1
|
Mishra L, Mishra M. Recent progress towards the development of fluorescent probes for the detection of disease-related enzymes. J Mater Chem B 2024. [PMID: 39639834 DOI: 10.1039/d4tb01960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Normal physiological functions as well as regulatory mechanisms for various pathological conditions depend on the activity of enzymes. Thus, determining the in vivo activity of enzymes is crucial for monitoring the physiological metabolism and diagnosis of diseases. Traditional enzyme detection methods are inefficient for in vivo detection, which have different limitations, such as high cost, laborious, and inevitable invasive procedures, low spatio-temporal resolution, weak anti-interference ability, and restricted scope of application. Because of its non-destructive nature, ultra-environmental sensitivity, and high spatiotemporal resolution, fluorescence imaging technology has emerged as a potent tool for the real-time visualization of live cells, thereby imaging the motility of proteins and intracellular signalling networks in tissues and cells and evaluating the binding and attraction of molecules. In the last few years, significant advancements have been achieved in detecting and imaging enzymes in biological systems. In this regard, the high sensitivity and unparalleled spatiotemporal resolution of fluorescent probes in association with confocal microscopy have garnered significant interest. In this review, we focus on providing a concise summary of the latest developments in the design of fluorogenic probes used for monitoring disease-associated enzymes and their application in biological imaging. We anticipate that this study will attract considerable attention among researchers in the relevant field, encouraging them to pursue advances in the development and application of fluorescent probes for the real-time monitoring of enzyme activity in live cells and in vivo models while ensuring excellent biocompatibility.
Collapse
Affiliation(s)
- Lopamudra Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
2
|
Li Y, Vaughan KL, Wang Y, Yu SJ, Bae EK, Tamargo IA, Kopp KO, Tweedie D, Chiang CC, Schmidt KT, Lahiri DK, Tones MA, Zaleska MM, Hoffer BJ, Mattison JA, Greig NH. Sitagliptin elevates plasma and CSF incretin levels following oral administration to nonhuman primates: relevance for neurodegenerative disorders. GeroScience 2024; 46:4397-4414. [PMID: 38532069 PMCID: PMC11335710 DOI: 10.1007/s11357-024-01120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.
Collapse
Affiliation(s)
- Yazhou Li
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Ian A Tamargo
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Katherine O Kopp
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David Tweedie
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Cheng-Chuan Chiang
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Keith T Schmidt
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | | | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Bissolotti L, Rota M, Calza S, Romero-Morales C, Alonso-Pérez JL, López-Bueno R, Villafañe JH. Gender-Specific Differences in Spinal Alignment and Muscle Power in Patients with Parkinson's Disease. Diagnostics (Basel) 2024; 14:1143. [PMID: 38893669 PMCID: PMC11171582 DOI: 10.3390/diagnostics14111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is an advancing neurodegenerative disorder characterized by spinal anomalies and muscular weakness, which may restrict daily functional capacities. A gender-focused examination of these effects could provide valuable insights into customized rehabilitation strategies for both sexes. PURPOSE This study investigates the influence of spinal alignment on lower-limb function during the sit-to-stand (STS) movement in patients with Parkinson's disease compared to healthy individuals. METHODS A cross-sectional study was conducted with 43 consecutive patients with PD (25 males and 18 females; average age 73.7 ± 7.1 years) and 42 healthy controls (22 males and 20 females; average age 69.8 ± 6.0 years). Assessments included the International Physical Activity Questionnaire (IPAQ), Hoehn and Yahr staging, and measurements of vertical deviations from several spinal landmarks. Lower-limb muscle power during the STS task was evaluated using the Muscle Quality Index (MQI). RESULTS Both absolute (Watts) and relative (Watts/Kg) muscle power in the lower limbs were notably decreased in the PD group compared to the control group. Within the PD cohort, muscle power showed a negative relationship with age and a positive association with the degree of lumbar lordosis (PL-L3). Importantly, gender-specific analysis revealed that male patients with PD had significantly higher lower-limb muscle power compared to female patients with PD, highlighting the need for gender-tailored therapeutic approaches. CONCLUSIONS The findings suggest that preserving lumbar lordosis is crucial for maintaining effective lower-limb muscle biomechanics in individuals with Parkinson's disease.
Collapse
Affiliation(s)
- Luciano Bissolotti
- Fondazione Teresa Camplani Casa di Cura Domus Salutis, 25123 Brescia, Italy;
| | - Matteo Rota
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.R.); (S.C.)
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.R.); (S.C.)
| | - Carlos Romero-Morales
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | - José Luís Alonso-Pérez
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, C/Inocencio García 1, 38300 La Orotava, Canary Islands, Spain
- Department of Physiotherapy, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
- Onelife Center, Multidisciplinary Pain Treatment Center, 28925 Alcorcón, Spain
| | - Rubén López-Bueno
- Department of Physical Medicine and Nursing, University of Zaragoza, 50009 Zaragoza, Spain;
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, 46100 Valencia, Spain
| | - Jorge Hugo Villafañe
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| |
Collapse
|
4
|
Cephalosporin as Potent Urease and Tyrosinase Inhibitor: Exploration through Enzyme Inhibition, Kinetic Mechanism, and Molecular Docking Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1092761. [PMID: 35937399 PMCID: PMC9352478 DOI: 10.1155/2022/1092761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
In present study, eleven cephalosporin drugs were selected to explore their new medically important enzyme targets with inherited safety advantage. To this end, selected drugs with active ingredient, cefpodoxime proxetil, ceftazidime, cefepime, ceftriaxone sodium, cefaclor, cefotaxime sodium, cefixime trihydrate, cephalexin, cefadroxil, cephradine, and cefuroxime, were evaluated and found to have significant activity against urease (IC50 = 0.06 ± 0.004 to 0.37 ± 0.046 mM) and tyrosinase (IC50 = 0.01 ± 0.0005 to 0.12 ± 0.017 mM) enzymes. Urease activity was lower than standard thiourea; however, tyrosinase activity of all drugs outperforms (ranging 6 to 18 times) the positive control: hydroquinone (IC50 = 0.18 ± 0.02 mM). Moreover, the kinetic analysis of the most active drugs, ceftriaxone sodium and cefotaxime sodium, revealed that they bind irreversibly with both the enzymes; however, their mode of action was competitive for urease and mixed-type, preferentially competitive for tyrosinase enzyme. Like in vitro activity, ceftriaxone sodium and cefotaxime sodium docking analysis showed their considerable binding affinity and significant interactions with both urease and tyrosinase enzymes sufficient for downstream signaling responsible for observed enzyme inhibition in vitro, purposing them as potent candidates to control enzyme-rooted obstructions in future.
Collapse
|
5
|
Bissolotti L, Rota M, Calza S, Sanchez Romero EA, Battaglino A, Villafañe JH. Relationship between Lower Limbs Performance and Spinal Alignment in Parkinson’s Disease Patients: An Observational Study with Cross Sectional Design. J Clin Med 2022; 11:jcm11133775. [PMID: 35807060 PMCID: PMC9267576 DOI: 10.3390/jcm11133775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease determining spinal deformities and muscle rigidity, weakness and dystonia that can be related to a change in muscular output during sit-to-stand tasks (STS). Purpose: The aim of this study was to determine the impacts of spinal alignment on lower limbs performance during STS tasks in Parkinson’s disease (PD) patients and healthy controls. Methods: In total, 43 consecutive PD patients (“PD” Group, 25 males and 18 females; age 73.7 ± 7.1) and 42 people not affected by any type of neurological disease (“CON” Group, 22 males, 20 females; age 69.8 ± 6.0) participated in the observational study. The clinical assessment included: IPAQ (International Physical Activity Questionnaire), Hoehn Yahr score, plumb-line distance from the spinous process of C7, kyphosis apex and the spinous process of L3 and S1. We used the Muscle Quality Index test (MQI) to assess muscle power output during STS in both groups. Results: The MQI test measurements of absolute and relative lower limb power was significantly lower in the PD group, in addition to a negative correlation with age and a positive correlation with PL-L3 in that group of patients. Conclusions: A final consideration regarding our results leads to the possibility that the preservation of lumbar lordosis may be one of the factors for maintaining efficient biomechanics of the lower limb muscles, with the preservation of the physiological contractile characteristics of these muscles being the objective for a multidisciplinary rehabilitation based on postural exercises of the spine and a program of training exercises for the lower limb muscles.
Collapse
Affiliation(s)
- Luciano Bissolotti
- Rehabilitation Service, Fondazione Teresa Camplani Casa di Cura Domus Salutis, 25123 Brescia, Italy;
- LARIN: Neuromuscular and Adapted Physical Activity Laboratory, 25123 Brescia, Italy
| | - Matteo Rota
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.R.); (S.C.)
