1
|
Mojarad-Jabali S, Roh KH. Peptide-based inhibitors and nanoparticles: Emerging therapeutics for Alzheimer's disease. Int J Pharm 2025; 669:125055. [PMID: 39653296 DOI: 10.1016/j.ijpharm.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder characterized by memory loss, cognitive decline, and behavioral changes, impacting millions of individuals worldwide. Despite significant research into its cellular and molecular mechanisms, no cure has been found to treat AD to date. For over two decades, research aimed at treating AD has focused on targeting amyloid-β (Aβ); however, these strategies have not demonstrated substantial effectiveness. Consequently, research is now expanding towards targeting other hallmarks of the disease, such as tau protein and brain metal ions. Among potential therapeutics against these pathophysiological targets, peptide-based inhibitors are notable for their high selectivity and low toxicity. Despite these advantages, they face obstacles such as a short half-life in vivo and low efficiencies in crossing the blood-brain barrier (BBB). The use of nanoparticles (NPs) to deliver peptide-based inhibitors to the brain offers unique advantages, such as enhanced stability against degradation, improvement in targeted delivery, and reduced potential for immunogenic responses. This review aims to provide a comprehensive overview of emerging peptides tested as treatments for AD against Aβ, tau protein, and brain metal ions and to evaluate NPs as a means to overcome the limitations. These peptide-based inhibitors are promising, as they not only alleviate symptoms but also aim to prevent progressive neuronal loss, and NPs can be highly effective in delivering these inhibitors.
Collapse
Affiliation(s)
- Solmaz Mojarad-Jabali
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kyung-Ho Roh
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, United States; Biotechnology Science and Engineering Program, University of Alabama in Huntsville, Huntsville, AL 35899, United States.
| |
Collapse
|
2
|
van den Brink H, Voigt S, Kozberg M, van Etten ES. The role of neuroinflammation in cerebral amyloid angiopathy. EBioMedicine 2024; 110:105466. [PMID: 39608058 DOI: 10.1016/j.ebiom.2024.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease characterized by vascular amyloid-β (Aβ) deposition. CAA is often seen in the brains of elderly individuals and in a majority of patients with Alzheimer's disease. The molecular pathways triggered by vascular Aβ, causing vessel wall breakdown and ultimately leading to intracerebral haemorrhage and cognitive decline, remain poorly understood. The occurrence of CAA-related inflammation (CAA-ri) and Amyloid-Related Imaging Abnormalities (ARIA) have sparked interest for a role of neuroinflammation in CAA pathogenesis. This review discusses prior studies of neuroinflammation in CAA and outlines potential future research directions targeting candidates such as matrix metalloproteinases, complement activation, microglial activation, reactive astrocytes and parenchymal border macrophages. Understanding the role of neuroinflammation in CAA pathogenesis could help identify new therapeutic strategies.
Collapse
Affiliation(s)
- Hilde van den Brink
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mariel Kozberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
3
|
Umar M, Rehman Y, Ambreen S, Mumtaz SM, Shaququzzaman M, Alam MM, Ali R. Innovative approaches to Alzheimer's therapy: Harnessing the power of heterocycles, oxidative stress management, and nanomaterial drug delivery system. Ageing Res Rev 2024; 97:102298. [PMID: 38604453 DOI: 10.1016/j.arr.2024.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Alzheimer's disease (AD) presents a complex pathology involving amyloidogenic proteolysis, neuroinflammation, mitochondrial dysfunction, and cholinergic deficits. Oxidative stress exacerbates AD progression through pathways like macromolecular peroxidation, mitochondrial dysfunction, and metal ion redox potential alteration linked to amyloid-beta (Aβ). Despite limited approved medications, heterocyclic compounds have emerged as promising candidates in AD drug discovery. This review highlights recent advancements in synthetic heterocyclic compounds targeting oxidative stress, mitochondrial dysfunction, and neuroinflammation in AD. Additionally, it explores the potential of nanomaterial-based drug delivery systems to overcome challenges in AD treatment. Nanoparticles with heterocyclic scaffolds, like polysorbate 80-coated PLGA and Resveratrol-loaded nano-selenium, show improved brain transport and efficacy. Micellar CAPE and Melatonin-loaded nano-capsules exhibit enhanced antioxidant properties, while a tetra hydroacridine derivative (CHDA) combined with nano-radiogold particles demonstrates promising acetylcholinesterase inhibition without toxicity. This comprehensive review underscores the potential of nanotechnology-driven drug delivery for optimizing the therapeutic outcomes of novel synthetic heterocyclic compounds in AD management. Furthermore, the inclusion of various promising heterocyclic compounds with detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) data provides valuable insights for planning the development of novel drug delivery treatments for AD.
Collapse
Affiliation(s)
- Mohammad Umar
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Yasir Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Subiya Ambreen
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Sayed Md Mumtaz
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohd Shaququzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India.
| |
Collapse
|
4
|
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, Thiruvengadam M. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers. Mol Neurobiol 2024; 61:3042-3089. [PMID: 37966683 DOI: 10.1007/s12035-023-03730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Oriane Onimus
- Faculty of Basic and Biomedical Sciences, University of Paris, Paris, France
| | - Naomi D'souza
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Research Consultation Department, Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
5
|
Du B, Chen K, Wang W, Lei P. Targeting Metals in Alzheimer's Disease: An Update. J Alzheimers Dis 2024; 101:S141-S154. [PMID: 39422951 DOI: 10.3233/jad-240140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One pathological feature of Alzheimer's disease (AD) is the dysregulated metal ions, e.g., zinc, copper, and iron in the affected brain regions. The dysregulation of metal homeostasis may cause neurotoxicity and directly addressing these dysregulated metals through metal chelation or mitigating the downstream neurotoxicity stands as a pivotal strategy for AD therapy. This review aims to provide an up-to-date comprehensive overview of the application of metal chelators and drugs targeting metal-related neurotoxicity, such as antioxidants (ferroptotic inhibitors), in the context of AD treatment. It encompasses an exploration of their pharmacological effects, clinical research progress, and potential underlying mechanisms.
Collapse
Affiliation(s)
- Bin Du
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Chen
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiwei Wang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Choi H, Kim E, Choi JY, Park E, Lee HJ. Potent therapeutic targets for treatment of Alzheimer's disease: Amyloid degrading enzymes. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hang Choi
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Eungchan Kim
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Jae Yoon Choi
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Eunsik Park
- Department of Life Sport Education Kongju National University Gongju Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| |
Collapse
|
7
|
Hatakawa Y, Tanaka A, Furubayashi T, Nakamura R, Konishi M, Akizawa T, Sakane T. Direct Delivery of ANA-TA9, a Peptide Capable of Aβ Hydrolysis, to the Brain by Intranasal Administration. Pharmaceutics 2021; 13:1673. [PMID: 34683967 PMCID: PMC8538057 DOI: 10.3390/pharmaceutics13101673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
We have recently reported Catalytides (Catalytic peptides) JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMI), which are the first Catalytides found to cleave Aβ42. Although the Catalytides must be delivered to the brain parenchyma to treat Alzheimer's disease, the blood-brain barrier (BBB) limits their entry into the brain from the systemic circulation. To avoid the BBB, the direct route from the nasal cavity to the brain was used in this study. The animal studies using rats and mice clarified that the plasma clearance of ANA-TA9 was more rapid than in vitro degradation in the plasma, whole blood, and the cerebrospinal fluid (CSF). The brain concentrations of ANA-TA9 were higher after nasal administration than those after intraperitoneal administration, despite a much lower plasma concentration after nasal administration, suggesting the direct delivery of ANA-TA9 to the brain from the nasal cavity. Similar findings were observed for its transport to CSF after nasal and intravenous administration. The concentration of ANA-TA9 in the olfactory bulb reached the peak at 5 min, whereas those in the frontal and occipital brains was 30 min, suggesting the sequential backward translocation of ANA-TA9 in the brain. In conclusion, ANA-TA9 was efficiently delivered to the brain by nasal application, as compared to other routes.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Laboratory of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan;
| | - Akiko Tanaka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| | - Tomoyuki Furubayashi
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| | - Rina Nakamura
- O-Force Co., Ltd., 3454 Irino Kuroshio-Cho, Hata-Gun, Kochi 789-1931, Japan; (R.N.); (T.A.)
