is classically viewed as being kept under tight homeostatic control and at a relatively stable level under physiological conditions. Indeed, the steep inwardly directed electrochemical gradient for sodium, generated by the Na⁺/K⁺-ATPase, contributes to maintain the electrochemical gradient of K⁺ and the highly K⁺-based negative membrane potential, and is a central element in energizing membrane transport. As such it is tightly coupled to the homeostasis of extra- and intracellular potassium, calcium or pH and to the reuptake of transmitters such as glutamate. Recent studies, however, have demonstrated that this picture is far too simplistic. It is now firmly established that transmitters, most notably glutamate, and excitatory neuronal activity evoke long-lasting sodium transients in astrocytes, the properties of which are distinctly different from those of activity-related glial calcium signals. From these studies, it emerges that sodium homeostasis and signaling are two sides of the same coin: sodium-dependent transporters, primarily known for their role in ion regulation and homeostasis, also generate relevant ion signals during neuronal activity. The functional consequences of activity-related sodium transients are manifold and are just coming into view, enabling surprising and important new insights into astrocyte function and neuron-glia interaction in the brain. The present review will highlight current knowledge about the mechanisms that contribute to sodium homeostasis in astrocytes, present recent data on the spatial and temporal properties of activity-related glial sodium signals and discuss their functional consequences with a special emphasis on pathophysiological conditions.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
40
|
Abstract
Astrocytes exhibit their excitability based on variations in cytosolic Ca(2+) levels, which leads to variety of signalling events. Only recently, however, intracellular fluctuations of more abundant cation Na(+) are brought in the limelight of glial signalling. Indeed, astrocytes possess several plasmalemmal molecular entities that allow rapid transport of Na(+) across the plasma membrane: (1) ionotropic receptors, (2) canonical transient receptor potential cation channels, (3) neurotransmitter transporters and (4) sodium-calcium exchanger. Concerted action of these molecules in controlling cytosolic Na(+) may complement Ca(2+) signalling to provide basis for complex bidirectional astrocyte-neurone communication at the tripartite synapse.
Collapse
|
41
|
Parpura V, Verkhratsky A. The astrocyte excitability brief: From receptors to gliotransmission. Neurochem Int 2012; 61:610-21. [DOI: 10.1016/j.neuint.2011.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/14/2011] [Accepted: 12/01/2011] [Indexed: 01/23/2023]
|
42
|
Li Y, Krogh KA, Thayer SA. Epileptic stimulus increases Homer 1a expression to modulate endocannabinoid signaling in cultured hippocampal neurons. Neuropharmacology 2012; 63:1140-9. [PMID: 22814532 DOI: 10.1016/j.neuropharm.2012.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 06/12/2012] [Accepted: 07/03/2012] [Indexed: 02/06/2023]
Abstract