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.R.); (S.C.)
| | - Eleuterio A. Sanchez Romero
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Department of Physiotherapy, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain
- Correspondence: (E.A.S.R.); (J.H.V.); Tel.: +39-393-9064-922 (E.A.S.R.); Fax: +34-633-115-328 (E.A.S.R.)
| | | | - Jorge H. Villafañe
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy;
- Correspondence: (E.A.S.R.); (J.H.V.); Tel.: +39-393-9064-922 (E.A.S.R.); Fax: +34-633-115-328 (E.A.S.R.)
| |
Collapse
|
6
|
Lawana V, Um SY, Rochet JC, Turesky RJ, Shannahan JH, Cannon JR. Neuromelanin Modulates Heterocyclic Aromatic Amine-Induced Dopaminergic Neurotoxicity. Toxicol Sci 2021; 173:171-188. [PMID: 31562763 DOI: 10.1093/toxsci/kfz210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Heterocyclic aromatic amines (HAAs) are mutagens and potential human carcinogens. Our group and others have demonstrated that HAAs may also produce selective dopaminergic neurotoxicity, potentially relevant to Parkinson's disease (PD). The goal of this study was to elucidate mechanisms of HAA-induced neurotoxicity through examining a translational biochemical weakness of common PD models. Neuromelanin is a pigmented byproduct of dopamine metabolism that has been debated as being both neurotoxic and neuroprotective in PD. Importantly, neuromelanin is known to bind and potentially release dopaminergic neurotoxicants, including HAAs (eg, β-carbolines such as harmane). Binding of other HAA subclasses (ie, aminoimidazoaazarenes) to neuromelanin has not been investigated, nor has a specific role for neuromelanin in mediating HAA-induced neurotoxicity been examined. Thus, we investigated the role of neuromelanin in modulating HAA-induced neurotoxicity. We characterized melanin from Sepia officinalis and synthetic dopamine melanin, proposed neuromelanin analogs with similar biophysical properties. Using a cell-free assay, we demonstrated strong binding of harmane and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) to neuromelanin analogs. To increase cellular neuromelanin, we transfected SH-SY5Y neuroblastoma cells with tyrosinase. Relative to controls, tyrosinase-expressing cells exhibited increased neuromelanin levels, cellular HAA uptake, cell toxicity, and oxidative damage. Given that typical cellular and rodent PD models form far lower neuromelanin levels than humans, there is a critical translational weakness in assessing HAA-neurotoxicity. The primary impacts of these results are identification of a potential mechanism by which HAAs accumulate in catecholaminergic neurons and support for the need to conduct neurotoxicity studies in systems forming neuromelanin.
Collapse
Affiliation(s)
- Vivek Lawana
- School of Health Sciences.,Purdue Institute for Integrative Neuroscience
| | | | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Robert J Turesky
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Jason R Cannon
- School of Health Sciences.,Purdue Institute for Integrative Neuroscience
| |
Collapse
|
7
|
Yonesi M, Garcia-Nieto M, Guinea GV, Panetsos F, Pérez-Rigueiro J, González-Nieto D. Silk Fibroin: An Ancient Material for Repairing the Injured Nervous System. Pharmaceutics 2021; 13:429. [PMID: 33806846 PMCID: PMC8004633 DOI: 10.3390/pharmaceutics13030429] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Silk refers to a family of natural fibers spun by several species of invertebrates such as spiders and silkworms. In particular, silkworm silk, the silk spun by Bombyx mori larvae, has been primarily used in the textile industry and in clinical settings as a main component of sutures for tissue repairing and wound ligation. The biocompatibility, remarkable mechanical performance, controllable degradation, and the possibility of producing silk-based materials in several formats, have laid the basic principles that have triggered and extended the use of this material in regenerative medicine. The field of neural soft tissue engineering is not an exception, as it has taken advantage of the properties of silk to promote neuronal growth and nerve guidance. In addition, silk has notable intrinsic properties and the by-products derived from its degradation show anti-inflammatory and antioxidant properties. Finally, this material can be employed for the controlled release of factors and drugs, as well as for the encapsulation and implantation of exogenous stem and progenitor cells with therapeutic capacity. In this article, we review the state of the art on manufacturing methodologies and properties of fiber-based and non-fiber-based formats, as well as the application of silk-based biomaterials to neuroprotect and regenerate the damaged nervous system. We review previous studies that strategically have used silk to enhance therapeutics dealing with highly prevalent central and peripheral disorders such as stroke, Alzheimer's disease, Parkinson's disease, and peripheral trauma. Finally, we discuss previous research focused on the modification of this biomaterial, through biofunctionalization techniques and/or the creation of novel composite formulations, that aim to transform silk, beyond its natural performance, into more efficient silk-based-polymers towards the clinical arena of neuroprotection and regeneration in nervous system diseases.
Collapse
Affiliation(s)
- Mahdi Yonesi
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Fivos Panetsos
- Silk Biomed SL, 28260 Madrid, Spain;
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Liu H, Liu B, Huang P, Wu Y, Wu FY, Ma L. Colorimetric determination of tyrosinase based on in situ silver metallization catalyzed by gold nanoparticles. Mikrochim Acta 2020; 187:551. [PMID: 32894361 DOI: 10.1007/s00604-020-04463-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles (AuNPs) catalyze the mild reaction between the weak reducing agent kojic acid (KA) and silver ions (Ag+) to form Au@Ag bimetallic NPs by the combination of the intrinsic catalysis with plasmonic properties This is proposed as a novel optical assay to determine the tyrosinase (TYRase) concentration. The nanoparticles have been characterized by UV-vis spectroscopy, transmission electron microscope (TEM) images, and X-ray photoelectron spectroscopy (XPS). The sensing mechanism is based on the fact that KA binds to TYRase by chelating with dicopper active site of TYRase and the introduction of TYRase restrains the Au@Ag bimetallic NP formation by the precedent binding with KA. A clear color variation from yellow to pink and UV-vis spectral changes are observed at the optimal wavelength of 410 nm. The assay works in the range 0.13~0.73 U mL-1 with a detection limit (LOD) of 0.019 U mL-1. The impact from matrix interfering substances including glucose, uric acid, common oxidases, and amino acids is negligible. The applicability is demonstrated by quantitative determination of TYRase in human serum samples with 74 to 89% recovery and RSD less than 4.0%, which accords with the level for bio-sample analysis. Graphical abstract Schematic presentation of colorimetric assay for tyrosinase (TYRase) based on the inhibition effect on silver deposition onto catalytically active gold nanoparticles (AuNPs) and its application with a smartphone. Tyrosinase (TYRase); silver ions (Ag+); kojic acid (KA); gold nanoparticles (AuNPs); gold-silver core-shell nanoparticles (Au@Ag NPs).
Collapse
Affiliation(s)
- Hui Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Bowen Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang, 330031, China. .,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Yangyang Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, China. .,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Lihua Ma
- College of Science and Engineering, University of Houston at Clear Lake, 2700 Bay Area Blvd, Houston, TX, 77058, USA
| |
Collapse
|
9
|
Taviano MF, Miceli N, Acquaviva R, Malfa GA, Ragusa S, Giordano D, Cásedas G, Les F, López V. Cytotoxic, Antioxidant, and Enzyme Inhibitory Properties of the Traditional Medicinal Plant Matthiola incana (L.) R. Br. BIOLOGY 2020; 9:E163. [PMID: 32668697 PMCID: PMC7407578 DOI: 10.3390/biology9070163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Matthiola incana (L.) R. Br. (Brassicaceae) is widely cultivated for ornamental purposes and utilized as a medicinal plant. In the present work, the hydroalcoholic extract from the aerial parts of this species has been evaluated in different bioassays in order to detect potential pharmacological applications. The cytotoxic capacity against the human colorectal adenocarcinoma (CaCo-2) and breast cancer (MCF-7) cell lines was tested using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The extract was investigated as a neuroprotective inhibitor of central nervous system (CNS) enzymes such as monoamine oxidase A, tyrosinase, acetylcholinesterase, and as a natural enzyme inhibitor of α-glucosidase and lipase involved in some metabolic disorders such as obesity or type 2 diabetes. The antioxidant ability was also evaluated in an enzymatic system (xanthine/xanthine oxidase assay). Results showed that the M. incana extract displayed moderate to low cytotoxicity vs. CaCo-2 cells. The extract acted as a superoxide radical scavenger and enzymatic inhibitor of monoamine oxidase A, tyrosinase, α-glucosidase, and lipase. The best results were found in the α-glucosidase assay, as M. incana hydroalcoholic extract was able to inhibit the enzyme α-glucosidase up to 100% without significant differences, compared to the antidiabetic drug acarbose. Matthiola incana has been demonstrated to exert different biological properties. These are important in order to consider this species as a source of bioactive compounds.
