1
|
Gallino SL, Agüero L, Boffi JC, Schottlender G, Buonfiglio P, Dalamon V, Marcovich I, Carpaneto A, Craig PO, Plazas PV, Elgoyhen AB. Key role of the TM2-TM3 loop in calcium potentiation of the α9α10 nicotinic acetylcholine receptor. Cell Mol Life Sci 2024; 81:337. [PMID: 39120784 PMCID: PMC11335262 DOI: 10.1007/s00018-024-05381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The α9α10 nicotinic cholinergic receptor (nAChR) is a ligand-gated pentameric cation-permeable ion channel that mediates synaptic transmission between descending efferent neurons and mechanosensory inner ear hair cells. When expressed in heterologous systems, α9 and α10 subunits can assemble into functional homomeric α9 and heteromeric α9α10 receptors. One of the differential properties between these nAChRs is the modulation of their ACh-evoked responses by extracellular calcium (Ca2+). While α9 nAChRs responses are blocked by Ca2+, ACh-evoked currents through α9α10 nAChRs are potentiated by Ca2+ in the micromolar range and blocked at millimolar concentrations. Using chimeric and mutant subunits, together with electrophysiological recordings under two-electrode voltage-clamp, we show that the TM2-TM3 loop of the rat α10 subunit contains key structural determinants responsible for the potentiation of the α9α10 nAChR by extracellular Ca2+. Moreover, molecular dynamics simulations reveal that the TM2-TM3 loop of α10 does not contribute to the Ca2+ potentiation phenotype through the formation of novel Ca2+ binding sites not present in the α9 receptor. These results suggest that the TM2-TM3 loop of α10 might act as a control element that facilitates the intramolecular rearrangements that follow ACh-evoked α9α10 nAChRs gating in response to local and transient changes of extracellular Ca2+ concentration. This finding might pave the way for the future rational design of drugs that target α9α10 nAChRs as otoprotectants.
Collapse
Affiliation(s)
- Sofia L Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucía Agüero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan C Boffi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Gustavo Schottlender
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Viviana Dalamon
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Regeneron Pharmaceuticals, Inc. Tarrytown, 10591, NY, USA
| | - Agustín Carpaneto
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Marcovich I, Moglie MJ, Carpaneto Freixas AE, Trigila AP, Franchini LF, Plazas PV, Lipovsek M, Elgoyhen AB. Distinct Evolutionary Trajectories of Neuronal and Hair Cell Nicotinic Acetylcholine Receptors. Mol Biol Evol 2021; 37:1070-1089. [PMID: 31821508 PMCID: PMC7086180 DOI: 10.1093/molbev/msz290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The expansion and pruning of ion channel families has played a crucial role in the evolution of nervous systems. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels with distinct roles in synaptic transmission at the neuromuscular junction, the central and peripheral nervous system, and the inner ear. Remarkably, the complement of nAChR subunits has been highly conserved along vertebrate phylogeny. To ask whether the different subtypes of receptors underwent different evolutionary trajectories, we performed a comprehensive analysis of vertebrate nAChRs coding sequences, mouse single-cell expression patterns, and comparative functional properties of receptors from three representative tetrapod species. We found significant differences between hair cell and neuronal receptors that were most likely shaped by the differences in coexpression patterns and coassembly rules of component subunits. Thus, neuronal nAChRs showed high degree of coding sequence conservation, coupled to greater coexpression variance and conservation of functional properties across tetrapod clades. In contrast, hair cell α9α10 nAChRs exhibited greater sequence divergence, narrow coexpression pattern, and great variability of functional properties across species. These results point to differential substrates for random change within the family of gene paralogs that relate to the segregated roles of nAChRs in synaptic transmission.
