1
|
Paris A, Bodaghi B, Touhami S. Pan fibroblast growth factor receptor inhibitor associated retinopathy. Eur J Ophthalmol 2024; 34:NP66-NP71. [PMID: 38086757 DOI: 10.1177/11206721231220334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
PURPOSE To report a case of Fibroblast Growth Factor Receptor inhibitor (FGFRi) associated retinopathy in a patient treated with Erdafitinib. CASE REPORT A patient with a history of non-muscle invasive urothelial carcinoma treated with Erdafitinib developed symptomatic unifocal bilateral serous retinal detachments (SRD) eight weeks after starting this new treatment. Six months after discontinuing the drug, the SRDs resolved and visual acuity recovered to baseline. However, hyper and hypo auto fluorescent lesions were still visible on fundus autofluorescence, suggesting a still ongoing retinal pigment epithelium (RPE) impairment. CONCLUSIONS Cancer treatments using FGFRi are showing promising results but their ocular toxicity is not well reported nor fully understood. Oncologists should be aware of the potential risks associated with FGFRi and involve ophthalmologists for the follow-up of their patients. The toxicity of FGFRi seems to resolve after drug continuation, but a certain degree of infra clinical RPE impairment may persist. Longer term follow-ups are warranted to further understand the effects of FGFRi on the RPE.
Collapse
Affiliation(s)
- Arianna Paris
- Department of Ophthalmology, Pitié-Salpêtrière University Hospital, Sorbonne Université, Paris, France
- Clinic of Ophthalmology, Institute of Clinical Neurosciences of Southern Switzerland (INSI), Ente Ospedaliero Cantonale, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Bahram Bodaghi
- Department of Ophthalmology, Pitié-Salpêtrière University Hospital, Sorbonne Université, Paris, France
| | - Sara Touhami
- Department of Ophthalmology, Pitié-Salpêtrière University Hospital, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Takita Y, Sugano E, Kitabayashi K, Tabata K, Saito A, Yokoyama T, Onoguchi R, Fukuda T, Ozaki T, Bai L, Tomita H. Evaluation of Local Retinal Function in Light-Damaged Rats Using Multifocal Electroretinograms and Multifocal Visual Evoked Potentials. Int J Mol Sci 2023; 24:16433. [PMID: 38003623 PMCID: PMC10670973 DOI: 10.3390/ijms242216433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Electroretinograms (ERGs) are often used to evaluate retinal function. However, assessing local retinal function can be challenging; therefore, photopic and scotopic ERGs are used to record whole-retinal function. This study evaluated focal retinal function in rats exposed to continuous light using a multifocal ERG (mfERG) system. The rats were exposed to 1000 lux of fluorescent light for 24 h to induce photoreceptor degeneration. After light exposure, the rats were reared under cyclic light conditions (12 h: 5 lux, 12 h: dark). Photopic and multifocal ERGs and single-flash and multifocal visual evoked potentials (mfVEPs) were recorded 7 days after light exposure. Fourteen days following light exposure, paraffin-embedded sections were prepared from the eyes for histological evaluation. The ERG and VEP responses dramatically decreased after 24 h of light exposure, and retinal area-dependent decreases were observed in mfERGs and mfVEPs. Histological assessment revealed severe damage to the superior retina and less damage to the inferior retina. Considering the recorded visual angles of mfERGs and mfVEPs, the degenerated area shown on the histological examinations correlates well with the responses from multifocal recordings.
Collapse
Grants
- 21-Ⅱ4001 Terumo (Japan)
- 22H00579 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- 21K18278 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- 22K09760 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- 21K09713 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan; (Y.T.); (E.S.); (K.K.); (K.T.); (A.S.); (T.Y.); (R.O.); (T.F.); (T.O.); (L.B.)
| |
Collapse
|
3
|
Miralles de Imperial-Ollero JA, Gallego-Ortega A, Ortín-Martínez A, Villegas-Pérez MP, Valiente-Soriano FJ, Vidal-Sanz M. Animal Models of LED-Induced Phototoxicity. Short- and Long-Term In Vivo and Ex Vivo Retinal Alterations. Life (Basel) 2021; 11:life11111137. [PMID: 34833013 PMCID: PMC8617611 DOI: 10.3390/life11111137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
Phototoxicity animal models have been largely studied due to their degenerative communalities with human pathologies, e.g., age-related macular degeneration (AMD). Studies have documented not only the effects of white light exposure, but also other wavelengths using LEDs, such as blue or green light. Recently, a blue LED-induced phototoxicity (LIP) model has been developed that causes focal damage in the outer layers of the superior-temporal region of the retina in rodents. In vivo studies described a progressive reduction in retinal thickness that affected the most extensively the photoreceptor layer. Functionally, a transient reduction in a- and b-wave amplitude of the ERG response was observed. Ex vivo studies showed a progressive reduction of cones and an involvement of retinal pigment epithelium cells in the area of the lesion and, in parallel, an activation of microglial cells that perfectly circumscribe the damage in the outer retinal layer. The use of neuroprotective strategies such as intravitreal administration of trophic factors, e.g., basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or pigment epithelium-derived factor (PEDF) and topical administration of the selective alpha-2 agonist (Brimonidine) have demonstrated to increase the survival of the cone population after LIP.
Collapse
Affiliation(s)
- Juan A. Miralles de Imperial-Ollero
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Arturo Ortín-Martínez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada;
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
| | - Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V-S.); +34-868-88-4330 (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, Campus de CC de la Salud, El Palmar, 30120 Murcia, Spain; (J.A.M.d.I.-O.); (A.G.-O.); (M.P.V.-P.)