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Motomi Konishi
- Department of Integrative Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka 573-0101, Japan;
| | - Toshifumi Akizawa
- O-Force Co., Ltd., 3454 Irino Kuroshio-Cho, Hata-Gun, Kochi 789-1931, Japan; (R.N.); (T.A.)
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| |
Collapse
|
8
|
Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. J Trace Elem Med Biol 2021; 67:126779. [PMID: 34034029 DOI: 10.1016/j.jtemb.2021.126779] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease. OBJECTIVE This review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered. RESULTS AND CONCLUSION Several multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria.
| | - Tolulope R Faloye
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Atinuke Y Odunsi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Bolaji O Oyetayo
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Joseph I Enya
- Department of Anatomy, University of Ilorin, Kwara State, Nigeria
| | - Joshua A Rotimi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Kador PF, Salvi R. Multifunctional Redox Modulators Protect Auditory, Visual, and Cognitive Function. Antioxid Redox Signal 2021; 36:1136-1157. [PMID: 34162214 PMCID: PMC9221172 DOI: 10.1089/ars.2021.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022]
Abstract
Significance: Oxidative stress contributes to vision, hearing and neurodegenerative disorders. Currently, no treatments prevent these disorders; therefore, there is an urgent need for redox modulators that can prevent these disorders. Recent Advances: Oxidative stress is associated with the generation of reactive oxygen species (ROS) and reactive nitrogen species, metal dyshomeostasis, and mitochondrial dysfunction. Here, we discuss the role that oxidative stress and metal dyshomeostasis play in hearing loss, visual impairments, and neurodegeneration and discuss the benefits of a new class of multifunctional redox modulators (MFRMs) that suppress sensory and neural degeneration. MFRMs not only reduce free radicals but also independently bind transition metals associated with the generation of hydroxyl radicals. The MFRMs redistribute zinc from neurotoxic amyloid beta zinc (Aβ:Zn) complexes to the cytoplasm, facilitating the degradation of Aβ plaques by matrix metalloprotease-2 (MMP-2). Although MFRMs bind copper (Cu1+, Cu2+), iron (Fe2+, Fe3+), zinc (Zn2+), and manganese (Mn2+), they do not deplete free cytoplasmic Zn+2 and they protect mitochondria from Mn+2-induced dysfunction. Oral administration of MFRMs reduce ROS-induced cataracts, protect the retina from light-induced degeneration, reduce neurotoxic Aβ:Zn plaque formation, and protect auditory hair cells from noise-induced hearing loss. Critical Issues: Regulation of redox balance is essential for clinical efficacy in maintaining sensory functions. Future Directions: Future use of these MFRMs requires additional pharmacokinetic, pharmacodynamics, and toxicological data to bring them into widespread clinical use. Additional animal studies are also needed to determine whether MFRMs can prevent neurodegeneration, dementia, and other forms of vision and hearing loss.
Collapse
Affiliation(s)
- Peter F. Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
10
|
Sahoo BR, Panda PK, Liang W, Tang WJ, Ahuja R, Ramamoorthy A. Degradation of Alzheimer's Amyloid-β by a Catalytically Inactive Insulin-Degrading Enzyme. J Mol Biol 2021; 433:166993. [PMID: 33865867 PMCID: PMC8169600 DOI: 10.1016/j.jmb.2021.166993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
It is known that insulin-degrading-enzyme (IDE) plays a crucial role in the clearance of Alzheimer's amyloid-β (Aβ). The cysteine-free IDE mutant (cf-E111Q-IDE) is catalytically inactive against insulin, but its effect on Aβ degradation is unknown that would help in the allosteric modulation of the enzyme activity. Herein, the degradation of Aβ(1-40) by cf-E111Q-IDE via a non-chaperone mechanism is demonstrated by NMR and LC-MS, and the aggregation of fragmented peptides is characterized using fluorescence and electron microscopy. cf-E111Q-IDE presented a reduced effect on the aggregation kinetics of Aβ(1-40) when compared with the wild-type IDE. Whereas LC-MS and diffusion ordered NMR spectroscopy revealed the generation of Aβ fragments by both wild-type and cf-E111Q-IDE. The aggregation propensities and the difference in the morphological phenotype of the full-length Aβ(1-40) and its fragments are explained using multi-microseconds molecular dynamics simulations. Notably, our results reveal that zinc binding to Aβ(1-40) inactivates cf-E111Q-IDE's catalytic function, whereas zinc removal restores its function as evidenced from high-speed AFM, electron microscopy, chromatography, and NMR results. These findings emphasize the catalytic role of cf-E111Q-IDE on Aβ degradation and urge the development of zinc chelators as an alternative therapeutic strategy that switches on/off IDE's function.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics, Department of Chemistry, Macromolecular Engineering and Science, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Wenguang Liang
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Wei-Jen Tang
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden; Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH) SE-10044 Stockholm, Sweden
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Macromolecular Engineering and Science, and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Inui T, Hoffer M, Balaban CD. Mild blast wave exposure produces intensity-dependent changes in MMP2 expression patches in rat brains - Findings from different blast severities. Brain Res 2021; 1767:147541. [PMID: 34077763 DOI: 10.1016/j.brainres.2021.147541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinase 2 (MMP2) is a gelatinase with multiple functions at the neurovascular interface, including local modification of the glia limitans to facilitate access of immune cells into the brain and amyloid-beta degradation during responses to injury or disease. This study examines regional changes in immunoreactive MMP2 in the rat brain after a single mild (2.7-7.9 psi peak) or moderate (13-17.5 psi peak) blast overpressure (BOP) exposure. Immunopositive MMP2 expression was examined quantitatively in histological sections of decalcified rat heads as a marker at 2, 24, and 72 h after BOP. The MMP2 immunoreactivity was isolated to patchy deposits in brain parenchyma surrounding blood vessels. Separate analyses were conducted for the cerebellum, brain stem caudal to the thalamo-mesencephalic junction, and the cerebrum (including diencephalon). The deposits varied in number, size, staining homogeneity (standard deviation of immunopositive region), and a cumulative measure, the product of size, average intensity and number, as a function of blast intensity and time. The sequences of changes in MMP2 spots from sham control animals suggested that the mild BOP exposure differences normalized within 72 h. However, the responses to moderate exposure revealed a delayed response at 72 h in the subtentorial brain stem and the cerebrum, but not the cerebellum. Hence, local MMP2 responses may be a contextual biomarker for locally regulated responses to widely distributed brain injury foci.
Collapse
Affiliation(s)
- Takaki Inui
- Department of Otolaryngology, University of Pittsburgh, PA, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Osaka Mdical College, Osaka, Japan.
| | - Michael Hoffer
- Naval Medical Center San Diego, Spatial Orientation Center, Department of Otolaryngology, Naval Medical Center San Diego, CA, USA; University of Miami, Miller School of Medicine, Department of Otolaryngology, University of Miami, FL, USA.