Collapse
Affiliation(s)
- Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo J Moglie
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Agustín E Carpaneto Freixas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucia F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Centre for Developmental Neurobiology, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, London, United Kingdom
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Matern MS, Milon B, Lipford EL, McMurray M, Ogawa Y, Tkaczuk A, Song Y, Elkon R, Hertzano R. GFI1 functions to repress neuronal gene expression in the developing inner ear hair cells. Development 2020; 147:147/17/dev186015. [PMID: 32917668 PMCID: PMC7502595 DOI: 10.1242/dev.186015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/24/2020] [Indexed: 01/24/2023]
Abstract
Despite the known importance of the transcription factors ATOH1, POU4F3 and GFI1 in hair cell development and regeneration, their downstream transcriptional cascades in the inner ear remain largely unknown. Here, we have used Gfi1cre;RiboTag mice to evaluate changes to the hair cell translatome in the absence of GFI1. We identify a systematic downregulation of hair cell differentiation genes, concomitant with robust upregulation of neuronal genes in the GFI1-deficient hair cells. This includes increased expression of neuronal-associated transcription factors (e.g. Pou4f1) as well as transcription factors that serve dual roles in hair cell and neuronal development (e.g. Neurod1, Atoh1 and Insm1). We further show that the upregulated genes are consistent with the NEUROD1 regulon and are normally expressed in hair cells prior to GFI1 onset. Additionally, minimal overlap of differentially expressed genes in auditory and vestibular hair cells suggests that GFI1 serves different roles in these systems. From these data, we propose a dual mechanism for GFI1 in promoting hair cell development, consisting of repression of neuronal-associated genes as well as activation of hair cell-specific genes required for normal functional maturation.
Collapse
Affiliation(s)
- Maggie S. Matern
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Beatrice Milon
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erika L. Lipford
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mark McMurray
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yoko Ogawa
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrew Tkaczuk
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Zhang Y, Glowatzki E, Roux I, Fuchs PA. Nicotine evoked efferent transmitter release onto immature cochlear inner hair cells. J Neurophysiol 2020; 124:1377-1387. [PMID: 32845208 DOI: 10.1152/jn.00097.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Olivocochlear neurons make temporary cholinergic synapses on inner hair cells of the rodent cochlea in the first 2 to 3 wk after birth. Repetitive stimulation of these efferent neurons causes facilitation of evoked release and increased spontaneous release that continues for seconds to minutes. Presynaptic nicotinic acetylcholine receptors (nAChRs) are known to modulate neurotransmitter release from brain neurons. The present study explores the hypothesis that presynaptic nAChRs help to increase spontaneous release from efferent terminals on cochlear hair cells. Direct application of nicotine (which does not activate the hair cells' α9α10-containing nAChRs) produces sustained efferent transmitter release, implicating presynaptic nAChRs in this response. The effect of nicotine was reduced by application of ryanodine that reduces release of calcium from intraterminal stores.NEW & NOTEWORTHY Sensory organs exhibit spontaneous activity before the onset of response to external stimuli. Such activity in the cochlea is subject to modulation by cholinergic efferent neurons that directly inhibit sensory hair cells (inner hair cells). Those efferent neurons are themselves subject to various modulatory mechanisms. One such mechanism is positive feedback by released acetylcholine onto presynaptic nicotinic acetylcholine receptors causing further release of acetylcholine.
Collapse
Affiliation(s)
- Y Zhang
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - E Glowatzki
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - I Roux
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland
| | - P A Fuchs
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Choi J, Kim NH, Park SH, Cho CG, Lee HJ, Kim SU, Park KS. Abnormalities of Otoacoustic Emissions in Myasthenia Gravis: Association With Serological and Electrophysiological Features. Front Neurol 2018; 9:1124. [PMID: 30619074 PMCID: PMC6306561 DOI: 10.3389/fneur.2018.01124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
Abstract
Objective: To investigate whether otoacoustic emissions (OAEs) are impaired in patients with myasthenia gravis (MG) and whether such dysfunction is associated with serological and electrophysiological features of MG. Methods: We tested 15 patients with MG (30 ears) and 10 healthy age- and sex-matched subjects (20 ears) for transiently evoked OAE (TEOAE) and distortion product OAE (DPOAE). Results: Compared with controls, MG patients revealed a significant reduction in the amplitude of TEOAEs (p < 0.05) and DPOAEs at higher frequencies between 2,026 and 4,053 Hz (p < 0.05). In the subgroup analysis, TEOAE and DPOAE amplitudes were significantly lower in the acetylcholine receptor (AChR) antibody-positive group (p < 0.05) as well as in the repetitive nerve stimulation (RNS)-positive (p < 0.05) group. In particular, the OAE alteration significantly correlated with anti-AChR antibody titers. No significant difference of the OAEs was found between thymomatous and non-thymomatous MG or between purely ocular and generalized MG. Conclusions: Our study confirms that OAEs reveal subclinical dysfunction of the cholinergic neurotransmission of cochlear outer hair cells and correlate well with electrophysiological and serological characteristics of MG patients. Our findings imply that the measurement of OAEs might increase the diagnostic accuracy and help to monitor the severity of MG.