- Correspondence: (F.J.V.-S.); (M.V.-S.); Tel.: +34-868-88-4503 (F.J.V-S.); +34-868-88-4330 (M.V.-S.)
| |
Collapse
|
4
|
Xiong S, Ma M, Xu Y, Wei F, Gu Q, He X, Xu X. Protective effects of peptide FK18 against neuro-excitotoxicity in SH-SY5Y cells. Exp Ther Med 2021; 21:451. [PMID: 33747186 DOI: 10.3892/etm.2021.9880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Excitotoxic neuronal injury is associated with numerous acute and chronic neurological disorders, such as Alzheimer's disease and glaucoma. Neuroprotection is a direct and effective therapeutic approach, with small-molecule bioactive peptides displaying certain advantages, including high membrane permeability, low immunogenicity and convenient synthesis and modification. FK18 is a novel peptide derived from basic fibroblast growth factor, which is a protein with neuroprotective effects. The present study aims to evaluate the neuroprotective effect of FK18 against excitotoxic injury. For this purpose, cell viability was determined by the MTS assay, cell apoptosis was assessed by flow cytometry and the TUNEL assay; expression of antiapoptotic proteins Bcl-2, proapoptotic protein Bax and caspase-3 as well as the phosphorylation of Akt and Erk was estimated by western blotting. The results of the present study demonstrated that FK18 effectively increased the viability of, and attenuated glutamate-induced apoptosis of SH-SY5Y cells. In addition, FK18 significantly increased Akt phosphorylation and decreased Erk phosphorylation in SH-SY5Y cells. FK18 also increased the Bcl-2/Bax ratio and decreased the level of cleaved-caspase-3 in SY5Y cells, which was reversed by the Akt pathway inhibitor LY294002, but not by the Erk pathway inhibitor U0126. The findings of the present study suggested that FK18 may be a promising therapeutic agent for the inhibition of neuronal cell death in multiple neurological diseases involving excitotoxicity.
Collapse
Affiliation(s)
- Shuyu Xiong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| | - Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| | - Xiangui He
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, P.R. China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| |
Collapse
|
5
|
Xie C, Zhu H, Chen S, Wen Y, Jin L, Zhang L, Tong J, Shen Y. Chronic retinal injury induced by white LED light with different correlated color temperatures as determined by microarray analyses of genome-wide expression patterns in mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111977. [PMID: 32738749 DOI: 10.1016/j.jphotobiol.2020.111977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
Widely used white light-emitting diodes (LEDs) currently deliver higher levels of blue light than conventional domestic light sources. The high intensity of the blue component is the main source of concern regarding possible health risks of LED to chronic light toxicity to the retina. Therefore, we analyzed retinal injury and genome-wide changes in gene expression induced by white LED light with different correlated color temperatures (CCTs) in a mouse model. Balb/c mice (10 weeks old) were exposed to LED light with CCTs of 2954, 5624, and 7378 K, at different illuminance levels (250, 500, 1000, and 3000 lx) and for different exposure times (7, 14, and 28 days). Hematoxylin and eosin staining revealed that exposure to 7378 K light at 250 lx for 28 days resulted in a significant reduction of outer nuclear layer (ONL) nuclei, whereas 2954 K light at <3000 lx led to only a mild reduction in the number of ONL nuclei. In addition, 5624 and 7378 K light at 3000 lx resulted in a significant increase in TUNEL-positive apoptotic nuclei, which was not found at an illuminance of 1000 lx. Genome-wide expression analyses showed that, compared to a control group, there were 121 upregulated differentially expressed genes (DEGs) and 458 downregulated DEGs found in the 7378 K group, and 59 upregulated and only 4 downregulated DEGs in the 2954 K group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the DEGs were involved in 341 GO terms and 16 related pathways for the 7378 K group and in 12 GO terms and 7 related pathways for the 2954 K group. Signal pathways related to ubiquitin potentially played an important role in light-induced retinal degeneration. Furthermore, retinal immunohistochemistry (IHC) indicated downregulation of ubiquitin and autophagy function caused by 7378 K light. Taken together, these results indicate that retinal injury in the mice induced by white LED light occurred in a CCT-dependent manner, and that light with a higher CCT was more likely to reduce ONL nuclei; however, the apoptosis pathway may not be the only mechanism involved. Based on genome-wide expression analyses and retinal IHC, the ubiquitin-mediated proteolysis signal pathway may have participated in the induction retinal degeneration.
Collapse
Affiliation(s)
- Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuyang Chen
- Department of Ophthalmology, TONGDE, Hospital of Zhejiang Province, China
| | - Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Le Jin
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Vila N, Siblini A, Esposito E, Bravo-Filho V, Zoroquiain P, Aldrees S, Logan P, Arias L, Burnier MN. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model. BMC Ophthalmol 2017; 17:198. [PMID: 29096624 PMCID: PMC5667496 DOI: 10.1186/s12886-017-0592-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
Background Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Methods Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. Results A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Conclusions Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein-pretreated conditions in a similar manner.
Collapse
Affiliation(s)
- Natalia Vila
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada. .,Hospital Universitari de Bellvitge, Ophthalmology Department, Barcelona University, Barcelona, Spain.
| | - Aya Siblini
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Evangelina Esposito
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Vasco Bravo-Filho
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Pablo Zoroquiain
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Sultan Aldrees
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Patrick Logan
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| | - Lluis Arias
- Hospital Universitari de Bellvitge, Ophthalmology Department, Barcelona University, Barcelona, Spain
| | - Miguel N Burnier
- Henry C. Witelson Ocular Pathology Laboratory, Pathology Department, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Landfried B, Grimm C. Neuroprotektion geschädigter Photorezeptoren. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Zusammenfassung
Der Schutz der Sehzellen durch Neuroprotektion ist ein vielversprechender Ansatz, der bei vielen degenerativen Netzhauterkrankungen entweder als Mono- oder Kombinationstherapie zum Einsatz kommen könnte. Viele neuroprotektive Substanzen wurden im Tiermodell identifiziert und erfolgreich getestet. Einige dieser Substanzen wurden auch bereits in klinischen Versuchen am Patienten untersucht, allerdings mit unterschiedlichem Erfolg. Diverse Versuchsansätze werden derzeit überprüft.