Endocannabinoid (eCB) signaling serves as an on-demand neuroprotective system. eCBs are produced postsynaptically in response to depolarization or activation of metabotropic glutamate receptors (mGluRs) and act on presynaptic cannabinoid receptor-1 to suppress synaptic transmission. Here, we examined the effects of epileptiform activity on these two forms of eCB signaling in hippocampal cultures. Treatment with bicuculline and 4-aminopyridine (Bic + 4-AP), which induced burst firing, inhibited metabotropic-induced suppression of excitation (MSE) and prolonged the duration of depolarization-induced suppression of excitation (DSE). The Homer family of proteins provides a scaffold for signaling molecules including mGluRs. It is known that seizures induce the expression of the short Homer isoform 1a (H1a) that acts in a dominant negative manner to uncouple Homer scaffolds. Bic + 4-AP treatment increased H1a mRNA. A group I mGluR antagonist blocked the Bic + 4-AP-evoked increase in burst firing, the increase in H1a expression, and the inhibition of MSE. Bic + 4-AP treatment reduced mGluR-mediated Ca(2+) mobilization from inositol trisphosphate-sensitive stores relative to untreated cells. Expression of H1a, but not a mutant form that cannot bind Homer ligands, mimicked Bic + 4-AP inhibition of MSE and mGluR-mediated Ca(2+) mobilization. In cells expressing shRNA targeted to Homer 1 mRNA, Bic + 4-AP did not affect mGluR-mediated Ca(2+) release. Furthermore, knockdown of H1a prevented the inhibition of MSE induced by Bic + 4-AP. Thus, an epileptic stimulus increased H1a expression, which subsequently uncoupled mGluR-mediated eCB production. These results indicate that seizure activity modulates eCB-mediated synaptic plasticity, suggesting a changing role for the eCB system following exposure to aberrant patterns of excitatory synaptic activity.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
43
|
Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M. The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 2012; 7:e39959. [PMID: 22761937 PMCID: PMC3384594 DOI: 10.1371/journal.pone.0039959] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/30/2012] [Indexed: 02/03/2023] Open
Abstract
The polymodal transient receptor potential vanilloid 4 (TRPV4) channel, a member of the TRP channel family, is a calcium-permeable cationic channel that is gated by various stimuli such as cell swelling, low pH and high temperature. Therefore, TRPV4-mediated calcium entry may be involved in neuronal and glia pathophysiology associated with various disorders of the central nervous system, such as ischemia. The TRPV4 channel has been recently found in adult rat cortical and hippocampal astrocytes; however, its role in astrocyte pathophysiology is still not defined. In the present study, we examined the impact of cerebral hypoxia/ischemia (H/I) on the functional expression of astrocytic TRPV4 channels in the adult rat hippocampal CA1 region employing immunohistochemical analyses, the patch-clamp technique and microfluorimetric intracellular calcium imaging on astrocytes in slices as well as on those isolated from sham-operated or ischemic hippocampi. Hypoxia/ischemia was induced by a bilateral 15-minute occlusion of the common carotids combined with hypoxic conditions. Our immunohistochemical analyses revealed that 7 days after H/I, the expression of TRPV4 is markedly enhanced in hippocampal astrocytes of the CA1 region and that the increasing TRPV4 expression coincides with the development of astrogliosis. Additionally, adult hippocampal astrocytes in slices or cultured hippocampal astrocytes respond to the TRPV4 activator 4-alpha-phorbol-12,-13-didecanoate (4αPDD) by an increase in intracellular calcium and the activation of a cationic current, both of which are abolished by the removal of extracellular calcium or exposure to TRP antagonists, such as Ruthenium Red or RN1734. Following hypoxic/ischemic injury, the responses of astrocytes to 4αPDD are significantly augmented. Collectively, we show that TRPV4 channels are involved in ischemia-induced calcium entry in reactive astrocytes and thus, might participate in the pathogenic mechanisms of astroglial reactivity following ischemic insult.