Collapse
Affiliation(s)
- Jongsuk Choi
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Hee Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Ilsan, South Korea
| | - Soo-Hyun Park
- Department of Critical Care Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Chang Gun Cho
- Department of Otorhinolaryngology, Dongguk University Ilsan Hospital, Ilsan, South Korea
| | - Hyo-Jeong Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Un Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Seok Park
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Roux I, Wu JS, McIntosh JM, Glowatzki E. Assessment of the expression and role of the α1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea. J Neurophysiol 2016; 116:479-92. [PMID: 27098031 DOI: 10.1152/jn.01038.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
Hair cell (HC) activity in the mammalian cochlea is modulated by cholinergic efferent inputs from the brainstem. These inhibitory inputs are mediated by calcium-permeable nicotinic acetylcholine receptors (nAChRs) containing α9- and α10-subunits and by subsequent activation of calcium-dependent potassium channels. Intriguingly, mRNAs of α1- and γ-nAChRs, subunits of the "muscle-type" nAChR have also been found in developing HCs (Cai T, Jen HI, Kang H, Klisch TJ, Zoghbi HY, Groves AK. J Neurosci 35: 5870-5883, 2015; Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. J Neurochem 103: 2651-2664, 2007; Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S. Sci Rep 1: 26, 2011) prompting proposals that another type of nAChR is present and may be critical during early synaptic development. Mouse genetics, histochemistry, pharmacology, and whole cell recording approaches were combined to test the role of α1-nAChR subunit in HC efferent synapse formation and cholinergic function. The onset of α1-mRNA expression in mouse HCs was found to coincide with the onset of the ACh response and efferent synaptic function. However, in mouse inner hair cells (IHCs) no response to the muscle-type nAChR agonists (±)-anatoxin A, (±)-epibatidine, (-)-nicotine, or 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) was detected, arguing against the presence of an independent functional α1-containing muscle-type nAChR in IHCs. In α1-deficient mice, no obvious change of IHC efferent innervation was detected at embryonic day 18, contrary to the hyperinnervation observed at the neuromuscular junction. Additionally, ACh response and efferent synaptic activity were detectable in α1-deficient IHCs, suggesting that α1 is not necessary for assembly and membrane targeting of nAChRs or for efferent synapse formation in IHCs.
Collapse
Affiliation(s)
- Isabelle Roux
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Jingjing Sherry Wu
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah; and Department of Biology, Department of Psychiatry, University of Utah, Salt Lake City, Utah
| | - Elisabeth Glowatzki
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Melroy-Greif WE, Stitzel JA, Ehringer MA. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use. GENES, BRAIN, AND BEHAVIOR 2016; 15:89-107. [PMID: 26351737 PMCID: PMC4780670 DOI: 10.1111/gbb.12251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain's reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use.