Collapse
Affiliation(s)
- Britta Landfried
- Aff1 0000 0004 0478 9977 grid.412004.3 Augenklinik Universitätsspital Zürich Zürich Schweiz
- Aff4 0000 0004 1937 0650 grid.7400.3 Labor für Zellbiologie der Netzhaut, Augenklinik Universität Zürich Wagistrasse 14 8952 Schlieren Schweiz
| | - Christian Grimm
- Aff1 0000 0004 0478 9977 grid.412004.3 Augenklinik Universitätsspital Zürich Zürich Schweiz
- Aff2 0000 0004 1937 0650 grid.7400.3 Zentrum für integrative Humanphysiologie (ZIHP) Universität Zürich Zürich Schweiz
- Aff3 0000 0004 1937 0650 grid.7400.3 Zentrum für Neurowissenschaften Zürich (ZNZ) Universität Zürich Zürich Schweiz
- Aff4 0000 0004 1937 0650 grid.7400.3 Labor für Zellbiologie der Netzhaut, Augenklinik Universität Zürich Wagistrasse 14 8952 Schlieren Schweiz
| |
Collapse
|
8
|
Ruiz Lopez AM, Roche SL, Wyse Jackson AC, Moloney JN, Byrne AM, Cotter TG. Pro-survival redox signalling in progesterone-mediated retinal neuroprotection. Eur J Neurosci 2017; 46:1663-1672. [PMID: 28493650 DOI: 10.1111/ejn.13604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 01/05/2023]
Abstract
Retinitis pigmentosa (RP) is a group of hereditary retinal diseases, characterised by photoreceptor cell loss. Despite a substantial understanding of the mechanisms leading to cell death, an effective therapeutic strategy is sought. Our laboratory has previously demonstrated the neuroprotective properties of Norgestrel, a progesterone analogue, in the degenerating retina, mediated in part by the neurotrophic factor basic fibroblast growth factor (bFGF). In other retinal studies, we have also presented a pro-survival role for reactive oxygen species (ROS), downstream of bFGF. Thus, we hypothesized that Norgestrel utilises bFGF-driven ROS production to promote photoreceptor survival. Using the 661W photoreceptor-like cell line, we now show that Norgestrel, working through progesterone receptor membrane complex 1 (PGRMC1); generates an early burst of pro-survival bFGF-induced ROS. Using the rd10 mouse model of RP, we confirm that Norgestrel induces a similar early pro-survival increase in retinal ROS. Norgestrel-driven protection in the rd10 retina was attenuated in the presence of antioxidants. This study therefore presents an essential role for ROS signalling in Norgestrel-mediated neuroprotection in vitro and demonstrates that Norgestrel employs a similar pro-survival mechanism in the degenerating retina.
Collapse
Affiliation(s)
- Ana M Ruiz Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alice C Wyse Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Overview of retinal differentiation potential of mesenchymal stem cells: A promising approach for retinal cell therapy. Ann Anat 2016; 210:52-63. [PMID: 27986614 DOI: 10.1016/j.aanat.2016.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Retinal disease caused by retinal cell apoptosis leads to irreversible vision loss. Stem cell investigation efforts have been made to solve and cure retinal disorders. There are several sources of stem cells which have been used in these experiments. Numerous studies demonstrated that transplanted stem cells can migrate into and integrate in different layers of retina. Among these, mesenchymal stem cells (MSCs) were considered a promising source for cell therapy. Here, we review the literature assessing the potential of MSCs to differentiate into retinal cells in vivo and in vitro as well as their clinical application. However, more investigation is required to define the protocols that optimize stem cell differentiation and their functional integration in the retina.
Collapse
|
10
|
Wyse-Jackson AC, Roche SL, Ruiz-Lopez AM, Moloney JN, Byrne AM, Cotter TG. Progesterone analogue protects stressed photoreceptors via bFGF-mediated calcium influx. Eur J Neurosci 2016; 44:3067-3079. [PMID: 27763693 DOI: 10.1111/ejn.13445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023]
Abstract
Retinitis pigmentosa (RP) is a degenerative retinal disease leading to photoreceptor cell loss. In 2011, our group identified the synthetic progesterone 'Norgestrel' as a potential treatment for RP. Subsequent research showed Norgestrel to work through progesterone receptor membrane component 1 (PGRMC1) activation and upregulation of neuroprotective basic fibroblast growth factor (bFGF). Using trophic factor deprivation of 661W photoreceptor-like cells, we aimed to further elucidate the mechanism leading to Norgestrel-induced neuroprotection. In the present manuscript, we show by flow cytometry and live-cell immunofluorescence that Norgestrel induces an increase in cytosolic calcium in both healthy and stressed 661Ws over 24 h. Specific PGRMC1 inhibition by AG205 (1 μm) showed this rise to be PGRMC1-dependent, primarily utilizing calcium from extracellular sources, for blockade of L-type calcium channels by verapamil (50 μm) prevented a Norgestrel-induced calcium influx in stressed cells. Calcium influx was also shown to be bFGF-dependent, for siRNA knock down of bFGF prevented Norgestrel-PGRMC1 induced changes in cytosolic calcium. Notably, we demonstrate PGRMC1-activation is necessary for Norgestrel-induced bFGF upregulation. We propose that Norgestrel protects through the following pathway: binding to and activating PGRMC1 expressed on the surface of photoreceptor cells, PGRMC1 activation drives bFGF upregulation and subsequent calcium influx. Importantly, raised intracellular calcium is critical to Norgestrel's protective efficacy, for extracellular calcium chelation by EGTA abrogates the protective effects of Norgestrel on stressed 661W cells in vitro.