Collapse
Affiliation(s)
- Olena Butenko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - David Dzamba
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Jana Benesova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Pavel Honsa
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Valentina Benfenati
- Institute for the Study of Nanostructured Material, National Research Council, Bologna, Italy
| | - Vendula Rusnakova
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Stefano Ferroni
- Department of Human and General Physiology, University of Bologna, Bologna, Italy
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
44
|
Kirischuk S, Parpura V, Verkhratsky A. Sodium dynamics: another key to astroglial excitability? Trends Neurosci 2012; 35:497-506. [PMID: 22633141 DOI: 10.1016/j.tins.2012.04.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 11/19/2022]
Abstract
Astroglial excitability is largely mediated by fluctuations in intracellular ion concentrations. In addition to generally acknowledged Ca²⁺ excitability of astroglia, recent studies have demonstrated that neuronal activity triggers transient increases in the cytosolic Na⁺ concentration ([Na⁺](i)) in perisynaptic astrocytes. These [Na⁺](i) transients are controlled by multiple Na⁺-permeable channels and Na⁺-dependent transporters; spatiotemporally organized [Na⁺](i) dynamics in turn regulate diverse astroglial homeostatic responses such as metabolic/signaling utilization of lactate and glutamate, transmembrane transport of neurotransmitters and K⁺ buffering. In particular, near-membrane [Na⁺](i) transients determine the rate and the direction of the transmembrane transport of GABA and Ca²⁺. We discuss here the role of Na⁺ in the regulation of various systems that mediate fast bidirectional communication between neurones and glia at the single synapse level.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Institute of Physiology and Pathophysiology, Universal Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
45
|
Verkhratsky A, Rodríguez JJ, Parpura V. Calcium signalling in astroglia. Mol Cell Endocrinol 2012; 353:45-56. [PMID: 21945602 DOI: 10.1016/j.mce.2011.08.039] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/28/2011] [Accepted: 08/31/2011] [Indexed: 12/15/2022]
Abstract
Astroglia possess excitability based on movements of Ca(2+) ions between intracellular compartments and plasmalemmal Ca(2+) fluxes. This "Ca(2+) excitability" is controlled by several families of proteins located in the plasma membrane, within the cytosol and in the intracellular organelles, most notably in the endoplasmic reticulum (ER) and mitochondria. Accumulation of cytosolic Ca(2+) can be caused by the entry of Ca(2+) from the extracellular space through ionotropic receptors and store-operated channels expressed in astrocytes. Plasmalemmal Ca(2+) ATP-ase and sodium-calcium exchanger extrude cytosolic Ca(2+) to the extracellular space; the exchanger can also operate in reverse, depending of the intercellular Na(+) concentration, to deliver Ca(2+) to the cytosol. The ER internal store possesses inositol 1,4,5-trisphosphate receptors which can be activated upon stimulation of astrocytes through a multiple plasma membrane metabotropic G-protein coupled receptors. This leads to release of Ca(2+) from the ER and its elevation in the cytosol, the level of which can be modulated by mitochondria. The mitochondrial uniporter takes up Ca(2+) into the matrix, while free Ca(2+) exits the matrix through the mitochondrial Na(+)/Ca(2+) exchanger as well as via transient openings of the mitochondrial permeability transition pore. One of the prominent consequences of astroglial Ca(2+) excitability is gliotransmission, a release of transmitters from astroglia which can lead to signalling to adjacent neurones.
Collapse
|
46
|
Song Y, Gunnarson E. Potassium dependent regulation of astrocyte water permeability is mediated by cAMP signaling. PLoS One 2012; 7:e34936. [PMID: 22493723 PMCID: PMC3321040 DOI: 10.1371/journal.pone.0034936] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/11/2012] [Indexed: 11/18/2022] Open
Abstract
Astrocytes express potassium and water channels to support dynamic regulation of potassium homeostasis. Potassium kinetics can be modulated by aquaporin-4 (AQP4), the essential water channel for astrocyte water permeability regulation. We investigated whether extracellular potassium ([K(+)](o)) can regulate astrocyte water permeability and the mechanisms of such an effect. Studies were performed on rat primary astrocytes and a rat astrocyte cell line transfected with AQP4. We found that 10 mM [K(+)](o) caused an immediate, more than 40%, increase in astrocyte water permeability which was sustained in 5 min. The water channel AQP4 was a target for this regulation. Potassium induced a significant increase in intracellular cAMP as measured with a FRET based method and with enzyme immunoassay. We found that protein kinase A (PKA) could phosphorylate AQP4 in vitro. Further elevation of [K(+)](o) to 35 mM induced a global intracellular calcium response and a transient water permeability increase that was abolished in 5 min. When inwardly rectifying potassium (Kir)-channels were blocked, 10 mM [K(+)](o) also induced a calcium increase and the water permeability increase no longer persisted. In conclusion, we find that elevation of extracellular potassium regulates AQP4 and astrocyte water permeability via intracellular signaling involving cAMP. A prolonged increase of astrocyte water permeability is Kir-channel dependent and this response can be impeded by intracellular calcium signaling. Our results support the concept of coupling between AQP4 and potassium handling in astrocytes.
