1
|
Muñoz-Herrera D, Calderón-Rivera A, Zarco N, Corzo-Lopez A, Leyva-Leyva M, Monjaraz E, Sandoval A, Oviedo N, González-Ramírez R, Felix R. Molecular cloning of the gene promoter encoding the human Ca Vγ 2/Stargazin divergent transcript ( CACNG2-DT): characterization and regulation by the cAMP-PKA/CREB signaling pathway. Front Physiol 2023; 14:1286808. [PMID: 38033343 PMCID: PMC10687476 DOI: 10.3389/fphys.2023.1286808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
CaVγ2 (Stargazin or TARPγ2) is a protein expressed in various types of neurons whose function was initially associated with a decrease in the functional expression of voltage-gated presynaptic Ca2+ channels (CaV) and which is now known to promote the trafficking of the postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) towards the cell membrane. Alterations in CaVγ2 expression has been associated with several neurological disorders, such as absence epilepsy. However, its regulation at the transcriptional level has not been intensively addressed. It has been reported that the promoter of the Cacng2 gene, encoding the rat CaVγ2, is bidirectional and regulates the transcription of a long non-coding RNA (lncRNA) in the antisense direction. Here, we investigate the proximal promoter region of the human CACNG2 gene in the antisense direction and show that this region includes two functional cAMP response elements that regulate the expression of a lncRNA called CACNG2-DT. The activity of these sites is significantly enhanced by forskolin, an adenylate cyclase activator, and inhibited by H89, a protein kinase A (PKA) antagonist. Therefore, this regulatory mechanism implies the activation of G protein-coupled receptors and downstream phosphorylation. Interestingly, we also found that the expression of CACNG2-DT may increase the levels of the CaVγ2 subunit. Together, these data provide novel information on the organization of the human CACNG2-DT gene promoter, describe modulatory domains and mechanisms that can mediate various regulatory inputs, and provide initial information on the molecular mechanisms that regulate the functional expression of the CaVγ2 protein.
Collapse
Affiliation(s)
- David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Aida Calderón-Rivera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Natanael Zarco
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandra Corzo-Lopez
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, “Dr. Manuel Gea González” General Hospital, Mexico City, Mexico
| | - Eduardo Monjaraz
- Institute of Physiology, Meritorious Autonomous University of Puebla (BUAP), Puebla, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico, Mexico City, Mexico
| | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, “Dr. Manuel Gea González” General Hospital, Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
2
|
Wang HT, Smallwood J, Mourao-Miranda J, Xia CH, Satterthwaite TD, Bassett DS, Bzdok D. Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists. Neuroimage 2020; 216:116745. [PMID: 32278095 DOI: 10.1016/j.neuroimage.2020.116745] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
The 21st century marks the emergence of "big data" with a rapid increase in the availability of datasets with multiple measurements. In neuroscience, brain-imaging datasets are more commonly accompanied by dozens or hundreds of phenotypic subject descriptors on the behavioral, neural, and genomic level. The complexity of such "big data" repositories offer new opportunities and pose new challenges for systems neuroscience. Canonical correlation analysis (CCA) is a prototypical family of methods that is useful in identifying the links between variable sets from different modalities. Importantly, CCA is well suited to describing relationships across multiple sets of data, such as in recently available big biomedical datasets. Our primer discusses the rationale, promises, and pitfalls of CCA.
Collapse
Affiliation(s)
- Hao-Ting Wang
- Department of Psychology, University of York, Heslington, York, United Kingdom; Sackler Center for Consciousness Science, University of Sussex, Brighton, United Kingdom.
| | - Jonathan Smallwood
- Department of Psychology, University of York, Heslington, York, United Kingdom
| | - Janaina Mourao-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Cedric Huchuan Xia
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Germany; Parietal Team, INRIA, Neurospin, Bat 145, CEA Saclay, 91191, Gif-sur-Yvette, France; Department of Biomedical Engineering, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada; Mila - Quebec Artificial Intelligence Institute, Canada.