Collapse
Affiliation(s)
- Alice C Wyse-Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
11
|
Vilà N, Coblentz J, Moreira-Neto C, Bravo-Filho V, Zoroquiain P, Burnier Jr. MN. Pretreatment of RPE Cells with Lutein Can Mitigate Bevacizumab-Induced Increases in Angiogenin and bFGF. Ophthalmic Res 2016; 57:48-53. [DOI: 10.1159/000449252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
|
12
|
Wyse Jackson AC, Cotter TG. The synthetic progesterone Norgestrel is neuroprotective in stressed photoreceptor-like cells and retinal explants, mediating its effects via basic fibroblast growth factor, protein kinase A and glycogen synthase kinase 3β signalling. Eur J Neurosci 2016; 43:899-911. [PMID: 26750157 DOI: 10.1111/ejn.13166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 01/19/2023]
Abstract
The synthetic progesterone Norgestrel has been shown to have proven neuroprotective efficacy in two distinct models of retinitis pigmentosa: the rd10/rd10 (B6.CXBI-Pde6b(rd10)/J) mouse model and the Balb/c light-damage model. However, the cellular mechanism underlying this neuroprotection is still largely unknown. Therefore, this study aimed to examine the downstream signalling pathways associated with Norgestrel both in vitro and ex vivo. In this work, we identify the potential of Norgestrel to rescue stressed 661W photoreceptor-like cells and ex vivo retinal explants from cell death over 24 h. Norgestel is thought to work through an upregulation of neuroprotective basic fibroblast growth factor (bFGF). Analysis of 661W cells in vitro by real-time polymerase chain reaction (rt-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blotting revealed an upregulation of bFGF in response to Norgestrel over 6 h. Specific siRNA knockdown of bFGF abrogated the protective properties of Norgestrel on damaged photoreceptors, thus highlighting the crucial importance of bFGF in Norgestrel-mediated protection. Furthermore, Norgestrel initiated a bFGF-dependent inactivation of glycogen synthase kinase 3β (GSK3β) through phosphorylation at serine 9. The effects of Norgestrel on GSK3β were dependent on protein kinase A (PKA) pathway activation. Specific inhibition of both the PKA and GSK3β pathways prevented Norgestrel-mediated neuroprotection of stressed photoreceptor cells in vitro. Involvement of the PKA pathway following Norgestrel treatment was also confirmed ex vivo. Therefore, these results indicate that the protective efficacy of Norgestrel is, at least in part, due to the bFGF-mediated activation of the PKA pathway, with subsequent inactivation of GSK3β.
Collapse
Affiliation(s)
- Alice C Wyse Jackson
- Biochemistry Department, Cell Development and Disease Laboratory, Bioscience Research Institute, University College Cork, College Road, Cork City Centre, Cork, Ireland
| | - Thomas G Cotter
- Biochemistry Department, Cell Development and Disease Laboratory, Bioscience Research Institute, University College Cork, College Road, Cork City Centre, Cork, Ireland
| |
Collapse
|
13
|
|
14
|
Ortín-Martínez A, Valiente-Soriano FJ, García-Ayuso D, Alarcón-Martínez L, Jiménez-López M, Bernal-Garro JM, Nieto-López L, Nadal-Nicolás FM, Villegas-Pérez MP, Wheeler LA, Vidal-Sanz M. A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF. PLoS One 2014; 9:e113798. [PMID: 25464513 PMCID: PMC4252057 DOI: 10.1371/journal.pone.0113798] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model.
Collapse
Affiliation(s)
- Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco Javier Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Luis Alarcón-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - José Manuel Bernal-Garro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Leticia Nieto-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco Manuel Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Larry A. Wheeler
- Zeteo Drug Discovery LLC, Irvine, California, United States of America
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
15
|
Mitra RN, Merwin MJ, Han Z, Conley SM, Al-Ubaidi MR, Naash MI. Yttrium oxide nanoparticles prevent photoreceptor death in a light-damage model of retinal degeneration. Free Radic Biol Med 2014; 75:140-8. [PMID: 25066531 PMCID: PMC4171208 DOI: 10.1016/j.freeradbiomed.2014.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023]
Abstract
Photoreceptor (PR) cells are prone to accumulation of reactive oxygen species (ROS) and oxidative stress. An imbalance between the production of ROS and cellular antioxidant defenses contributes to PR degeneration and blindness in many different ocular disease states. Yttrium oxide (Y2O3) nanoparticles (NPs) are excellent free radical scavengers owing to their nonstoichiometric crystal defects. Here we utilize a murine light-stress model to test the efficacy of Y2O3 NPs (~10-14nm in diameter) in ameliorating retinal oxidative stress-associated degeneration. Our studies demonstrate that intravitreal injections of these NPs at doses ranging from 0.1 to 5.0µM 2 weeks before acute light stress protect PRs from degeneration. This protection is reflected both structurally (i.e., decreased light-associated thinning of the outer nuclear layer) and functionally (i.e., preservation of scotopic and photopic electroretinogram amplitudes). We also observe preservation of structure and function when NPs are delivered immediately after acute light stress, although the magnitude of the preservation is smaller, and only doses ranging from 1.0 to 5.0µM were effective. We show that the Y2O3 NPs are nontoxic and well tolerated after intravitreal delivery. Our results suggest that Y2O3 NPs have astonishing antioxidant benefits and, with further exploration, may be an excellent strategy for the treatment of oxidative stress associated with multiple forms of retinal degeneration.
