1
|
Lee Q, Chan WC, Qu X, Sun Y, Abdelkarim H, Le J, Saqib U, Sun MY, Kruse K, Banerjee A, Hitchinson B, Geyer M, Huang F, Guaiquil V, Mutso AA, Sanders M, Rosenblatt MI, Maienschein-Cline M, Lawrence MS, Gaponenko V, Malik AB, Komarova YA. End binding-3 inhibitor activates regenerative program in age-related macular degeneration. Cell Rep Med 2023; 4:101223. [PMID: 37794584 PMCID: PMC10591057 DOI: 10.1016/j.xcrm.2023.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Wet age-related macular degeneration (AMD), characterized by leaky neovessels emanating from the choroid, is a main cause of blindness. As current treatments for wet AMD require regular intravitreal injections of anti-vascular endothelial growth factor (VEGF) biologics, there is a need for the development of less invasive treatments. Here, we designed an allosteric inhibitor of end binding-3 (EB3) protein, termed EBIN, which reduces the effects of environmental stresses on endothelial cells by limiting pathological calcium signaling. Delivery of EBIN via eye drops in mouse and non-human primate (NHP) models of wet AMD prevents both neovascular leakage and choroidal neovascularization. EBIN reverses the epigenetic changes induced by environmental stresses, allowing an activation of a regenerative program within metabolic-active endothelial cells comprising choroidal neovascularization (CNV) lesions. These results suggest the therapeutic potential of EBIN in preventing the degenerative processes underlying wet AMD.
Collapse
Affiliation(s)
- Quinn Lee
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Wan Ching Chan
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Xinyan Qu
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ying Sun
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | - Jonathan Le
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Uzma Saqib
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Mitchell Y Sun
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kevin Kruse
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Avik Banerjee
- Department of Chemistry, The University of Illinois, Chicago, IL 60612, USA
| | - Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Melissa Geyer
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Fei Huang
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Victor Guaiquil
- Department of Ophthalmology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Amelia A Mutso
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | - Mark I Rosenblatt
- Department of Ophthalmology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yulia A Komarova
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
2
|
Emerging roles of PHLPP phosphatases in the nervous system. Mol Cell Neurosci 2022; 123:103789. [PMID: 36343848 DOI: 10.1016/j.mcn.2022.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
It has been more than a decade since the discovery of a novel class of phosphatase, the Pleckstrin Homology (PH) domain Leucine-rich repeat Protein Phosphatases (PHLPP). Over time, they have been recognized as crucial regulators of various cellular processes, such as memory formation, cellular survival and proliferation, maintenance of circadian rhythm, and others, with any deregulation in their expression or cellular localization causing havoc in any cellular system. With the ever-growing number of downstream substrates across multiple tissue systems, a web is emerging wherein the central point is PHLPP. A slight nick in the normal signaling cascade of the two isoforms of PHLPP, namely PHLPP1 and PHLPP2, has been recently found to invoke a variety of neurological disorders including Alzheimer's disease, epileptic seizures, Parkinson's disease, and others, in the neuronal system. Improper regulation of the two isoforms has also been associated with various disease pathologies such as diabetes, cardiovascular disorders, cancer, musculoskeletal disorders, etc. In this review, we have summarized all the current knowledge about PHLPP1 (PHLPP1α and PHLPP1β) and PHLPP2 and their emerging roles in regulating various neuronal signaling pathways to pave the way for a better understanding of the complexities. This would in turn aid in providing context for the development of possible future therapeutic strategies.
Collapse
|
3
|
Abstract
The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (also known as phosphatidylinositol phosphates or PIPs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of phosphoinositide kinases and phosphoinositide phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule, phosphatidylinositol. PIP signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane budding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIPs in general, in this review, we discuss recent studies and advances in PIP lipid signaling in the retina. We specifically focus on PIP lipids from vertebrate (e.g., bovine, rat, mouse, toad, and zebrafish) and invertebrate (e.g., Drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIPs revealed from animal models and human diseases, and methods to study PIP levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PIP-modifying enzymes/phosphatases and further unravel PIP regulation and function in the different cell types of the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology, and Cell Biology, and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
4
|
Nechipurenko IV. The Enigmatic Role of Lipids in Cilia Signaling. Front Cell Dev Biol 2020; 8:777. [PMID: 32850869 PMCID: PMC7431879 DOI: 10.3389/fcell.2020.00777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are specialized cellular structures that project from the surface of most cell types in metazoans and mediate transduction of major signaling pathways. The ciliary membrane is contiguous with the plasma membrane, yet it exhibits distinct protein and lipid composition, which is essential for ciliary function. Diffusion barriers at the base of a cilium are responsible for establishing unique molecular composition of this organelle. Although considerable progress has been made in identifying mechanisms of ciliary protein trafficking in and out of cilia, it remains largely unknown how the distinct lipid identity of the ciliary membrane is achieved. In this mini review, I summarize recent developments in characterizing lipid composition and organization of the ciliary membrane and discuss the emerging roles of lipids in modulating activity of ciliary signaling components including ion channels and G protein-coupled receptors.
