1
|
Kawashima Y, Onishi Y, Tatarazako N, Yamamoto H, Koshio M, Oka T, Horie Y, Watanabe H, Nakamoto T, Yamamoto J, Ishikawa H, Sato T, Yamazaki K, Iguchi T. Summary of 17 chemicals evaluated by OECD TG229 using Japanese Medaka, Oryzias latipes in EXTEND 2016. J Appl Toxicol 2021; 42:750-777. [PMID: 34725835 PMCID: PMC9297976 DOI: 10.1002/jat.4255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 11/07/2022]
Abstract
In June 2016, the Ministry of the Environment of Japan announced a program "EXTEND2016" on the implementation of testing and assessment for endocrine active chemicals, consisting of a two-tiered strategy. The aim of the Tier 1 screening and the Tier 2 testing is to identify the impacts on the endocrine system and to characterize the adverse effects to aquatic animals by endocrine disrupting chemicals detected in the aquatic environment in Japan. For the consistent assessment of the effects on reproduction associated with estrogenic, anti-estrogenic, androgenic, and/or anti-androgenic activities of chemicals throughout Tier 1 screening to Tier 2 testing, a unified test species, Japanese medaka (Oryzias latipes), has been used. For Tier 1 screening, the in vivo Fish Short-Term Reproduction Assay (OECD test guideline No. 229) was conducted for 17 chemicals that were nominated based on the results of environmental monitoring, existing knowledge obtained from a literature survey, and positive results in reporter gene assays using the estrogen receptor of Japanese medaka. In the 17 assays using Japanese medaka, adverse effects on reproduction (i.e., reduction in fecundity and/or fertility) were suggested for 10 chemicals, and a significant increase of hepatic vitellogenin in males, indicating estrogenic (estrogen receptor agonistic) potency, was found for eight chemicals at the concentrations in which no overt toxicity was observed. Based on these results, and the frequency and the concentrations detected in the Japanese environment, estrone, 4-nonylphenol (branched isomers), 4-tert-octylphenol, triphenyl phosphate, and bisphenol A were considered as high priority candidate substances for the Tier 2 testing.
Collapse
Affiliation(s)
- Yukio Kawashima
- Environmental Consulting Department, Japan NUS Co., Tokyo, Japan
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | | | - Masaaki Koshio
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tomohiro Oka
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.,Resources Recycling Center, Japan Environmental Management Association for Industry, Tokyo, Japan
| | - Yoshifumi Horie
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.,Research Center for Inland Sea (KURCIS), Kobe University, Kobe, Japan
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takashi Nakamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Hidenori Ishikawa
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Tomomi Sato
- Nanobioscience Department, Yokohama City University, Yokohama, Japan
| | - Kunihiko Yamazaki
- Environmental Health Department, Ministry of the Environment of Japan, Tokyo, Japan
| | - Taisen Iguchi
- Nanobioscience Department, Yokohama City University, Yokohama, Japan
| |
Collapse
|
2
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
3
|
Role of vitamin D receptor in the regulation of CYP3A gene expression. Acta Pharm Sin B 2019; 9:1087-1098. [PMID: 31867158 PMCID: PMC6900549 DOI: 10.1016/j.apsb.2019.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Vitamin D3 (VD3) is a multifunctional nutrient which can be either synthesized or absorbed from the diet. It plays a pivotal role in systemic calcium and phosphate homeostasis, as well as in various physiological and pathological processes. VD3 is converted to the active form, 1α,25-dihydroxyvitamin D3 (1,25-D3), by cytochrome P450 2R1 (CYP2R1)/CYP27A1 and CYP27B1 sequentially, and deactivated by multiple enzymes including CYP3A4. On the other hand, 1,25-D3 is capable of activating the transcription of CYP3A genes in humans, mice and rats. The vitamin D receptor (VDR)-mediated transactivation of human CYP3A4 and CYP3A5 resembles that known for pregnane X receptor (PXR). Activated VDR forms a heterodimer with retinoid X receptor α (RXRα), recruits co-activators, translocates to the cell nucleus, binds to the specific vitamin D responsive elements (VDRE), and activates the gene transcription. In mice, intestinal Cyp3a11 mRNA levels, but not those of hepatic CYP3As, were induced by in vivo administration of VDR and PXR agonists. In rats, intestinal Cyp3a1 and Cyp3a2 mRNAs were induced by 1,25-D3 or lithocholic acid (LCA), whereas hepatic Cyp3a2, but not Cyp3a1 and Cyp3a9, was modulated to 1,25-D3 treatment. In general, the VDR-mediated regulation of CYP3A presents species and organ specificity.