Collapse
Affiliation(s)
- Whitney E. Melroy-Greif
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Jerry A. Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| | - Marissa A. Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| |
Collapse
|
9
|
Vivekanandarajah A, Waters KA, Machaalani R. Postnatal nicotine effects on the expression of nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem. Int J Dev Neurosci 2015; 47:183-91. [DOI: 10.1016/j.ijdevneu.2015.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/09/2015] [Accepted: 09/28/2015] [Indexed: 01/02/2023] Open
Affiliation(s)
- Arunnjah Vivekanandarajah
- The BOSCH InstituteSydneyNSW2006Australia
- Department of Medicine, Blackburn Building, DO6University of SydneySydneyNSW2006Australia
| | - Karen A. Waters
- The BOSCH InstituteSydneyNSW2006Australia
- Department of Medicine, Blackburn Building, DO6University of SydneySydneyNSW2006Australia
- The Children's HospitalWestmead SydneyNSW2145Australia
| | - Rita Machaalani
- The BOSCH InstituteSydneyNSW2006Australia
- Department of Medicine, Blackburn Building, DO6University of SydneySydneyNSW2006Australia
- The Children's HospitalWestmead SydneyNSW2145Australia
| |
Collapse
|
10
|
Shen J, Scheffer DI, Kwan KY, Corey DP. SHIELD: an integrative gene expression database for inner ear research. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015. [PMID: 26209310 PMCID: PMC4513695 DOI: 10.1093/database/bav071] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The inner ear is a highly specialized mechanosensitive organ responsible for hearing and balance. Its small size and difficulty in harvesting sufficient tissue has hindered the progress of molecular studies. The protein components of mechanotransduction, the molecular biology of inner ear development and the genetic causes of many hereditary hearing and balance disorders remain largely unknown. Inner-ear gene expression data will help illuminate each of these areas. For over a decade, our laboratories and others have generated extensive sets of gene expression data for different cell types in the inner ear using various sample preparation methods and high-throughput genome-wide approaches. To facilitate the study of genes in the inner ear by efficient presentation of the accumulated data and to foster collaboration among investigators, we have developed the Shared Harvard Inner Ear Laboratory Database (SHIELD), an integrated resource that seeks to compile, organize and analyse the genomic, transcriptomic and proteomic knowledge of the inner ear. Five datasets are currently available. These datasets are combined in a relational database that integrates experimental data and annotations relevant to the inner ear. The SHIELD has a searchable web interface with two data retrieval options: viewing the gene pages online or downloading individual datasets as data tables. Each retrieved gene page shows the gene expression data and detailed gene information with hyperlinks to other online databases with up-to-date annotations. Downloadable data tables, for more convenient offline data analysis, are derived from publications and are current as of the time of publication. The SHIELD has made published and some unpublished data freely available to the public with the hope and expectation of accelerating discovery in the molecular biology of balance, hearing and deafness. Database URL:https://shield.hms.harvard.edu
Collapse
Affiliation(s)
- Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School Center for Hereditary Deafness,
| | | | - Kelvin Y Kwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA and
| | - David P Corey
- Harvard Medical School Center for Hereditary Deafness, Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Abstract
Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes.
Collapse
|
12
|
Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor. J Neurosci 2015; 35:5870-83. [PMID: 25855195 DOI: 10.1523/jneurosci.5083-14.2015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hair cells are sensory receptors for the auditory and vestibular system in vertebrates. The transcription factor Atoh1 is both necessary and sufficient for the differentiation of hair cells, and is strongly upregulated during hair-cell regeneration in nonmammalian vertebrates. To identify genes involved in hair cell development and function, we performed RNA-seq profiling of purified Atoh1-expressing hair cells from the neonatal mouse cochlea. We identified >600 enriched transcripts in cochlear hair cells, of which 90% have not been previously shown to be expressed in hair cells. We identified 233 of these hair cell genes as candidates to be directly regulated by Atoh1 based on the presence of Atoh1 binding sites in their regulatory regions and by analyzing Atoh1 ChIP-seq datasets from the cerebellum and small intestine. We confirmed 10 of these genes as being direct Atoh1 targets in the cochlea by ChIP-PCR. The identification of candidate Atoh1 target genes is a first step in identifying gene regulatory networks for hair-cell development and may inform future studies on the potential role of Atoh1 in mammalian hair cell regeneration.