Collapse
Affiliation(s)
- Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Annunziata, University of Messina, 98168 Messina, Italy; (M.F.T.); (N.M.); (D.G.)
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Annunziata, University of Messina, 98168 Messina, Italy; (M.F.T.); (N.M.); (D.G.)
| | - Rosaria Acquaviva
- Department of Drug Science, Biochemistry Section, University of Catania, 95123 Catania, Italy; (R.A.); (G.A.M.)
| | - Giuseppe Antonio Malfa
- Department of Drug Science, Biochemistry Section, University of Catania, 95123 Catania, Italy; (R.A.); (G.A.M.)
| | - Salvatore Ragusa
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Deborah Giordano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Annunziata, University of Messina, 98168 Messina, Italy; (M.F.T.); (N.M.); (D.G.)
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Zaragoza), Spain; (G.C.); (F.L.)
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Zaragoza), Spain; (G.C.); (F.L.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Zaragoza), Spain; (G.C.); (F.L.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
10
|
Chen Y. Advances in fluorescent probes for detection and imaging of endogenous tyrosinase activity. Anal Biochem 2020; 594:113614. [DOI: 10.1016/j.ab.2020.113614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
|
11
|
The role of mitochondria-associated membranes in cellular homeostasis and diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:119-196. [PMID: 32138899 DOI: 10.1016/bs.ircmb.2019.11.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) are fundamental in the control of cell physiology regulating several signal transduction pathways. They continuously communicate exchanging messages in their contact sites called MAMs (mitochondria-associated membranes). MAMs are specific microdomains acting as a platform for the sorting of vital and dangerous signals. In recent years increasing evidence reported that multiple scaffold proteins and regulatory factors localize to this subcellular fraction suggesting MAMs as hotspot signaling domains. In this review we describe the current knowledge about MAMs' dynamics and processes, which provided new correlations between MAMs' dysfunctions and human diseases. In fact, MAMs machinery is strictly connected with several pathologies, like neurodegeneration, diabetes and mainly cancer. These pathological events are characterized by alterations in the normal communication between ER and mitochondria, leading to deep metabolic defects that contribute to the progression of the diseases.
Collapse
|
12
|
Rodríguez-Solana R, Coelho N, Santos-Rufo A, Gonçalves S, Pérez-Santín E, Romano A. The Influence of In Vitro Gastrointestinal Digestion on the Chemical Composition and Antioxidant and Enzyme Inhibitory Capacities of Carob Liqueurs Obtained with Different Elaboration Techniques. Antioxidants (Basel) 2019; 8:E563. [PMID: 31744100 PMCID: PMC6912352 DOI: 10.3390/antiox8110563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Carob liqueur is a traditional Mediterranean alcoholic beverage obtained via a wide range of production techniques contributing to the different organoleptic attributes of the final product. The aim of this research was to evaluate the stability of the chemical composition and biological capacities (antioxidant and enzyme inhibition) under in vitro simulated gastrointestinal digestion of liqueurs prepared by flavouring the fig spirit with carob pulp by maceration, distillation, percolation, or aqueous and hydro-alcoholic infusions. For this purpose, the phenolic and furanic compositions, the total phenolic (TPC) and flavonoid (TFC) contents, antioxidant capacity (AC), and enzyme inhibitory potential against acethylcholinesterase, tyrosinase, α-glucosidase and α-amylase enzymes were evaluated. The content of gallic acid decreased after gastrointestinal digestion, while TPC, TFC, and AC significantly increased after each digestion phase. Overall, no significantly different enzyme inhibitions (p < 0.05) were observed among digested liqueurs, with moderate inhibition against acethylcholinesterase and tyrosinase (enzymes related with neurodegenerative diseases), and potent and low inhibitory capacities for α-glucosidase and α-amylase, respectively (ideal conditions employed in antidiabetic therapy). The study indicates that hydro-alcoholic infusion and maceration were the most appropriate methods to obtain liqueurs with higher values of the aforementioned parameters and safe levels of toxic furanics.
Collapse
Affiliation(s)
- Raquel Rodríguez-Solana
- Faculdade de Ciências e Tecnologia (MeditBio), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (N.C.); (S.G.)
| | - Natacha Coelho
- Faculdade de Ciências e Tecnologia (MeditBio), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (N.C.); (S.G.)
| | - Antonio Santos-Rufo
- Laboratory of Plant Pathology, Area of Crop Protection, Andalusian Institute of Agricultural Research and Training (IFAPA), Centro ‘Alameda del Obispo’, Apartado 3092, 14080 Cordoba, Spain;
| | - Sandra Gonçalves
- Faculdade de Ciências e Tecnologia (MeditBio), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (N.C.); (S.G.)
| | - Efrén Pérez-Santín
- Graduate School of Engineering and Technology, Universidad Internacional de La Rioja (UNIR), Av. de la Paz, 137, Logroño, 26006 La Rioja, Spain;
| | - Anabela Romano
- Faculdade de Ciências e Tecnologia (MeditBio), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (N.C.); (S.G.)
| |
Collapse
|
13
|
Banagozar Mohammadi A, Sadigh-Eteghad S, Torbati M, Bagher Fazljou SM, Vatandoust SM, Ej Golzari S, Farajdokht F, Mahmoudi J. Identification and applications of neuroactive silk proteins: a narrative review. J Appl Biomed 2019; 17:147-156. [PMID: 34907702 DOI: 10.32725/jab.2019.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023] Open
Abstract
In traditional medicine, natural silk is regarded as a cognitive enhancer and a cure for ameliorating the symptoms of heart disease, atherosclerosis, and metabolic disorders. In this review, general characteristics of both silk proteins, fibroin and sericin, extracted from silkworm Bombyx mori and their potential use in the neuronal disorders was discussed. Evidence shows that silk proteins exhibit neuroprotective effects in models of neurotoxicity. The antioxidant, neuroprotective, and acetylcholinesterase inhibitory mechanisms of silk proteins could prove promising in the treatment of neurodegenerative diseases. Owing to their excellent neurocompatibility and physicochemical properties, silk proteins have been used as scaffolds and drug delivery materials in the neuronal tissue engineering. These data support the potential of silk proteins as an effective complementary agent for central and peripheral neurological disorders.
Collapse
Affiliation(s)
- Ahad Banagozar Mohammadi
- Tabriz University of Medical Sciences, Faculty of Traditional Medicine, Department of Traditional Medicine, Tabriz, Iran.,Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Mohammadali Torbati
- Tabriz University of Medical Sciences, Faculty of Nutrition, Department of Food Science and Technology, Tabriz, Iran
| | - Seyyed Mohammad Bagher Fazljou
- Tabriz University of Medical Sciences, Faculty of Traditional Medicine, Department of Traditional Medicine, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Samad Ej Golzari
- Tabriz University of Medical Sciences, Research Center for Evidence Based Medicine, Tabriz, Iran.,Tabriz University of Medical Sciences, Health Management and Safety Promotion Research Institute, Road Traffic Injury Research Center, Tabriz, Iran
| | - Fereshteh Farajdokht
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Javad Mahmoudi
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| |
Collapse
|
14
|
Shaping the Nrf2-ARE-related pathways in Alzheimer's and Parkinson's diseases. Ageing Res Rev 2019; 54:100942. [PMID: 31415806 DOI: 10.1016/j.arr.2019.100942] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
A failure in redox homeostasis is a common hallmark of Alzheimer's Disease (AD) and Parkinson's Disease (PD), two age-dependent neurodegenerative disorders (NDD), causing increased oxidative stress, oxidized/damaged biomolecules, altered neuronal function and consequent cell death. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a redox-regulated transcription factor, results in upregulation of cytoprotective and antioxidant enzymes/proteins, protecting against oxidative stress. Nrf2 regulation is achieved by various proteins and pathways, at both cytoplasmatic and nuclear level; however, the elaborate network of mechanisms involved in Nrf2 regulation may restrain Nrf2 pathway normal activity. Indeed, altered Nrf2 activity is involved in aging and NDD, such as AD and PD. Therefore, understanding the diversity of Nrf2 control mechanisms and regulatory proteins is of high interest, since more effective NDD therapeutics can be identified. In this review, we first introduce Keap1-Nrf2-ARE structure, function and regulation, with a special focus on the several pathways involved in Nrf2 positive and negative modulation, namely p62, PKC, PI3K/Akt/GSK-3β, NF-kB and p38 MAPK. We then briefly describe the evidences for oxidative stress and Nrf2 pathway deregulation in different stages of NDDs. Finally, we discuss the potential of Nrf2-related pathways as potential therapeutic targets to possibly prevent or slowdown NDD progression.
