1
|
Zhang B, Yang JW, Han T, Huang DX, Zhao ZH, Feng JQ, Zhou NM, Xie HQ, Wang TM. Identification and characterization of a novel 5-hydroxytryptamine receptor in the sea cucumber Apostichopus japonicus (Selenka). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:367-380. [PMID: 33651924 DOI: 10.1002/jez.2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/07/2022]
Abstract
Serotonin (5-hydroxytryptamine [5-HT]) receptors (5-HTRs) mediate neuroendocrine signaling via interactions with the ligand serotonin (5-HT). The 5-HT signaling system has been well studied in vertebrates, but rarely known in invertebrate animals, especially in the marine invertebrates. In this study, we identified and characterized a novel 5-HTR from the sea cucumber Apostichopus japonicus (Aj5-HT4/6 ). The cloned Aj5-HT4/6 open reading frame comprised 1290 bp and encoded 429 amino acids. Bioinformatic analysis of the receptor indicated that it was a member of the class A of the G protein-coupled receptor family. Further experiments using Aj5-HT4/6 -transfected HEK293 cells demonstrated that treatment with 5-HT could induce rapid internalization of Aj5-HT4/6 fused with enhanced green fluorescent protein from the cell surface into the cytoplasm and triggered a significant increase in levels of the second messenger cAMP as well as mitogen-activated protein kinase phosphorylation in a 5-HT dose-dependent manner. Quantitative real time-polymerase chain reaction demonstrated that Aj5-HT4/6 was predominantly expressed in the muscle and respiratory tree, and its expression was significantly decreased during estivation. Taken together, these results imply that Aj5-HT4/6 is potentially involved in the movement and metabolism of the sea cucumber.
Collapse
Affiliation(s)
- Bing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jing-Wen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - De-Xiang Huang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zi-Hao Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jia-Qian Feng
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Nai-Ming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Qing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian-Ming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
2
|
Sizemore TR, Hurley LM, Dacks AM. Serotonergic modulation across sensory modalities. J Neurophysiol 2020; 123:2406-2425. [PMID: 32401124 PMCID: PMC7311732 DOI: 10.1152/jn.00034.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
The serotonergic system has been widely studied across animal taxa and different functional networks. This modulatory system is therefore well positioned to compare the consequences of neuromodulation for sensory processing across species and modalities at multiple levels of sensory organization. Serotonergic neurons that innervate sensory networks often bidirectionally exchange information with these networks but also receive input representative of motor events or motivational state. This convergence of information supports serotonin's capacity for contextualizing sensory information according to the animal's physiological state and external events. At the level of sensory circuitry, serotonin can have variable effects due to differential projections across specific sensory subregions, as well as differential serotonin receptor type expression within those subregions. Functionally, this infrastructure may gate or filter sensory inputs to emphasize specific stimulus features or select among different streams of information. The near-ubiquitous presence of serotonin and other neuromodulators within sensory regions, coupled with their strong effects on stimulus representation, suggests that these signaling pathways should be considered integral components of sensory systems.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
3
|
Kim KS, Kim MA, Sohn YC. Molecular characterization, expression analysis, and functional properties of multiple 5-hydroxytryptamine receptors in Pacific abalone (Haliotis discus hannai). Gen Comp Endocrinol 2019; 276:52-59. [PMID: 30849410 DOI: 10.1016/j.ygcen.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/12/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Neurotransmitters such as serotonin (5-hydroxytryptamine; 5-HT) in the central nervous system regulate diverse physiological functions, including reproduction, feeding, learning, and memory, in diverse animal phyla. 5-HT and the 5-HT1 subtype receptor play important roles in sexual maturation and in the initiation of gamete release in mollusks. However, little is known about the involvement of other 5-HT receptor subfamilies in the reproduction process. In the present study, we identified the cDNAs encoding eight subtypes of 5-HT receptors from the ganglia tissues of the Pacific abalone Haliotis discus hannai (Mollusca; Gastropoda; Haliotidae), and examined the gonadal expression of the transcripts of 5-HT receptors. A phylogenetic analysis indicated that the molluskan 5-HT receptors are largely classified into four major clades: 5-HT1/5/7, 5-HT2, 5-HT4, and 5-HT6. Among the H. discus hannai (Hdh) 5-HT1-7 transcripts, Hdh5-HT1B, 4A, 4B, and 6 were the major subtypes detected in the mature ovary. Estradiol-17β injection into the pedal sinus induced the downregulation of 5-HT4B and upregulation of 5-HT6 transcripts in the ovary of mature abalone within 72 h. In HEK293 cells overexpressing Hdh5-HT1B, forskolin-stimulated cAMP response element luciferase (CRE-Luc) reporter activity was inhibited by 5-HT in a dose-dependent manner, whereas serum response element luciferase (SRE-Luc) activity was not affected. In Hdh5-HT4A-expressing HEK293 cells, forskolin-stimulated CRE-Luc and SRE-Luc reporter activities were both marginally increased by treatment with a high dose of 5-HT. Our results provide new insights into the roles of 5-HT through diverse G protein-coupled 5-HT receptors in the reproductive process of mollusks.
