1
|
Yan K, Zhang C, Kang J, Montenegro P, Shen J. Cortical neurodegeneration caused by Psen1 mutations is independent of Aβ. Proc Natl Acad Sci U S A 2024; 121:e2409343121. [PMID: 39136994 PMCID: PMC11348310 DOI: 10.1073/pnas.2409343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Mutations in the PSEN genes are the major cause of familial Alzheimer's disease, and presenilin (PS) is the catalytic subunit of γ-secretase, which cleaves type I transmembrane proteins, including the amyloid precursor protein (APP) to release Aβ peptides. While PS plays an essential role in the protection of neuronal survival, PSEN mutations also increase the ratio of Aβ42/Aβ40. Thus, it remains unresolved whether PSEN mutations cause AD via a loss of its essential function or increases of Aβ42/Aβ40. Here, we test whether the knockin (KI) allele of Psen1 L435F, the most severe FAD mutation located closest to the active site of γ-secretase, causes age-dependent cortical neurodegeneration independent of Aβ by crossing various Psen mutant mice to the App-null background. We report that removing Aβ completely through APP deficiency has no impact on the age-dependent neurodegeneration in Psen mutant mice, as shown by the absence of effects on the reduced cortical volume and decreases of cortical neurons at the ages of 12 and 18 mo. The L435F KI allele increases Aβ42/Aβ40 in the cerebral cortex while decreasing de novo production and steady-state levels of Aβ42 and Aβ40 in the presence of APP. Furthermore, APP deficiency does not alleviate elevated apoptotic cell death in the cerebral cortex of Psen mutant mice at the ages of 2, 12, and 18 mo, nor does it affect the progressive microgliosis in these mice. Our findings demonstrate that Psen1 mutations cause age-dependent neurodegeneration independent of Aβ, providing further support for a loss-of-function pathogenic mechanism underlying PSEN mutations.
Collapse
Affiliation(s)
- Kuo Yan
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Chen Zhang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Paola Montenegro
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- Program in Neuroscience, Harvard Medical School, Boston, MA02115
| |
Collapse
|
2
|
Kang J, Zhang C, Wang Y, Peng J, Berger B, Perrimon N, Shen J. Lipophorin receptors genetically modulate neurodegeneration caused by reduction of Psn expression in the aging Drosophila brain. Genetics 2024; 226:iyad202. [PMID: 37996068 PMCID: PMC10763532 DOI: 10.1093/genetics/iyad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Mutations in the Presenilin (PSEN) genes are the most common cause of early-onset familial Alzheimer's disease (FAD). Studies in cell culture, in vitro biochemical systems, and knockin mice showed that PSEN mutations are loss-of-function mutations, impairing γ-secretase activity. Mouse genetic analysis highlighted the importance of Presenilin (PS) in learning and memory, synaptic plasticity and neurotransmitter release, and neuronal survival, and Drosophila studies further demonstrated an evolutionarily conserved role of PS in neuronal survival during aging. However, molecular pathways that interact with PS in neuronal survival remain unclear. To identify genetic modifiers that modulate PS-dependent neuronal survival, we developed a new DrosophilaPsn model that exhibits age-dependent neurodegeneration and increases of apoptosis. Following a bioinformatic analysis, we tested top ranked candidate genes by selective knockdown (KD) of each gene in neurons using two independent RNAi lines in Psn KD models. Interestingly, 4 of the 9 genes enhancing neurodegeneration in Psn KD flies are involved in lipid transport and metabolism. Specifically, neuron-specific KD of lipophorin receptors, lpr1 and lpr2, dramatically worsens neurodegeneration in Psn KD flies, and overexpression of lpr1 or lpr2 does not alleviate Psn KD-induced neurodegeneration. Furthermore, lpr1 or lpr2 KD alone also leads to neurodegeneration, increased apoptosis, climbing defects, and shortened lifespan. Lastly, heterozygotic deletions of lpr1 and lpr2 or homozygotic deletions of lpr1 or lpr2 similarly lead to age-dependent neurodegeneration and further exacerbate neurodegeneration in Psn KD flies. These findings show that LpRs modulate Psn-dependent neuronal survival and are critically important for neuronal integrity in the aging brain.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Zhang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuhao Wang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Essayan-Perez S, Südhof TC. Neuronal γ-secretase regulates lipid metabolism, linking cholesterol to synaptic dysfunction in Alzheimer's disease. Neuron 2023; 111:3176-3194.e7. [PMID: 37543038 PMCID: PMC10592349 DOI: 10.1016/j.neuron.