Collapse
|
15
|
Jęśko H, Lenkiewicz AM, Wilkaniec A, Adamczyk A. The interplay between parkin and alpha-synuclein; possible implications for the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Bonilla-Porras AR, Arevalo-Arbelaez A, Alzate-Restrepo JF, Velez-Pardo C, Jimenez-Del-Rio M. PARKIN overexpression in human mesenchymal stromal cells from Wharton's jelly suppresses 6-hydroxydopamine-induced apoptosis: Potential therapeutic strategy in Parkinson's disease. Cytotherapy 2017; 20:45-61. [PMID: 29079356 DOI: 10.1016/j.jcyt.2017.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND AIMS Stem cell transplantation is an excellent option for regenerative or replacement therapy. However, deleterious microenvironmental and endogenous factors (e.g., oxidative stress) compromise ongoing graft survival and longevity. Therefore, (transient or stable) genetically modified cells may be reasonably thought to resist oxidative stress-induced damage. Genetic engineering of mesenchymal stromal cells (MSCs) obtained from Wharton's jelly tissue may offer some therapeutic potential. PARKIN is a multifunctional ubiquitin ligase able to protect dopaminergic cells against stress-related signaling. We, therefore, evaluated the effect of the neurotoxicant 6-hydroxydopamine (6-OHDA) on regulated cell death signaling in MSCs and investigated whether overexpression of PARKIN in MSCs was capable of modulating the effect of 6-OHDA. METHODS We transiently transfected Wharton's jelly-derived MSCs with an mCherry-PARKIN vector using the Lipofectamine LTX method. Naïve MSCs and MSCs overexpressing PARKIN were exposed to increasing concentrations of 6-OHDA. We used light and fluorescence microscopy, flow cytometry, immunocytochemistry staining, in-cell Western and Western blot analysis. RESULTS After 12-24 h of 6-OHDA exposure, we detected dichlorofluorescein (DCF)-positive cells (80%) indicative of reactive oxygen species (H2O2) production, reduced cell viability (40-50%), decreased mitochondrial membrane potential (ΔΨm, ~35-45%), DNA fragmentation (18-30%), and G1-arrested cell cycle in the MSCs. 6-OHDA exposure increased the expression of the transcription factor c-JUN, increased the expression of the mitochondria maintenance Phosphatase and tensin homologue-induced putative kinase 1 (PINK1) protein and increased the expression of pro-apoptotic PUMA, caspase-3 and apoptosis-inducing factor (AIF). 6-OHDA exposure also significantly augmented the oxidation of the oxidative stress sensor, DJ-1. Overexpression of PARKIN in MSCs not only significantly reduced the expression of cell death and oxidative stress markers but also significantly reduced DCF-positive cells (~50% reduction). DISCUSSION 6-OHDA induced apoptosis in MSCs via generation of H2O2, activation of c-JUN and PUMA, mitochondrial depolarization and nuclei fragmentation. Our findings suggest that PARKIN protects MSCs against 6-OHDA toxicity by partly interacting with H2O2, reducing the expression of c-JUN, PUMA, AIF and caspase-3, and maintaining the mitochondrial ΔΨm.
Collapse
Affiliation(s)
- A R Bonilla-Porras
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - A Arevalo-Arbelaez
- National Center for Genome Sequencing, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - J F Alzate-Restrepo
- National Center for Genome Sequencing, University of Antioquia (UdeA), SIU Medellin, Colombia
| | - C Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia.
| | - M Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), SIU Medellin, Colombia.
| |
Collapse
|
17
|
Zhao J, Bao X, Wang S, Lu S, Sun J, Yang X. In Situ Fluorogenic and Chromogenic Reactions for the Sensitive Dual-Readout Assay of Tyrosinase Activity. Anal Chem 2017; 89:10529-10536. [PMID: 28891289 DOI: 10.1021/acs.analchem.7b02739] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a well-known copper-containing oxidase, tyrosinase has been anticipated to serve as the biomarker of skin diseases. We describe here an exquisite label-free fluorescent and colorimetric dual-readout assay of its activity, inspired by the specific oxidation ability of monophenolamine substrates to catecholamines and a unique fluorogenic reaction between resorcinol and catecholamines. By employing commercially available tyramine as the model substrate (dopamine as the product), it is found that the tyrosinase-incubated tyramine solution exhibits obvious pale yellow with intense blue fluorescence in the presence of resorcinol and O2, where the absorbance and fluorescence intensity are directly related to the concentration of added tyrosinase (i.e., the amount of conversion of tyramine to dopamine). The overall process of sensing tyrosinase activity takes less than 100 min at ambient temperature and pressure conditions with exceedingly simple operation procedure, explicit response mechanism, and formation of fluorophore with high quantum yield from scratch. Furthermore, such a convenient, rapid, cost-effective, and highly sensitive dual-readout assay exhibits promising prospect for the tyrosinase activity in extensive bioassays and clinic research as well as in screening potential tyrosinase inhibitors.
Collapse
Affiliation(s)
- Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xingfu Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | - Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China.,University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China.,University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| |
Collapse
|
18
|
Les F, López V, Caprioli G, Iannarelli R, Fiorini D, Innocenti M, Bellumori M, Maggi F. Chemical constituents, radical scavenging activity and enzyme inhibitory capacity of fruits from Cotoneaster pannosus Franch. Food Funct 2017; 8:1775-1784. [PMID: 28418429 DOI: 10.1039/c7fo00330g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cotoneaster pannosus (Rosaceae) is a semievergreen shrub, producing globose dark red pomes, native to China and widely used as an ornamental plant all over the world. Despite its extensive cultivation, little information is available on the chemical composition and biological activities of its fruits. In this work, the analysis of the chemical composition of C. pannosus fruits, in terms of phenolic components, carotenoids and ascorbic acid by HPLC/DAD, HPLC/ESI-MS and MS/MS as well as in terms of macro- and micro-nutrients was performed. The fruits proved to be a good source of shikimic acid and caffeoylquinic acids, whereas β-carotene, pelargonidin-3-O glucoside and cyanidin-3,5-rutinoside gave an important contribution to the color of the fruit. Both the polar and apolar fruit extracts showed noteworthy radical scavenger activity and inhibitory effects against monoamine oxidase A (MAO-A), tyrosinase (TYR) and α-glucosidase, making C. pannosus red pomes a promising candidate ingredient in functional foods and dietary supplements.
Collapse
Affiliation(s)
- Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Barodia SK, Creed RB, Goldberg MS. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res Bull 2016; 133:51-59. [PMID: 28017782 DOI: 10.1016/j.brainresbull.2016.12.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Loss-of-function mutations in the genes encoding Parkin and PINK1 are causally linked to autosomal recessive Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, and PINK1, a mitochondrial-targeted kinase, function together in a common pathway to remove dysfunctional mitochondria by autophagy. Presumably, deficiency for Parkin or PINK1 impairs mitochondrial autophagy and thereby increases oxidative stress due to the accumulation of dysfunctional mitochondria that release reactive oxygen species. Parkin and PINK1 likely have additional functions that may be relevant to the mechanisms by which mutations in these genes cause neurodegeneration, such as regulating inflammation, apoptosis, or dendritic morphogenesis. Here we briefly review what is known about functions of Parkin and PINK1 related to oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Sandeep K Barodia
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Rose B Creed
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Matthew S Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
20
|
Hwang CJ, Kim YE, Son DJ, Park MH, Choi DY, Park PH, Hellström M, Han SB, Oh KW, Park EK, Hong JT. Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function. Redox Biol 2016; 11:456-468. [PMID: 28086194 PMCID: PMC5226672 DOI: 10.1016/j.redox.2016.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/09/2016] [Accepted: 12/02/2016] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra. Parkin (which encoded by Park2), an E3 ubiquitin ligase, is the most frequently mutated gene that has casually been linked to autosomal recessive early onset familial PD. We tested the effect of Park2 on ethanol-induced dopaminergic neurodegeneration in Park2 knockout (KO) transgenic mice after chronic ethanol feeding. Male Park2 wild type (WT) and KO mice (8 weeks old) were fed on a Lieber-DeCarli diet containing 6.6% ethanol for 2 weeks, and compared their responses. We found that knockout of Park2 exacerbates ethanol-induced behavioral impairment as well as dopamine depletion. In the mechanism study, we found that knockout of Park2 increased reactive oxygen species (ROS) production, mitophagy formation, mitochondrial dysfunction, and expression of pro-apoptotic proteins, but decreased expression of pro-autophagic proteins. Knockout of Park2 also increased ethanol-induced activation of p38 mitogen-activated protein kinase. In addition, ROS production, mitophagy formation, mitochondrial dysfunction, and expression of pro-apoptotic proteins were increased, but expression of pro-autophagic proteins were decreased by a treatment of ethanol (100 μM) in Park2 siRNA-transfacted PC12 cells (5 μM). Moreover, the exacerbating effects of Park2 deletion on ethanol-induced ROS generation, mitophagy, mitochondrial dysfunction as well as cell death were reduced by p38 specific inhibitor (SB203580) in in vitro (10 μM) and in vivo 10 mg/kg). Park2 deficiency exacerbates ethanol-induced dopaminergic neuron damage through p38 kinase dependent inhibition of autophagy and mitochondrial function. EtOH consumption can induce the ROS formation through activation of p38 MAPK. ROS can cause the neurodegeneration through inhibition of the autophagy system. Park2 knock down amplifies EtOH-induced decrement of autophagy. Park2 knock down amplifies EtOH-induced mitochondrial dysfunction. Park2 has a neuroprotective effect against ROS mediated damage of neuron.