| | - Carey D Balaban
- Department of Otolaryngology, University of Pittsburgh, PA, USA; Department of Neurobiology, Communication Sciences & Disorders, and Bioengineering, University of Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Hatakawa Y, Nakamura R, Konishi M, Sakane T, Tanaka A, Matsuda A, Saito M, Akizawa T. Amyloid beta cleavage by ANA-TA9, a synthetic peptide from the ANA/BTG3 Box A region. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12146. [PMID: 33816760 PMCID: PMC8012241 DOI: 10.1002/trc2.12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/12/2020] [Accepted: 01/06/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION We recently discovered a short synthetic peptide derived from the ANA/BTG3 protein Box A region called ANA-TA9 (SKGQAYRMI), which possesses catalytic activity. Herein we demonstrated the proteolytic activity of ANA-TA9 against amyloid beta 42 (Aβ42). METHODS The proteolytic activity of ANA-TA9 against both the authentic soluble form Aβ42 (a-Aβ42) and the solid insoluble form Aβ42 (s-Aβ42) was analyzed by high-performance liquid chromatography and mass spectrometry. Plasma clearance, brain uptake, and cell viability were examined. RESULTS ANA-TA9 cleaved not only a-Aβ42 but also s-Aβ42. Proteolytic activity was partially inhibited by 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, a serine protease inhibitor. Plasma clearance was very rapid, and the brain concentration indicated efficient brain delivery of ANA-TA9 via nasal application. Cell viability analysis indicated that ANA-TA9 did not display toxicity. DISCUSSION ANA-TA9 is an attractive potential candidate for the development of novel peptide drugs in Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Pharmaceutical TechnologyKobe Pharmaceutical UniversityHigashinadaKobeJapan
| | - Rina Nakamura
- O‐Force Co., LtdHata‐gunKochiJapan
- Laboratory of PharmacologySchool of MedicineKohasuOko‐choKochi UniversityNankokuKochiJapan
| | - Motomi Konishi
- Department of Integrative Pharmaceutical ScienceFaculty of Pharmaceutical SciencesSetsunan UniversityHirakataOsakaJapan
| | - Toshiyasu Sakane
- Pharmaceutical TechnologyKobe Pharmaceutical UniversityHigashinadaKobeJapan
| | - Akiko Tanaka
- Pharmaceutical TechnologyKobe Pharmaceutical UniversityHigashinadaKobeJapan
| | - Akira Matsuda
- Laboratory of Medicinal and Biochemical AnalysisFaculty of Pharmaceutical SciencesHiroshima International UniversityKureHiroshimaJapan
| | - Motoaki Saito
- Laboratory of PharmacologySchool of MedicineKohasuOko‐choKochi UniversityNankokuKochiJapan
| | - Toshifumi Akizawa
- O‐Force Co., LtdHata‐gunKochiJapan
- Laboratory of PharmacologySchool of MedicineKohasuOko‐choKochi UniversityNankokuKochiJapan
| |
Collapse
|
13
|
Xie Z, Wu H, Zhao J. Multifunctional roles of zinc in Alzheimer’s disease. Neurotoxicology 2020; 80:112-123. [DOI: 10.1016/j.neuro.2020.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
14
|
Zhang X, Zhong M, Zhao P, Zhang X, Li Y, Wang X, Sun J, Lan W, Sun H, Wang Z, Gao H. Screening a specific Zn(ii)-binding peptide for improving the cognitive decline of Alzheimer's disease in APP/PS1 transgenic mice by inhibiting Zn 2+-mediated amyloid protein aggregation and neurotoxicity. Biomater Sci 2020; 7:5197-5210. [PMID: 31588929 DOI: 10.1039/c9bm00676a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zn2+ has been implicated in the progression of Alzheimer's disease (AD), as amyloid-β protein (Aβ) aggregation and neurotoxicity are mediated by zinc ions. Therefore, development of metal chelators for inhibiting and regulating metal-triggered Aβ aggregation has received attention as a strategy for treating AD. Here, we used an approach based on phage display to screen for a Zn(ii)-binding peptide that specifically blocks Zn-triggered Aβ aggregation. A fixed Zn(ii) resin was prepared using Ni-IDA affinity resin, and the target Zn(ii) was screened by interaction with a heptapeptide phage library. After negative biopanning against IDA and four rounds of positive biopanning against Zn(ii), high specificity Zn(ii)-binding phages were obtained. Through DNA sequencing and ELISA, 15 sets of Zn(ii)-binding peptides with high histidine contents were identified. We chose a highly specific peptide against Zn(ii) with the sequence of H-M-Q-T-N-H-H, and its abilities to chelate Zn2+ and inhibit Zn2+-mediated Aβ aggregation were assessed in vitro. We loaded the Zn(ii)-binding peptide onto PEG-modified chitosan nanoparticles (NPs) to improve the stability and the bioavailability of the Zn(ii) binding peptide. PEG-modified chitosan NPs loaded with Zn(ii)-binding peptide (PEG/PZn-CS NPs) reduced Zn2+ concentrations and Aβ secretion in mouse neuroblastoma (N)2a cells stably over-expressing the APP Swedish mutation (N2aswe). Zn2+-Induced neurotoxicity, oxidative stress, and apoptosis were attenuated by PEG/PZn-CS NPs. Intranasal administration of PEG/PZn-CS NPs improved the cognitive ability of APPswe/PS1d9 (APP/PS1) double-transgenic mice and reduced Aβ plaques in the mouse brain. This study indicated that a Zn(ii)-binding peptide and its NPs have promise as a potential anti-AD agent.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Du J, Li S, Su Y, Wang H, Liu H, Cui H. The role of extracellular matrix metalloproteinase inducer on the action of dihydrotestosterone against the cellular damage induced by Aβ 42. Mol Cell Endocrinol 2019; 498:110536. [PMID: 31401349 DOI: 10.1016/j.mce.2019.110536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 11/24/2022]
Abstract
Clinical studies have revealed that the risk of Alzheimer's disease (AD) in men is increased by age-related androgen depletion. The level of β-amyloid (Aβ) is elevated in the brains of AD patients, and Aβ is believed to play a critical role in the pathology of AD. Some studies have indicated that androgens affect AD risk by regulating the metabolism of Aβ by an unclear mechanism. In this study, we investigated the role of the extracellular matrix metalloproteinase inducer (CD147) in this action. Initially, we demonstrated that androgens positively regulate the expression of CD147 in adult male rats and SH-SY5Y cells. Furthermore, this regulation may involve androgen receptor (AR). Additionally, interference of CD147 expression decreased the clearance of Aβ in culture medium and reduced cell viability. It also affected the morphology of the cells and the expression of apoptosis-related proteins. Finally, we found that interference of CD147 expression blocked the dihydrotestosterone (DHT)-induced reduction in Aβ and the protection of cells. DHT regulates MMP-2's expression through CD147. Together, these results imply that androgen regulation of Aβ and cell protection may be affected by interfering with the expression of CD147.
Collapse
Affiliation(s)
- Juan Du
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China
| | - Yuhong Su
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Haidong Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Hanjie Liu
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Human Brain Bank, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
16
|
Yakupova EI, Bobylev AG, Bobyleva LG, Vikhlyantsev IM. Study of the complement activation by amyloid aggregates of smooth muscle titin in vitro. J Immunoassay Immunochem 2019; 41:132-143. [PMID: 31744373 DOI: 10.1080/15321819.2019.1694943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The giant muscle protein, titin, is the third most abundant protein in muscle (after myosin and actin). It was shown previously that smooth muscle titin (SMT) with a molecular mass of 500 kDa can form in vitro amorphous amyloid aggregates in two conditions: in solution of low ionic strength (0.15 M Glycine-KOH, pH 7.0) (SMT(Gly) aggregates) and in solution with ionic strength in the physiological range (0.2 M KCl, 20 mM imidazole, pH 7.2-7.4) (SMT(KCl) aggregates). Such aggregation in vivo, which may play a pathological or functional role, is not excluded. In view of the fact that some pathological amyloids can activate the classical and alternative pathways of complement system, we investigated the binding of complement component C1q and C3b to smooth muscle titin amyloid aggregates. The binding of С1q and C3b to SMT aggregates was not observed with ELISA assay. Since SMT aggregates do not activate the complement system, they are hardly implicated in the inflammatory process caused by muscle damage in amyloidoses.Abbreviations: SMT: smooth muscle titin; SMT(KCl) aggregates: SMT aggregates in solution containing 0.2 M KCl, 10 mM imidazole, pH 7.0; SMT(Gly) aggregates: SMT aggregates in solution containing 0.15 M glycine-KOH, pH 7.2-7.4; MAC: membrane attack complex; DLS: dynamic light scattering; NHS: Normal Human Serum.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Alexander G Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.,Faculty of Biophysics and medicobiological sciences, Pushchino State Institute of Natural Sciences, Pushchino, Russia