Collapse
Affiliation(s)
- Kyeong Seop Kim
- Department of Marine Molecular Biosciences, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
| | - Mi Ae Kim
- East Coast Life Sciences Institute, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Molecular Biosciences, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea.
| |
Collapse
|
4
|
Autocrine signaling by an Aplysia neurotrophin forms a presynaptic positive feedback loop. Proc Natl Acad Sci U S A 2018; 115:E11168-E11177. [PMID: 30397154 DOI: 10.1073/pnas.1810649115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Whereas short-term plasticity is often initiated on one side of the synapse, long-term plasticity involves coordinated changes on both sides, implying extracellular signaling. We have investigated the possible signaling role of an Aplysia neurotrophin (ApNT) in facilitation induced by serotonin (5HT) at sensory-to-motor neuron synapses in culture. ApNT is an ortholog of mammalian BDNF, which has been reported to act as either an anterograde, retrograde, or autocrine signal, so that its pre- and postsynaptic sources and targets remain unclear. We now report that ApNT acts as a presynaptic autocrine signal that forms part of a positive feedback loop with ApTrk and PKA. That loop stimulates spontaneous transmitter release, which recruits postsynaptic mechanisms, and presynaptic protein synthesis during the transition from short- to intermediate-term facilitation and may also initiate gene regulation to trigger the transition to long-term facilitation. These results suggest that a presynaptic ApNT feedback loop plays several key roles during consolidation of learning-related synaptic plasticity.
Collapse
|
5
|
Tierney AJ. Invertebrate serotonin receptors: a molecular perspective on classification and pharmacology. ACTA ACUST UNITED AC 2018; 221:221/19/jeb184838. [PMID: 30287590 DOI: 10.1242/jeb.184838] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Invertebrate receptors for the neurotransmitter serotonin (5-HT) have been identified in numerous species from diverse phyla, including Arthropoda, Mollusca, Nematoda and Platyhelminthes. For many receptors, cloning and characterization in heterologous systems have contributed data on molecular structure and function across both closely and distantly related species. This article provides an overview of heterologously expressed receptors, and considers evolutionary relationships among them, classification based on these relationships and nomenclature that reflects classification. In addition, transduction pathways and pharmacological profiles are compared across receptor subtypes and species. Previous work has shown that transduction mechanisms are well conserved within receptor subtypes, but responses to drugs are complex. A few ligands display specificity for different receptors within a single species; however, none acts with high specificity in receptors across different species. Two non-selective vertebrate ligands, the agonist 5-methoxytryptamine and antagonist methiothepin, are active in most receptor subtypes in multiple species and hence bind very generally to invertebrate 5-HT receptors. Future challenges for the field include determining how pharmacological profiles are affected by differences in species and receptor subtype, and how function in heterologous receptors can be used to better understand 5-HT activity in intact organisms.
Collapse
Affiliation(s)
- Ann Jane Tierney
- Neuroscience Program, Department of Psychology, Colgate University, Hamilton, NY 13346, USA
| |
Collapse
|
6
|
Tamvacakis AN, Senatore A, Katz PS. Single neuron serotonin receptor subtype gene expression correlates with behaviour within and across three molluscan species. Proc Biol Sci 2018; 285:rspb.2018.0791. [PMID: 30135151 DOI: 10.1098/rspb.2018.0791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
The marine mollusc, Pleurobranchaea californica varies daily in whether it swims and this correlates with whether serotonin (5-HT) enhances the strength of synapses made by the swim central pattern generator neuron, A1/C2. Another species, Tritonia diomedea, reliably swims and does not vary in serotonergic neuromodulation. A third species, Hermissenda crassicornis, never produces this behaviour and lacks the neuromodulation. We found that expression of particular 5-HT receptor subtype (5-HTR) genes in single neurons correlates with swimming. Orthologues to seven 5-HTR genes were identified from whole-brain transcriptomes. We isolated individual A1/C2 neurons and sequenced their RNA or measured 5-HTR gene expression using absolute quantitative PCR. A1/C2 neurons isolated from Pleurobranchaea that produced a swim motor pattern just prior to isolation expressed 5-HT2a and 5-HT7 receptor genes, as did all Tritonia samples. These subtypes were absent from A1/C2 isolated from Pleurobranchaea that did not swim on that day and from Hermissenda A1/C2 neurons. Expression of other receptors was not correlated with swimming. This suggests that these 5-HTRs may mediate the modulation of A1/C2 synaptic strength and play an important role in swimming. Furthermore, it suggests that regulation of receptor expression could underlie daily changes in behaviour as well as evolution of behaviour.