Collapse
Affiliation(s)
- Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Young Eun Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Ki-Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Eun Kyung Park
- Department of Obstetrics and Gynecology, College of Medicine, Daejeon St. Mary's Hospital, The Catholic University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Rep. of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsangmyeong1-ro, Heungdeok-gu, Cheongju, Chungbuk 361-951, Republic of Korea.
| |
Collapse
|
21
|
Wu X, Li L, Shi W, Gong Q, Ma H. Near-Infrared Fluorescent Probe with New Recognition Moiety for Specific Detection of Tyrosinase Activity: Design, Synthesis, and Application in Living Cells and Zebrafish. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Qiuyu Gong
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of the Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
22
|
Wu X, Li L, Shi W, Gong Q, Ma H. Near‐Infrared Fluorescent Probe with New Recognition Moiety for Specific Detection of Tyrosinase Activity: Design, Synthesis, and Application in Living Cells and Zebrafish. Angew Chem Int Ed Engl 2016; 55:14728-14732. [DOI: 10.1002/anie.201609895] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaofeng Wu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Qiuyu Gong
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
23
|
Oshima R, Hasegawa T, Tamai K, Sugeno N, Yoshida S, Kobayashi J, Kikuchi A, Baba T, Futatsugi A, Sato I, Satoh K, Takeda A, Aoki M, Tanaka N. ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways. Sci Rep 2016; 6:24997. [PMID: 27112194 PMCID: PMC4845015 DOI: 10.1038/srep24997] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/08/2016] [Indexed: 11/29/2022] Open
Abstract
Endosomal sorting required for transport (ESCRT) complexes orchestrate endo-lysosomal sorting of ubiquitinated proteins, multivesicular body formation and autophagic degradation. Defects in the ESCRT pathway have been implicated in many neurodegenerative diseases, but the underlying molecular mechanisms that link them to neurodegeneration remain unknown. In this study, we showed that forebrain-specific ablation of ESCRT-0/Hrs induced marked hippocampal neuronal cell loss accompanied by the accumulation of ubiquitinated proteins, including α-synuclein, TDP-43 and huntingtin as well as the autophagic substrate SQSTM1/p62. Consistent with this, silencing of Hrs in cultured cells not only led to α-synuclein and TDP-43 accumulation in addition to impaired autophagic flux but also suppressed cell viability through the induction of ER stress followed by the activation of JNK and RIPK1, a key regulator of necroptosis. Moreover, necrostatin-1, a specific inhibitor of RIPK1, and pan-caspase inhibitors partially reduced the neurotoxicity in the Hrs-silenced cells. Altogether, these findings suggest that the disruption of ESCRT-0/Hrs in the nervous system compromises autophagic/lysosomal degradation of neurodegenerative disease-related proteins, which thereby triggers ER stress-mediated apoptotic and necroptotic cell death.
Collapse
Affiliation(s)
- Ryuji Oshima
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.,Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Keiichi Tamai
- Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Junpei Kobayashi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akio Kikuchi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toru Baba
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akira Futatsugi
- Department of Basic Medical Science, Kobe City College of Nursing, Hyogo 651-2103, Japan
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
| | - Kennichi Satoh
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
| | - Atsushi Takeda
- Department of Neurology, Sendai-Nishitaga Hospital, Sendai 982-8555, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Nobuyuki Tanaka
- Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
| |
Collapse
|
24
|
Hu YH, Zhuang JX, Yu F, Cui Y, Yu WW, Yan CL, Chen QX. Inhibitory effects of cefotaxime on the activity of mushroom tyrosinase. J Biosci Bioeng 2015; 121:385-9. [PMID: 26342770 DOI: 10.1016/j.jbiosc.2015.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 01/13/2023]
Abstract
Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones that form brown or black pigments. In the present paper, cefotaxime, a cephalosporin antibacterial drug, was tested as an inhibitor of tyrosinase. The results show that cefotaxime inhibits both the monophenolase and diphenolase activities of tyrosinase. For the monophenolase activity, cefotaxime increased the lag time and decreased the steady-state activity with an IC50 of 3.2 mM. For the diphenolase activity, the inhibition by cefotaxime is reversible and mix-I type with an IC50 of 0.14 mM. The inhibition constants (K(I) and K(IS)) were determined to be 0.14 and 0.36 mM, respectively. The molecular mechanism of inhibition of tyrosinase by cefotaxime was determined by fluorescence quenching and molecular docking. The results demonstrated that cefotaxime was a static quencher of tyrosinase and that cefotaxime could dock favorably in the active site of tyrosinase. This research may offer a lead for designing and synthesizing novel and effective tyrosinase inhibitors in the future.
Collapse
Affiliation(s)
- Yong-Hua Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jiang-Xing Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen 361102, China
| | - Feng Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Yi Cui
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Wen-Wen Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chong-Ling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Qing-Xi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
25
|
Caldwell GA, Caldwell KA. Use of Caenorhabditis elegans to Model Human Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
26
|
Pandya CD, Crider A, Pillai A. Glucocorticoid regulates parkin expression in mouse frontal cortex: implications in schizophrenia. Curr Neuropharmacol 2014; 12:100-7. [PMID: 24669205 PMCID: PMC3964742 DOI: 10.2174/1570159x11666131120224950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 09/12/2013] [Accepted: 11/02/2013] [Indexed: 12/19/2022] Open
Abstract
Stress and glucocorticoid hormones, which are released into the circulation following stressful experiences, have been shown to contribute significantly to the manifestation of various psychiatric illnesses including schizophrenia and depression. Studies in rodents have reported dose and time dependent effects of glucocorticoids on the expression of proteins related to neuroplasticity. However, the mechanism(s) involved in the regulation of proteins by glucocorticoids are not clear. Ubiquitin ligases play important role in degradation, trafficking and stabilization of proteins. The present study investigated the effect of glucocorticoid on ubiquitin-proteasome system in mouse frontal cortex. A significant increase in mRNA and protein levels of parkin, an E3 ubiquitin ligase was found in cultured mouse primary cortical neurons following corticosterone treatment. An increase in parkin levels was also found in mouse frontal cortex in vivo following acute dexamethasone treatment. However, chronic treatment with corticosterone did not change parkin protein levels in mouse frontal cortex. Studies using postmortem brain samples from schizophrenia and control subjects indicated a significant increase in parkin protein levels in frontal cortex of schizophrenia subjects suggesting a response to increased stress conditions in schizophrenia. These findings suggest a possible role of parkin in the pathophysiology of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Chirayu D Pandya
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Amanda Crider
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
27
|
Oczkowska A, Kozubski W, Lianeri M, Dorszewska J. Mutations in PRKN and SNCA Genes Important for the Progress of Parkinson's Disease. Curr Genomics 2014; 14:502-17. [PMID: 24532983 PMCID: PMC3924246 DOI: 10.2174/1389202914666131210205839] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 11/12/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022] Open
Abstract
Although Parkinson’s disease (PD) was first described almost 200 years ago, it remains an incurable disease
with a cause that is not fully understood. Nowadays it is known that disturbances in the structure of pathological proteins
in PD can be caused by more than environmental and genetic factors. Despite numerous debates and controversies in the
literature about the role of mutations in the SNCA and PRKN genes in the pathogenesis of PD, it is evident that these
genes play a key role in maintaining dopamine (DA) neuronal homeostasis and that the dysfunction of this homeostasis is
relevant to both familial (FPD) and sporadic (SPD) PD with different onset. In recent years, the importance of alphasynuclein
(ASN) in the process of neurodegeneration and neuroprotective function of the Parkin is becoming better understood.