Collapse
|
4
|
Toselli F, Dodd PR, Gillam EMJ. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs. Drug Metab Rev 2016; 48:379-404. [DOI: 10.1080/03602532.2016.1221960] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Ghosh C, Hossain M, Solanki J, Dadas A, Marchi N, Janigro D. Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov Today 2016; 21:1609-1619. [PMID: 27312874 DOI: 10.1016/j.drudis.2016.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
Abstract
Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| | - Mohammed Hossain
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Aaron Dadas
- The Ohio State University, Columbus, OH, USA
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (CNRS/INSERM), Montpellier, France
| | - Damir Janigro
- Flocel Inc. and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Di Donato M, Bilancio A, D'Amato L, Claudiani P, Oliviero MA, Barone MV, Auricchio A, Appella E, Migliaccio A, Auricchio F, Castoria G. Cross-talk between androgen receptor/filamin A and TrkA regulates neurite outgrowth in PC12 cells. Mol Biol Cell 2015; 26:2858-72. [PMID: 26063730 PMCID: PMC4571344 DOI: 10.1091/mbc.e14-09-1352] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022] Open
Abstract
Steroids and growth factors control neuronal development through their receptors under physiological and pathological conditions. We show that PC12 cells harbor endogenous androgen receptor (AR), whose inhibition or silencing strongly interferes with neuritogenesis stimulated by the nonaromatizable synthetic androgen R1881 or NGF. This implies a role for AR not only in androgen signaling, but also in NGF signaling. In turn, a pharmacological TrkA inhibitor interferes with NGF- or androgen-induced neuritogenesis. In addition, androgen or NGF triggers AR association with TrkA, TrkA interaction with PI3-K δ, and downstream activation of PI3-K δ and Rac in PC12 cells. Once associated with AR, filamin A (FlnA) contributes to androgen or NGF neuritogenesis, likely through its interaction with signaling effectors, such as Rac. This study thus identifies a previously unrecognized reciprocal cross-talk between AR and TrkA, which is controlled by β1 integrin. The contribution of FlnA/AR complex and PI3-K δ to neuronal differentiation by androgens and NGF is also novel. This is the first description of AR function in PC12 cells.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Antonio Bilancio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Loredana D'Amato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Pamela Claudiani
- Telethon Institute of Genetics and Medicine and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Maria Antonietta Oliviero
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Diseases and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892-4256
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Ferdinando Auricchio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Gabriella Castoria
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| |
Collapse
|
7
|
Paragliola RM, Prete A, Kaplan PW, Corsello SM, Salvatori R. Treatment of hypopituitarism in patients receiving antiepileptic drugs. Lancet Diabetes Endocrinol 2015; 3:132-40. [PMID: 24898833 DOI: 10.1016/s2213-8587(14)70081-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Evidence suggests that there may be drug interactions between antiepileptic drugs and hormonal therapies, which can present a challenge to endocrinologists dealing with patients who have both hypopituitarism and neurological diseases. Data are scarce for this subgroup of patients; however, data for the interaction of antiepileptic drugs with the pituitary axis have shown that chronic use of many antiepileptic drugs, such as carbamazepine, oxcarbazepine, and topiramate, enhances hepatic cytochrome P450 3A4 (CYP3A4) activity, and can decrease serum concentrations of sex hormones. Other antiepileptic drugs increase sex hormone-binding globulin, which reduces the bioactivity of testosterone and estradiol. Additionally, the combined oestrogen-progestagen contraceptive pill might decrease lamotrigine concentrations, which could worsen seizure control. Moreover, sex hormones and their metabolites can directly act on neuronal excitability, acting as neurosteroids. Because carbamazepine and oxcarbazepine can enhance the sensitivity of renal tubules, a reduction in desmopressin dose might be necessary in patients with central diabetes insipidus. Although the effects of antiepileptic drugs in central hypothyroidism have not yet been studied, substantial evidence indicates that several antiepileptic drugs can increase thyroid hormone metabolism. However, although it is reasonable to expect a need for a thyroxine dose increase with some antiepileptic drugs, the effect of excessive thyroxine in lowering seizure threshold should also be considered. There are no reports of significant interactions between antiepileptic drugs and the efficacy of human growth hormone therapy, and few data are available for the effects of second-generation antiepileptic drugs on hypopituitarism treatment.