Collapse
Affiliation(s)
- Rajendra N Mitra
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Miles J Merwin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zongchao Han
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muayyad R Al-Ubaidi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muna I Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
16
|
Fang IM, Yang CH, Chiou SH, Yang CM. Induced pluripotent stem cells without c-Myc ameliorate retinal oxidative damage via paracrine effects and reduced oxidative stress in rats. J Ocul Pharmacol Ther 2014; 30:757-70. [PMID: 25121987 DOI: 10.1089/jop.2014.0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To investigate the efficacy and mechanisms of non-c-Myc induced pluripotent stem cell (iPSC) transplantation in a rat model of retinal oxidative damage. METHODS Paraquat was intravitreously injected into Sprague-Dawley rats. After non-c-Myc iPSC transplantation, retinal function was evaluated by electroretinograms (ERGs). The generation of reactive oxygen species (ROS) was determined by lucigenin- and luminol-enhanced chemiluminescence. The expression of brain-derived neurotrophic factor, ciliary neurotrophic factor, basic fibroblast growth factor (bFGF), stromal cell-derived factor (SDF)-1α, and CXCR4 was measured by immunohistochemistry and ELISA. An in vitro study using SH-SY5Y cells was performed to verify the protective effects of SDF-1α. RESULTS Transplantation of non-c-Myc iPSCs effectively promoted the recovery of the b-wave ratio in ERGs and significantly ameliorated retinal damage. Non-c-Myc iPSC transplantation decreased ROS production and increased the activities of superoxide dismutase and catalase, thereby reducing retinal oxidative damage and apoptotic cells. Moreover, non-c-Myc iPSC transplantation resulted in significant upregulation of SDF-1α, followed by bFGF, accompanied by a significant improvement in the ERG. In vitro studies confirmed that treatment with SDF-1α significantly reduced apoptosis in a dose-dependent manner in SH-SY5Y cells. Most transplanted cells remained in the subretinal space, with spare cells expressing neurofilament M markers at day 28. Six months after transplantation, no tumor formation was seen in animals with non-c-Myc iPSC grafts. CONCLUSIONS We demonstrated the potential benefits of non-c-Myc iPSC transplantation for treating oxidative-damage-induced retinal diseases. SDF-1α and bFGF play important roles in facilitating the amelioration of retinal oxidative damage after non-c-Myc iPSC transplantation.
Collapse
Affiliation(s)
- I-Mo Fang
- 1 Department of Ophthalmology, Taipei City Hospital Zhongxiao Branch , Taipei City, Taiwan
| | | | | | | |
Collapse
|
17
|
The nitric oxide-cGKII system relays death and survival signals during embryonic retinal development via AKT-induced CREB1 activation. Cell Death Differ 2014; 21:915-28. [PMID: 24531539 DOI: 10.1038/cdd.2014.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 01/28/2023] Open
Abstract
During early neurogenesis, retinal neuronal cells display a conserved differentiation program in vertebrates. Previous studies established that nitric oxide (NO) and cGMP accumulation regulate essential events in retinal physiology. Here we used pharmacological and genetic loss-of-function to investigate the effects of NO and its downstream signaling pathway in the survival of developing avian retinal neurons in vitro and in vivo. Six-day-old (E6) chick retinal cells displayed increased calcium influx and produced higher amounts of NO when compared with E8 cells. L-arginine (substrate for NO biosynthesis) and S-nitroso-N-acetyl-D,L-penicillamine (SNAP; a nitrosothiol NO donor) promoted extensive cell death in E6 retinas, whereas in E8 both substances decreased apoptosis. The effect of NO at both periods was mediated by soluble guanylyl cyclase (sGC) and cGMP-dependent kinase (cGK) activation. In addition, shRNA-mediated cGKII knockdown prevented NO-induced cell death (E6) and cell survival (E8). This, NO-induced cell death or cell survival was not correlated with an early inhibition of retinal cell proliferation. E6 cells also responded differentially from E8 neurons regarding cyclic AMP-responsive element-binding protein (CREB) activation in the retina in vivo. NO strongly decreased nuclear phospho-CREB staining in E6 but it robustly enhanced CREB phosphorylation in the nuclei of E8 neurons, an effect that was completely abrogated by cGKII shRNAs at both embryonic stages. The ability of NO in regulating CREB differentially during retinal development relied on the capacity of cGKII in decreasing (E6) or increasing (E8) nuclear AKT (V-Akt murine thymoma viral oncogene) activation. Accordingly, inhibiting AKT prevented both cGKII shRNA-mediated CREB upregulation in E6 and SNAP-induced CREB activation in E8. Furthermore, shRNA-mediated in vivo cGKII or in vitro CREB1 knockdown confirmed that NO/cGKII dualistically regulated the downstream CREB1 pathway and caspase activation in the chick retina to modulate neuronal viability. These data demonstrate that NO-mediated cGKII signaling may function to control the viability of neuronal cells during early retinal development via AKT/CREB1 activity.
Collapse
|
18
|
Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 2014; 59:134-65. [PMID: 24417953 DOI: 10.1016/j.survophthal.2013.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Trophic factors are endogenously secreted proteins that act in an autocrine and/or paracrine fashion to affect vital cellular processes such as proliferation, differentiation, and regeneration, thereby maintaining overall cell homeostasis. In the eye, the major contributors of these molecules are the retinal pigment epithelial (RPE) and Müller cells. The primary paracrine targets of these secreted proteins include the photoreceptors and choriocapillaris. Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa are characterized by aberrant function and/or eventual death of RPE cells, photoreceptors, choriocapillaris, and other retinal cells. We discuss results of in vitro and in vivo animal studies in which candidate trophic factors, either singly or in combination, were used in an attempt to ameliorate photoreceptor and/or retinal degeneration. We also examine current trophic factor therapies as they relate to the treatment of retinal degenerative diseases in clinical studies.
Collapse
|
19
|
Tsuruma K, Yamauchi M, Sugitani S, Otsuka T, Ohno Y, Nagahara Y, Ikegame Y, Shimazawa M, Yoshimura S, Iwama T, Hara H. Progranulin, a major secreted protein of mouse adipose-derived stem cells, inhibits light-induced retinal degeneration. Stem Cells Transl Med 2013; 3:42-53. [PMID: 24233842 DOI: 10.5966/sctm.2013-0020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina.