| |
Collapse
|
3
|
Cauchy P, Kahn-Perlès B, Ferrier P, Imbert J, Lécine P. 2HybridTools, a handy software to facilitate clone identification and mutation mapping from yeast two-hybrid screening. PeerJ 2019; 7:e7245. [PMID: 31309003 PMCID: PMC6612259 DOI: 10.7717/peerj.7245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/02/2019] [Indexed: 11/24/2022] Open
Abstract
Yeast Two-Hybrid (Y2H) and reverse Two-Hybrid (RY2H) are powerful protein–protein interaction screening methods that rely on the interaction of bait and prey proteins fused to DNA binding (DB) and activation domains (AD), respectively. Y2H allows identification of protein interaction partners using screening libraries, while RY2H is used to determine residues critical to a given protein–protein interaction by exploiting site-directed mutagenesis. Currently, both these techniques still rely on sequencing of positive clones using conventional Sanger sequencing. For Y2H, a screen can yield several positives; the identification of such clones is further complicated by the fact that sequencing products usually contain vector sequence. For RY2H, obtaining a complete sequence is required to identify the full range of residues involved in protein–protein interactions. However, with Sanger sequencing limited to 500–800 nucleotides, sequencing is usually carried from both ends for clones greater than this length. Analysis of such RY2H data thus requires assembly of sequencing products combined with trimming of vector sequences and of low-quality bases at the beginning and ends of sequencing products. Further, RY2H analysis requires collation of mutations that abrogate a DB/AD interaction. Here, we present 2HybridTools, a Java program with a user-friendly interface that allows addressing all these issues inherent to both Y2H and RY2H. Specifically, for Y2H, 2HybridTools enables automated identification of positive clones, while for RY2H, 2HybridTools provides detailed mutation reports as a basis for further investigation of given protein–protein interactions.
Collapse
Affiliation(s)
- Pierre Cauchy
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,Centre d'Immunologie de Marseille-Luminy, Inserm U1104, CNRS UMR7280, Marseille, France.,TAGC, Inserm U1090, Marseille, France.,Centre de Recherche en Cancérologie de Marseille, Inserm UMR1068, CNRS UMR7258, Marseille, France.,Université de la Mediterranée (Aix-Marseille II), Marseille, France
| | - Brigitte Kahn-Perlès
- TAGC, Inserm U1090, Marseille, France.,Centre de Recherche en Cancérologie de Marseille, Inserm UMR1068, CNRS UMR7258, Marseille, France.,Université de la Mediterranée (Aix-Marseille II), Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Inserm U1104, CNRS UMR7280, Marseille, France.,Université de la Mediterranée (Aix-Marseille II), Marseille, France
| | - Jean Imbert
- TAGC, Inserm U1090, Marseille, France.,Centre de Recherche en Cancérologie de Marseille, Inserm UMR1068, CNRS UMR7258, Marseille, France.,Université de la Mediterranée (Aix-Marseille II), Marseille, France
| | - Patrick Lécine
- Centre de Recherche en Cancérologie de Marseille, Inserm UMR1068, CNRS UMR7258, Marseille, France.,Université de la Mediterranée (Aix-Marseille II), Marseille, France.,Vaccine Thematic Unit, BIOASTER, Lyon, France
| |
Collapse
|
4
|
Corney BPA, Widnall CL, Rees DJ, Davies JS, Crunelli V, Carter DA. Regulatory Architecture of the Neuronal Cacng2/Tarpγ2 Gene Promoter: Multiple Repressive Domains, a Polymorphic Regulatory Short Tandem Repeat, and Bidirectional Organization with Co-regulated lncRNAs. J Mol Neurosci 2019; 67:282-294. [PMID: 30478755 PMCID: PMC6373327 DOI: 10.1007/s12031-018-1208-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