Moreover, there have been an increasing number of recent reports indicating the importance of the interaction between
these proteins and their encoding genes. Among others interactions, it is suggested that even heterozygous substitution
in the PRKN gene in the presence of the variants +2/+2 or +2/+3 of NACP-Rep1 in the SNCA promoter, may increase
the risk of PD manifestation, which is probably due to ineffective elimination of over-expressed ASN by the mutated
Parkin protein. Finally, it seems that genetic testing may be an important part of diagnostics in patients with PD and may
improve the prognostic process in the course of PD. However, only full knowledge of the mechanism of the interaction
between the genes associated with the pathogenesis of PD is likely to help explain the currently unknown pathways of selective
damage to dopaminergic neurons in the course of PD.
Collapse
Affiliation(s)
- Anna Oczkowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
28
|
Pienaar IS, Dexter DT, Burkhard PR. Mitochondrial proteomics as a selective tool for unraveling Parkinson’s disease pathogenesis. Expert Rev Proteomics 2014; 7:205-26. [DOI: 10.1586/epr.10.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Calì T, Ottolini D, Negro A, Brini M. Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca(2+) transfer to sustain cell bioenergetics. Biochim Biophys Acta Mol Basis Dis 2013; 1832:495-508. [PMID: 23313576 DOI: 10.1016/j.bbadis.2013.01.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/30/2012] [Accepted: 01/02/2013] [Indexed: 12/01/2022]
Abstract
Loss-of-function mutations in PINK1 or parkin genes are associated with juvenile-onset autosomal recessive forms of Parkinson disease. Numerous studies have established that PINK1 and parkin participate in a common mitochondrial-quality control pathway, promoting the selective degradation of dysfunctional mitochondria by mitophagy. Upregulation of parkin mRNA and protein levels has been proposed as protective mechanism against mitochondrial and endoplasmic reticulum (ER) stress. To better understand how parkin could exert protective function we considered the possibility that it could modulate the ER-mitochondria inter-organelles cross talk. To verify this hypothesis we investigated the effects of parkin overexpression on ER-mitochondria crosstalk with respect to the regulation of two key cellular parameters: Ca(2+) homeostasis and ATP production. Our results indicate that parkin overexpression in model cells physically and functionally enhanced ER-mitochondria coupling, favored Ca(2+) transfer from the ER to the mitochondria following cells stimulation with an 1,4,5 inositol trisphosphate (InsP(3)) generating agonist and increased the agonist-induced ATP production. The overexpression of a parkin mutant lacking the first 79 residues (ΔUbl) failed to enhance the mitochondrial Ca(2+) transients, thus highlighting the importance of the N-terminal ubiquitin like domain for the observed phenotype. siRNA-mediated parkin silencing caused mitochondrial fragmentation, impaired mitochondrial Ca(2+) handling and reduced the ER-mitochondria tethering. These data support a novel role for parkin in the regulation of mitochondrial homeostasis, Ca(2+) signaling and energy metabolism under physiological conditions.
Collapse
Affiliation(s)
- Tito Calì
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
30
|
Baptista MS, Duarte CB, Maciel P. Role of the ubiquitin-proteasome system in nervous system function and disease: using C. elegans as a dissecting tool. Cell Mol Life Sci 2012; 69:2691-715. [PMID: 22382927 PMCID: PMC11115168 DOI: 10.1007/s00018-012-0946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 01/12/2023]
Abstract
In addition to its central roles in protein quality control, regulation of cell cycle, intracellular signaling, DNA damage response and transcription regulation, the ubiquitin-proteasome system (UPS) plays specific roles in the nervous system, where it contributes to precise connectivity through development, and later assures functionality by regulating a wide spectrum of neuron-specific cellular processes. Aberrations in this system have been implicated in the etiology of neurodevelopmental and neurodegenerative diseases. In this review, we provide an updated view on the UPS and highlight recent findings concerning its role in normal and diseased nervous systems. We discuss the advantages of the model organism Caenorhabditis elegans as a tool to unravel the major unsolved questions concerning this biochemical pathway and its involvement in nervous system function and dysfunction, and expose the new possibilities, using state-of-the-art techniques, to assess UPS function using this model system.
Collapse
Affiliation(s)
- Márcio S Baptista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
31
|
Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J 2012; 31:3038-62. [PMID: 22735187 DOI: 10.1038/emboj.2012.170] [Citation(s) in RCA: 417] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/01/2012] [Indexed: 12/24/2022] Open
Abstract
Neurons are critically dependent on mitochondrial integrity based on specific morphological, biochemical, and physiological features. They are characterized by high rates of metabolic activity and need to respond promptly to activity-dependent fluctuations in bioenergetic demand. The dimensions and polarity of neurons require efficient transport of mitochondria to hot spots of energy consumption, such as presynaptic and postsynaptic sites. Moreover, the postmitotic state of neurons in combination with their exposure to intrinsic and extrinsic neuronal stress factors call for a high fidelity of mitochondrial quality control systems. Consequently, it is not surprising that mitochondrial alterations can promote neuronal dysfunction and degeneration. In particular, mitochondrial dysfunction has long been implicated in the etiopathogenesis of Parkinson's disease (PD), based on the observation that mitochondrial toxins can cause parkinsonism in humans and animal models. Substantial progress towards understanding the role of mitochondria in the disease process has been made by the identification and characterization of genes causing familial variants of PD. Studies on the function and dysfunction of these genes revealed that various aspects of mitochondrial biology appear to be affected in PD, comprising mitochondrial biogenesis, bioenergetics, dynamics, transport, and quality control.
Collapse
|
32
|
Chen Y, Fang ST, Yeh PC, Yang HH, Chen SY, Chang CJ, Zhai WJ, Chen YC, Juang YL. The C-terminus of PARK2 is required for its self-interaction, solubility and role in the spindle assembly checkpoint. Biochim Biophys Acta Mol Basis Dis 2012; 1822:573-80. [DOI: 10.1016/j.bbadis.2011.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/22/2011] [Accepted: 12/12/2011] [Indexed: 11/15/2022]
|
33
|
Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathol 2012; 123:173-88. [PMID: 22057787 DOI: 10.1007/s00401-011-0902-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
Abstract
Mitochondria are dynamic organelles which are essential for many cellular processes, such as ATP production by oxidative phosphorylation, lipid metabolism, assembly of iron sulfur clusters, regulation of calcium homeostasis, and cell death pathways. The dynamic changes in mitochondrial morphology, connectivity, and subcellular distribution are critically dependent on a highly regulated fusion and fission machinery. Mitochondrial function, dynamics, and quality control are vital for the maintenance of neuronal integrity. Indeed, there is mounting evidence that mitochondrial dysfunction plays a central role in several neurodegenerative diseases. In particular, the identification of genes linked to rare familial variants of Parkinson's disease has fueled research on mitochondrial aspects of the disease etiopathogenesis. Studies on the function of parkin and PINK1, which are associated with autosomal recessive parkinsonism, provided compelling evidence that these proteins can functionally interact to maintain mitochondrial integrity and to promote clearance of damaged and dysfunctional mitochondria. In this review we will summarize current knowledge about the impact of parkin and PINK1 on mitochondria.