Collapse
Affiliation(s)
- A N Tamvacakis
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - A Senatore
- Biology Department, University of Toronto, Mississauga, Toronto, Ontario, Canada
| | - P S Katz
- Biology Department, University of Massachusetts at Amherst, Amherst, MA, USA
| |
Collapse
|
7
|
White SH, Sturgeon RM, Gu Y, Nensi A, Magoski NS. Tyrosine Phosphorylation Determines Afterdischarge Initiation by Regulating an Ionotropic Cholinergic Receptor. Neuroscience 2018; 372:273-288. [PMID: 29306054 DOI: 10.1016/j.neuroscience.2017.12.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/30/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Changes to neuronal activity often involve a rapid and precise transition from low to high excitability. In the marine snail, Aplysia, the bag cell neurons control reproduction by undergoing an afterdischarge, which begins with synaptic input releasing acetylcholine to open an ionotropic cholinergic receptor. Gating of this receptor causes depolarization and a shift from silence to continuous action potential firing, leading to the neuroendocrine secretion of egg-laying hormone and ovulation. At the onset of the afterdischarge, there is a rise in intracellular Ca2+, followed by both protein kinase C (PKC) activation and tyrosine dephosphorylation. To determine whether these signals influence the acetylcholine ionotropic receptor, we examined the bag cell neuron cholinergic response both in culture and isolated clusters using whole-cell and/or sharp-electrode electrophysiology. The acetylcholine-induced current was not altered by increasing intracellular Ca2+ via voltage-gated Ca2+ channels, clamping intracellular Ca2+ with exogenous Ca2+ buffers, or activating PKC with phorbol esters. However, lowering phosphotyrosine levels by inhibiting tyrosine kinases both reduced the cholinergic current and prevented acetylcholine from triggering action potentials or afterdischarge-like bursts. In other systems, acetylcholine receptors are often modulated by multiple signals, but bag cell neurons appear to be more restrictive in this regard. Prior work finds that, as the afterdischarge proceeds, tyrosine dephosphorylation leads to biophysical alterations that promote persistent firing. Because this firing is subsequent to the cholinergic input, inhibiting the acetylcholine receptor may represent a means of properly orchestrating synaptically induced changes in excitability.
Collapse
Affiliation(s)
- Sean H White
- Department of Biomedical and Molecular Sciences, Physiology and Neuroscience Graduate Programs, Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Raymond M Sturgeon
- Department of Biomedical and Molecular Sciences, Physiology and Neuroscience Graduate Programs, Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Yueling Gu
- Department of Biomedical and Molecular Sciences, Physiology and Neuroscience Graduate Programs, Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alysha Nensi
- Department of Biomedical and Molecular Sciences, Physiology and Neuroscience Graduate Programs, Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology and Neuroscience Graduate Programs, Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
8
|
Dunn TW, Fan X, Ase AR, Séguéla P, Sossin WS. The Ca V2α1 EF-hand F helix tyrosine, a highly conserved locus for GPCR inhibition of Ca V2 channels. Sci Rep 2018; 8:3263. [PMID: 29459734 PMCID: PMC5818475 DOI: 10.1038/s41598-018-21586-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/07/2018] [Indexed: 12/16/2022] Open
Abstract
The sensory neuron of Aplysia californica participates in several forms of presynaptic plasticity including homosynaptic depression, heterosynaptic depression, facilitation and the reversal of depression. The calcium channel triggering neurotransmitter release at most synapses is CaV2, consisting of the pore forming α1 subunit (CaV2α1), and auxiliary CaVβ, and CaVα2δ subunits. To determine the role of the CaV2 channel in presynaptic plasticity in Aplysia, we cloned Aplysia CaV2α1, CaVβ, and CaVα2δ and over-expressed the proteins in Aplysia sensory neurons (SN). We show expression of exogenous CaV2α1 in the neurites of cultured Aplysia SN. One proposed mechanism for heterosynaptic depression in Aplysia is through inhibition of CaV2. Here, we demonstrate that heterosynaptic depression of the CaV2 calcium current is inhibited when a channel with a Y-F mutation at the conserved Src phosphorylation site is expressed, showing the strong conservation of this mechanism over evolution. We also show that the Y-F mutation reduces heterosynaptic inhibition of neurotransmitter release, highlighting the physiological importance of this mechanism for the regulation of synaptic efficacy. These results also demonstrate our ability to replace endogenous CaV2 channels with recombinant channels allowing future examination of the structure function relationship of CaV2 in the regulation of transmitter release in this system.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Xiaotang Fan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ariel R Ase
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
9
|
Bogodvid TK, Andrianov VV, Deryabina IB, Muranova LN, Silantyeva DI, Vinarskaya A, Balaban PM, Gainutdinov KL. Responses of Withdrawal Interneurons to Serotonin Applications in Naïve and Learned Snails Are Different. Front Cell Neurosci 2017; 11:403. [PMID: 29311833 PMCID: PMC5735116 DOI: 10.3389/fncel.2017.00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023] Open
Abstract
Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interneurons for withdrawal in response to bath applications of serotonin (5-HT) or serotonin precursor 5-hydroxytryptophan (5-HTP) in preparations from naïve, neurotoxin-injected or associatively trained snails. It was found that 5-HT or 5-HTP applications caused a significant decrease of membrane potential in premotor interneurons of naïve snails, associatively trained snails and snails with impaired serotonergic system by injection of a selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) 1 week before the experiments. Applications of 5-HT or 5-HTP did not cause significant changes in the action potential (AP) threshold potential of these neurons in naïve snails. Conversely, applications of 5-HT or 5-HTP to the premotor interneurons of previously trained or 5,7-DHT-injected snails caused a significant increase in the firing threshold potential in spite of a depolarizing shift of the resting membrane potential. Results demonstrate that responsiveness of premotor interneurons to extracellularly applied 5-HT or 5-HTP changes for days after the associative training or serotonin depletion. Similarity of the effects in trained and 5,7-DHT-injected animals may be due to massive release of serotonin elicited by 5,7-DHT injection. Our results suggest that serotonin release due to aversive conditionining or elicited by the neurotoxin administration triggers similar changes in resting membrane potential and AP threshold in response to bath applications of 5-HT or its precursor 5-HTP.