Collapse
Affiliation(s)
- Rosa Maria Paragliola
- Unit of Endocrinology, Facoltà di Medicina Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Prete
- Unit of Endocrinology, Facoltà di Medicina Università Cattolica del Sacro Cuore, Rome, Italy
| | - Peter W Kaplan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | | | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes and Pituitary Center, Johns Hopkins University School of Medicine, Baltimore MD, USA.
| |
Collapse
|
8
|
Bowers JM, Perez-Pouchoulen M, Roby CR, Ryan TE, McCarthy MM. Androgen modulation of Foxp1 and Foxp2 in the developing rat brain: impact on sex specific vocalization. Endocrinology 2014; 155:4881-94. [PMID: 25247470 PMCID: PMC4239422 DOI: 10.1210/en.2014-1486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex differences in vocal communication are prevalent in both the animals and humans. The mechanism(s) mediating gender differences in human language are unknown, although, sex hormones, principally androgens, play a central role in the development of vocalizations in a wide variety of animal species. The discovery of FOXP2 has added an additional avenue for exploring the origins of language and animal communication. The FOXP2 gene is a member of the forkhead box P (FOXP) family of transcription factors. Prior to the prenatal androgen surge in male fetuses, we observed no sex difference for Foxp2 protein levels in cultured cells. In contrast, 24 hours after the onset of the androgen surge, we found a sex difference for Foxp2 protein levels in cultured cortical cells with males having higher levels than females. Furthermore, we observed the potent nonaromatizable androgen dihydrotestosterone altered not only Foxp2 mRNA and protein levels but also Foxp1. Androgen effects on both Foxp2 and Foxp1 were found to occur in the striatum, cerebellar vermis, and cortex. Immunofluorescence microscopy and coimmunoprecipitation demonstrate Foxp2 and the androgen receptor protein interact. Databases for transcription factor binding sites predict a consensus binding motif for androgen receptor on the Foxp2 promoter regions. We also observed a sex difference in rat pup vocalization with males vocalizing more than females and treatment of females with dihydrotestosterone eliminated the sex difference. We propose that androgens might be an upstream regulator of both Foxp2 and Foxp1 expression and signaling. This has important implications for language and communication as well as neuropsychiatric developmental disorders involving impairments in communication.
Collapse
Affiliation(s)
- J Michael Bowers
- Department of Pharmacology (J.M.B., M.P.-P., C.R.R., M.M.M.), University of Maryland School of Medicine and Programs in Neuroscience (M.M.M.) and Medicine (T.E.R.), University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201
| | | | | | | | | |
Collapse
|
9
|
Wood WG, Mΰller WE, Eckert GP. Statins and Neuroprotection: Basic Pharmacology Needed. Mol Neurobiol 2014; 50:214-20. [DOI: 10.1007/s12035-014-8647-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/15/2014] [Indexed: 11/29/2022]
|
10
|
Basile JR, Binmadi NO, Zhou H, Yang YH, Paoli A, Proia P. Supraphysiological doses of performance enhancing anabolic-androgenic steroids exert direct toxic effects on neuron-like cells. Front Cell Neurosci 2013; 7:69. [PMID: 23675320 PMCID: PMC3648690 DOI: 10.3389/fncel.2013.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/23/2013] [Indexed: 01/28/2023] Open
Abstract
Anabolic-androgenic steroids (AAS) are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose) polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR) in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks.