Collapse
Affiliation(s)
- Kazuhiro Tsuruma
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xu W, Wang X, Xu G, Guo J. Basic fibroblast growth factor expression is implicated in mesenchymal stem cells response to light-induced retinal injury. Cell Mol Neurobiol 2013; 33:1171-9. [PMID: 24030359 DOI: 10.1007/s10571-013-9983-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/31/2013] [Indexed: 12/29/2022]
Abstract
Neurotrophic factors are involved in neuroprotection and its expression in mesenchymal stem cells (MSCs) may change during light-induced retinal injury. In this study, neurotrophic factor expression in MSCs was investigated after stimulation by supernatants of homogenized retina (SHR) from normal and light-injured rats. Conditioned media from control MSCs (CM-MSCs), MSCs stimulated by normal SHR (CM-NSHR), and MSCs stimulated by light-injured SHR (CM-ISHR) were examined regarding their ability to prevent degeneration of retinal explants. Basic fibroblast growth factor (bFGF) in MSCs was knockdown by lentivirus-mediated mRNA interference. Transfected MSCs were stimulated by SHR, and retinal preservation was reevaluated in the resultant conditioned media. We detected significant up-regulation of bFGF in CM-ISHR, accompanied by superior retinal neurotrophic effects in CM-ISHR over CM-NSHR and CM-MSCs. Down-regulation of bFGF in MSCs effectively inhibited this protective effect. Adding neutralizing antibody against bFGF to CM-ISHR also induced a similar effect. It is thus concluded that retinal injury may enhance neurotrophic factor expression in MSCs and promote the repair process. bFGF may play a critical role in MSCs' response to retinal injury.
Collapse
Affiliation(s)
- Wei Xu
- Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | | | | | | |
Collapse
|
21
|
van der Noll R, Leijen S, Neuteboom GH, Beijnen JH, Schellens JH. Effect of inhibition of the FGFR–MAPK signaling pathway on the development of ocular toxicities. Cancer Treat Rev 2013; 39:664-72. [DOI: 10.1016/j.ctrv.2013.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
22
|
Doonan F, Groeger G, Cotter TG. Preventing retinal apoptosis--is there a common therapeutic theme? Exp Cell Res 2012; 318:1278-84. [PMID: 22366479 DOI: 10.1016/j.yexcr.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
Abstract
There is an urgent need for therapies for retinal diseases; retinitis pigmentosa sufferers have no treatment options available and those targeted at other retinopathies have shown limited effectiveness. The process of programmed cell death or apoptosis although complex, remains a possible target for the treatment of retinal diseases. Having identified apoptosis in the vertebrate retina in populations of immature neurons as an essential part of development it was proposed that re-activation of these developmental cell death pathways might provide insight into the death mechanisms operating in retinal diseases. However, the discovery that numerous factors initiate and mediate the apoptotic cascade in mature photoreceptors has resulted in a relatively untargeted approach to examining and arresting apoptosis in the retina. In the last 5 years, mouse models have been treated with a diverse range of drugs or factors including anti-oxidants, growth factors, steroid hormones, calcium/calpain inhibitors and tetracycline antibiotics. Therefore to draw a unifying theme from these broad research areas is challenging. However, this review focusses on two targets which are currently under investigation, reactive oxygen species and mammalian target of rapamycin, drawing together the common themes of these research areas.
Collapse
Affiliation(s)
- Francesca Doonan
- Biochemistry Department, Biosciences Research Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
23
|
West EL, Pearson RA, Duran Y, Gonzalez-Cordero A, MacLaren RE, Smith AJ, Sowden JC, Ali RR. Manipulation of the recipient retinal environment by ectopic expression of neurotrophic growth factors can improve transplanted photoreceptor integration and survival. Cell Transplant 2012; 21:871-87. [PMID: 22325046 DOI: 10.3727/096368911x623871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Degeneration of the neural retina is the leading cause of untreatable blindness in the developed world. Stem cell replacement therapy offers a novel strategy for retinal repair. Postmitotic photoreceptor precursors derived from the early postnatal (P) retina are able to migrate and integrate into the adult mouse retina following transplantation into the subretinal space, but it is likely that a large number of these cells would be required to restore vision. The adult recipient retina presents a very different environment to that from which photoreceptor precursor donor cells isolated from the developing postnatal retina are derived. Here we considered the possibility that modulation of the recipient environment by ectopic expression of developmentally regulated growth factors, normally present during photoreceptor development, might enhance the migration and integration of transplanted cells into the adult neural retina. Adeno-associated viral (AAV) vectors were used to introduce three growth factors previously reported to play a role in photoreceptor development, IGF1, FGF2, and CNTF, into the adult retina, prior to transplantation of P4 cells derived from the Nrl.GFP(+ve) neural retina. At 3 weeks posttransplantation the number of integrated, differentiated photoreceptor cells present in AAV-mediated neurotrophic factor-treated eyes was assessed and compared to control treated contralateral eyes. We show, firstly, that it is possible to manipulate the recipient retinal microenvironment via rAAV-mediated gene transfer with respect to these developmentally relevant growth factors. Moreover, when combined with cell transplantation, AAV-mediated expression of IGF1 led to significantly increased levels of cell integration, while overexpression of FGF2 had no significant effect on integrated cell number. Conversely, expression of CNTF led to a significant decrease in cell integration and an exacerbated glial response that led to glial scarring. Together, these findings demonstrate the importance of the extrinsic environment of the recipient retina for photoreceptor cell transplantation and show for the first time that it is possible to manipulate this environment using viral vectors to influence photoreceptor transplantation efficiency.