Collapse
Affiliation(s)
- Tatiana K. Bogodvid
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Biomedical Sciences, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Vyatcheslav V. Andrianov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Irina B. Deryabina
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lyudmila N. Muranova
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Dinara I. Silantyeva
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aliya Vinarskaya
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M. Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Khalil L. Gainutdinov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
10
|
Wang T, Yang Z, Zhou N, Sun L, Lv Z, Wu C. Identification and functional characterisation of 5-HT4 receptor in sea cucumber Apostichopus japonicus (Selenka). Sci Rep 2017; 7:40247. [PMID: 28059140 PMCID: PMC5216381 DOI: 10.1038/srep40247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) is an important neurotransmitter and neuromodulator that controls a variety of sensory and motor functions through 5-HT receptors (5-HTRs). The 5-HT4R subfamily is linked to Gs proteins, which activate adenylyl cyclases (ACs), and is involved in many responses in peripheral organs. In this study, the 5-HT4R from Apostichopus japonicus (Aj5-HT4R) was identified and characterised. The cloned full-length Aj5-HT4R cDNA is 1,544 bp long and contains an open reading frame 1,011 bp in length encoding 336 amino acid proteins. Bioinformatics analysis of the Aj5-HT4R protein indicated this receptor was a member of class A G protein coupled receptor (GPCR) family. Further experiments using Aj5-HT4R-transfected HEK293 cells demonstrated that treatment with 5-HT triggered a significant increase in intracellular cAMP level in a dose-dependent manner and induced a rapid internalisation of Aj5-HT4R fused with enhanced green fluorescent protein (Aj5-HT4R-EGFP) from the cell surface into the cytoplasm. In addition, the transcriptional profiles of Aj5-HT4R in aestivating A. japonicas and phosphofructokinase (AjPFK) in 5-HT administrated A. japonicus have been analysed by real-time PCR assays. Results have led to a basic understanding of Aj5-HT4R in A. japonicus, and provide a foundation for further exploration of the cell signaling and regulatory functions of this receptor.
Collapse
Affiliation(s)
- Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zhen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Naiming Zhou
- Institute of Biochemistry, College of LifeSciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| |
Collapse
|
11
|
Farah CA, Rourke B, Shin U, Ferguson L, Luna MJ, Sossin WS. Investigating the Potential Signaling Pathways That Regulate Activation of the Novel PKC Downstream of Serotonin in Aplysia. PLoS One 2016; 11:e0168411. [PMID: 28002451 PMCID: PMC5176290 DOI: 10.1371/journal.pone.0168411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/29/2016] [Indexed: 02/02/2023] Open
Abstract
Activation of the novel PKC Apl II in sensory neurons by serotonin (5HT) underlies the ability of 5HT to reverse synaptic depression, but the pathway from 5HT to PKC Apl II activation remains unclear. Here we find no evidence for the Aplysia-specific B receptors, or for adenylate cyclase activation, to translocate fluorescently-tagged PKC Apl II. Using an anti-PKC Apl II antibody, we monitor translocation of endogenous PKC Apl II and determine the dose response for PKC Apl II translocation, both in isolated sensory neurons and sensory neurons coupled with motor neurons. Using this assay, we confirm an important role for tyrosine kinase activation in 5HT mediated PKC Apl II translocation, but rule out roles for intracellular tyrosine kinases, epidermal growth factor (EGF) receptors and Trk kinases in this response. A partial inhibition of translocation by a fibroblast growth factor (FGF)-receptor inhibitor led us to clone the Aplysia FGF receptor. Since a number of related receptors have been recently characterized, we use bioinformatics to define the relationship between these receptors and find a single FGF receptor orthologue in Aplysia. However, expression of the FGF receptor did not affect translocation or allow it in motor neurons where 5HT does not normally cause PKC Apl II translocation. These results suggest that additional receptor tyrosine kinases (RTKs) or other molecules must also be involved in translocation of PKC Apl II.
Collapse
Affiliation(s)
- Carole A. Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Bryan Rourke
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Unkyung Shin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - María José Luna
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
12
|
Tamvacakis AN, Senatore A, Katz PS. Identification of genes related to learning and memory in the brain transcriptome of the mollusc, Hermissenda crassicornis. Learn Mem 2015; 22:617-21. [PMID: 26572652 PMCID: PMC4749734 DOI: 10.1101/lm.038158.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022]
Abstract
The sea slug Hermissenda crassicornis (Mollusca, Gastropoda, Nudibranchia) has been studied extensively in associative learning paradigms. However, lack of genetic information previously hindered molecular-level investigations. Here, the Hermissenda brain transcriptome was sequenced and assembled de novo, producing 165,743 total transcripts. Orthologs of 95 genes implicated in learning were identified. These included genes for a serotonin receptor and a GABA-B receptor subunit that had not been previously described in molluscs, as well as an adenylyl cyclase gene not previously described in gastropods. This study illustrates the Hermissenda transcriptome's potential as an important genetic tool in future learning and memory research.