Collapse
Affiliation(s)
- John R Basile
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School Baltimore, MD, USA ; Marlene and Stuart Greenebaum Cancer Center, University of Maryland Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Cytochrome P450 enzymes (CYPs) metabolize many drugs that act on the central nervous system (CNS), such as antidepressants and antipsychotics; drugs of abuse; endogenous neurochemicals, such as serotonin and dopamine; neurotoxins; and carcinogens. This takes place primarily in the liver, but metabolism can also occur in extrahepatic organs, including the brain. This is important for CNS-acting drugs, as variation in brain CYP-mediated metabolism may be a contributing factor when plasma levels do not predict drug response. This review summarizes the characterization of CYPs in the brain, using examples from the CYP2 subfamily, and discusses sources of variation in brain CYP levels and metabolism. Some recent experiments are described that demonstrate how changes in brain CYP metabolism can influence drug response, toxicity and drug-induced behaviours. Advancing knowledge of brain CYP-mediated metabolism may help us understand why patients respond differently to drugs used in psychiatry and predict risk for psychiatric disorders, including neurodegenerative diseases and substance abuse.
Collapse
Affiliation(s)
| | - Rachel F. Tyndale
- Correspondence to: R.F. Tyndale, Department of Pharmacology and Toxicology, 1 King’s College Circle, Toronto ON M5S 1A8;
| |
Collapse
|
12
|
Testosterone depletion in adult male rats increases mossy fiber transmission, LTP, and sprouting in area CA3 of hippocampus. J Neurosci 2013; 33:2338-55. [PMID: 23392664 DOI: 10.1523/jneurosci.3857-12.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Androgens have dramatic effects on neuronal structure and function in hippocampus. However, androgen depletion does not always lead to hippocampal impairment. To address this apparent paradox, we evaluated the hippocampus of adult male rats after gonadectomy (Gdx) or sham surgery. Surprisingly, Gdx rats showed increased synaptic transmission and long-term potentiation of the mossy fiber (MF) pathway. Gdx rats also exhibited increased excitability and MF sprouting. We then addressed the possible underlying mechanisms and found that Gdx induced a long-lasting upregulation of MF BDNF immunoreactivity. Antagonism of Trk receptors, which bind neurotrophins, such as BDNF, reversed the increase in MF transmission, excitability, and long-term potentiation in Gdx rats, but there were no effects of Trk antagonism in sham controls. To determine which androgens were responsible, the effects of testosterone metabolites DHT and 5α-androstane-3α,17β-diol were examined. Exposure of slices to 50 nm DHT decreased the effects of Gdx on MF transmission, but 50 nm 5α-androstane-3α,17β-diol had no effect. Remarkably, there was no effect of DHT in control males. The data suggest that a Trk- and androgen receptor-sensitive form of MF transmission and synaptic plasticity emerges after Gdx. We suggest that androgens may normally be important in area CA3 to prevent hyperexcitability and aberrant axon outgrowth but limit MF synaptic transmission and some forms of plasticity. The results also suggest a potential explanation for the maintenance of hippocampal-dependent cognitive function after androgen depletion: a reduction in androgens may lead to compensatory upregulation of MF transmission and plasticity.
Collapse
|
13
|
Booth Depaz IM, Toselli F, Wilce PA, Gillam EMJ. Differential expression of human cytochrome P450 enzymes from the CYP3A subfamily in the brains of alcoholic subjects and drug-free controls. Drug Metab Dispos 2013; 41:1187-94. [PMID: 23491640 DOI: 10.1124/dmd.113.051359] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cytochrome P450 enzymes are responsible for the metabolism of most commonly used drugs. Among these enzymes, CYP3A forms mediate the clearance of around 40-50% of drugs and may also play roles in the biotransformation of endogenous compounds. CYP3A forms are expressed both in the liver and extrahepatically. However, little is known about the expression of CYP3A proteins in specific regions of the human brain. In this study, form-selective antibodies raised to CYP3A4 and CYP3A5 were used to characterize the expression of these forms in the human brain. Both CYP3A4 and CYP3A5 immunoreactivity were found to varying extents in the microsomal fractions of cortex, hippocampus, basal ganglia, amygdala, and cerebellum. However, only CYP3A4 expression was observed in the mitochondrial fractions of these brain regions. N-terminal sequencing confirmed the principal antigen detected by the anti-CYP3A4 antibody in cortical microsomes to be CYP3A4. Immunohistochemical analysis revealed that CYP3A4 and CYP3A5 expression was primarily localized in the soma and axonal hillock of neurons and varied according to cell type and cell layer within brain regions. Finally, analysis of the frontal cortex of chronic alcohol abusers revealed elevated expression of CYP3A4 in microsomal but not mitochondrial fractions; CYP3A5 expression was unchanged. The site-specific expression of CYP3A4 and CYP3A5 in the human brain may have implications for the role of these enzymes in both normal brain physiology and the response to drugs.