Collapse
Affiliation(s)
- Inna V. Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
5
|
Marmoy OR, Kinsler VA, Henderson RH, Handley SE, Moore W, Thompson DA. Misaligned foveal morphology and sector retinal dysfunction in AKT1-mosaic Proteus syndrome. Doc Ophthalmol 2020; 142:119-126. [PMID: 32617723 DOI: 10.1007/s10633-020-09778-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Proteus syndrome arises as a result of a post-zygotic mosaic activating mutation in the AKT1 oncogene, causing a disproportionate overgrowth of affected tissues. A small number of ocular complications have been reported. We present the unique findings in a patient who had molecular confirmation of AKT1 mosaicism alongside fulfilling the clinical criteria for Proteus syndrome. METHODS Pattern electroretinography, visual evoked potentials and multifocal electroretinography testing were performed alongside detailed retinal imaging and clinical examination to detail the ophthalmic characteristics. RESULTS Electrophysiological findings characterised unilateral macular dysfunction alongside sector retinal dysfunction of the right eye. This was demonstrated through optical coherence tomography and ultra-wide-field imaging to be associated with a misaligned foveal morphology and sector retinal dysfunction extending into the temporal retina. CONCLUSION We propose this patient has asymmetric foveal development and concomitant sector retinal dysfunction as the result of the mosaic AKT1 mutation, either through disruption in the retinal PI3K-AKT1 signalling pathway or through mechanical distortion of ocular growth, resulting in disproportionate inner retinal development. The findings expand the ocular phenotype of Proteus syndrome and encourage early assessment to identify any incipient ocular abnormalities.
Collapse
Affiliation(s)
- Oliver R Marmoy
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK. .,Manchester Metropolitan University, Manchester, UK.
| | - Veronica A Kinsler
- Paediatric Dermatology, Great Ormond Street Hospital for Children, London, UK.,UCL-GOSH Institute of Child Health, University College London, London, UK
| | - Robert H Henderson
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK.,UCL-GOSH Institute of Child Health, University College London, London, UK
| | - Sian E Handley
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK.,UCL-GOSH Institute of Child Health, University College London, London, UK
| | - Will Moore
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK
| | - Dorothy A Thompson
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK.,UCL-GOSH Institute of Child Health, University College London, London, UK
| |
Collapse
|
6
|
Rajala A, McCauley A, Brush RS, Nguyen K, Rajala RV. Phosphoinositide Lipids in Ocular Tissues. BIOLOGY 2020; 9:biology9060125. [PMID: 32545642 PMCID: PMC7345453 DOI: 10.3390/biology9060125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023]
Abstract
Inositol phospholipids play an important role in cell physiology. The inositol head groups are reversibly phosphorylated to produce seven distinct phosphorylated inositides, commonly referred to as phosphoinositides (PIs). These seven PIs are dynamically interconverted from one PI to another by the action of PI kinases and PI phosphatases. The PI signals regulate a wide variety of cellular functions, including organelle distinction, vesicular transport, cytoskeletal organization, nuclear events, regulation of ion channels, cell signaling, and host–pathogen interactions. Most of the studies of PIs in ocular tissues are based on the PI enzymes and PI phosphatases. In this study, we examined the PI levels in the cornea, retinal pigment epithelium (RPE), and retina using PI-binding protein as probes. We have examined the lipids PI(3)P, PI(4)P, PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3, and each is present in the cornea, RPE, and retina. Alterations in the levels of these PIs in mouse models of retinal disease and corneal infections have been reported, and the results of our study will help in the management of anomalous phosphoinositide metabolism in ocular tissues.
Collapse
Affiliation(s)
- Ammaji Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Austin McCauley
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Richard S. Brush
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Khuong Nguyen
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raju V.S. Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence: ; Tel.: +1-(405)-271-8255; Fax: +1-(405)-271-8128
| |
Collapse
|
7
|
Weh E, Lutrzykowska Z, Smith A, Hager H, Pawar M, Wubben TJ, Besirli CG. Hexokinase 2 is dispensable for photoreceptor development but is required for survival during aging and outer retinal stress. Cell Death Dis 2020; 11:422. [PMID: 32499533 PMCID: PMC7272456 DOI: 10.1038/s41419-020-2638-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Photoreceptor death is the ultimate cause of vision loss in many retinal degenerative conditions. Identifying novel therapeutic avenues for prolonging photoreceptor health and function has the potential to improve vision and quality of life for patients suffering from degenerative retinal disorders. Photoreceptors are metabolically unique among other neurons in that they process the majority of their glucose via aerobic glycolysis. One of the main regulators of aerobic glycolysis is hexokinase 2 (HK2). Beyond its enzymatic function of phosphorylating glucose to glucose-6-phosphate, HK2 has additional non-enzymatic roles, including the regulation of apoptotic signaling via AKT signaling. Determining the role of HK2 in photoreceptor homeostasis may identify novel signaling pathways that can be targeted with neuroprotective agents to boost photoreceptor survival during metabolic stress. Here we show that following experimental retinal detachment, p-AKT is upregulated and HK2 translocates to mitochondria. Inhibition of AKT phosphorylation in 661W photoreceptor-like cells results in translocation of mitochondrial HK2 to the cytoplasm, increased caspase activity, and decreased cell viability. Rod-photoreceptors lacking HK2 upregulate HK1 and appear to develop normally. Interestingly, we found that HK2-deficient photoreceptors are more susceptible to acute nutrient deprivation in the experimental retinal detachment model. Additionally, HK2 appears to be important for preserving photoreceptors during aging. We show that retinal glucose metabolism is largely unchanged after HK2 deletion, suggesting that the non-enzymatic role of HK2 is important for maintaining photoreceptor health. These results suggest that HK2 expression is critical for preserving photoreceptors during acute nutrient stress and aging. More specifically, p-AKT mediated translocation of HK2 to the mitochondrial surface may be critical for protecting photoreceptors from acute and chronic stress.