Collapse
Affiliation(s)
- E L West
- Department of Genetics, University College London Institute of Ophthalmology, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ebert S, Walczak Y, Remé C, Langmann T. Microglial Activation and Transcriptomic Changes in the Blue Light-Exposed Mouse Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:619-32. [DOI: 10.1007/978-1-4614-0631-0_79] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Caprara C, Grimm C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 2011; 31:89-119. [PMID: 22108059 DOI: 10.1016/j.preteyeres.2011.11.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/20/2022]
Abstract
Photoreceptors and other cells of the retina consume large quantities of energy to efficiently convert light information into a neuronal signal understandable by the brain. The necessary energy is mainly provided by the oxygen-dependent generation of ATP in the numerous mitochondria of retinal cells. To secure the availability of sufficient oxygen for this process, the retina requires constant blood flow through the vasculature of the retina and the choroid. Inefficient supply of oxygen and nutrients, as it may occur in conditions of disturbed hemodynamics or vascular defects, results in tissue ischemia or hypoxia. This has profound consequences on retinal function and cell survival, requiring an adaptational response by cells to cope with the reduced oxygen tension. Central to this response are hypoxia inducible factors, transcription factors that accumulate under hypoxic conditions and drive the expression of a large variety of target genes involved in angiogenesis, cell survival and metabolism. Prominent among these factors are vascular endothelial growth factor and erythropoietin, which may contribute to normal angiogenesis during development, but may also cause neovascularization and vascular leakage under pathologically reduced oxygen levels. Since ischemia and hypoxia may have a role in various retinal diseases such as diabetic retinopathy and retinopathy of prematurity, studying the cellular and molecular response to reduced tissue oxygenation is of high relevance. In addition, the concept of preconditioning with ischemia or hypoxia demonstrates the capacity of the retina to activate endogenous survival mechanisms, which may protect cells against a following noxious insult. Part of these mechanisms is the local production of protective factors such as erythropoietin. Due to its plethora of effects in the retina including neuro- and vaso-protective activities, erythropoietin has gained strong interest as potential therapeutic factor for retinal degenerative diseases.
Collapse
Affiliation(s)
- Christian Caprara
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
26
|
Doonan F, O’Driscoll C, Kenna P, Cotter TG. Enhancing survival of photoreceptor cells in vivo using the synthetic progestin Norgestrel. J Neurochem 2011; 118:915-27. [DOI: 10.1111/j.1471-4159.2011.07354.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis 2011; 42:514-23. [PMID: 21396448 DOI: 10.1016/j.nbd.2011.03.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 01/10/2023] Open
Abstract
Cerium oxide nanoparticles, nanoceria, are inorganic antioxidants that have catalytic activities which mimic those of the neuroprotective enzymes superoxide dismutase and catalase. We have previously shown that nanoceria preserve retinal morphology and prevent loss of retinal function in a rat light damage model. In this study, the homozygous tubby mutant mouse, which exhibits inherited early progressive cochlear and retinal degeneration, was used as a model to test the ability of nanoceria to slow the progression of retinal degeneration. Tubby mice were injected systemically, intracardially, with 20 μl of 1mM nanoceria in saline, at postnatal day 10 and subsequently at P20 and P30 whereas saline injected and uninjected wild type (or heterozygous tubby) served as injected and uninjected controls, respectively. Assays for retinal function, morphology and signaling pathway gene expression were performed on P34 mice. Our data demonstrate that nanoceria protect the retina by decreasing Reactive Oxygen Species (ROS), up-regulating the expression of neuroprotection-associated genes; down-regulating apoptosis signaling pathways and/or up-regulating survival signaling pathways to slow photoreceptor degeneration. These data suggest that nanoceria have significant potential as global agents for therapeutic treatment of inherited retinal degeneration and most types of ocular diseases.
Collapse
|
28
|
Farrell SMJ, Groeger G, Bhatt L, Finnegan S, O’Brien CJ, Cotter TG. bFGF-mediated redox activation of the PI3K/Akt pathway in retinal photoreceptor cells. Eur J Neurosci 2011; 33:632-41. [DOI: 10.1111/j.1460-9568.2010.07559.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Rod photoreceptor cell death is induced by okadaic acid through activation of PKC and L-type voltage-dependent Ca2+ channels and prevented by IGF-1. Neurochem Int 2010; 57:128-35. [DOI: 10.1016/j.neuint.2010.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 04/14/2010] [Accepted: 04/29/2010] [Indexed: 02/02/2023]
|
30
|
Lehmann U, Heuss ND, McPherson SW, Roehrich H, Gregerson DS. Dendritic cells are early responders to retinal injury. Neurobiol Dis 2010; 40:177-84. [PMID: 20580926 DOI: 10.1016/j.nbd.2010.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 11/16/2022] Open
Abstract
The presence and activity of dendritic cells (DC) in retina is controversial, as these cells are difficult to identify in retina due to limited markers and sparse numbers. Transgenic mice that express green fluorescent protein (GFP) on the CD11c promoter to label DC allowed the visualization and quantification of retinal DC. Two retina injury models, the optic nerve crush (ONC) and light injury, were used to study their injury response. Many GFP(+) DC were tightly associated with retinal ganglion cell nerve fibers following ONC, while very few microglia (GFP(-)CD11b(+) cells) were found in close contact. The GFP(+) cells were greatly elevated in the outer plexiform layer following photic injury. All of the GFP(+) DC were CD11b(+), suggesting a myeloid origin. In addition, the GFP(+) DC upregulated expression of MHC class II after injury, while the GFP(-)CD11b(+) microglia did not. This study shows that DC were found in the retina and that they rapidly responded to neural injuries. We propose that they are a previously overlooked population, distinct from microglia, and may be important in the injury response.