Collapse
Affiliation(s)
- Arianna N Tamvacakis
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | - Adriano Senatore
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | - Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-4010, USA
| |
Collapse
|
13
|
Andrianov VV, Bogodvid TK, Deryabina IB, Golovchenko AN, Muranova LN, Tagirova RR, Vinarskaya AK, Gainutdinov KL. Modulation of defensive reflex conditioning in snails by serotonin. Front Behav Neurosci 2015; 9:279. [PMID: 26557063 PMCID: PMC4615812 DOI: 10.3389/fnbeh.2015.00279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/02/2015] [Indexed: 01/24/2023] Open
Abstract
Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the "neurotoxic" analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the "neurotoxic" analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the "neurotoxic" analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3.
Collapse
Affiliation(s)
- Vyatcheslav V. Andrianov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
- Group of Biophysics, Zavoisky Physical-Technical Institute, Russian Academy of SciencesKazan, Russia
| | - Tatiana K. Bogodvid
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
- Department of Biomedical Sciences, Volga Region State Academy of Physical Culture, Sport and TourismKazan, Russia
| | - Irina B. Deryabina
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Aleksandra N. Golovchenko
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Lyudmila N. Muranova
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Roza R. Tagirova
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Aliya K. Vinarskaya
- Laboratory of Cellular Neurobiology of Learning, Institute of High Nerve Activity and Neurophysiology, Russian Academy of SciencesMoscow, Russia
| | - Khalil L. Gainutdinov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
- Group of Biophysics, Zavoisky Physical-Technical Institute, Russian Academy of SciencesKazan, Russia
| |
Collapse
|
14
|
Dunn TW, Sossin WS. Decline in the Recovery from Synaptic Depression in Heavier Aplysia Results from Decreased Serotonin-Induced Novel PKC Activation. PLoS One 2015; 10:e0136907. [PMID: 26317974 PMCID: PMC4552628 DOI: 10.1371/journal.pone.0136907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/09/2015] [Indexed: 11/21/2022] Open
Abstract
The defensive withdrawal reflexes of Aplysia are important behaviors for protecting the animal from predation. Habituation and dishabituation allow for experience-dependent tuning of these reflexes and the mechanisms underlying these forms of behavioral plasticity involve changes in transmitter release from the sensory to motor neuron synapses through homosynaptic depression and the serotonin-mediated recovery from depression, respectively. Interestingly, dishabituation is reduced in older animals with no corresponding change in habituation. Here we show that the cultured sensory neurons of heavier animals (greater than 120g) that form synaptic connections with motor neurons have both reduced recovery from depression and reduced novel PKC Apl II activation with 5HT. The decrease in the recovery from depression correlated better with the size of the animal than the age of the animal. Much of this change in PKC activation and synaptic facilitation following depression can be rescued by direct activation of PKC Apl II with phorbol dibutyrate, suggesting a change in the signal transduction pathway upstream of PKC Apl II activation in the sensory neurons of larger animals.
Collapse
Affiliation(s)
- Tyler William Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- * E-mail:
| |
Collapse
|
15
|
Bidirectional regulation of eEF2 phosphorylation controls synaptic plasticity by decoding neuronal activity patterns. J Neurosci 2015; 35:4403-17. [PMID: 25762683 DOI: 10.1523/jneurosci.2376-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At the sensory-motor neuron synapse of Aplysia, either spaced or continuous (massed) exposure to serotonin (5-HT) induces a form of intermediate-term facilitation (ITF) that requires new protein synthesis but not gene transcription. However, spaced and massed ITF use distinct molecular mechanisms to maintain increased synaptic strength. Synapses activated by spaced applications of 5-HT generate an ITF that depends on persistent protein kinase A (PKA) activity, whereas an ITF produced by massed 5-HT depends on persistent protein kinase C (PKC) activity. In this study, we demonstrate that eukaryotic elongation factor 2 (eEF2), which catalyzes the GTP-dependent translocation of the ribosome during protein synthesis, acts as a biochemical sensor that is tuned to the pattern of neuronal stimulation. Specifically, we find that massed training leads to a PKC-dependent increase in phosphorylation of eEF2, whereas spaced training results in a PKA-dependent decrease in phosphorylation of eEF2. Importantly, by using either pharmacological or dominant-negative strategies to inhibit eEF2 kinase (eEF2K), we were able to block massed 5-HT-dependent increases in eEF2 phosphorylation and subsequent PKC-dependent ITF. In contrast, pharmacological inhibition of eEF2K during the longer period of time required for spaced training was sufficient to reduce eEF2 phosphorylation and induce ITF. Finally, we find that the massed 5-HT-dependent increase in synaptic strength requires translation elongation, but not translation initiation, whereas the spaced 5-HT-dependent increase in synaptic strength is partially dependent on translation initiation. Thus, bidirectional regulation of eEF2 is critical for decoding distinct activity patterns at synapses by activating distinct modes of translation regulation.