Collapse
Affiliation(s)
- Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | | | - Andrew Smith
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Mercy Pawar
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US.
| |
Collapse
|
8
|
Rajala A, Rajala RVS. A non-canonical rhodopsin-mediated insulin receptor signaling pathway in retinal photoreceptor neurons. Cell Biol Int 2020; 44:1020-1027. [PMID: 31889373 DOI: 10.1002/cbin.11299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
Abstract
We previously reported a ligand-independent and rhodopsin-dependent insulin receptor (IR) neuroprotective signaling pathway in both rod and cone photoreceptor cells, which is activated through protein-protein interaction. Our previous studies were performed with either retina or isolated rod or cone outer segment preparations and the expression of IR signaling proteins were examined. The isolation of outer segments with large portions of the attached inner segments is a technical challenge. Optiprep™ density gradient medium has been used to isolate the cells and subcellular organelles, Optiprep™ is a non-ionic iodixanol-based medium with a density of 1.320 g/mL. We employed this method to examine the expression of IR and its signaling proteins, and activation of one of the downstream effectors of the IR in isolated photoreceptor cells. Identification of the signaling complexes will be helpful for therapeutic targeting in disease conditions.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK, 73104, USA
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma, OK, 73104, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma, OK, 73104, USA.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK, 73104, USA
| |
Collapse
|
9
|
Jiao Y, Shen F, Wang Z, Ye L, Zhang M, Gao J, Hou Y, Bai G. Genipin, a natural AKT inhibitor, targets the PH domain to affect downstream signaling and alleviates inflammation. Biochem Pharmacol 2019; 170:113660. [PMID: 31605673 DOI: 10.1016/j.bcp.2019.113660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/25/2019] [Indexed: 11/28/2022]
Abstract
The iridoid compound genipin (GNP) is a geniposide hydrolysate of β-glucosidase. GNP has many pharmacological effects, including antioxidant, anti-apoptotic, and anti-inflammation effects. However, its exact target and mechanism of action remain poorly understood. In this study, the binding of GNP to AKT protein was demonstrated via a GNP-modified magnetic microspheres (GNP-MMs) capture and immunofluorescence co-localization test. GNP-MMs fishing coupled with competitive testing and AKT plasma transport experiments indicate that GNP may act on the PH domain of AKT, and affect AKT plasma transport. The specific binding directly inhibits phosphorylation of AKT, affecting the downstream activation, and reducing inflammatory responses. The results indicate that GNP targets the PH domain region of AKT, inhibits the phosphorylation of AKT, and attenuates the transduction of AKT based inflammation signal pathway.
Collapse
Affiliation(s)
- Yanting Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Zhihua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Lili Ye
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.
| |
Collapse
|
10
|
Gao J, He X, Ma Y, Zhao X, Hou X, Hao E, Deng J, Bai G. Chlorogenic Acid Targeting of the AKT PH Domain Activates AKT/GSK3β/FOXO1 Signaling and Improves Glucose Metabolism. Nutrients 2018; 10:nu10101366. [PMID: 30249058 PMCID: PMC6212807 DOI: 10.3390/nu10101366] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), a bioactive component in the human diet, is reported to exert beneficial effects on the regulation of glucose metabolism. This study was designed to investigate the specific target of CGA, and explore its underlying mechanisms. Beneficial effects of CGA in glucose metabolism were confirmed in insulin-treated human hepatocarcinoma HepG2 cells. Protein fishing, via CGA-modified functionalized magnetic microspheres, demonstrated the binding of CGA with protein kinase B (AKT). Immunofluorescence using a CGA molecular probe further demonstrated the co-localization of CGA with AKT. A competitive combination test and hampering of AKT membrane translocation showed that CGA might bind to the pleckstrin homology (PH) domain of AKT. The specific binding did not lead to the membrane translocation to phosphatidylinositol (3,4,5)-trisphosphate (PIP3), but directly activated the phosphorylation of AKT on Ser-473, induced the phosphorylation of the downstream molecules, glycogen synthase kinase 3β (GSK3β) and forkhead box O1 (FOXO1), and improved glucose metabolism. Collectively, our data demonstrate that CGA exerts regulatory effects on glucose metabolism via direct targeting the PH domain of AKT. This study clarifies the mechanism of the potential benefits of nutrients containing CGA in the complementary therapy of glucose metabolism disorders.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Xin He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Yuejiao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Xuezhi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning 530200, China.
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning 530200, China.
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning 530200, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| |
Collapse
|
11
|
Redundant and Nonredundant Functions of Akt Isoforms in the Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29721991 DOI: 10.1007/978-3-319-75402-4_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Serine/threonine kinase Akt is a downstream effector of the phosphoinositide 3-kinase pathway that is involved in many processes, including providing neuroprotection to stressed photoreceptor cells. Akt exists in three isoforms designated as Akt1, Akt2, and Akt3. All of these isoforms are expressed in the retina. We previously reported that Akt2 knockout mice were susceptible to light stress-induced photoreceptor degeneration, whereas Akt1 deletion had no effect on the retina. We hypothesized that the phenotype of Akt2 knockout mice may be due to the inactivation of specific substrate(s) in the retina. Yeast two-hybrid screening of a bovine retinal cDNA library with Akt2 identified a multidomain protein, POSH (plenty of SH3s), that acts as a scaffold for the JNK pathway of neuronal death. Our results suggest a stable interaction between Akt2 and POSH. Previous studies show that overexpression of POSH leads to cell death. The cell death that we observed in Akt2 knockout mice could be due to the absence of inactivation of POSH-mediated JNK signaling in the retina.