| | - Liya G Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Ivan M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.,Faculty of Biophysics and medicobiological sciences, Pushchino State Institute of Natural Sciences, Pushchino, Russia
| |
Collapse
|
17
|
Hatakawa Y, Nakamura R, Konishi M, Sakane T, Saito M, Akizawa T. Catalytides derived from the Box A region in the ANA/BTG3 protein cleave amyloid-β fragment peptide. Heliyon 2019; 5:e02454. [PMID: 31687556 PMCID: PMC6819762 DOI: 10.1016/j.heliyon.2019.e02454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/25/2019] [Accepted: 09/06/2019] [Indexed: 01/25/2023] Open
Abstract
We have recently reported about shorter proteolytic peptides termed Catalytide as general name. JAL-TA9 (YKGSGFRMI), a fragment peptide derived from Box A region of Tob1 protein, is the first Catalytide and cleaves Aβ42 and its fragment peptides. Herein, we demonstrate the enzymatic properties of ANA-TA9 corresponding region to JAL-TA9 in ANA/BTG3 protein. ANA-TA9 showed the auto-proteolytic activity and cleaved 3 kinds of synthetic fragment peptides derived from Aβ42, especially on the central region of Aβ42 with a serine protease like activity. Interestingly, 2 kinds of components, ANA-SA5 (SKGQA) and ANA-YA4 (YRMI), also showed similar proteolytic activity. These results indicate that ANA-TA9 is composed of two different Catalytides.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada, Kobe, 658-8558, Japan
| | - Rina Nakamura
- O-Force Co., Ltd, 3454 Irino Kuroshio-cho, Hata-gun, Kochi 789-1931, Japan
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-0047, Japan
| | - Motomi Konishi
- Laboratory of Clinical Analytical Chemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Toshiyasu Sakane
- Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada, Kobe, 658-8558, Japan
| | - Motoaki Saito
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-0047, Japan
| | - Toshifumi Akizawa
- O-Force Co., Ltd, 3454 Irino Kuroshio-cho, Hata-gun, Kochi 789-1931, Japan
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-0047, Japan
| |
Collapse
|
18
|
Liu Y, Nguyen M, Robert A, Meunier B. Metal Ions in Alzheimer's Disease: A Key Role or Not? Acc Chem Res 2019; 52:2026-2035. [PMID: 31274278 DOI: 10.1021/acs.accounts.9b00248] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite tremendous research efforts in universities and pharmaceutical companies, effective drugs are still lacking for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease have not yet been clearly understood. Besides a small percentage of cases with early onset disease having a genetic origin (<5%, familial AD), most cases develop in the elderly as a sporadic form due to multiple and complex parameters of aging. Consequently, AD is spreading in all countries with a long life expectancy. AD is characterized by deposition of senile plaques made of β-amyloid proteins (Aβ) and by hyperphosphorylation of tau proteins, which have been considered as the main drug targets up to now. However, antibodies targeting amyloid aggregates, as well as enzyme inhibitors aiming to modify the amyloid precursor protein processing, have failed to improve cognition in clinical trials. Thus, to set up effective drugs, it is urgent to enlarge the panel of drug targets. Evidence of the link between AD and redox metal dysregulation has also been supported by post-mortem analyses of amyloid plaques, which revealed accumulation of copper, iron, and zinc by 5.7, 2.8, and 3.1 times, respectively, the levels observed in normal brains. Copper-amyloid complexes, in the presence of endogenous reductants, are able to catalyze the reduction of dioxygen and to produce reduced, reactive oxygen species (ROS), leading to neuron death. The possibility of using metal chelators to regenerate normal trafficking of metal ions has been considered as a promising strategy in order to reduce the redox stress lethal for neurons. However, most attempts to use metal chelators as therapeutic agents have been limited to existing molecules available from the shelves. Very few chelators have resulted from a rational design aiming to create drugs with a safety profile and able to cross the blood-brain barrier after an oral administration. In the human body, metals are handled by a sophisticated protein network to strictly control their transport and reactivity. Abnormal concentrations of certain metals may lead to pathological events due to misaccumulation and irregular reactivity. Consequently, therapeutic attempts to restore metal homeostasis should carefully take into account the coordination chemistry specificities of the concerned redox-active metal ions. This Account is focused on the role of the main biologically redox-active transition metals, iron and copper. For iron, the recent debate on the possible role of magnetite in AD pathogenesis is presented. The section devoted to copper is focused on the design of specific copper chelators as drug candidates able to regulate copper homeostasis and to reduce the oxidative damage responsible for the neuron death observed in AD brains. A short survey on non-redox-active metal ions is also included at the beginning, such as aluminum and its controversial role in AD and zinc which is a key metal ion in the brain.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
- Laboratoire de Chimie de Coordination du CNRS (LCC−CNRS), Université de Toulouse, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| |
Collapse
|
19
|
Goyal D, Kaur A, Goyal B. Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer's Disease. ChemMedChem 2018; 13:1275-1299. [DOI: 10.1002/cmdc.201800156] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala 147004 Punjab India
| |
Collapse
|
20
|
Mital M, Bal W, Frączyk T, Drew SC. Interplay between Copper, Neprilysin, and N-Truncation of β-Amyloid. Inorg Chem 2018; 57:6193-6197. [PMID: 29774745 DOI: 10.1021/acs.inorgchem.8b00391] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sporadic Alzheimer's disease (AD) is associated with an inefficient clearance of the β-amyloid (Aβ) peptide from the central nervous system. The protein levels and activity of the Zn2+-dependent endopeptidase neprilysin (NEP) inversely correlate with brain Aβ levels during aging and in AD. The present study considered the ability of Cu2+ ions to inhibit human recombinant NEP and the role for NEP in generating N-truncated Aβ fragments with high-affinity Cu2+ binding motifs that can prevent this inhibition. Divalent copper noncompetitively inhibited NEP ( Ki = 1.0 μM), while proteolysis of Aβ yielded the soluble, Aβ4-9 fragment that can bind Cu2+ with femtomolar affinity at pH 7.4. This provides Aβ4-9 with the potential to act as a Cu2+ carrier and to mediate its own production by preventing NEP inhibition. Enzyme inhibition at high Zn2+ concentrations ( Ki = 20 μM) further suggests a mechanism for modulating NEP activity, Aβ4-9 production, and Cu2+ homeostasis.
Collapse
Affiliation(s)
- Mariusz Mital
- Florey Department of Neuroscience and Mental Health , The University of Melbourne , Melbourne , Victoria 3010 , Australia.,Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland
| | - Tomasz Frączyk
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Warsaw , Poland.,Department of Immunology, Transplantology and Internal Medicine , Medical University of Warsaw , Warsaw , Poland
| | - Simon C Drew
- Department of Medicine (Royal Melbourne Hospital) , The University of Melbourne , Melbourne , Victoria 3010 , Australia
| |
Collapse
|
21
|
NBD-BPEA regulates Zn 2+- or Cu 2+-induced Aβ 40 aggregation and cytotoxicity. Food Chem Toxicol 2018; 119:260-267. [PMID: 29596976 DOI: 10.1016/j.fct.2018.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 11/21/2022]
Abstract
Abnormal interaction of amyloid-β peptide (Aβ) and metal ions is proved to be related to the etiology of Alzheimer's disease (AD). Using metal chelators to reverse metal-triggered Aβ aggregation has become one of the potential therapies for AD. In our work, the effect of metal chelator, NBD-BPEA, on Zn2+- or Cu2+-mediated Aβ40 aggregation and neurotoxicity has been systematically studied. NBD-BPEA exhibits the capability to inhibit the metal-mediated Aβ40 aggregation and disassemble performed Aβ40 aggregates. It also prevents the formation of the β-sheet structure and promotes the reversion of the β-sheet to the normal random coil conformation. Moreover, it can alleviate Zn2+- or Cu2+-Aβ40-induced neurotoxicity, suppress the intracellular ROS and protect against cell apoptosis. These preliminary findings indicate that NBD-BPEA has promising perspective of application in the treatment of AD, and therefore deserve further investigation as potential anti-AD agents.