CACNG2 (TARPγ2, Stargazin) is a multi-functional regulator of excitatory neurotransmission and has been implicated in the pathological processes of several brain diseases. Cacng2 function is dependent upon expression level, but currently, little is known about the molecular mechanisms that control expression of this gene. To address this deficit and investigate disease-related gene variants, we have cloned and characterized the rat Cacng2 promoter and have defined three major features: (i) multiple repressive domains that include an array of RE-1 silencing transcription factor (REST) elements, and a calcium regulatory element-binding factor (CaRF) element, (ii) a (poly-GA) short tandem repeat (STR), and (iii) bidirectional organization with expressed lncRNAs. Functional activity of the promoter was demonstrated in transfected neuronal cell lines (HT22 and PC12), but although selective removal of REST and CaRF domains was shown to enhance promoter-driven transcription, the enhanced Cacng2 promoter constructs were still about fivefold weaker than a comparable rat Synapsin-1 promoter sequence. Direct evidence of REST activity at the Cacng2 promoter was obtained through co-transfection with an established dominant-negative REST (DNR) construct. Investigation of the GA-repeat STR revealed polymorphism across both animal strains and species, and size variation was also observed in absence epilepsy disease model cohorts (Genetic Absence Epilepsy Rats, Strasbourg [GAERS] and non-epileptic control [NEC] rats). These data provide evidence of a genotype (STR)-phenotype correlation that may be unique with respect to proximal gene regulatory sequence in the demonstrated absence of other promoter, or 3' UTR variants in GAERS rats. However, although transcriptional regulatory activity of the STR was demonstrated in further transfection studies, we did not find a GAERS vs. NEC difference, indicating that this specific STR length variation may only be relevant in the context of other (Cacna1h and Kcnk9) gene variants in this disease model. Additional studies revealed further (bidirectional) complexity at the Cacng2 promoter, and we identified novel, co-regulated, antisense rat lncRNAs that are paired with Cacng2 mRNA. These studies have provided novel insights into the organization of a synaptic protein gene promoter, describing multiple repressive and modulatory domains that can mediate diverse regulatory inputs.
Collapse
Affiliation(s)
- B P A Corney
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - C L Widnall
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - D J Rees
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - V Crunelli
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK
| | - D A Carter
- School of Biosciences, Cardiff University, CF103AX, Cardiff, UK.
| |
Collapse
|
5
|
Hu W, Lin D, Cao S, Liu J, Chen J, Calhoun VD, Wang YP. Adaptive Sparse Multiple Canonical Correlation Analysis With Application to Imaging (Epi)Genomics Study of Schizophrenia. IEEE Trans Biomed Eng 2018; 65:390-399. [PMID: 29364120 PMCID: PMC5826588 DOI: 10.1109/tbme.2017.2771483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Finding correlations across multiple data sets in imaging and (epi)genomics is a common challenge. Sparse multiple canonical correlation analysis (SMCCA) is a multivariate model widely used to extract contributing features from each data while maximizing the cross-modality correlation. The model is achieved by using the combination of pairwise covariances between any two data sets. However, the scales of different pairwise covariances could be quite different and the direct combination of pairwise covariances in SMCCA is unfair. The problem of "unfair combination of pairwise covariances" restricts the power of SMCCA for feature selection. In this paper, we propose a novel formulation of SMCCA, called adaptive SMCCA, to overcome the problem by introducing adaptive weights when combining pairwise covariances. Both simulation and real-data analysis show the outperformance of adaptive SMCCA in terms of feature selection over conventional SMCCA and SMCCA with fixed weights. Large-scale numerical experiments show that adaptive SMCCA converges as fast as conventional SMCCA. When applying it to imaging (epi)genetics study of schizophrenia subjects, we can detect significant (epi)genetic variants and brain regions, which are consistent with other existing reports. In addition, several significant brain-development related pathways, e.g., neural tube development, are detected by our model, demonstrating imaging epigenetic association may be overlooked by conventional SMCCA. All these results demonstrate that adaptive SMCCA are well suited for detecting three-way or multiway correlations and thus can find widespread applications in multiple omics and imaging data integration.