Collapse
|
12
|
Kim AJ, Chang JYA, Shi L, Chang RCA, Ko ML, Ko GYP. The Effects of Metformin on Obesity-Induced Dysfunctional Retinas. Invest Ophthalmol Vis Sci 2017; 58:106-118. [PMID: 28114566 PMCID: PMC5231907 DOI: 10.1167/iovs.16-20691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Purpose The purpose of this study was to determine the effects of metformin on dysfunctional retinas in obesity-induced type 2 diabetic mice. Methods A high-fat diet (HFD)-induced diabetic mouse model (C57BL/6J) was used in this study. After 2 months of the HFD regimen, HFD mice were given daily metformin through oral gavage. Body weights, glucose tolerance, and retinal light responses were monitored regularly. Fluorescein angiography (FA) was used to assess changes in retinal vasculature. Ocular tissues (retina, vitreous, and lens) were harvested and analyzed for molecular changes as determined by immunofluorescent staining, Western blot analysis, and cytokine profiling. Results Starting 1 month after the diet regimen, mice fed the HFD had mildly compromised retinal light responses as measured by electroretinography (ERG), which worsened over time compared to that in the control. In HFD mice treated with metformin, systemic glucose levels reverted back to normal, and their weight gain slowed. Metformin reversed HFD-induced changes in phosphorylated protein kinase B (pAKT), extracellular signal-regulated kinase (pERK), and 5′AMP-activated protein kinase (pAMPK) in the retina. However, metformin treatments for 3 months did not restore the retinal light responses nor lessen the HFD-induced retinal neovascularization, even though it did reduce intraocular inflammation. Conclusions Although metformin was able to reverse systemic changes induced by HFD, it was not able to restore HFD-caused retinal light responses or deter neovascularization.
Collapse
Affiliation(s)
- Andy Jeesu Kim
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Janet Ya-An Chang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Richard Cheng-An Chang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Michael Lee Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Gladys Yi-Ping Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States 3Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
13
|
The Warburg Effect Mediator Pyruvate Kinase M2 Expression and Regulation in the Retina. Sci Rep 2016; 6:37727. [PMID: 27883057 PMCID: PMC5121888 DOI: 10.1038/srep37727] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/31/2016] [Indexed: 01/06/2023] Open
Abstract
The tumor form of pyruvate kinase M2 (PKM2) undergoes tyrosine phosphorylation and gives rise to the Warburg effect. The Warburg effect defines a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose, even in the presence of oxygen. Retinal photoreceptors are highly metabolic and their energy consumption is equivalent to that of a multiplying tumor cell. In the present study, we found that PKM2 is the predominant isoform in both rod- and cone-dominant retina, and that it undergoes a light-dependent tyrosine phosphorylation. We also discovered that PKM2 phosphorylation is signaled through photobleaching of rhodopsin. Our findings suggest that phosphoinositide 3-kinase activation promotes PKM2 phosphorylation. Light and tyrosine phosphorylation appear to regulate PKM2 to provide a metabolic advantage to photoreceptor cells, thereby promoting cell survival.
Collapse
|
14
|
Insulin-related signaling pathways elicited by light in photoreceptor nuclei from bovine retina. Exp Eye Res 2016; 145:36-47. [DOI: 10.1016/j.exer.2015.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 11/22/2022]
|
15
|
Rajala RV, Kanan Y, Anderson RE. Photoreceptor Neuroprotection: Regulation of Akt Activation Through Serine/Threonine Phosphatases, PHLPP and PHLPPL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:419-24. [DOI: 10.1007/978-3-319-17121-0_55] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Chang RCA, Shi L, Huang CCY, Kim AJ, Ko ML, Zhou B, Ko GYP. High-Fat Diet-Induced Retinal Dysfunction. Invest Ophthalmol Vis Sci 2015; 56:2367-80. [PMID: 25788653 DOI: 10.1167/iovs.14-16143] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the impact of obesity-induced prediabetes/early diabetes on the retina to provide new evidence on the pathogenesis of type 2 diabetes-associated diabetic retinopathy (DR). METHODS A high-fat diet (HFD)-induced obesity mouse model (male C57BL/6J) was used in this study. At the end of the 12-week HFD feeding regimen, mice were evaluated for glucose and insulin tolerance, and retinal light responses were recorded by electroretinogram (ERG). Western immunoblot and immunohistochemical staining were used to determine changes in elements regulating calcium homeostasis between HFD and control retinas, as well as unstained human retinal sections from DR patients and age-appropriate controls. RESULTS Compared to the control, the scotopic and photopic ERGs from HFD mice were decreased. There were significant decreases in molecules related to cell signaling, calcium homeostasis, and glucose metabolism from HFD retinas, including phosphorylated protein kinase B (pAKT), glucose transporter 4, L-type voltage-gated calcium channel (L-VGCC), and plasma membrane calcium ATPase (PMCA). Similar changes for pAKT, PMCA, and L-VGCC were also observed in human retinal sections from DR patients. CONCLUSIONS Obesity-induced hyperglycemic and prediabetic/early diabetic conditions caused detrimental impacts on retinal light sensitivities and health. The decrease of the ERG components in early diabetes reflects the decreased neuronal activity of retinal light responses, which may be caused by a decrease in neuronal calcium signaling. Since PI3K-AKT is important in regulating calcium homeostasis and neural survival, maintaining proper PI3K-AKT signaling in early diabetes or at the prediabetic stage might be a new strategy for DR prevention.