Collapse
Affiliation(s)
- Iris M Booth Depaz
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
14
|
Su C, Rybalchenko N, Schreihofer DA, Singh M, Abbassi B, Cunningham RL. Cell Models for the Study of Sex Steroid Hormone Neurobiology. ACTA ACUST UNITED AC 2012; S2. [PMID: 22860237 DOI: 10.4172/2157-7536.s2-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To date many aspects of neurons and glia biology remain elusive, due in part to the cellular and molecular complexity of the brain. In recent decades, cell models from different brain areas have been established and proven invaluable toward understanding this complexity. In the field of steroid hormone neurobiology, an important question is: what is the profile of steroid hormone receptor expression in these specific cell lines? Currently, a clear summary of such receptor profiling is lacking. For this reason, we summarized in this review the expression of estrogen, progesterone, and androgen receptors in several widely used cell lines (glial and neuronal) derived from the forebrain and midbrain, based on our own data and that from the literature. Such information will aid in the selection of specific cell lines used to test hypotheses related to the biology of estrogens, progestins, and/or androgens.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | | | | | | | | | | |
Collapse
|
15
|
Ruan H, Zhang Z, Liang XF, Fu Y, Su MQ, Liu QL, Wang XM, Zhu X. Metabolism of dl-praeruptorin a in rat liver microsomes using HPLC-electrospray ionization tandem mass spectrometry. Arch Pharm Res 2011; 34:1311-21. [DOI: 10.1007/s12272-011-0811-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/07/2011] [Accepted: 01/25/2011] [Indexed: 11/24/2022]
|
16
|
Meyer RP, Gehlhaus M. A role for CYP in the drug–hormone crosstalk of the brain. Expert Opin Drug Metab Toxicol 2010; 6:675-87. [DOI: 10.1517/17425251003680791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Hagemeyer CE, Bürck C, Schwab R, Knoth R, Meyer RP. 7-Benzyloxyresorufin-O-dealkylase activity as a marker for measuring cytochrome P450 CYP3A induction in mouse liver. Anal Biochem 2010; 398:104-11. [DOI: 10.1016/j.ab.2009.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 01/10/2023]
|
18
|
Meyer RP, Pantazis G, Killer N, Bürck C, Schwab R, Brandt M, Knoth R, Gehlhaus M. Xenobiotics in the limbic system--affecting brain's network function. VITAMINS AND HORMONES 2010; 82:87-106. [PMID: 20472134 DOI: 10.1016/s0083-6729(10)82005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Xenobiotic compounds enter the brain through nutrition, environmentals, and drugs. In order to maintain intrinsic homeostasis, the brain has to adapt to xenobiotic influx. Among others, steroid hormones appear as crucial mediators in this process. However, especially in the therapy of neurological diseases or brain tumors, long-term application of neuroactive drugs is advised. Several clinically important malignancies based on hormonal dysbalance rise up after treatment with neuroactive drugs, for example, sexual and mental disorders or severe cognitive changes. A drug-hormone cross talk proceeding over drug-mediated cytochrome P450 induction predominantly in the limbic system and the blood-brain barrier, consequently altered steroid hormone metabolism, and P450-mediated change of steroid hormone receptor expression and signaling may serve as an explanation for such disorders. Especially, the interplay between the expression of AR and P450 at the blood-brain barrier and in structures of the limbic system is of considerable interest in understanding brain's reaction on xenobiotic treatment. This chapter summarizes present models and concepts on brain's reaction after xenobiotics crossing the blood-brain barrier and invading the limbic system.
Collapse
Affiliation(s)
- Ralf P Meyer
- Medizinische Fakultät der Universität Freiburg, Breisacherstrasse 64, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wójcikowski J, Daniel WA. The brain dopaminergic system as an important center regulating liver cytochrome P450 in the rat. Expert Opin Drug Metab Toxicol 2009; 5:631-45. [DOI: 10.1517/17425250902973703] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|