Collapse
Affiliation(s)
- Yutong Song
- Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| | - Eli Gunnarson
- Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
47
|
Verkhratsky A, Rodríguez JJ, Parpura V. Neurotransmitters and integration in neuronal-astroglial networks. Neurochem Res 2012; 37:2326-38. [PMID: 22476701 DOI: 10.1007/s11064-012-0765-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Two major neural cell types, glia, astrocytes in particular, and neurones can release chemical transmitters that act as soluble signalling compounds for intercellular communication. Exocytosis, a process which depends on an increase in cytosolic Ca(2+) levels, represents a common denominator for release of neurotransmitters, stored in secretory vesicles, from these neural cells. While neurones rely predominately on the immediate entry of Ca(2+) from the extracellular space to the cytosol in this process, astrocytes support their cytosolic Ca(2+) increases by appropriating this ion from the intracellular endoplasmic reticulum store and extracellular space. Additionally, astrocytes can release neurotransmitters using a variety of non-vesicular pathways which are mediated by an assortment of plasmalemmal channels and transporters. Once a neuronal and/or astrocytic neurotransmitter is released into the extracellular space, it can activate plasma membrane neurotransmitter receptors on neural cells, causing autocrine and/or paracrine signalling. Moreover, chemical transmission is essential not only for homocellular, but also for heterocellular bi-directional communication in the brain. Further detailed understanding of chemical transmission will aid our comprehension of the brain (dys)function in heath and disease.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK.
| | | | | |
Collapse
|
48
|
Abstract
Astroglial cells, due to their passive electrical properties, were long considered subservient to neurons and to merely provide the framework and metabolic support of the brain. Although astrocytes do play such structural and housekeeping roles in the brain, these glial cells also contribute to the brain's computational power and behavioural output. These more active functions are endowed by the Ca2+-based excitability displayed by astrocytes. An increase in cytosolic Ca2+ levels in astrocytes can lead to the release of signalling molecules, a process termed gliotransmission, via the process of regulated exocytosis. Dynamic components of astrocytic exocytosis include the vesicular-plasma membrane secretory machinery, as well as the vesicular traffic, which is governed not only by general cytoskeletal elements but also by astrocyte-specific IFs (intermediate filaments). Gliotransmitters released into the ECS (extracellular space) can exert their actions on neighbouring neurons, to modulate synaptic transmission and plasticity, and to affect behaviour by modulating the sleep homoeostat. Besides these novel physiological roles, astrocytic Ca2+ dynamics, Ca2+-dependent gliotransmission and astrocyte–neuron signalling have been also implicated in brain disorders, such as epilepsy. The aim of this review is to highlight the newer findings concerning Ca2+ signalling in astrocytes and exocytotic gliotransmission. For this we report on Ca2+ sources and sinks that are necessary and sufficient for regulating the exocytotic release of gliotransmitters and discuss secretory machinery, secretory vesicles and vesicle mobility regulation. Finally, we consider the exocytotic gliotransmission in the modulation of synaptic transmission and plasticity, as well as the astrocytic contribution to sleep behaviour and epilepsy.
Collapse
|
49
|
Bigini P, Milanese M, Gardoni F, Longhi A, Bonifacino T, Barbera S, Fumagalli E, Di Luca M, Mennini T, Bonanno G. Increased [3H]D-aspartate release and changes in glutamate receptor expression in the hippocampus of the mnd mouse. J Neurosci Res 2012; 90:1148-58. [DOI: 10.1002/jnr.22831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/10/2022]
|
50
|
Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG, Stout RF, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A. Glial cells in (patho)physiology. J Neurochem 2012; 121:4-27. [PMID: 22251135 DOI: 10.1111/j.1471-4159.2012.07664.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|