Collapse
|
16
|
Farah CA, Naqib F, Weatherill DB, Pack CC, Sossin WS. Synapse formation changes the rules for desensitization of PKC translocation in Aplysia. Eur J Neurosci 2014; 41:328-40. [PMID: 25401305 DOI: 10.1111/ejn.12794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 11/29/2022]
Abstract
Protein kinase Cs (PKCs) are activated by translocating from the cytoplasm to the membrane. We have previously shown that serotonin-mediated translocation of PKC to the plasma membrane in Aplysia sensory neurons was subject to desensitization, a decrease in the ability of serotonin to induce translocation after previous application of serotonin. In Aplysia, changes in the strength of the sensory-motor neuron synapse are important for behavioral sensitization and PKC regulates a number of important aspects of this form of synaptic plasticity. We have previously suggested that the desensitization of PKC translocation in Aplysia sensory neurons may partially explain the differences between spaced and massed training, as spaced applications of serotonin, a cellular analog of spaced training, cause greater desensitization of PKC translocation than one massed application of serotonin, a cellular analog of massed training. Our previous studies were performed in isolated sensory neurons. In the present study, we monitored translocation of fluorescently-tagged PKC to the plasma membrane in living sensory neurons that were co-cultured with motor neurons to allow for synapse formation. We show that desensitization now becomes similar during spaced and massed applications of serotonin. We had previously modeled the signaling pathways that govern desensitization in isolated sensory neurons. We now modify this mathematical model to account for the changes observed in desensitization dynamics following synapse formation. Our study shows that synapse formation leads to significant changes in the molecular signaling networks that underlie desensitization of PKC translocation.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
17
|
Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M. Reproduction-related genes in the pearl oyster genome. Zoolog Sci 2013; 30:826-50. [PMID: 24125647 DOI: 10.2108/zsj.30.826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Molluscan reproduction has been a target of biological research because of the various reproductive strategies that have evolved in this phylum. It has also been studied for the development of fisheries technologies, particularly aquaculture. Although fundamental processes of reproduction in other phyla, such as vertebrates and arthropods, have been well studied, information on the molecular mechanisms of molluscan reproduction remains limited. The recently released draft genome of the pearl oyster Pinctada fucata provides a novel and powerful platform for obtaining structural information on the genes and proteins involved in bivalve reproduction. In the present study, we analyzed the pearl oyster draft genome to screen reproduction-related genes. Analysis was mainly conducted for genes reported from other molluscs for encoding orthologs of reproduction-related proteins in other phyla. The gene search in the P. fucata gene models (version 1.1) and genome assembly (version 1.0) were performed using Genome Browser and BLAST software. The obtained gene models were then BLASTP searched against a public database to confirm the best-hit sequences. As a result, more than 40 gene models were identified with high accuracy to encode reproduction-related genes reported for P. fucata and other molluscs. These include vasa, nanos, doublesex- and mab-3-related transcription factor, 5-hydroxytryptamine (5-HT) receptors, vitellogenin, estrogen receptor, and others. The set of reproduction-related genes of P. fucata identified in the present study constitute a new tool for research on bivalve reproduction at the molecular level.
Collapse
Affiliation(s)
- Toshie Matsumoto
- 1 Aquaculture Technology Division, National Research Institute of Aquaculture, Fisheries Research Agency, Minami-lse, Watarai, Mie 516-0193, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Dunn TW, Sossin WS. Inhibition of the Aplysia sensory neuron calcium current with dopamine and serotonin. J Neurophysiol 2013; 110:2071-81. [DOI: 10.1152/jn.00217.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The inhibition of Aplysia pleural mechanosensory neuron synapses by dopamine and serotonin through activation of endogenous dopaminergic and expressed 5-HT1Apl(a)/b receptors, respectively, involves a reduction in action potential-associated calcium influx. We show that the inhibition of synaptic efficacy is downstream of the readily releasable pool, suggesting that inhibition is at the level of calcium secretion coupling, likely a result of the changes in the calcium current. Indeed, the inhibitory responses directly reduce a CaV2-like calcium current in isolated sensory neurons. The inhibition of the calcium current is voltage independent as it is not affected by a strong depolarizing prepulse, consistent with other invertebrate CaV2 calcium currents. Similar to voltage-independent inhibition of vertebrate nociceptors, inhibition was blocked with Src tyrosine kinase inhibitors. The data suggest a conserved mechanism by which G protein-coupled receptor activation can inhibit the CaV2 calcium current in nociceptive neurons.