Collapse
|
22
|
Pharmacodynamics in Alzheimer's disease model rats of a bifunctional peptide with the potential to accelerate the degradation and reduce the toxicity of amyloid β-Cu fibrils. Acta Biomater 2018; 65:327-338. [PMID: 29111371 DOI: 10.1016/j.actbio.2017.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
The accumulation of the extracellular β-amyloid (Aβ) aggregates with metal ions in conjunction with reactive oxygen species (ROS) is closely related to the pathogenesis of Alzheimer's disease (AD). Accounting on Cu ions chelating of our previously designed bifunctional peptide GGHRYYAAFFARR (GR) as well as Aβ-Cu fibrils (fAβ-Cu) dissociation potentials, we report herein an efficient route to synthetically minimize ROS toxicity and degrade fAβ-Cu. It is worth mentioning that GR combines the metal chelating agent GGH and β-sheet breaker RYYAAFFARR (RR). The in vitro results have showed that GR disassociates fAβ-Cu into smaller fragments (sAβ-Cu, 150-200 nm), easily assimilated by PC12 cell and subsequently degraded in the lysosomes; GR can also suppress the ROS generated by fAβ-Cu. The viability of PC12 cell treated with fAβ-Cu has increased, from 38% to about 70% after administration of GR, overwhelming the GGH chelator (46%) and single functional peptide RR (48%). The in vivo results indicated that GR has efficiently reduced Aβ deposition, ameliorated neurologic changes and rescued memory loss, thus, enhancing the cognitive and spatial memory in a AD rat model. This study confirms the superior effect of GR and paves the way toward its future employment in large scale AD treatment. STATEMENT OF SIGNIFICANCE We have focused on accelerating the degradation of fAβ-Cu as well as synthetically reducing the ROS toxicity by GR, and, consequently, its benefits in vivo. The bifunctional peptide GR can not only disaggregate fAβ-Cu into smaller fragments to facilitate uptake and degradation by PC12 cell, but also suppresses the ROS generated by fAβ-Cu. Thus, the viability of PC12 cell treated with fAβ-Cu has increased from 38% to 70% after GR administration, overwhelming GGH (46%) and RR (48%). The in vivo studies have revealed that GR improves the spatial memory ability and reduce the amount of senile plaques within brain of AD model rats. Thus, we suppose the bifunctional inhibitor GR has good application prospects in the treatment of AD treatment.
Collapse
|
23
|
Li Y, Jiao Q, Xu H, Du X, Shi L, Jia F, Jiang H. Biometal Dyshomeostasis and Toxic Metal Accumulations in the Development of Alzheimer's Disease. Front Mol Neurosci 2017; 10:339. [PMID: 29114205 PMCID: PMC5660707 DOI: 10.3389/fnmol.2017.00339] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Biometal dyshomeostasis and toxic metal accumulation are common features in many neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s disease. The neurotoxic effects of metal imbalance are generally associated with reduced enzymatic activities, elevated protein aggregation and oxidative stress in the central nervous system, in which a cascade of events lead to cell death and neurodegeneration. Although the links between biometal imbalance and neurodegenerative disorders remain elusive, a major class of endogenous proteins involved in metal transport has been receiving increasing attention over recent decades. The abnormal expression of these proteins has been linked to biometal imbalance and to the pathogenesis of AD. Here, we present a brief overview of the physiological roles of biometals including iron, zinc, copper, manganese, magnesium and calcium, and provide a detailed description of their transporters and their synergistic involvement in the development of AD. In addition, we also review the published data relating to neurotoxic metals in AD, including aluminum, lead, cadmium, and mercury.
Collapse
Affiliation(s)
- Yong Li
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Qian Jiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Xixun Du
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Limin Shi
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Fengju Jia
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Hong Jiang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, Medical College of Qingdao University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Taniguchi M, Matsuura K, Nakamura R, Kojima A, Konishi M, Akizawa T. MMP-7 cleaves amyloid β fragment peptides and copper ion inhibits the degradation. Biometals 2017; 30:797-807. [DOI: 10.1007/s10534-017-0048-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
|
25
|
Drew SC. The Case for Abandoning Therapeutic Chelation of Copper Ions in Alzheimer's Disease. Front Neurosci 2017; 11:317. [PMID: 28626387 PMCID: PMC5455140 DOI: 10.3389/fnins.2017.00317] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/18/2017] [Indexed: 12/26/2022] Open
Abstract
The "therapeutic chelation" approach to treating Alzheimer's disease (AD) evolved from the metals hypothesis, with the premise that small molecules can be designed to prevent transition metal-induced amyloid deposition and oxidative stress within the AD brain. Over more than 20 years, countless in vitro studies have been devoted to characterizing metal binding, its effect on Aβ aggregation, ROS production, and in vitro toxicity. Despite a lack of evidence for any clinical benefit, the conjecture that therapeutic chelation is an effective approach for treating AD remains widespread. Here, the author plays the devil's advocate, questioning the experimental evidence, the dogma, and the value of therapeutic chelation, with a major focus on copper ions.
Collapse
Affiliation(s)
- Simon C. Drew
- Department of Medicine, Royal Melbourne Hospital, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
26
|
Wang P, Wang ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res Rev 2017; 35:265-290. [PMID: 27829171 DOI: 10.1016/j.arr.2016.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a common form of dementia in aged people, which is defined by two pathological characteristics: β-amyloid protein (Aβ) deposition and tau hyperphosphorylation. Although the mechanisms of AD development are still being debated, a series of evidence supports the idea that metals, such as copper, iron, zinc, magnesium and aluminium, are involved in the pathogenesis of the disease. In particular, the processes of Aβ deposition in senile plaques (SP) and the inclusion of phosphorylated tau in neurofibrillary tangles (NFTs) are markedly influenced by alterations in the homeostasis of the aforementioned metal ions. Moreover, the mechanisms of oxidative stress, synaptic plasticity, neurotoxicity, autophagy and apoptosis mediate the effects of metal ions-induced the aggregation state of Aβ and phosphorylated tau on AD development. More importantly, imbalance of these mechanisms finally caused cognitive decline in different experiment models. Collectively, reconstructing the signaling network that regulates AD progression by metal ions may provide novel insights for developing chelators specific for metal ions to combat AD.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| |
Collapse
|
27
|
Shi H, Kang B, Lee JY. Tautomeric Effect of Histidine on the Monomeric Structure of Amyloid β-Peptide(1–40). J Phys Chem B 2016; 120:11405-11411. [DOI: 10.1021/acs.jpcb.6b08685] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hu Shi
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Baotao Kang
- Department
of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jin Yong Lee
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
28
|
Metals in Alzheimer’s and Parkinson’s Disease: Relevance to Dementia with Lewy Bodies. J Mol Neurosci 2016; 60:279-288. [DOI: 10.1007/s12031-016-0809-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022]
|
29
|
Unzeta M, Esteban G, Bolea I, Fogel WA, Ramsay RR, Youdim MBH, Tipton KF, Marco-Contelles J. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease. Front Neurosci 2016; 10:205. [PMID: 27252617 PMCID: PMC4879129 DOI: 10.3389/fnins.2016.00205] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL) based on the "one molecule, multiple targets" paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory, and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine, or 8-hydroxyquinoline) with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Gerard Esteban
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Rona R. Ramsay
- Biomolecular Sciences, Biomedical Sciences Research Complex, University of St AndrewsSt. Andrews, UK
| | - Moussa B. H. Youdim
- Department of Pharmacology, Ruth and Bruce Rappaport Faculty of Medicine, Eve Topf and National Parkinson Foundation Center for Neurodegenerative Diseases ResearchHaifa, Israel
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, Spanish National Research CouncilMadrid, Spain
| |
Collapse
|
30
|
Porter MR, Zaleski JM. The role of ligand covalency in the selective activation of metalloenediynes for Bergman cyclization. Polyhedron 2016; 103:187-195. [PMID: 28931964 PMCID: PMC5602562 DOI: 10.1016/j.poly.2015.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One of the key concerns with the development of radical-generating reactive therapeutics is the ability to control the activation event within a biological environment. To that end, a series of quinoline-metal-loenediynes of the form M(QuiED)·2Cl (M = Cu(II), Fe(II), Mg(II), or Zn(II)) and their independently synthesized cyclized analogs have been prepared in an effort to elucidate Bergman cyclization (BC) reactivity differences in solution. HRMS(ESI) establishes a solution stoichiometry of 1:1 metal to ligand with coordination of one chloride counter ion to the metal center. EPR spectroscopy of Cu(QuiED)·2Cl and Cu (QuiBD)·2Cl denotes an axially-elongated tetragonal octahedron (g║ > g⊥ > 2.0023) with a dx2-y2 ground state, while the electronic absorption spectrum reveals a pπ Cl→Cu(II) LMCT feature at 19,000 cm -1, indicating a solution structure with three nitrogens and a chloride in the equatorial plane with the remaining quinoline nitrogen and solvent in the axial positions. Investigations into the BC activity reveal formation of the cyclized product from the Cu(II) and Fe(II) complexes after 12 h at 45 °C in solution, while no product is observed for the Mg(II) or Zn(II) complexes under identical conditions. The basis of this reactivity difference has been found to be a steric effect leading to metal-ligand bond elongation and thus, a retardation of solution reactivity. These results demonstrate how careful consideration of ligand and complex structure may allow for a degree of control and selective activation of these reactive agents.