Collapse
Affiliation(s)
- Wenxing Hu
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA
| | - Dongdong Lin
- Mind Research Network and Dept. of ECE, University of New Mexico, Albuquerque, NM, 87106
| | - Shaolong Cao
- Department of Bioinformatics & Computational Biology, UT MD Anderson Cancer Center, Houston, TX
| | - Jingyu Liu
- Mind Research Network and Dept. of ECE, University of New Mexico, Albuquerque, NM, 87106
| | - Jiayu Chen
- Mind Research Network and Dept. of ECE, University of New Mexico, Albuquerque, NM, 87106
| | - Vince D. Calhoun
- Mind Research Network and Dept. of ECE, University of New Mexico, Albuquerque, NM, 87106
| | - Yu-Ping Wang
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
6
|
Elhamamsy AR. DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation. Cell Biochem Funct 2016; 34:289-98. [PMID: 27003927 DOI: 10.1002/cbf.3183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/18/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
DNA methylation is a major epigenetic marking mechanism regulating various biological functions in mammals and plant. The crucial role of DNA methylation has been observed in cellular differentiation, embryogenesis, genomic imprinting and X-chromosome inactivation. Furthermore, DNA methylation takes part in disease susceptibility, responses to environmental stimuli and the biodiversity of natural populations. In plant, different types of environmental stress have demonstrated the ability to alter the archetype of DNA methylation through the genome, change gene expression and confer a mechanism of adaptation. DNA methylation dynamics are regulated by three processes de novo DNA methylation, methylation maintenance and DNA demethylation. These processes have their similarities and differences between mammals and plants. Furthermore, the dysregulation of DNA methylation dynamics represents one of the primary molecular mechanisms of developing diseases in mammals. This review discusses the regulation and dysregulation of DNA methylation in plants and mammals. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amr Rafat Elhamamsy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Park J, Park SY, Shin E, Lee SH, Kim YS, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Jeong BY, Kim H, Choi WS. Hypoxia inducible factor-1α directly regulates nuclear clusterin transcription by interacting with hypoxia response elements in the clusterin promoter. Mol Cells 2014; 37:178-86. [PMID: 24599003 PMCID: PMC3935631 DOI: 10.14348/molcells.2014.2349] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 11/27/2022] Open
Abstract
Differential transcription of the clusterin (CLU) gene yields two CLU isoforms, a nuclear form (nCLU) and a secretory form (sCLU), which play crucial roles in prostate tumorigenesis. Pro-apoptotic nCLU and anti-apoptotic sCLU have opposite effects and are differentially expressed in normal and cancer cells; however, their regulatory mechanisms at the transcriptional level are not yet known. Here, we examined the transcriptional regulation of nCLU in response to hypoxia. We identified three putative hypoxia response elements (HREs) in the human CLU promoter between positions -806 and +51 bp. Using a luciferase reporter, electrophoretic gel mobility shift, and chromatin immunoprecipitation assays, we further showed that hypoxia-inducible factor-1α (HIF-1α) bound directly to these sites and activated transcription. Exposure to the hypoxiamimetic compound CoCl₂, incubation under 1% O₂ conditions, or overexpression of HIF-1α enhanced nCLU expression and induced apoptosis in human prostate cancer PC3M cells. However, LNCaP prostate cancer cells were resistant to hypoxia-induced cell death. Methylation-specific PCR analysis revealed that the CLU promoter in PC3M cells was not methylated; in contrast, the CLU promoter in LNCap cells was methylated. Co-treatment of LNCaP cells with CoCl₂ and a demethylating agent promoted apoptotic cell death through the induction of nCLU. We conclude that nCLU expression is regulated by direct binding of HIF-1α to HRE sites and is epigenetically controlled by methylation of its promoter region.
Collapse
Affiliation(s)
- Jeongsook Park
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
- Department of Food & Nutrition, College of Natural Sciences, Gyeong-sang National University, Jinju 660-290,
Korea
| | - So Yun Park
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Eunkyung Shin
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Sun Hee Lee
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Yoon Sook Kim
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Dong Hoon Lee
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Gu Seob Roh
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Hyun Joon Kim
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Sang Soo Kang
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Bo-Young Jeong
- Department of Food & Nutrition, College of Natural Sciences, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Hwajin Kim
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| | - Wan Sung Choi
- Department of Anatomy and Neurobiology, Institute of Health Science, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeong-sang National University, Jinju 660-290,
Korea
| |
Collapse
|
8
|
Paonessa F, Latifi S, Scarongella H, Cesca F, Benfenati F. Specificity protein 1 (Sp1)-dependent activation of the synapsin I gene (SYN1) is modulated by RE1-silencing transcription factor (REST) and 5'-cytosine-phosphoguanine (CpG) methylation. J Biol Chem 2012; 288:3227-39. [PMID: 23250796 PMCID: PMC3561544 DOI: 10.1074/jbc.m112.399782] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The development and function of the nervous system are directly dependent on a well defined pattern of gene expression. Indeed, perturbation of transcriptional activity or epigenetic modifications of chromatin can dramatically influence neuronal phenotypes. The phosphoprotein synapsin I (Syn I) plays a crucial role during axonogenesis and synaptogenesis as well as in synaptic transmission and plasticity of mature neurons. Abnormalities in SYN1 gene expression have been linked to important neuropsychiatric disorders, such as epilepsy and autism. SYN1 gene transcription is suppressed in non-neural tissues by the RE1-silencing transcription factor (REST); however, the molecular mechanisms that allow the constitutive expression of this genetic region in neurons have not been clarified yet. Herein we demonstrate that a conserved region of human and mouse SYN1 promoters contains cis-sites for the transcriptional activator Sp1 in close proximity to REST binding motifs. Through a series of functional assays, we demonstrate a physical interaction of Sp1 on the SYN1 promoter and show that REST directly inhibits Sp1-mediated transcription, resulting in SYN1 down-regulation. Upon differentiation of neuroblastoma Neuro2a cells, we observe a decrease in endogenous REST and a higher stability of Sp1 on target GC boxes, resulting in an increase of SYN1 transcription. Moreover, methylation of Sp1 cis-sites in the SYN1 promoter region could provide an additional level of transcriptional regulation. Our results introduce Sp1 as a fundamental activator of basal SYN1 gene expression, whose activity is modulated by the neural master regulator REST and CpG methylation.