Collapse
Affiliation(s)
- Richard Cheng-An Chang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Andy Jeesu Kim
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States 3Texas A&M Institute of Neuroscience, Texas A&M University, College Station, Texas, Unite
| |
Collapse
|
17
|
German OL, Agnolazza DL, Politi LE, Rotstein NP. Light, lipids and photoreceptor survival: live or let die? Photochem Photobiol Sci 2015. [PMID: 26204250 DOI: 10.1039/c5pp00194c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to its constant exposure to light and its high oxygen consumption the retina is highly sensitive to oxidative damage, which is a common factor in inducing the death of photoreceptors after light damage or in inherited retinal degenerations. The high content of docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, has been suggested to contribute to this sensitivity. DHA is crucial for developing and preserving normal visual function. However, further roles of DHA in the retina are still controversial. Current data support that it can tilt the scale either towards degeneration or survival of retinal cells. DHA peroxidation products can be deleterious to the retina and might lead to retinal degeneration. However, DHA has also been shown to act as, or to be the source of, a survival molecule that protects photoreceptors and retinal pigment epithelium cells from oxidative damage. We have established that DHA protects photoreceptors from oxidative stress-induced apoptosis and promotes their differentiation in vitro. DHA activates the retinoid X receptor (RXR) and the ERK/MAPK pathway, thus regulating the expression of anti and pro-apoptotic proteins. It also orchestrates a diversity of signaling pathways, modulating enzymatic pathways that control the sphingolipid metabolism and activate antioxidant defense mechanisms to promote photoreceptor survival and development. A deeper comprehension of DHA signaling pathways and context-dependent behavior is required to understand its dual functions in retinal physiology.
Collapse
Affiliation(s)
- Olga Lorena German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
18
|
Wan J, Zhao XF, Vojtek A, Goldman D. Retinal injury, growth factors, and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration. Cell Rep 2014; 9:285-297. [PMID: 25263555 DOI: 10.1016/j.celrep.2014.08.048] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/09/2014] [Accepted: 08/20/2014] [Indexed: 12/17/2022] Open
Abstract
Müller glia (MG) in the zebrafish retina respond to retinal injury by generating multipotent progenitors for retinal repair. Here, we show that Insulin, Igf-1, and fibroblast growth factor (FGF) signaling components are necessary for retina regeneration. Interestingly, these factors synergize with each other and with heparin-binding EGF-like growth factor (HB-EGF) and cytokines to stimulate MG to generate multipotent progenitors in the uninjured retina. These factors act by stimulating a core set of signaling cascades (Mapk/Erk, phosphatidylinositol 3-kinase [PI3K], β-catenin, and pStat3) that are also shared with retinal injury and exhibit a remarkable amount of crosstalk. Our studies suggest that MG both produce and respond to factors that stimulate MG reprogramming and proliferation following retinal injury. The identification of a core set of regeneration-associated signaling pathways required for MG reprogramming not only furthers our understanding of retina regeneration in fish but also suggests targets for enhancing regeneration in mammals.
Collapse
Affiliation(s)
- Jin Wan
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiao-Feng Zhao
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne Vojtek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Goldman
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Mok KW, Mruk DD, Cheng CY. rpS6 regulates blood-testis barrier dynamics through Akt-mediated effects on MMP-9. J Cell Sci 2014; 127:4870-82. [PMID: 25217631 DOI: 10.1242/jcs.152231] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is an emerging regulator of blood-tissue barriers that utilizes ribosomal protein S6 (rpS6) as the downstream signaling molecule. To explore the role of rpS6 in blood-testis barrier (BTB) function, a constitutively active quadruple rpS6 phosphomimetic mutant was constructed in mammalian expression vector and overexpressed in Sertoli cells cultured in vitro that mimicked the BTB in vivo. Using this quadruple phosphomimetic mutant, phosphorylated (p)-rpS6 was shown to disrupt IGF-1/insulin signaling, thereby abolishing Akt phosphorylation, which led to an induction of MMP-9. This increase in MMP-9 secretion perturbed the Sertoli cell tight junction permeability barrier by proteolysis-mediated downregulation of tight junction proteins at the BTB. These findings were confirmed by the use of a specific MMP-9 inhibitor that blocked the disruption of the tight junction permeability barrier by the rpS6 mutant. Additionally, RNA interference (RNAi)-mediated Akt silencing was able to mimic the results of rpS6 mutant overexpression in Sertoli cells, further confirming this p-rpS6-Akt-MMP-9 signaling pathway. In conclusion, these data support a new concept of mTORC1-mediated BTB regulation, that is possibly also applicable to other blood-tissue barriers.