Collapse
Affiliation(s)
- Meghan R. Porter
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Jeffrey M. Zaleski
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
31
|
Muthuraj B, Layek S, Balaji SN, Trivedi V, Iyer PK. Multiple function fluorescein probe performs metal chelation, disaggregation, and modulation of aggregated Aβ and Aβ-Cu complex. ACS Chem Neurosci 2015; 6:1880-91. [PMID: 26332658 DOI: 10.1021/acschemneuro.5b00205] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An exceptional probe comprising indole-3-carboxaldehyde fluorescein hydrazone (FI) performs multiple tasks, namely, disaggregating amyloid β (Aβ) aggregates in different biomarker environments such as cerebrospinal fluid (CSF), Aβ1-40 fibrils, β-amyloid lysozyme aggregates (LA), and U87 MG human astrocyte cells. Additionally, the probe FI binds with Cu(2+) ions selectively, disrupts the Aβ aggregates that vary from few nanometers to micrometers, and prevents their reaggregation, thereby performing disaggregation and modulation of amyloid-β in the presence as well as absence of Cu(2+) ion. The excellent selectivity of probe FI for Cu(2+) was effectively utilized to modulate the assembly of metal-induced Aβ aggregates by metal chelation with the "turn-on" fluorescence via spirolactam ring opening of FI as well as the metal-free Aβ fibrils by noncovalent interactions. These results confirm that FI has exceptional ability to perform multifaceted tasks such as metal chelation in intracellular conditions using Aβ lysozyme aggregates in cellular environments by the disruption of β-sheet rich Aβ fibrils into disaggregated forms. Subsequently, it was confirmed that FI had the ability to cross the blood-brain barrier and it also modulated the metal induced Aβ fibrils in cellular environments by "turn-on" fluorescence, which are the most vital properties of a probe or a therapeutic agent. Furthermore, the morphology changes were examined by atomic force microscopy (AFM), polarizable optical microscopy (POM), fluorescence microscopy, and dynamic light scattering (DLS) studies. These results provide very valuable clues on the Aβ (CSF Aβ fibrils, Aβ1-40 fibrils, β-amyloid lysozyme aggregates) disaggregation behavior via in vitro studies, which constitute the first insights into intracellular disaggregation of Aβ by "turn-on" method thereby influencing amyloidogenesis.
Collapse
Affiliation(s)
- B. Muthuraj
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - Sourav Layek
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - S. N. Balaji
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| |
Collapse
|
32
|
Wang Z, Wang Y, Wang B, Li W, Huang L, Li X. Design, Synthesis, and Evaluation of Orally Available Clioquinol-Moracin M Hybrids as Multitarget-Directed Ligands for Cognitive Improvement in a Rat Model of Neurodegeneration in Alzheimer’s Disease. J Med Chem 2015; 58:8616-37. [DOI: 10.1021/acs.jmedchem.5b01222] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhiren Wang
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yali Wang
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bo Wang
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenrui Li
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Huang
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xingshu Li
- School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
33
|
Altman R, Ly S, Hilt S, Petrlova J, Maezawa I, Kálai T, Hideg K, Jin LW, Laurence TA, Voss JC. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1860-1870. [PMID: 26374940 DOI: 10.1016/j.bbapap.2015.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/20/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. Furthermore, the circular dichroism (CD) spectrum of untreated Aβ shows a continuous, progressive change over a 24-hour period, while the spectrum of Aβ treated with SLF remains relatively constant following initial incubation. These findings suggest the conformation of Aβ within the oligomer provides a complementary determinant of Aβ toxicity in addition to oligomer growth and size. Although SLF does not produce a dominant state of secondary structure in Aβ, it does induce a net reduction in beta secondary content compared to untreated samples of Aβ. The FCS results, combined with electron paramagnetic resonance spectroscopy and CD spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers, while retaining Aβ as a population of smaller, yet largely disordered oligomers.
Collapse
Affiliation(s)
- Robin Altman
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis CA 95616, USA
| | - Sonny Ly
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore CA 94550, USA
| | - Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis CA 95616, USA
| | - Jitka Petrlova
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis CA 95616, USA
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento CA 95817, USA
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Lee-Way Jin
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento CA 95817, USA
| | - Ted A Laurence
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore CA 94550, USA
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis CA 95616, USA.
| |
Collapse
|
34
|
Robert A, Liu Y, Nguyen M, Meunier B. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease. Acc Chem Res 2015; 48:1332-9. [PMID: 25946460 DOI: 10.1021/acs.accounts.5b00119] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that do not efficiently extract copper from soluble amyloids. We have designed and developed new tetradendate ligands such as 21 and PA1637 based on bis(8-aminoquinolines) that are specific for copper chelation and are able to extract copper(II) from amyloids and then can release copper ion upon reduction with a biological reducing agent. These studies contribute to the understanding of the physicochemical properties of the tetradentate copper ligands compared with bidentate ligands like clioquinol. One of these copper ligands, PA1637, after selection with a nontransgenic mouse model that is able to efficiently monitor the loss of episodic memory, is currently under preclinical development.
Collapse
Affiliation(s)
- Anne Robert
- Laboratoire
de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Yan Liu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, P. R. China
| | - Michel Nguyen
- Laboratoire
de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
| | - Bernard Meunier
- Laboratoire
de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077 cedex 4 Toulouse, France
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
35
|
Zhang Q, Liu J, Hu X, Wang W, Yuan Z. In Vitro Studies on Accelerating the Degradation and Clearance of Amyloid-β Fibrils by an Antiamyloidogenic Peptide. ACS Macro Lett 2015; 4:339-342. [PMID: 35596317 DOI: 10.1021/acsmacrolett.5b00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The clearance of overloaded amyloid-β (Aβ) species, especially the toxic aggregates, was thought to be an attractive and promising strategy for Alzheimer's disease (AD) therapy in the past decade. In this work, an active Aβ inhibitor decapeptide RR was used to transform mature Aβ fibrils (fAβ) into nanorod-like Aβ assemblies (rAβ) as well as loosen the β-structure of rAβ. Compared with fAβ, rAβ could be engulfed by PC12 cells more efficiently and showed a 1.46-fold difference. More importantly, the rAβ was colocated with lysosomes after endocytosis, and in vitro study illustrated that rAβ were easily degraded by lysosome protease cathepsin B when compared with the fibrils. Thus, our study indicated the potential application of RR in Aβ fibrils clearance by a cell-participated and enzyme-mediated pathway.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Jing Liu
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Xiaoyu Hu
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| | - Zhi Yuan
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Hernandez-Guillamon M, Mawhirt S, Blais S, Montaner J, Neubert TA, Rostagno A, Ghiso J. Sequential Amyloid-β Degradation by the Matrix Metalloproteases MMP-2 and MMP-9. J Biol Chem 2015; 290:15078-91. [PMID: 25897080 DOI: 10.1074/jbc.m114.610931] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 01/11/2023] Open
Abstract
Matrix metalloproteases (MMPs) MMP-2 and MMP-9 have been implicated in the physiological catabolism of Alzheimer's amyloid-β (Aβ). Conversely, their association with vascular amyloid deposits, blood-brain barrier disruption, and hemorrhagic transformations after ischemic stroke also highlights their involvement in pathological processes. To better understand this dichotomy, recombinant human (rh) MMP-2 and MMP-9 were incubated with Aβ40 and Aβ42, and the resulting proteolytic fragments were assessed via immunoprecipitation and quantitative mass spectrometry. Both MMPs generated Aβ fragments truncated only at the C terminus, ending at positions 34, 30, and 16. Using deuterated homologues as internal standards, we observed limited and relatively slow degradation of Aβ42 by rhMMP-2, although the enzyme cleaved >80% of Aβ40 during the 1st h of incubation. rhMMP-9 was significantly less effective, particularly in degrading Aβ(1-42), although the targeted peptide bonds were identical. Using Aβ(1-34) and Aβ(1-30), we demonstrated that these peptides are also substrates for both MMPs, cleaving Aβ(1-34) to produce Aβ(1-30) first and Aβ(1-16) subsequently. Consistent with the kinetics observed with full-length Aβ, rhMMP-9 degraded only a minute fraction of Aβ(1-34) and was even less effective in producing Aβ(1-16). Further degradation of Aβ(1-16) by either MMP-2 or MMP-9 was not observed even after prolonged incubation times. Notably, all MMP-generated C-terminally truncated Aβ fragments were highly soluble and did not exhibit fibrillogenic properties or induce cytotoxicity in human cerebral microvascular endothelial or neuronal cells supporting the notion that these truncated Aβ species are associated with clearance mechanisms rather than being key elements in the fibrillogenesis process.