Collapse
Affiliation(s)
- Francesco Paonessa
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | | | | | | |
Collapse
|
9
|
Transcriptional control of KCNQ channel genes and the regulation of neuronal excitability. J Neurosci 2010; 30:13235-45. [PMID: 20926649 DOI: 10.1523/jneurosci.1981-10.2010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Regulation of the resting membrane potential and the repolarization of neurons are important in regulating neuronal excitability. The potassium channel subunits Kv7.2 and Kv7.3 play a key role in stabilizing neuronal activity. Mutations in KCNQ2 and KCNQ3, the genes encoding Kv7.2 and Kv7.3, cause a neonatal form of epilepsy, and activators of these channels have been identified as novel antiepileptics and analgesics. Despite the observations that regulation of these subunits has profound effects on neuronal function, almost nothing is known about the mechanisms responsible for controlling appropriate expression levels. Here we identify two mechanisms responsible for regulating KCNQ2 and KCNQ3 mRNA levels. We show that the transcription factor Sp1 activates expression of both KCNQ2 and KCNQ3, whereas the transcriptional repressor REST (repressor element 1-silencing transcription factor) represses expression of both of these genes. Furthermore, we show that transcriptional regulation of KCNQ genes is mirrored by the correlated changes in M-current density and excitability of native sensory neurons. We propose that these mechanisms are important in the control of excitability of neurons and may have implications in seizure activity and pain.
Collapse
|
10
|
Xenopus Bsx links daily cell cycle rhythms and pineal photoreceptor fate. Proc Natl Acad Sci U S A 2010; 107:6352-7. [PMID: 20308548 DOI: 10.1073/pnas.1000854107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the developing central nervous system, the cell cycle clock plays a crucial role in determining cell fate specification. A second clock, the circadian oscillator, generates daily rhythms of cell cycle progression. Although these two clocks interact, the mechanisms linking circadian cell cycle progression and cell fate determination are still poorly understood. A convenient system to address this issue is the pineal organ of lower vertebrates, which contains only two neuronal types, photoreceptors and projection neurons. In particular, photoreceptors constitute the core of the pineal circadian system, being able to transduce daily light inputs into the rhythmical production of melatonin. However, the genetic program leading to photoreceptor fate largely remains to be deciphered. Here, we report a previously undescribed function for the homeobox gene Bsx in controlling pineal proliferation and photoreceptor fate in Xenopus. We show that Xenopus Bsx (Xbsx) is expressed rhythmically in postmitotic photoreceptor precursors, reaching a peak during the night, with a cycle that is complementary to the daily rhythms of S-phase entry displayed by pineal cells. Xbsx knockdown results in increased night levels of pineal proliferation, whereas activation of a GR-Xbsx protein flattens the daily rhythms of S-phase entry to the lowest level. Furthermore, evidence is presented that Xbsx is necessary and sufficient to promote a photoreceptor fate. Altogether, these data indicate that Xbsx plays a dual role in contributing to shape the profile of the circadian cell cycle progression and in the specification of pineal photoreceptors, thus acting as a unique link between these two events.
Collapse
|