Collapse
Affiliation(s)
- Ka-Wai Mok
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
20
|
Rajala RVS, Rajala A, Morris AJ, Anderson RE. Phosphoinositides: minor lipids make a major impact on photoreceptor cell functions. Sci Rep 2014; 4:5463. [PMID: 24964953 PMCID: PMC4071336 DOI: 10.1038/srep05463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/11/2014] [Indexed: 11/09/2022] Open
Abstract
Activation of the phosphoinositide (PI) cycle generates the second messengers that control various aspects of cellular signaling. We have previously shown that two PI cycle enzymes, type II phosphatidylinositol 5-phosphate 4-kinase (PIPK IIα) and phosphoinositide 3-kinase (PI3K), are activated through light stimulation. In our earlier studies, we measured enzyme activities, instead of directly measuring the products, due to lack of sensitive analytical techniques. Cells have very low levels of PIs, compared to other lipids, so special techniques and sensitive analytical instruments are necessary for their identification and quantification. There are also other considerations, such as different responses in different cell types, which may complicate quantification of PIs. For example, although light activated PIPK IIα, there was no increase in PI-4,5-P2 measured by liquid chromatography–mass spectrometry (LC/MS) This discrepancy is due to the heterogeneous nature of the retina, which is composed of various cell types. In this study, we examined PI generation in situ using immunohistochemistry with specific PI antibodies. PIs were generated in specific retinal cell layers, suggesting that analyzing PIs from the total retina by LC/MS underscores the significance. This suggests that PI-specific antibodies are useful tools to study the cell-specific regulation of PIs in the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- 1] Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [2] Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [3] Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [4] Dean McGee Eye Institute, Oklahoma City, OK
| | - Ammaji Rajala
- 1] Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [2] Dean McGee Eye Institute, Oklahoma City, OK
| | - Andrew J Morris
- Division of Cardiovascular Medicine, University of Kentucky College of Medicine, Lexington, KY
| | - Robert E Anderson
- 1] Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [2] Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK [3] Dean McGee Eye Institute, Oklahoma City, OK
| |
Collapse
|
21
|
Dai G, Peng C, Liu C, Varnum MD. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides. ACTA ACUST UNITED AC 2013; 141:413-30. [PMID: 23530136 PMCID: PMC3607822 DOI: 10.1085/jgp.201210944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIP(n)), including phosphatidylinositol 3,4,5-triphosphate (PIP(3)) and phosphatidylinositol 4,5-bisphosphate (PIP(2)), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIP(n) application. However, PIP(n) induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIP(n)-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIP(n) application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIP(n) regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIP(n) sensitivity to heteromeric channels formed with PIP(n)-insensitive A subunits. Finally, channels formed by mixtures of PIP(n)-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIP(n) regulation, implying that intersubunit N-C interactions help control the phosphoinositide sensitivity of cone CNG channels.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
22
|
Rajala A, Gupta VK, Anderson RE, Rajala RVS. Light activation of the insulin receptor regulates mitochondrial hexokinase. A possible mechanism of retinal neuroprotection. Mitochondrion 2013; 13:566-76. [PMID: 23993956 DOI: 10.1016/j.mito.2013.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/03/2013] [Accepted: 08/15/2013] [Indexed: 12/23/2022]
Abstract
The serine/threonine kinase Akt has been shown to mediate the anti-apoptotic activity through hexokinase (HK)-mitochondria interaction. We previously reported that Akt activation in retinal rod photoreceptor cells is mediated through the light-dependent insulin receptor (IR)/PI3K pathway. Our data indicate that light-induced activation of IR/PI3K/Akt results in the translocation of HK-II to mitochondria. We also found that PHLPPL, a serine/threonine phosphatase, enhanced the binding of HK-II to mitochondria. We found a mitochondrial targeting signal in PHLPPL and our study suggests that Akt translocation to mitochondria could be mediated through PHLPPL. Our results suggest that the light-dependent IR/PI3K/Akt pathway regulates hexokinase-mitochondria interaction in photoreceptors. Down-regulation of IR signaling has been associated with ocular diseases of retinitis pigmentosa, diabetic retinopathy, and Leber Congenital Amaurosis-type 2, and agents that enhance the binding interaction between hexokinase and mitochondria may have therapeutic potential against these ocular diseases.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Dean A. McGee Eye Institute, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
23
|
Rajala A, Dighe R, Agbaga MP, Anderson RE, Rajala RVS. Insulin receptor signaling in cones. J Biol Chem 2013; 288:19503-15. [PMID: 23673657 DOI: 10.1074/jbc.m113.469064] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans, age-related macular degeneration and diabetic retinopathy are the most common disorders affecting cones. In retinitis pigmentosa (RP), cone cell death precedes rod cell death. Systemic administration of insulin delays the death of cones in RP mouse models lacking rods. To date there are no studies on the insulin receptor signaling in cones; however, mRNA levels of IR signaling proteins are significantly higher in cone-dominant neural retina leucine zipper (Nrl) knock-out mouse retinas compared with wild type rod-dominant retinas. We previously reported that conditional deletion of the p85α subunit of phosphoinositide 3-kinase (PI3K) in cones resulted in age-related cone degeneration, and the phenotype was not rescued by healthy rods, raising the question of why cones are not protected by the rod-derived cone survival factors. Interestingly, systemic administration of insulin has been shown to delay the death of cones in mouse models of RP lacking rods. These observations led to the hypothesis that cones may have their own endogenous neuroprotective pathway, or rod-derived cone survival factors may be signaled through cone PI3K. To test this hypothesis we generated p85α(-/-)/Nrl(-/-) double knock-out mice and also rhodopsin mutant mice lacking p85α and examined the effect of the p85α subunit of PI3K on cone survival. We found that the rate of cone degeneration is significantly faster in both of these models compared with respective mice with competent p85α. These studies suggest that cones may have their own endogenous PI3K-mediated neuroprotective pathway in addition to the cone viability survival signals derived from rods.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean A McGee Eye Institute, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
24
|
Dai G, Varnum MD. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions. Am J Physiol Cell Physiol 2013; 305:C147-59. [PMID: 23552282 DOI: 10.1152/ajpcell.00037.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the L633P mutation.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Integrative Physiology and Neuroscience, Program in Neuroscience and Center for Integrated Biotechnology, Washington State University, Pullman, Washington 99164-7620, USA
| | | |
Collapse
|
25
|
Abstract
Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr(498) and Tyr(503) residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR(-/-) mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo.