Collapse
Affiliation(s)
- Ute Lehmann
- Department of Ophthalmology, University of Minnesota School of Medicine, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
31
|
Samardzija M, Neuhauss SCF, Joly S, Kurz-Levin M, Grimm C. Animal Models for Retinal Degeneration. NEUROMETHODS 2010. [DOI: 10.1007/978-1-60761-541-5_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 2009; 28:423-51. [PMID: 19660572 DOI: 10.1016/j.preteyeres.2009.07.001] [Citation(s) in RCA: 522] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Müller cells are active players in normal retinal function and in virtually all forms of retinal injury and disease. Reactive Müller cells protect the tissue from further damage and preserve tissue function by the release of antioxidants and neurotrophic factors, and may contribute to retinal regeneration by the generation of neural progenitor/stem cells. However, Müller cell gliosis can also contribute to neurodegeneration and impedes regenerative processes in the retinal tissue by the formation of glial scars. This article provides an overview of the neuroprotective and detrimental effects of Müller cell gliosis, with accounts on the cellular signal transduction mechanisms and factors which are implicated in Müller cell-mediated neuroprotection, immunomodulation, regulation of Müller cell proliferation, upregulation of intermediate filaments, glial scar formation, and the generation of neural progenitor/stem cells. A proper understanding of the signaling mechanisms implicated in gliotic alterations of Müller cells is essential for the development of efficient therapeutic strategies that increase the supportive/protective and decrease the destructive roles of gliosis.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Liebigstrasse 10-14, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Read ML, Mir S, Spice R, Seabright RJ, Suggate EL, Ahmed Z, Berry M, Logan A. Profiling RNA interference (RNAi)-mediated toxicity in neural cultures for effective short interfering RNA design. J Gene Med 2009; 11:523-34. [DOI: 10.1002/jgm.1321] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
Frohns F, Mager M, Layer PG. Basic fibroblast growth factor increases the precursor pool of photoreceptors, but inhibits their differentiation and apoptosis in chicken retinal reaggregates. Eur J Neurosci 2009; 29:1931-42. [PMID: 19453639 DOI: 10.1111/j.1460-9568.2009.06738.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The role(s) of basic fibroblast growth factor (bFGF, FGF-2) in the differentiation and survival of photoreceptor (PR) cells was investigated in three-dimensional reaggregated histotypic spheres, derived from dispersed cells of the embryonic day 6 chicken embryo retina. Novel data processing methods are introduced to reliably quantify sphere sizes and spatial distributions of immunochemical signals in spheroids. Supplementation with 25 ng/mL FGF-2 increased cell proliferation, detected by bromodeoxyuridine uptake, and growth of spheroids. Immunochemical studies showed that FGF-2 decreased the number of visinin-positive and XAP-1-positive cells, including the total PR pool from early precursor until mature states, whereas the number of Pax6-positive amacrine cells was strongly increased. Notably, the relative number of PR precursors as detected by an Islet2 antibody was increased. The further differentiation of both red/green cones and then rods, as detected by CERN-906 and CERN-901 antibody binding, was much delayed. In contrast, blocking system-inherent FGF-2 by suramin showed opposite effects. Addition of both FGF-2 plus suramin resulted in nearly normal levels of PR differentiation. Terminal deoxynucleotidyl transferase dUTP nick end labelling histochemistry showed that PR apoptosis, which generally progresses with the age of spheres, was strongly increased by suramin treatment. These results suggest that in a three-dimensional retinal tissue context, FGF-2 restricts the pool of PRs in favour of cells of the inner retina, increases and maintains their precursor pool, delays their differentiation, and also protects them from apoptosis.
Collapse
Affiliation(s)
- Florian Frohns
- Technische Universität Darmstadt, Entwicklungsbiologie & Neurogenetik, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | | | | |
Collapse
|
35
|
Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. J Neurosci 2009; 28:13765-74. [PMID: 19091967 DOI: 10.1523/jneurosci.5114-08.2008] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Survival and death of photoreceptors in degenerative diseases of the retina is controlled by a multitude of genes and endogenous factors. Some genes may be involved in the degenerative process itself whereas others may be part of an endogenous defense system. We show in two models of retinal degeneration that photoreceptor death strongly induces expression of leukemia inhibitory factor (LIF) in a subset of Muller glia cells in the inner nuclear layer of the retina. LIF expression is essential to induce an extensive intraretinal signaling system which includes Muller cells and photoreceptors and is characterized by an upregulation of Edn2, STAT3, FGF2 and GFAP. In the absence of LIF, Muller cells remain quiescent, the signaling system is not activated and retinal degeneration is strongly accelerated. Intravitreal application of recombinant LIF induces the full molecular pathway including the activation of Muller cells in wild-type and Lif(-/-) mice. Interruption of the signaling cascade by an Edn2 receptor antagonist increases whereas activation of the receptor decreases photoreceptor cell death. Thus, LIF is essential and sufficient to activate an extensive molecular defense response to photoreceptor injury. Our data establish LIF as a Muller cell derived neuronal survival factor which controls an intrinsic protective mechanism that includes Edn2 signaling to support photoreceptor cell survival and to preserve vision in the injured retina.
Collapse
|
36
|
Induction of fibroblast growth factor-2 by electrical stimulation in cultured retinal Mueller cells. Neuroreport 2008; 19:1617-21. [PMID: 18815585 DOI: 10.1097/wnr.0b013e3283140f25] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has been demonstrated that retinal Mueller cells, the predominant glial cells, produce neurotrophic factors including basic fibroblast growth factor (FGF-2), and that electrical stimulation enhances the transcription of FGF-2 in the central nervous system. In this study, the effect of electrical stimulation on the induction of FGF-2 in cultured rat Mueller cells was investigated by quantitative real-time polymerase chain reaction and western blotting. Both the messenger RNA and protein of FGF-2 were significantly upregulated after electrical stimulation compared with that of controls. These results suggest that electrical stimulation may directly induce the production of FGF-2 in the retina.
Collapse
|