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Presenilin mutations that alter γ-secretase activity cause familial Alzheimer's disease (AD), whereas ApoE4, an apolipoprotein for cholesterol transport, predisposes to sporadic AD. Both sporadic and familial AD feature synaptic dysfunction. Whether γ-secretase is involved in cholesterol metabolism and whether such involvement impacts synaptic function remains unknown. Here, we show that in human neurons, chronic pharmacological or genetic suppression of γ-secretase increases synapse numbers but decreases synaptic transmission by lowering the presynaptic release probability without altering dendritic or axonal arborizations. In search of a mechanism underlying these synaptic impairments, we discovered that chronic γ-secretase suppression robustly decreases cholesterol levels in neurons but not in glia, which in turn stimulates neuron-specific cholesterol-synthesis gene expression. Suppression of cholesterol levels by HMG-CoA reductase inhibitors (statins) impaired synaptic function similar to γ-secretase inhibition. Thus, γ-secretase enables synaptic function by maintaining cholesterol levels, whereas the chronic suppression of γ-secretase impairs synapses by lowering cholesterol levels.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Montenegro P, Chen P, Kang J, Lee SH, Leone S, Shen J. Human Presenilin-1 delivered by AAV9 rescues impaired γ-secretase activity, memory deficits, and neurodegeneration in Psen mutant mice. Proc Natl Acad Sci U S A 2023; 120:e2306714120. [PMID: 37816062 PMCID: PMC10589670 DOI: 10.1073/pnas.2306714120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Mutations in the Presenilin (PSEN1 and PSEN2) genes are the major cause of early-onset familial Alzheimer's disease (FAD). Presenilin (PS) is the catalytic subunit of the γ-secretase complex, which cleaves type I transmembrane proteins, such as Notch and the amyloid precursor protein (APP), and plays an evolutionarily conserved role in the protection of neuronal survival during aging. FAD PSEN1 mutations exhibit impaired γ-secretase activity in cell culture, in vitro, and knockin (KI) mouse brains, and the L435F mutation is the most severe in reducing γ-secretase activity and is located closest to the active site of γ-secretase. Here, we report that introduction of the codon-optimized wild-type human PSEN1 cDNA by adeno-associated virus 9 (AAV9) results in broadly distributed, sustained, low to moderate levels of human PS1 (hPS1) expression and rescues impaired γ-secretase activity in the cerebral cortex of Psen mutant mice either lacking PS or expressing the Psen1 L435F KI allele, as evaluated by endogenous γ-secretase substrates of APP and recombinant γ-secretase products of Notch intracellular domain and Aβ peptides. Furthermore, introduction of hPS1 by AAV9 alleviates impairments of synaptic plasticity and learning and memory in Psen mutant mice. Importantly, AAV9 delivery of hPS1 ameliorates neurodegeneration in the cerebral cortex of aged Psen mutant mice, as shown by the reversal of age-dependent loss of cortical neurons and elevated microgliosis and astrogliosis. These results together show that moderate hPS1 expression by AAV9 is sufficient to rescue impaired γ-secretase activity, synaptic and memory deficits, and neurodegeneration caused by Psen mutations in mouse models.
Collapse
Affiliation(s)
- Paola Montenegro
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Sang Hun Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Sofia Leone
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA02115
- Program in Neuroscience, Harvard Medical School, Boston, MA02115
| |
Collapse
|
5
|
Lee SH, Bolshakov VY, Shen J. Presenilins regulate synaptic plasticity in the perforant pathways of the hippocampus. Mol Brain 2023; 16:17. [PMID: 36710361 PMCID: PMC9885562 DOI: 10.1186/s13041-023-01009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Mutations in the Presenilin genes (PSEN1 and PSEN2) are the major cause of familial Alzheimer's disease (AD), highlighting the importance of Presenilin (PS) in AD pathogenesis. Previous studies of PS function in the hippocampus demonstrated that loss of PS results in the impairment of short- and long-term synaptic plasticity and neurotransmitter release at hippocampal Schaffer collateral (SC) and mossy fiber (MF) synapses. Cortical input to the hippocampus through the lateral perforant pathway (LPP) and the medial perforant pathway (MPP) is critical for normal cognitive functions and is particularly vulnerable during aging and early stages of AD. Whether PS regulates synaptic function in the perforant pathways, however, remained unknown. In the current study, we investigate PS function in the LPP and MPP by performing whole-cell and field-potential electrophysiological recordings using acute hippocampal slices from postnatal forebrain-restricted excitatory neuron-specific PS conditional double knockout (cDKO) mice. We found that paired-pulse ratio (PPR) is reduced in the LPP and MPP of PS cDKO mice. Moreover, synaptic frequency facilitation or depression in the LPP or MPP, respectively, is impaired in PS cDKO mice. Notably, depletion of intracellular Ca2+ stores by inhibition of sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) minics and occludes the effects of PS inactivation, as evidenced by decreases of the evoked excitatory postsynaptic currents (EPSCs) amplitude in the LPP and MPP of control neurons but no effect on the EPSC amplitude in PS cDKO neurons, suggesting that impaired intracellular calcium homeostasis in the absence of PS may contribute to the observed deficits in synaptic transmission. While spontaneous synaptic events, such as both the frequency and the amplitude of spontaneous or miniature EPSCs, are similar between PS cDKO and control neurons, long-term potentiation (LTP) is impaired in the LPP and MPP of PS cDKO mice, accompanied with reduction of evoked NMDA receptor-mediated responses. These findings show the importance of PS in the regulation of synaptic plasticity and intracellular calcium homeostasis in the hippocampal perforant pathways.