Collapse
Affiliation(s)
- Vivek K Gupta
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | |
Collapse
|
26
|
Ivanovic I, Allen DT, Dighe R, Le YZ, Anderson RE, Rajala RVS. Phosphoinositide 3-kinase signaling in retinal rod photoreceptors. Invest Ophthalmol Vis Sci 2011; 52:6355-62. [PMID: 21730346 DOI: 10.1167/iovs.10-7138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Phosphoinositide 3-kinase (PI3K) consists of a p110 catalytic protein and a p85α regulatory protein, required for the stabilization and localization of p110-PI3K activity. The biological significance of PI3K was investigated in vertebrate rod photoreceptors by deleting its regulatory p85α protein and examining its role in photoreceptor structure, function, and protein trafficking. METHODS Mice that expressed Cre recombinase in rods were bred to mice with a floxed p85α (pik3r1) regulatory subunit of PI3K to generate a conditional deletion of pik3r1 in rods. Functional and structural changes were determined by ERG and morphometric analysis, respectively. PI3K activity was measured in retinal homogenates immunoprecipitated with an anti-PY antibody. Akt activation was determined by Western blot analysis with a pAkt antibody. RESULTS Light-induced stress increased PI3K activity in retinal immunoprecipitates and phosphorylation of Akt. There was no effect of pik3r1 deletion on retinal structure. However, twin flash electroretinography revealed a slight delay in recovery kinetics in pik3r1 knockout (KO) mice compared with wild-type controls. The movement of arrestin in the pik3r1 KO mice was slower than that in the wild-type mouse retinas at 5 minutes of exposure to light. At 10 minutes of exposure, the ROS localization of arrestin was almost identical between the wild-type and pik3r1 KO mice. CONCLUSIONS The results provide the first direct evidence that rods use PI3K-generated phosphoinositides for photoreceptor function. The lack of phenotype in pik3r1 KO rod photoreceptors suggests a redundant role in controlling PIP(3) synthesis.
Collapse
Affiliation(s)
- Ivana Ivanovic
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
27
|
Phosphorylated Grb14 is an endogenous inhibitor of retinal protein tyrosine phosphatase 1B, and light-dependent activation of Src phosphorylates Grb14. Mol Cell Biol 2011; 31:3975-87. [PMID: 21791607 DOI: 10.1128/mcb.05659-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Growth factor receptor-bound protein 14 (Grb14) is an adapter protein implicated in receptor tyrosine kinase signaling. Grb14(-/-) studies highlight both the positive and negative roles of Grb14 in receptor tyrosine kinase signaling in a tissue-specific manner. In this study, we made a novel finding that Grb14 inhibits the activity of PTP1B, the major negative regulator of insulin receptor (IR) signaling, in a phosphorylation-regulated manner. Phosphorylation of Tyr-347 in the BPS domain of Grb14 is critical for interaction with PTP1B, resulting in the competitive inhibition of PTP1B activity. We also found that rhodopsin-regulated Src kinase activation in retina leads to the phosphorylation of Grb14. Further, ablation of Grb14 resulted in significantly elevated retinal PTP1B activity in vivo. PTP1B is known to be regulated by oxidation, glutathionylation, phosphorylation, and SUMOlyation, and our study for the first time demonstrates the inhibition of PTP1B activity in vivo by protein molecule Grb14 in a tissue-specific manner.
Collapse
|
28
|
Rhodopsin-regulated insulin receptor signaling pathway in rod photoreceptor neurons. Mol Neurobiol 2010; 42:39-47. [PMID: 20407846 DOI: 10.1007/s12035-010-8130-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
The retina is an integral part of the central nervous system and retinal cells are known to express insulin receptors (IR), although their function is not known. This article describes recent studies that link the photoactivation of rhodopsin to tyrosine phosphorylation of the IR and subsequent activation of phosphoinositide 3-kinase, a neuron survival factor. Our studies suggest that the physiological role of this process is to provide neuroprotection of the retina against light damage by activating proteins that protect against stress-induced apoptosis. We focus mainly on our recently identified regulation of the IR pathway through the G-protein-coupled receptor rhodopsin. Various mutant and knockout proteins of phototransduction cascade have been used to study the light-induced activation of the retinal IR. Our studies suggest that rhodopsin may have additional previously uncharacterized signaling functions in photoreceptors.
Collapse
|
29
|
Abstract
The phosphoinositide (PI) cycle, discovered over 50 years ago by Mabel and Lowell Hokin, describes a series of biochemical reactions that occur on the inner leaflet of the plasma membrane of cells in response to receptor activation by extracellular stimuli. Studies from our laboratory have shown that the retina and rod outer segments (ROSs) have active PI metabolism. Biochemical studies revealed that the ROSs contain the enzymes necessary for phosphorylation of phosphoinositides. We showed that light stimulates various components of the PI cycle in the vertebrate ROS, including diacylglycerol kinase, PI synthetase, phosphatidylinositol phosphate kinase, phospholipase C, and phosphoinositide 3-kinase (PI3K). This article describes recent studies on the PI3K-generated PI lipid second messengers in the control and regulation of PI-binding proteins in the vertebrate retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology and Cell Biology, and Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. r
| |
Collapse
|
30
|