Collapse
|
13
|
Abstract
Fibroblast growth factors (Fgfs) play important roles in developmental processes of the inner ear, including the ontogeny of the statoacoustic ganglia (SAG) and hair cells. However, the detailed genetic mechanism(s) underlying Fgf/Fgfr-dependent otic neural development remains elusive. Using conditional genetic approaches and inhibitory small molecules, we have revealed that Fgfr-PI3K/Akt signaling is mainly responsible for zebrafish SAG development and have determined that Sox9a and Atoh1a act downstream of Fgfr-Akt signaling to specify and/or maintain the otic neuron fate during the early segmentation stage. Sox9a and Atoh1a coregulate numerous downstream factors identified through our ChIP-seq analyses, including Tlx2 and Eya2. Fgfr-Erk1/2 signaling contributes to ultricular hair cell development during a critical period between 9 and 15 hours postfertilization. Our work reveals that a genetic network of the previously known sensory determinant Atoh1 and the neural crest determinant Sox9 plays critical roles in SAG development. These newly uncovered roles for Atoh1and Sox9 in zebrafish otic development may be relevant to study in other species.
Collapse
|
14
|
Cai T, Groves AK. The Role of Atonal Factors in Mechanosensory Cell Specification and Function. Mol Neurobiol 2014; 52:1315-1329. [PMID: 25339580 DOI: 10.1007/s12035-014-8925-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Atonal genes are basic helix-loop-helix transcription factors that were first identified as regulating the formation of mechanoreceptors and photoreceptors in Drosophila. Isolation of vertebrate homologs of atonal genes has shown these transcription factors to play diverse roles in the development of neurons and their progenitors, gut epithelial cells, and mechanosensory cells in the inner ear and skin. In this article, we review the molecular function and regulation of atonal genes and their targets, with particular emphasis on the function of Atoh1 in the development, survival, and function of hair cells of the inner ear. We discuss cell-extrinsic signals that induce Atoh1 expression and the transcriptional networks that regulate its expression during development. Finally, we discuss recent work showing how identification of Atoh1 target genes in the cerebellum, spinal cord, and gut can be used to propose candidate Atoh1 targets in tissues such as the inner ear where cell numbers and biochemical material are limiting.
Collapse
Affiliation(s)
- Tiantian Cai
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
TFE2 and GATA3 enhance induction of POU4F3 and myosin VIIa positive cells in nonsensory cochlear epithelium by ATOH1. Dev Biol 2012; 372:68-80. [PMID: 22985730 DOI: 10.1016/j.ydbio.2012.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/01/2012] [Accepted: 09/08/2012] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) can regulate different sets of genes to determine specific cell types by means of combinatorial codes. We previously identified closely-spaced TF binding motifs located 8.2-8.5 kb 5' to the ATG of the murine Pou4f3 gene, a gene required for late hair cell (HC) differentiation and survival. These motifs, 100% conserved among four mammalian species, include a cluster of E-boxes preferred by TCF3/ATOH1 heterodimers as well as motifs for GATA factors and SP1. We hypothesized that these factors might interact to regulate the Pou4f3 gene and possibly induce a HC phenotype in non-sensory cells of the cochlea. Cochlear sensory epithelium explants were prepared from postnatal day 1.5 transgenic mice in which expression of GFP is driven by 8.5 kb of Pou4f3 5' genomic DNA (Pou4f3/GFP). Electroporation was used to transfect cells of the greater epithelial ridge with multiple plasmids encoding human ATOH1 (hATOH1), hTCF3 (also known as E2A or TEF2), hGATA3, and hSP1. hATOH1 or hTCF3 alone induced Pou4f3/GFP cells but hGATA3 and hSP1 did not. hATOH1 but not hTCF3 induced conversion of greater epithelial ridge cells into Pou4f3/GFP and myosin VIIa double-positive cells. Transfection of hATOH1 in combination with hTCF3 or hGATA3 induced 2-3X more Pou4f3/GFP cells, and similarly enhanced Pou4f3/GFP and myosin VIIa double-positive cells, when compared to hATOH1 alone. Triple or quadruple TF combinations were generally not more effective than double TF combinations except in the middle turn, where co-transfection of hATOH1, hE2A, and hGATA3 was more effective than hATOH1 plus either hTCF3 or hGATA3. The results demonstrate that TFs can cooperate in regulation of the Pou4f3 gene and in the induction of at least one other element of a HC phenotype. Our data further indicate that combinations of TFs can be more effective than individual TFs in the inner ear.