Collapse
Affiliation(s)
- Mar Hernandez-Guillamon
- From the Departments of Pathology, the Neurovascular Research Laboratory, Institut de Recerca, 08035 Barcelona, Spain
| | | | - Steven Blais
- Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, the Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, and
| | - Joan Montaner
- the Neurovascular Research Laboratory, Institut de Recerca, 08035 Barcelona, Spain, the Neurovascular Unit, Neurology and Medicine Departments, Universitat Autònoma de Barcelona, Vall d'Hebron Hospital, 08035 Barcelona, Spain
| | - Thomas A Neubert
- Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, the Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, and
| | | | - Jorge Ghiso
- From the Departments of Pathology, Psychiatry, and
| |
Collapse
|
37
|
Abstract
No disease modifying therapy exists for Alzheimer's disease (AD). The growing burden of this disease to our society necessitates continued investment in drug development. Over the last decade, multiple phase 3 clinical trials testing drugs that were designed to target established disease mechanisms of AD have all failed to benefit patients. There is, therefore, a need for new treatment strategies. Changes to the transition metals, zinc, copper, and iron, in AD impact on the molecular mechanisms of disease, and targeting these metals might be an alternative approach to treat the disease. Here we review how metals feature in molecular mechanisms of AD, and we describe preclinical and clinical data that demonstrate the potential for metal-based drug therapy.
Collapse
Affiliation(s)
- Scott Ayton
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, 3052 VIC Australia
| | - Peng Lei
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, 3052 VIC Australia
| | - Ashley I. Bush
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, 3052 VIC Australia
| |
Collapse
|
38
|
Ryan TM, Kirby N, Mertens HDT, Roberts B, Barnham KJ, Cappai R, Pham CLL, Masters CL, Curtain CC. Small angle X-ray scattering analysis of Cu2+-induced oligomers of the Alzheimer's amyloid β peptide. Metallomics 2015; 7:536-43. [DOI: 10.1039/c4mt00323c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research into causes of Alzheimer's disease and its treatment has produced a tantalising array of hypotheses about the role of transition metal dyshomeostasis, many of them on the interaction of these metals with the neurotoxic amyloid-β peptide (Aβ).
Collapse
Affiliation(s)
- Timothy M. Ryan
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
| | - Nigel Kirby
- SAXS/WAXS Beamline
- The Australian Synchrotron
- Clayton, Australia
| | | | - Blaine Roberts
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
| | - Kevin J. Barnham
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
| | - Roberto Cappai
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
- The University of Melbourne
- Victoria, Australia
| | - Chi Le Lan Pham
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
- The University of Melbourne
- Victoria, Australia
| | - Colin L. Masters
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
| | - Cyril C. Curtain
- University of Melbourne
- Florey Institute of Neuroscience and Mental Health
- Victoria 3010, Australia
- Department of Pathology
- Bio21 Molecular Science and Technology Institute
| |
Collapse
|
39
|
Porter MR, Kochi A, Karty JA, Lim MH, Zaleski JM. Chelation-induced diradical formation as an approach to modulation of the amyloid-β aggregation pathway. Chem Sci 2014; 6:1018-1026. [PMID: 29560189 PMCID: PMC5811126 DOI: 10.1039/c4sc01979b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022] Open
Abstract
Current approaches toward modulation of metal-induced Aβ aggregation pathways involve the development of small molecules that bind metal ions, such as Cu(ii) and Zn(ii), and interact with Aβ. For this effort, we present the enediyne-containing ligand (Z)-N,N'-bis[1-pyridin-2-yl-meth(E)-ylidene]oct-4-ene-2,6-diyne-1,8-diamine (PyED), which upon chelation of Cu(ii) and Zn(ii) undergoes Bergman-cyclization to yield diradical formation. The ability of this chelation-triggered diradical to modulate Aβ aggregation is evaluated relative to the non-radical generating control pyridine-2-ylmethyl-(2-{[(pyridine-2-ylmethylene)-amino]-methyl}-benzyl)-amine (PyBD). Variable-pH, ligand UV-vis titrations reveal pKa = 3.81(2) for PyBD, indicating it exists mainly in the neutral form at experimental pH. Lipinski's rule parameters and evaluation of blood-brain barrier (BBB) penetration potential by the PAMPA-BBB assay suggest that PyED may be CNS+ and penetrate the BBB. Both PyED and PyBD bind Zn(ii) and Cu(ii) as illustrated by bathochromic shifts of their UV-vis features. Speciation diagrams indicate that Cu(ii)-PyBD is the major species at pH 6.6 with a nanomolar Kd, suggesting the ligand may be capable of interacting with Cu(ii)-Aβ species. In the presence of Aβ40/42 under hyperthermic conditions (43 °C), the radical-generating PyED demonstrates markedly enhanced activity (2-24 h) toward the modulation of Aβ species as determined by gel electrophoresis. Correspondingly, transmission electron microscopy images of these samples show distinct morphological changes to the fibril structure that are most prominent for Cu(ii)-Aβ cases. The loss of CO2 from the metal binding region of Aβ in MALDI-TOF mass spectra further suggests that metal-ligand-Aβ interaction with subsequent radical formation may play a role in the aggregation pathway modulation.
Collapse
Affiliation(s)
- Meghan R Porter
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , USA .
| | - Akiko Kochi
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , USA.,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798 , Korea .
| | - Jonathan A Karty
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , USA .
| | - Mi Hee Lim
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798 , Korea . .,Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , USA
| | - Jeffrey M Zaleski
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , USA .
| |
Collapse
|
40
|
Matrix metalloproteinases and their multiple roles in Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:908636. [PMID: 25050378 PMCID: PMC4094696 DOI: 10.1155/2014/908636] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Pathological changes in the AD brain include amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), as well as neuronal death and synaptic loss. Matrix metalloproteinases (MMPs) play an important role as inflammatory components in the pathogenesis of AD. MMP-2 might be assumed to have a protective role in AD and is the major MMP which is directly linked to Aβ in the brain. Synthesis of MMP-9 can be induced by Aβ, and the enzymes appear to exert multiple effects in AD in senile plaque homoeostasis. The proaggregatory influence on tau oligomer formation in strategic brain regions may be a potential neurotoxic side effect of MMP-9. MMP-3 levels are correlated to the duration of AD and correlate with the CSF T-tau and P-tau levels in the elderly controls. Elevated brain levels of MMP-3 might result in increased MMP-9 activity and indirectly facilitate tau aggregation. At present, the clinical utility of these proteins, particularly in plasma or serum, as potential early diagnostic biomarkers for AD remains to be established. More research is needed to understand the diverse roles of these proteases to design specific drugs and devise therapeutic strategies for AD.
Collapse
|
41
|
Wong BX, Hung YH, Bush AI, Duce JA. Metals and cholesterol: two sides of the same coin in Alzheimer's disease pathology. Front Aging Neurosci 2014; 6:91. [PMID: 24860500 PMCID: PMC4030154 DOI: 10.3389/fnagi.2014.00091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/28/2014] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed.