Collapse
|
34
|
Hasegawa T, Konno M, Baba T, Sugeno N, Kikuchi A, Kobayashi M, Miura E, Tanaka N, Tamai K, Furukawa K, Arai H, Mori F, Wakabayashi K, Aoki M, Itoyama Y, Takeda A. The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting of α-synuclein. PLoS One 2011; 6:e29460. [PMID: 22216284 PMCID: PMC3245276 DOI: 10.1371/journal.pone.0029460] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
Many neurodegenerative diseases share a common pathological feature: the deposition of amyloid-like fibrils composed of misfolded proteins. Emerging evidence suggests that these proteins may spread from cell-to-cell and encourage the propagation of neurodegeneration in a prion-like manner. Here, we demonstrated that α-synuclein (αSYN), a principal culprit for Lewy pathology in Parkinson's disease (PD), was present in endosomal compartments and detectably secreted into the extracellular milieu. Unlike prion protein, extracellular αSYN was mainly recovered in the supernatant fraction rather than in exosome-containing pellets from the neuronal culture medium and cerebrospinal fluid. Surprisingly, impaired biogenesis of multivesicular body (MVB), an organelle from which exosomes are derived, by dominant-negative mutant vacuolar protein sorting 4 (VPS4) not only interfered with lysosomal targeting of αSYN but facilitated αSYN secretion. The hypersecretion of αSYN in VPS4-defective cells was efficiently restored by the functional disruption of recycling endosome regulator Rab11a. Furthermore, both brainstem and cortical Lewy bodies in PD were found to be immunoreactive for VPS4. Thus, VPS4, a master regulator of MVB sorting, may serve as a determinant of lysosomal targeting or extracellular secretion of αSYN and thereby contribute to the intercellular propagation of Lewy pathology in PD.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Neuroprotective effects of 3α-acetoxyeudesma-1,4(15),11(13)-trien-12,6α-olide against dopamine-induced apoptosis in the human neuroblastoma SH-SY5Y cell line. Neurochem Res 2011; 36:1991-2001. [PMID: 21688047 DOI: 10.1007/s11064-011-0523-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
Dopamine (DA), as a neurotoxin, can elicit severe Parkinson's disease-like syndrome by elevating intracellular reactive oxygen species (ROS) levels and apoptotic activity. We examined the inhibitory effects of 3α-acetoxyeudesma-1,4(15),11(13)-trien-12,6α-olide (AETO), purified from the leaves of Laurus nobilis L., on DA-induced apoptosis and α-synuclein (α-syn) formation in dopaminergic SH-SY5Y cells. AETO decreased the active form of caspase-3 and the levels of p53, which were accompanied by increased levels of Bcl-2 in a dose-dependent manner. Flow cytometric and Western blot analysis showed that AETO significantly inhibited DA-induced apoptosis along with suppression of intracellular tyrosinase activity, ROS generation, quinoprotein, and α-syn formation (P < 0.01). These results indicate that AETO inhibited DA-induced apoptosis, which is closely related to the suppression of intracellular tyrosinase activity and the formation of α-syn, ROS, and quinoprotein in SH-SY5Y cells.
Collapse
|
36
|
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting over 6 million people worldwide. It is anticipated that the number of affected individuals may increase significantly in the most populous nations by 2030. During the past 20 years, much progress has been made in identifying and assessing various potential clinical, biochemical, imaging and genetic biomarkers for PD. Despite the wealth of information, development of a validated biomarker for PD is still ongoing. It is hoped that reliable and well-validated biomarkers will provide critical clues to assist in the diagnosis and management of Parkinson's disease patients in the near future.
Collapse
Affiliation(s)
- Kumar M Prakash
- Singapore General Hospital, Singapore: Department of Neurology, Singapore General Hospital, Singapore
| | | |
Collapse
|
37
|
Yin SJ, Si YX, Qian GY. Inhibitory effect of phthalic Acid on tyrosinase: the mixed-type inhibition and docking simulations. Enzyme Res 2011; 2011:294724. [PMID: 21637327 PMCID: PMC3102342 DOI: 10.4061/2011/294724] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/23/2011] [Indexed: 11/25/2022] Open
Abstract
Tyrosinase inhibition studies are needed due to the medicinal applications such as hyperpigmentation. For probing effective inhibitors of tyrosinase, a combination of computational prediction and enzymatic assay via kinetics was important. We predicted the 3D structure of tyrosinase, used a docking algorithm to simulate binding between tyrosinase and phthalic acid (PA), and studied the reversible inhibition of tyrosinase by PA. PA inhibited tyrosinase in a mixed-type manner with a Ki = 65.84 ± 1.10 mM. Measurements of intrinsic and ANS-binding fluorescences showed that PA induced changes in the active site structure via indirect binding. Simulation was successful (binding energies for Dock6.3 = −27.22 and AutoDock4.2 = −0.97 kcal/mol), suggesting that PA interacts with LEU73 residue that is predicted commonly by both programs. The present study suggested that the strategy of predicting tyrosinase inhibition based on hydroxyl groups and orientation may prove useful for screening of potential tyrosinase inhibitors.
Collapse
Affiliation(s)
- Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | | | | |
Collapse
|
38
|
Schreiber MA, McIntire SL. A Caenorhabditis elegans p38 MAP kinase pathway mutant protects from dopamine, methamphetamine, and MDMA toxicity. Neurosci Lett 2011; 498:99-103. [PMID: 21565252 DOI: 10.1016/j.neulet.2011.04.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
Biogenic amine systems are damaged by amphetamine abuse and in Parkinson's disease. The mechanisms mediating this damage are of high importance because of the public health impact of these problems. Here we have taken advantage of the Caenorhabditis elegans nematode model system to investigate genetic modifiers of biogenic amine toxicity. In a forward genetic screen, we identified a mutant resistant to the toxic effects of dopamine. This mutant was also resistant to toxic doses of methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA). In addition, this mutation conferred resistance to 6-hydroxydopamine damage to dopaminergic neurons in a Parkinson's disease model. Resistance was due to a mutation in the nsy-1 gene, orthologous to the mammalian ASK-1 MAPKKK. NSY-1 is in the highly conserved p38 MAP kinase pathway, which plays a crucial role in C. elegans innate immunity, suggesting that this pathway may play a role in biogenic amine toxicity system damage due to amphetamines and in the pathogenesis of Parkinson's disease in higher organisms.
Collapse
Affiliation(s)
- Matthew A Schreiber
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, 5858 Horton Street Suite 200, Emeryville, CA 94608, United States.
| | | |
Collapse
|
39
|
Development of advanced therapies based on viral vector-mediated overexpression of therapeutic molecules and knockdown of disease-related genes for Parkinson’s disease. Ther Deliv 2011; 2:37-50. [DOI: 10.4155/tde.10.95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The last decade witnessed the translation of several gene-based therapeutic approaches from experimental studies to early clinical trials. Studies targeting the treatment of Parkinson’s disease (PD) were among the forefront of trials in the CNS. In this article, we overview three major strategies for the treatment of PD: the enzyme-replacement strategies are based on well-defined principles of functional restoration and are well suited for treatment of patients with advanced disease who would typically experience complications due to side effects of pharmacotherapy. Neurotrophic factor delivery, on the other hand, aims to delay the disability and eventually modifiy disease progression. Finally, we present an outlook to a completely new way of interfering with the disease process, which is taking advantage of recently discovered RNAi mechanisms in cells. Gene therapy is now becoming a reality in the clinics and developments in the next decade will help uncover the true potential of this approach for not only the treatment of PD patients, but also many other neurological disorders.
Collapse
|
40
|
Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ 2010; 18:769-82. [PMID: 21113145 DOI: 10.1038/cdd.2010.142] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Loss of parkin function is responsible for the majority of autosomal recessive parkinsonism. Here, we show that parkin is not only a stress-protective, but also a stress-inducible protein. Both mitochondrial and endoplasmic reticulum (ER) stress induce an increase in parkin-specific mRNA and protein levels. The stress-induced upregulation of parkin is mediated by ATF4, a transcription factor of the unfolded protein response (UPR) that binds to a specific CREB/ATF site within the parkin promoter. Interestingly, c-Jun can bind to the same site, but acts as a transcriptional repressor of parkin gene expression. We also present evidence that mitochondrial damage can induce ER stress, leading to the activation of the UPR, and thereby to an upregulation of parkin expression. Vice versa, ER stress results in mitochondrial damage, which can be prevented by parkin. Notably, the activity of parkin to protect cells from stress-induced cell death is independent of the proteasome, indicating that proteasomal degradation of parkin substrates cannot explain the cytoprotective activity of parkin. Our study supports the notion that parkin has a role in the interorganellar crosstalk between the ER and mitochondria to promote cell survival under stress, suggesting that both ER and mitochondrial stress can contribute to the pathogenesis of Parkinson's disease.
Collapse
|
41
|
Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA. C. elegans as a model organism to investigate molecular pathways involved with Parkinson's disease. Dev Dyn 2010; 239:1282-95. [PMID: 20108318 DOI: 10.1002/dvdy.22231] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is an age-related movement disorder resulting, in part, from selective loss of dopaminergic neurons. Both invertebrate and mammalian models have been developed to study the cellular mechanisms altered during disease progression; nevertheless there are limitations within each model. Mammalian models remain invaluable in studying PD, but are expensive and time consuming. Here, we review genetic and environmental factors associated with PD, and describe how the nematode roundworm, Caenorhabditis elegans, has been used as a model organism for studying various aspects of this neurodegenerative disease. Both genetic and chemical screens have been conducted in C. elegans to identify molecular pathways, proteins, and small molecules that can impact PD pathology. Lastly, we highlight future areas of investigation, in the context of emerging fields in biology, where the nematode can be exploited to provide mechanistic insights and potential strategies to accelerate the path toward possible therapeutic intervention for PD.