Collapse
|
16
|
Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea. J Neurosci 2011; 31:15092-101. [PMID: 22016543 DOI: 10.1523/jneurosci.2743-11.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the developing mammalian cochlea, the sensory hair cells receive efferent innervation originating in the superior olivary complex. This input is mediated by α9/α10 nicotinic acetylcholine receptors (nAChRs) and is inhibitory due to the subsequent activation of calcium-dependent SK2 potassium channels. We examined the acquisition of this cholinergic efferent input using whole-cell voltage-clamp recordings from inner hair cells (IHCs) in acutely excised apical turns of the rat cochlea from embryonic day 21 to postnatal day 8 (P8). Responses to 1 mm acetylcholine (ACh) were detected from P0 on in almost every IHC. The ACh-activated current amplitude increased with age and demonstrated the same pharmacology as α9-containing nAChRs. Interestingly, at P0, the ACh response was not coupled to SK2 channels, so that the initial cholinergic response was excitatory and could trigger action potentials in IHCs. Coupling to SK current was detected earliest at P1 in a subset of IHCs and by P3 in every IHC studied. Clustered nAChRs and SK2 channels were found on IHCs from P1 on using Alexa Fluor 488 conjugated α-bungarotoxin and SK2 immunohistochemistry. The number of nAChRs clusters increased with age to 16 per IHC at P8. Cholinergic efferent synaptic currents first appeared in a subset of IHCs at P1 and by P3 in every IHC studied, contemporaneously with ACh-evoked SK currents, suggesting that SK2 channels may be necessary at onset of synaptic function. An analogous pattern of development was observed for the efferent synapses that form later (P6-P8) on outer hair cells in the basal cochlea.
Collapse
|
17
|
Simmons DD, Morley BJ. Spatial and temporal expression patterns of nicotinic acetylcholine α9 and α10 subunits in the embryonic and early postnatal inner ear. Neuroscience 2011; 194:326-36. [PMID: 21843604 PMCID: PMC3204216 DOI: 10.1016/j.neuroscience.2011.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/23/2011] [Accepted: 08/01/2011] [Indexed: 11/24/2022]
Abstract
The expression and function of nicotinic receptor subunits (nAChRs) in the inner ear before the onset of hearing is not well understood. We investigated the mRNA expression of the α9 and α10 nAChR subunits in sensory hair cells of the embryonic and postnatal rat inner ear. We mapped their spatial and temporal expression in cochlear and vestibular hair cells using qPCR, [35S] labeled cRNA in situ hybridization, and α-bungarotoxin (α-Bgt) to label the presumptive membrane-bound receptor on cochlear hair cells. The results suggest that (1) the mRNA expression of the α9 subunit precedes expression of the α10 subunit in both cochlear and vestibular hair cells, (2) the mRNA expression of both the α9 and α10 subunits occurs earlier in the vestibular system than in the cochlea, (3) the mRNA expression of both subunits is required for the assembled receptor complexes, and (4) the presumptive assembled receptor, at least in the cochlea, is associated with synapse formation and the onset of function.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Ear, Inner/embryology
- Ear, Inner/growth & development
- Ear, Inner/physiology
- Female
- Gene Expression Regulation, Developmental/genetics
- Hair Cells, Auditory/metabolism
- Hair Cells, Vestibular/metabolism
- Pregnancy
- Protein Subunits/biosynthesis
- Protein Subunits/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Reaction Time/genetics
- Receptors, Nicotinic/biosynthesis
- Receptors, Nicotinic/genetics
Collapse
Affiliation(s)
- D D Simmons
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California, Los Angeles, CA 90095-7239, USA.