Collapse
Affiliation(s)
- Tyler W. Dunn
- Department Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S. Sossin
- Department Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
A characterization of the Manduca sexta serotonin receptors in the context of olfactory neuromodulation. PLoS One 2013; 8:e69422. [PMID: 23922709 PMCID: PMC3726668 DOI: 10.1371/journal.pone.0069422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/11/2013] [Indexed: 12/15/2022] Open
Abstract
Neuromodulation, the alteration of individual neuron response properties, has dramatic consequences for neural network function and is a phenomenon observed across all brain regions and taxa. However, the mechanisms underlying neuromodulation are made complex by the diversity of neuromodulatory receptors expressed within a neural network. In this study we begin to examine the receptor basis for serotonergic neuromodulation in the antennal lobe of Manduca sexta. To this end we cloned all four known insect serotonin receptor types from Manduca (the Ms5HTRs). We used phylogenetic analyses to classify the Ms5HTRs and to establish their relationships to other insect serotonin receptors, other insect amine receptors and the vertebrate serotonin receptors. Pharmacological assays demonstrated that each Ms5HTR was selective for serotonin over other endogenous amines and that serotonin had a similar potency at all four Ms5HTRs. The pharmacological assays also identified several agonists and antagonists of the different Ms5HTRs. Finally, we found that the Ms5HT1A receptor was expressed in a subpopulation of GABAergic local interneurons suggesting that the Ms5HTRs are likely expressed heterogeneously within the antennal lobe based on functional neuronal subtype.
Collapse
|
20
|
Roles of Protein Kinase C and Protein Kinase M in Aplysia Learning. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Farah CA, Lindeman AA, Siu V, Gupta MD, Sossin WS. Autophosphorylation of the C2 domain inhibits translocation of the novel protein kinase C (nPKC) Apl II. J Neurochem 2012; 123:360-72. [PMID: 22913526 DOI: 10.1111/j.1471-4159.2012.07930.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/29/2022]
Abstract
Protein kinase Cs (PKCs) are critical signaling molecules controlled by complex regulatory pathways. Herein, we describe an important regulatory role for C2 domain phosphorylation. Novel PKCs (nPKCs) contain an N-terminal C2 domain that cannot bind to calcium. Previously, we described an autophosphorylation site in the Aplysia novel PKC Apl II that increased the binding of the C2 domain to lipids. In this study, we show that the function of this phosphorylation is to inhibit PKC translocation. Indeed, a phosphomimetic serine-glutamic acid mutation reduced translocation of PKC Apl II while blocking phosphorylation with a serine-alanine mutation enhanced translocation and led to the persistence of the kinase at the membrane longer after the end of the stimulation. Consistent with a role for autophosphorylation in regulating kinase translocation, inhibiting PKC activity using bisindolymaleimide 1 increased physiological translocation of PKC Apl II, whereas inhibiting phosphatase activity using calyculin A inhibited physiological translocation of PKC Apl II in neurons. Our results suggest a major role for autophosphorylation-dependent regulation of translocation.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
22
|
Birner-Gruenberger R, Darnhofer B, Chen WQ, Monje FJ, Lubec G. Proteomic characterization of the abdominal ganglion of Aplysia californica-a protein resource for neuroscience. Proteomics 2012; 12:2482-6. [PMID: 22696492 DOI: 10.1002/pmic.201100641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/09/2012] [Accepted: 01/25/2012] [Indexed: 11/08/2022]
Abstract
Aplysia californica (AC) is a widely used model for testing learning and memory. Although ESTs have been generated, proteomics studies on AC proteins are limited. Studies at the protein level, however, are mandatory, not only due to the fact that studies at the nucleic acid level are not allowing conclusions about PTMs. A gel-based proteomics method was therefore applied to carry out protein profiling in abdominal ganglia from AC. Abdominal ganglia were extirpated, proteins extracted and run on 2DE with subsequent in-gel digestion with trypsin, chymotrypsin, and partially by subtilisin. Peptides were identified using a nano-LC-ESI-LTQ-FT-mass spectrometer. MS/MS data were analyzed by searching the NCBI nonredundant public AC EST database and the NCBI nonredundant public AC protein database. A total of 477 different proteins represented by 363 protein spots were detected and were assigned to different protein pathways as for instance signaling (receptors, protein kinases, and phosphatases), metabolism, protein synthesis, handling and degradation, cytoskeleton and structural, oxido-redox, heat shock and chaperone, hypothetical, predicted and unnamed proteins. The generation of a protein map of soluble proteins shows the existence of so far hypothetical and predicted proteins and is allowing and challenging further work at the protein level, in particular in the field of neuroscience.
Collapse
Affiliation(s)
- Ruth Birner-Gruenberger
- Proteomics Core Facility, Center for Medical Research and Institute of Pathology, Medical University of Graz, Austria
| | | | | | | | | |
Collapse
|
23
|
Molecular determinants of the spacing effect. Neural Plast 2012; 2012:581291. [PMID: 22548194 PMCID: PMC3323864 DOI: 10.1155/2012/581291] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/16/2011] [Accepted: 01/16/2012] [Indexed: 11/30/2022] Open
Abstract
Long-term memory formation is sensitive to the pattern of training sessions. Training distributed over time (spaced training) is superior at generating long-term memories than training presented with little or no rest interval (massed training). This spacing effect was observed in a range of organisms from invertebrates to humans. In the present paper, we discuss the evidence supporting cyclic-AMP response element-binding protein 2 (CREB), a transcription factor, as being an important molecule mediating long-term memory formation after spaced training. We also review the main upstream proteins that regulate CREB in different model organisms. Those include the eukaryotic translation initiation factor (eIF2α), protein phosphatase I (PP1), mitogen-activated protein kinase (MAPK), and the protein tyrosine phosphatase corkscrew. Finally, we discuss PKC activation and protein synthesis and degradation as mechanisms by which neurons decode the spacing intervals.