Kanan Y, Matsumoto H, Song H, Sokolov M, Anderson RE, Rajala RVS. Serine/threonine kinase akt activation regulates the activity of retinal serine/threonine phosphatases, PHLPP and PHLPPL. J Neurochem 2010; 113:477-88. [PMID: 20089132 DOI: 10.1111/j.1471-4159.2010.06609.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In our previous studies, we have shown that insulin receptor (IR) activation leads to the activation of phosphoinositide 3-kinase (PI3K) and Akt activation in rod photoreceptors. This pathway is functionally important for photoreceptor survival as deletion of IR and one of the isoforms of Akt (Akt2) resulted in stress-induced photoreceptor degeneration. However, the molecular mechanism of this degeneration is not known. Akt signaling is known to be regulated by the serine/threonine phosphatases, PH domain and leucine-rich repeat protein phosphatases (PHLPP) and PHLPP-like (PHLPPL). In this study, we characterized these two phosphatases in the retina and examined the role of IR, PI3K, and Akt signaling on the activity of PHLPP and PHLPPL. Most of the studies published on PHLPP and PHLPPL are directed toward Akt dephosphorylation; however, there are no studies available to date on how the enzyme activities of these phosphatases are regulated. We made a novel finding in this study that both PHLPP and PHLPPL activities were significantly decreased in the presence of insulin ex vivo. The insulin-induced decrease of phosphatase activities were PI3K-dependent as pre-treatment of ex vivo retinal cultures with LY294002 significantly reversed the insulin-induced inhibition. It has been shown previously that PHLPP and PHLPPL regulate the dephosphorylation of Akt isoforms, and our results demonstrate for the first time that retinal PHLPP and PHLPPL activities are under the control of the IR-activated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yogita Kanan
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma city, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Rajala RVS, Tanito M, Neel BG, Rajala A. Enhanced retinal insulin receptor-activated neuroprotective survival signal in mice lacking the protein-tyrosine phosphatase-1B gene. J Biol Chem 2010; 285:8894-904. [PMID: 20061388 DOI: 10.1074/jbc.m109.070854] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase 1B (PTP1B) has been implicated in the negative regulation of insulin signaling. We previously demonstrated that light-induced tyrosine phosphorylation of the retinal insulin receptor (IR) results in the activation of phosphoinositide 3-kinase/Akt survival pathway in rod photoreceptor cells. The molecular mechanism behind light-induced activation of IR is not known. We investigated the in vivo mechanism of IR activation and found that PTP1B activity in dark-adapted retinas was significantly higher than in light-adapted retinas. We made a novel finding in this study that the light-dependent regulation of PTP1B activity is signaled through photobleaching of rhodopsin. Conditional deletion of PTP1B in rod photoreceptors by the Cre-loxP system resulted in enhanced IR signaling. Further PTP1B activity negatively regulated the neuroprotective survival signaling in the retina. One of the challenging questions in the retina research is how mutations in human rhodopsin gene slowly disable and eventually disrupt photoreceptor functions. Our studies suggest that a defect in the photobleaching of rhodopsin and mutation in rhodopsin gene enhances the activity of PTP1B, and this activated activity could down-regulate the IR survival signaling. Our studies suggest that PTP1B antagonists could be potential therapeutic agents to treat stress-induced photoreceptor degenerations and provide further evidence that rhodopsin photoexcitation may trigger signaling events alternative to the classic phototransduction.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, Dean A McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
32
|
Rajala A, Daly RJ, Tanito M, Allen DT, Holt LJ, Lobanova ES, Arshavsky VY, Rajala RVS. Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation. Biochemistry 2009; 48:5563-72. [PMID: 19438210 DOI: 10.1021/bi9000062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth factor receptor-bound protein 14 (Grb14) is involved in growth factor receptor tyrosine kinase signaling. Here we report that light causes a major redistribution of Grb14 among the individual subcellular compartments of the retinal rod photoreceptor. Grb14 is localized predominantly to the inner segment, nuclear layer, and synapse in dark-adapted rods, whereas in the light-adapted rods, Grb14 redistributed throughout the entire cell, including the outer segment. The translocation of Grb14 requires photoactivation of rhodopsin, but not signaling through the phototransduction cascade, and is not based on direct Grb14-rhodopsin interactions. We previously hypothesized that Grb14 protects light-dependent insulin receptor (IR) activation in rod photoreceptors against dephosphorylation by protein tyrosine phosphatase 1B. Consistent with this hypothesis, we failed to observe light-dependent IR activation in Grb14(-/-) mouse retinas. Our studies suggest that Grb14 translocates to photoreceptor outer segments after photobleaching of rhodopsin and protects IR phosphorylation in rod photoreceptor cells. These results demonstrate that Grb14 can undergo subcellular redistribution upon illumination and suggest that rhodopsin photoexcitation may trigger signaling events alternative to the classical transducin activation.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rajala RVS, Rajala A, Brush RS, Rotstein NP, Politi LE. Insulin receptor signaling regulates actin cytoskeletal organization in developing photoreceptors. J Neurochem 2009; 110:1648-60. [PMID: 19575708 DOI: 10.1111/j.1471-4159.2009.06262.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The insulin receptor (IR) and IR signaling proteins are widely distributed throughout the CNS. IR signaling provides a trophic signal for transformed retinal neurons in culture and we recently reported that deletion of IR in rod photoreceptors by Cre/lox system resulted in stress-induced photoreceptor degeneration. These studies suggest a neuroprotective role of IR in rod photoreceptor cell function. However, there are no studies available on the role of insulin-induced IR signaling in the development of normal photoreceptors. To examine the role of insulin-induced IR signaling, we analyzed cultured neuronal cells isolated from newborn rodent retinas. In insulin-lacking cultures, photoreceptors from wild-type rat retinas exhibited an abnormal morphology with a wide axon cone and disorganization of the actin and tubulin cytoskeleton. Photoreceptors from IR knockout mouse retinas also exhibited a similar abnormal morphology. A novel finding in this study was that addition of docosahexaenoic acid, a photoreceptor trophic factor, restored normal axonal outgrowth in insulin-lacking cultures. These data suggest that IR signaling pathways regulate actin and tubulin cytoskeletal organization in photoreceptors; they also imply that insulin and docosahexaenoic acid activate at least partially overlapping signaling pathways that are essential for the development of normal photoreceptors.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|