Collapse
Affiliation(s)
- Bruce X Wong
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - James A Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia ; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, North Yorkshire, UK
| |
Collapse
|
42
|
The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Baranger K, Rivera S, Liechti FD, Grandgirard D, Bigas J, Seco J, Tarrago T, Leib SL, Khrestchatisky M. Endogenous and synthetic MMP inhibitors in CNS physiopathology. PROGRESS IN BRAIN RESEARCH 2014; 214:313-51. [DOI: 10.1016/b978-0-444-63486-3.00014-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Grimm MOW, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, Hartmann T. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer's Disease. Front Aging Neurosci 2013; 5:98. [PMID: 24391587 PMCID: PMC3870290 DOI: 10.3389/fnagi.2013.00098] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/09/2013] [Indexed: 12/18/2022] Open
Abstract
One of the characteristic hallmarks of Alzheimer's disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Experimental Neurology, Saarland University , Homburg, Saar , Germany ; Neurodegeneration and Neurobiology, Saarland University , Homburg, Saar , Germany ; Deutsches Institut für DemenzPrävention, Saarland University , Homburg, Saar , Germany
| | - Janine Mett
- Experimental Neurology, Saarland University , Homburg, Saar , Germany
| | | | | | - Valerie C Zimmer
- Experimental Neurology, Saarland University , Homburg, Saar , Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University , Homburg, Saar , Germany ; Neurodegeneration and Neurobiology, Saarland University , Homburg, Saar , Germany ; Deutsches Institut für DemenzPrävention, Saarland University , Homburg, Saar , Germany
| |
Collapse
|
45
|
Aliani M, Udenigwe CC, Girgih AT, Pownall TL, Bugera JL, Eskin MNA. Aroma and taste perceptions with Alzheimer disease and stroke. Crit Rev Food Sci Nutr 2013; 53:760-9. [PMID: 23638935 DOI: 10.1080/10408398.2011.559557] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemosensory disorders of smell or taste in humans have been attributed to various physiological and environmental factors including aging and disease conditions. Aroma and taste greatly condition our food preference, selection and, consumption; the decreased appetite in patients with known neurodegenerative diseases may lead to dietary restrictions that could negatively impact nutritional and health status. The decline in olfactory and gustatory systems in patients with Alzheimer disease and various types of stroke are described.
Collapse
Affiliation(s)
- Michel Aliani
- Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1157-78. [PMID: 24115839 PMCID: PMC3793592 DOI: 10.2147/dddt.s49763] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal ions play an important role in biological processes and in metal homeostasis. Metal imbalance is the leading cause for many neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. 8-Hydroxyquinoline (8HQ) is a small planar molecule with a lipophilic effect and a metal chelating ability. As a result, 8HQ and its derivatives hold medicinal properties such as antineurodegenerative, anticancer, antioxidant, antimicrobial, anti-inflammatory, and antidiabetic activities. Herein, diverse bioactivities of 8HQ and newly synthesized 8HQ-based compounds are discussed together with their mechanisms of actions and structure–activity relationships.
Collapse
Affiliation(s)
- Veda Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Bangkok, Thailand
| | | | | | | |
Collapse
|
47
|
Ayton S, Lei P, Bush AI. Metallostasis in Alzheimer's disease. Free Radic Biol Med 2013; 62:76-89. [PMID: 23142767 DOI: 10.1016/j.freeradbiomed.2012.10.558] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022]
Abstract
2012 has been another year in which multiple large-scale clinical trials for Alzheimer's disease (AD) have failed to meet their clinical endpoints. With the social and financial burden of this disease increasing every year, the onus is now on the field of AD researchers to investigate alternative ideas to deliver outcomes for patients. Although several major clinical trials targeting Aβ have failed, three smaller clinical trials targeting metal interactions with Aβ have all shown benefit for patients. Here we review the genetic, pathological, biochemical, and pharmacological evidence that underlies the metal hypothesis of AD. The AD-affected brain suffers from metallostasis, or fatigue of metal trafficking, resulting in redistribution of metals into inappropriate compartments. The metal hypothesis is built upon a triad of transition elements: iron, copper, and zinc. The hypothesis has matured from early investigations showing amyloidogenic and oxidative stress consequences of these metals; recently, disease-related proteins, APP, tau, and presenilin, have been shown to have major roles in metal regulation, which provides insight into the pathway of neurodegeneration in AD and illuminates potential new therapeutic avenues.
Collapse
Affiliation(s)
- Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peng Lei
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
48
|
Tiiman A, Palumaa P, Tõugu V. The missing link in the amyloid cascade of Alzheimer's disease - metal ions. Neurochem Int 2013; 62:367-78. [PMID: 23395747 DOI: 10.1016/j.neuint.2013.01.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 01/23/2023]
Abstract
Progressive deposition of amyloid beta (Aβ) peptides into amyloid plaques is the pathological hallmark of Alzheimer's disease (AD). The amyloid cascade hypothesis pins this deposition as the primary cause of the disease, but the mechanisms that causes this deposition remain elusive. An increasing amount of evidence shows that biometals Zn(II) and Cu(II) can interact with Aβ, thus influencing the fibrillization and toxicity. This review focuses on the role of Zn(II) and Cu(II) in AD, and revisits the amyloid cascade hypothesis demonstrating the possible roles of Zn(II) and Cu(II) in the disease pathogenesis.
Collapse
Affiliation(s)
- Ann Tiiman
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | | | | |
Collapse
|
49
|
Crouch PJ, Barnham KJ. Therapeutic redistribution of metal ions to treat Alzheimer's disease. Acc Chem Res 2012; 45:1604-11. [PMID: 22747493 DOI: 10.1021/ar300074t] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently, therapeutics that modify Alzheimer's disease (AD)are not available. Increasing age is the primary risk factor for AD and due to an aging global population the urgent need for effective therapeutics increases every year. This Account presents the development of an AD treatment strategy that incorporates diverse compounds with a common characteristic: the ability to redistribute metal ions within the brain. Central to cognitive decline in AD is the amyloid-β peptide (Aβ) that accumulates in the AD brain. A range of therapeutic strategies have been developed based on the premise that decreasing the brain Aβ burden will attenuate the severity of the disease symptoms. Unfortunately these treatments have failed to show any positive outcomes in large-scale clinical trials, raising many questions regarding whether therapeutics for AD can rely solely on decreasing Aβ levels. An alternate strategy is to target the interaction between Aβ and metal ions using compounds with the potential to redistribute metal ions within the brain. The original rationale for this strategy came from studies showing that metal ions promote Aβ toxicity and aggregation. In initial studies using the prototype metal-chelating compound clioquinol (CQ), CQ prevented Aβ toxicity in vitro, out-competed Aβ for metal ions without affecting the activity of metal-dependent enzymes, and attenuated the rate of cognitive decline in AD subjects in a small phase II clinical trial. All these outcomes were consistent with the original hypothesized mechanism of action for CQ where prevention or reversal of the extracellular Aβ-metal interactions could prevent Aβ toxicity. Soon after the completion of these studies, a new body of work began to suggest that this hypothesized mechanism of action for CQ was simplistic and that other factors were also important for the positive therapeutic outcomes. Perhaps most significantly, it was shown that after CQ sequesters metal ions the neutral CQ-metal complex crosses cell membranes to increase intracellular levels of the metals, thereby initiating protective cell signaling cascades. The activity of CQ therefore appeared to be two-fold: it prevented toxic interactions between Aβ and metal ions outside the cell, and it redistributed the metal ions into the cell to promote healthy cell function. To determine the significance of redistributing metal ions into the cell, glyoxalbis(N(4)-methylthiosemicarbazonato)Cu(II) [Cu(II)(gtsm)] was tested in models of AD. Cu(II)(gtsm) delivers Cu into cells, but, unlike CQ, it cannot out-compete Aβ for metal ions. When tested in AD model mice, the Cu(II)(gtsm) treatment restored cognitive function back to levels expected for cognitively healthy mice. The most advanced compound from this therapeutic strategy, PBT2, can sequester metal ions from Aβ and redistribute them into the cell like CQ. PBT2 improved cognition in a phase II clinical trial with AD patients, and further clinical testing is currently underway.
Collapse
Affiliation(s)
- Peter J. Crouch
- Mental Health Research Institute, Kenneth Myer Building, University of Melbourne, Victoria, Australia, 3010
| | - Kevin J. Barnham
- Mental Health Research Institute, Kenneth Myer Building, University of Melbourne, Victoria, Australia, 3010
| |
Collapse
|
50
|
Eskici G, Axelsen PH. Copper and Oxidative Stress in the Pathogenesis of Alzheimer’s Disease. Biochemistry 2012; 51:6289-311. [DOI: 10.1021/bi3006169] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gözde Eskici
- Departments of Pharmacology, Biochemistry and Biophysics,
and Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United
States
| | - Paul H. Axelsen
- Departments of Pharmacology, Biochemistry and Biophysics,
and Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|