| | | |
Collapse
|
18
|
Regulation of POU4F3 gene expression in hair cells by 5' DNA in mice. Neuroscience 2011; 197:48-64. [PMID: 21958861 DOI: 10.1016/j.neuroscience.2011.09.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 01/21/2023]
Abstract
The POU-domain transcription POU4F3 is expressed in the sensory cells of the inner ear. Expression begins shortly after commitment to the hair cell (HC) fate, and continues throughout life. It is required for terminal HC differentiation and survival. To explore regulation of the murine Pou4f3 gene, we linked enhanced green fluorescent protein (eGFP) to 8.5 kb of genomic sequence 5' to the start codon in transgenic mice. eGFP was uniformly present in all embryonic and neonatal HCs. Expression of eGFP was also observed in developing Merkel cells and olfactory neurons as well as adult inner and vestibular HCs, mimicking the normal expression pattern of POU4F3 protein, with the exception of adult outer HCs. Apparently ectopic expression was observed in developing inner ear neurons. On a Pou4f3 null background, the transgene produced expression in embryonic HCs which faded soon after birth both in vivo and in vitro. Pou4f3 null HCs treated with caspase 3 and 9 inhibitors survived longer than untreated HCs, but still showed reduced expression of eGFP. The results suggest the existence of separate enhancers for different HC types, as well as strong autoregulation of the Pou4f3 gene. Bioinformatic analysis of four divergent mammalian species revealed three highly conserved regions within the transgene: 400 bp immediately 5' to the Pou4f3 ATG, a short sequence at -1.3 kb, and a longer region at -8.2 to -8.5 kb. The latter contained E-box motifs that bind basic helix-loop-helix (bHLH) transcription factors, including motifs activated by ATOH1. Cotransfection of HEK293 or VOT-E36 cells with ATOH1 and the transgene as a reporter enhanced eGFP expression when compared with the transgene alone. Chromatin immunoprecipitation of the three highly conserved regions revealed binding of ATOH1 to the distal-most conserved region. The results are consistent with regulation of Pou4f3 in HCs by ATOH1 at a distal enhancer.
Collapse
|
19
|
Hone AJ, Whiteaker P, Christensen S, Xiao Y, Meyer EL, McIntosh JM. A novel fluorescent alpha-conotoxin for the study of alpha7 nicotinic acetylcholine receptors. J Neurochem 2009; 111:80-9. [PMID: 19650873 DOI: 10.1111/j.1471-4159.2009.06299.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Homomeric alpha7 nicotinic acetylcholine receptors are a well-established, pharmacologically distinct subtype. The more recently identified alpha9 subunit can also form functional homopentamers as well as alpha9alpha10 heteropentamers. Current fluorescent probes for alpha7 nicotinic ACh receptors are derived from alpha-bungarotoxin (alpha-BgTx). However, alpha-BgTx also binds to alpha9* and alpha1* receptors which are coexpressed with alpha7 in multiple tissues. We used an analog of alpha-conotoxin ArIB to develop a highly selective fluorescent probe for alpha7 receptors. This fluorescent alpha-conotoxin, Cy3-ArIB[V11L;V16A], blocked ACh-evoked alpha7 currents in Xenopus laevis oocytes with an IC(50) value of 2.0 nM. Observed rates of blockade were minute-scale with recovery from blockade even slower. Unlike FITC-conjugated alpha-BgTx, Cy3-ArIB[V11L;V16A] did not block alpha9alpha10 or alpha1beta1deltaepsilon receptors. In competition binding assays, Cy3-ArIB[V11L;V16A] potently displaced [(125)I]-alpha-BgTx binding to mouse hippocampal membranes with a K(i) value of 21 nM. Application of Cy3-ArIB[V11L;V16A] resulted in specific punctate labeling of KXalpha7R1 cells but not KXalpha3beta2R4, KXalpha3beta4R2, or KXalpha4beta2R2 cells. This labeling could be abolished by pre-treatment with alpha-cobratoxin. Thus, Cy3-ArIB[V11L;V16A] is a novel and selective fluorescent probe for alpha7 receptors.
Collapse
Affiliation(s)
- Arik J Hone
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|