Collapse
Affiliation(s)
- Adam J Harrington
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487-0344, USA
| | | | | | | |
Collapse
|
42
|
WANG XM, WANG DQ, WANG XY. Function study advances of Parkinson¢s disease related genes. YI CHUAN = HEREDITAS 2010; 32:779-84. [DOI: 10.3724/sp.j.1005.2010.00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Hasegawa T. Tyrosinase-expressing neuronal cell line as in vitro model of Parkinson's disease. Int J Mol Sci 2010; 11:1082-9. [PMID: 20480001 PMCID: PMC2869230 DOI: 10.3390/ijms11031082] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/03/2010] [Indexed: 11/24/2022] Open
Abstract
Oxidized metabolites of dopamine known as dopamine quinone derivatives are thought to play a pivotal role in the degeneration of nigrostriatal dopaminergic neurons in Parkinson’s disease. Although such quinone derivatives are usually produced via the autoxidation of catecholamines, tyrosinase, which is a key enzyme in melanin biosynthesis via the production of DOPA and subsequent molecules, can potentially accelerate the induction of catecholamine quinone derivatives by its oxidase activity. We have developed neuronal cell lines in which the expression of human tyrosinase was inducible. Overexpression of tyrosinase resulted in increased intracellular dopamine content in association with the formation of melanin pigments in neuronal somata, which eventually causes apoptotic cell death. This cellular model will provide a useful tool for detailed analyses of the neurotoxicity of oxidized catechol metabolites.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Department of Neurology Tohoku University School of Medicine, Aobaku, Sendai, Miyagi, Japan.
| |
Collapse
|
44
|
Yasuda T, Mochizuki H. The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease. Apoptosis 2010; 15:1312-21. [DOI: 10.1007/s10495-010-0486-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Tanaka A. Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Lett 2010; 584:1386-92. [PMID: 20188730 DOI: 10.1016/j.febslet.2010.02.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 12/21/2022]
Abstract
Cellular homeostasis is linked tightly to mitochondrial functions. Some damage to mitochondrial proteins and nucleic acids can lead to the depolarization of the inner mitochondrial membrane, thereby sensitizing impaired mitochondria for selective elimination by autophagy. Mitochondrial dysfunction is one of the key aspects of the pathobiology of neurodegenerative disease. Parkin, an E3 ligase located in the cytosol and originally discovered as mutated in monogenic forms of Parkinson's disease (PD), was found recently to translocate specifically to uncoupled mitochondria and to induce their autophagy.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3704, USA.
| |
Collapse
|
46
|
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12:119-31. [PMID: 20098416 DOI: 10.1038/ncb2012] [Citation(s) in RCA: 2151] [Impact Index Per Article: 143.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/09/2009] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is the most common neurodegenerative movement disorder. Mutations in PINK1 and PARKIN are the most frequent causes of recessive Parkinson's disease. However, their molecular contribution to pathogenesis remains unclear. Here, we reveal important mechanistic steps of a PINK1/Parkin-directed pathway linking mitochondrial damage, ubiquitylation and autophagy in non-neuronal and neuronal cells. PINK1 kinase activity and its mitochondrial localization sequence are prerequisites to induce translocation of the E3 ligase Parkin to depolarized mitochondria. Subsequently, Parkin mediates the formation of two distinct poly-ubiquitin chains, linked through Lys 63 and Lys 27. In addition, the autophagic adaptor p62/SQSTM1 is recruited to mitochondrial clusters and is essential for the clearance of mitochondria. Strikingly, we identified VDAC1 (voltage-dependent anion channel 1) as a target for Parkin-mediated Lys 27 poly-ubiquitylation and mitophagy. Moreover, pathogenic Parkin mutations interfere with distinct steps of mitochondrial translocation, ubiquitylation and/or final clearance through mitophagy. Thus, our data provide functional links between PINK1, Parkin and the selective autophagy of mitochondria, which is implicated in the pathogenesis of Parkinson's disease.
Collapse
|
47
|
Bellei B, Maresca V, Flori E, Pitisci A, Larue L, Picardo M. p38 regulates pigmentation via proteasomal degradation of tyrosinase. J Biol Chem 2010; 285:7288-99. [PMID: 20053998 DOI: 10.1074/jbc.m109.070573] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The synthesis of melanin pigments, or melanogenesis, is regulated by the balance of a variety of signal transduction pathways. Among these pathways, p38 MAPK signaling was found to be involved in stress-induced melanogenesis and to be activated by alpha-melanocyte-stimulating hormone (alpha-MSH) and ultraviolet irradiation. Previous studies have shown that alpha-MSH-stimulated melanogenesis can be inhibited by blocking p38 MAPK activity with SB203580, a pyridinyl imidazole compound. Consistent with this, we observed that pyridinyl imidazoles (SB203580 and SB202190) inhibited both basal and alpha-MSH-induced melanogenesis in B16 melanoma cells. However, SB202474, which has no ability to inhibit p38 MAPK activity and is usually used as a negative control compound in p38 MAPK studies, also suppressed melanin synthesis induction. Furthermore, the independence of the p38 kinase pathway from the repression of melanogenesis by pyridinyl imidazole compounds was also confirmed by small interfering RNA experiments. Interfering with p38 MAPK expression surprisingly stimulated melanogenesis and tyrosinase family protein expression. Although the molecular mechanism(s) by which p38 promotes the degradation of melanogenic enzymes remain to be determined, the involvement of the ubiquitin-proteasome pathway was demonstrated by co-treatment with the proteasome-specific inhibitor MG132 and the relative decrease in the ubiquitination of tyrosinase in cells transfected with p38-specific small interfering RNA.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Xiromerisiou G, Dardiotis E, Tsimourtou V, Kountra PM, Paterakis KN, Kapsalaki EZ, Fountas KN, Hadjigeorgiou GM. Genetic basis of Parkinson disease. Neurosurg Focus 2010; 28:E7. [DOI: 10.3171/2009.10.focus09220] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Over the past few years, considerable progress has been made in understanding the molecular mechanisms of Parkinson disease (PD). Mutations in certain genes are found to cause monogenic forms of the disorder, with autosomal dominant or autosomal recessive inheritance. These genes include alpha-synuclein, parkin, PINK1, DJ-1, LRRK2, and ATP13A2. The monogenic variants are important tools in identifying cellular pathways that shed light on the pathogenesis of this disease. Certain common genetic variants are also likely to modulate the risk of PD. International collaborative studies and meta-analyses have identified common variants as genetic susceptibility risk/protective factors for sporadic PD.
Collapse
Affiliation(s)
- Georgia Xiromerisiou
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
| | - Efthimios Dardiotis
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
- 2Department of Neurology, Laboratory of Neurogenetics
| | | | | | | | - Eftychia Z. Kapsalaki
- 4Department of Diagnostic Radiology, University of Thessaly, University Hospital of Larissa, Greece
| | | | - Georgios M. Hadjigeorgiou
- 1Institute for Biomedical Technology (BIOMED), Centre for Research and Technology—Thessaly (CERETETH)
- 2Department of Neurology, Laboratory of Neurogenetics
| |
Collapse
|
49
|
Rothfuss O, Gasser T, Patenge N. Analysis of differential DNA damage in the mitochondrial genome employing a semi-long run real-time PCR approach. Nucleic Acids Res 2009; 38:e24. [PMID: 19966269 PMCID: PMC2831309 DOI: 10.1093/nar/gkp1082] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The maintenance of the mitochondrial genomic integrity is a prerequisite for proper mitochondrial function. Due to the high concentration of reactive oxygen species (ROS) generated by the oxidative phosphorylation pathway, the mitochondrial genome is highly exposed to oxidative stress leading to mitochondrial DNA injury. Accordingly, mitochondrial DNA damage was shown to be associated with ageing as well as with numerous human diseases including neurodegenerative disorders and cancer. To date, several methods have been described to detect damaged mitochondrial DNA, but those techniques are semi-quantitative and often require high amounts of genomic input DNA. We developed a rapid and quantitative method to evaluate the relative levels of damage in mitochondrial DNA by using the real time-PCR amplification of mitochondrial DNA fragments of different lengths. We investigated mitochondrial DNA damage in SH-SY5Y human neuroblastoma cells exposed to hydrogen peroxide or stressed by over-expression of the tyrosinase gene. In the past, there has been speculation about a variable vulnerability to oxidative stress along the mitochondrial genome. Our results indicate the existence of at least one mitochondrial DNA hot spot, namely the D-Loop, being more prone to ROS-derived damage.
Collapse
Affiliation(s)
- Oliver Rothfuss
- Center for Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | |
Collapse
|
50
|
Cho IH, Lü ZR, Yu JR, Park YD, Yang JM, Hahn MJ, Zou F. Towards Profiling the Gene Expression of Tyrosinase-induced Melanogenesis in HEK293 Cells: a Functional DNA Chip Microarray and Interactomics Studies. J Biomol Struct Dyn 2009; 27:331-46. [DOI: 10.1080/07391102.2009.10507320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|