Collapse
|
24
|
Naqib F, Farah CA, Pack CC, Sossin WS. The rates of protein synthesis and degradation account for the differential response of neurons to spaced and massed training protocols. PLoS Comput Biol 2011; 7:e1002324. [PMID: 22219722 PMCID: PMC3248386 DOI: 10.1371/journal.pcbi.1002324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/10/2011] [Indexed: 12/05/2022] Open
Abstract
The sensory-motor neuron synapse of Aplysia is an excellent model system for investigating the biochemical changes underlying memory formation. In this system, training that is separated by rest periods (spaced training) leads to persistent changes in synaptic strength that depend on biochemical pathways that are different from those that occur when the training lacks rest periods (massed training). Recently, we have shown that in isolated sensory neurons, applications of serotonin, the neurotransmitter implicated in inducing these synaptic changes during memory formation, lead to desensitization of the PKC Apl II response, in a manner that depends on the method of application (spaced versus massed). Here, we develop a mathematical model of this response in order to gain insight into how neurons sense these different training protocols. The model was developed incrementally, and each component was experimentally validated, leading to two novel findings: First, the increased desensitization due to PKA-mediated heterologous desensitization is coupled to a faster recovery than the homologous desensitization that occurs in the absence of PKA activity. Second, the model suggests that increased spacing leads to greater desensitization due to the short half-life of a hypothetical protein, whose production prevents homologous desensitization. Thus, we predict that the effects of differential spacing are largely driven by the rates of production and degradation of proteins. This prediction suggests a powerful mechanism by which information about time is incorporated into neuronal processing. Memories are among an individual's most cherished possessions. One factor that has been shown to exert a powerful influence on memory formation is the pattern of training. Learning trials distributed over time have been shown to consistently produce longer lasting memories than trials distributed over short intervals, in every organism in which this has been studied. This observation has been investigated particularly well in the marine mollusk Aplysia californica. The nervous system of Aplysia is simple and well characterized, yet capable of forming memories, making it an ideal system for the study of learning and memory. Currently, we have a detailed understanding of memory formation in Aplysia at the cellular level. However, there remain many unanswered questions at the molecular level, particularly concerning how the effects of different patterns of learning are mediated. We have developed a mathematical model of a molecular signaling pathway known to underlie memory formation in Aplysia. Our model suggests that the rates of synthesis and degradation of proteins involved in memory regulation are essential for neurons of Aplysia to respond differentially to spaced and massed training. We were able to experimentally validate these findings, thus providing significant evidence for this model, which might underlie memory formation in more complex animals.
Collapse
Affiliation(s)
- Faisal Naqib
- Department of Physiology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Carole A. Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher C. Pack
- Department of Physiology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
25
|
Dunn TW, Farah CA, Sossin WS. Inhibitory responses in Aplysia pleural sensory neurons act to block excitability, transmitter release, and PKC Apl II activation. J Neurophysiol 2011; 107:292-305. [PMID: 21994260 DOI: 10.1152/jn.00767.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of the 5-HT(1Apl(a)) receptor in Aplysia pleural sensory neurons inhibited 5-HT-mediated translocation of the novel PKC Apl II in sensory neurons and prevented PKC-dependent synaptic facilitation at sensory to motoneuron synapses (Nagakura et al. 2010). We now demonstrate that the ability of inhibitory receptors to block PKC activation is a general feature of inhibitory receptors and is found after expression of the 5-HT(1Apl(b)) receptor and with activation of endogenous dopamine and FMRFamide receptors in sensory neurons. Pleural sensory neurons are heterogeneous for their inhibitory response to endogenous transmitters, with dopamine being the most prevalent, followed by FMRFamide, and only a small number of neurons with inhibitory responses to 5-HT. The inhibitory response is dominant, reduces membrane excitability and synaptic efficacy, and can reverse 5-HT facilitation at both naive and depressed synapses. Indeed, dopamine can reverse PKC translocation during the continued application of 5-HT. Reversal of translocation can also be seen after translocation mediated by an analog of diacylglycerol, suggesting inhibition is not through blockade of diacylglycerol production. The effects of inhibition on PKC translocation can be rescued by phosphatidic acid, consistent with the inhibitory response involving a reduction or block of production of this lipid. However, phosphatidic acid could not recover PKC-dependent synaptic facilitation due to an additional inhibitory effect on the non-L-type calcium flux linked to synaptic transmission. In summary, we find a novel mechanism downstream of inhibitory receptors linked to inhibition of PKC activation in Aplysia sensory neurons.
Collapse
Affiliation(s)
- Tyler W Dunn
- Dept. of Neurology and Neurosurgery, McGill Univ., Montreal Neurological Institute, BT 110, 3801 Univ. St., Montreal, Quebec H3A 2B4, Canada.
| | | | | |
Collapse
|