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Peng W, Xie Y, Liao C, Bai Y, Wang H, Li C. Spatiotemporal patterns of gliosis and neuroinflammation in presenilin 1/2 conditional double knockout mice. Front Aging Neurosci 2022; 14:966153. [PMID: 36185485 PMCID: PMC9521545 DOI: 10.3389/fnagi.2022.966153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence indicates that neuroinflammation contributes to and exacerbates the pathogenesis of Alzheimer’s disease (AD). Neuroinflammation is thought to be primarily driven by glial cells (microglia and astrocytes) and escalates with neurodegenerative progression in AD. However, the spatiotemporal change patterns of glial reactivity and neuroinflammatory response during different stages of neurodegeneration, especially early in disease, remain unknown. Here we found that gliosis and the up-regulation of substantial neuroinflammatory genes were primarily initiated in the cortex of presenilin 1/2 conditional double knockout (cDKO) mice, rather than in the hippocampus. Specifically, astrocyte activation preceding microglial activation was found in the somatosensory cortex (SS) of cDKO mice at 6 weeks of age. Over time, both astrocyte and microglial activation were found in the whole cortex, and age-related increases in gliosis activation were more pronounced in the cortex compared to hippocampus. Moreover, the age-associated increase in glial activation was accompanied by a gradual increase in the expression of cell chemokines Ccl3 and Ccl4, complement related factors C1qb, C3 and C4, and lysosomal proteases cathepsin S and Z. These findings suggest that astrocyte and microglial activation with a concurrent increase in inflammatory mediators such as chemokines might be an early event and contribute to the pathogenesis of neurodegeneration due to presenilin deficiency.
Collapse
Affiliation(s)
- Wenjun Peng
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yuan Xie
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Chongzheng Liao
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yunxia Bai
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Huimin Wang
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Huimin Wang,
| | - Chunxia Li
- Key Laboratory of Brain Functional Genomics (STCSM and MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- *Correspondence: Chunxia Li,
| |
Collapse
|
7
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
8
|
Lee SH, Bolshakov VY, Shen J. Inactivation of Presenilin in inhibitory neurons results in decreased GABAergic responses and enhanced synaptic plasticity. Mol Brain 2021; 14:85. [PMID: 34034776 PMCID: PMC8152317 DOI: 10.1186/s13041-021-00796-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
Mutations in the Presenilin genes are the major genetic cause of Alzheimer's disease (AD). Presenilin (PS) is highly expressed in the hippocampus, which is particularly vulnerable in AD. Previous studies of PS function in the hippocampus, however, focused exclusively on excitatory neurons. Whether PS regulates inhibitory neuronal function remained unknown. In the current study, we investigate PS function in GABAergic neurons by performing whole-cell and field-potential electrophysiological recordings using acute hippocampal slices from inhibitory neuron-specific PS conditional double knockout (IN-PS cDKO) mice at 2 months of age, before the onset of age-dependent loss of interneurons. We found that the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) is reduced in hippocampal CA1 neurons of IN-PS cDKO mice, whereas the amplitude of sIPSCs is normal. Moreover, the efficacy of inhibitory neurotransmission as assessed with synaptic input/output relations for evoked mono- and di-synaptic IPSCs is markedly lowered in hippocampal CA1 neurons of IN-PS cDKO mice. Consistent with these findings, IN-PS cDKO mice display enhanced paired-pulse facilitation, frequency facilitation and long-term potentiation in the Schaffer collateral-CA1 pathway. Interestingly, depletion of intracellular Ca2+ stores by inhibition of sarcoendoplasmic reticulum Ca2+ ATPase results in a reduction of IPSC amplitude in control hippocampal neurons but not in IN-PS cDKO neurons, suggesting that impaired intracellular calcium homeostasis in the absence of PS may contribute to the deficiencies in inhibitory neurotransmission. Furthermore, the amplitude of IPSCs induced by short trains of presynaptic stimulation and paired-pulse ratio are decreased in IN-PS cDKO mice. These findings show that inactivation of PS in interneurons results in decreased GABAergic responses and enhanced synaptic plasticity in the hippocampus, providing additional evidence for the importance of PS in the regulation of synaptic plasticity and calcium homeostasis.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Kang J, Shen J. Cell-autonomous role of Presenilin in age-dependent survival of cortical interneurons. Mol Neurodegener 2020; 15:72. [PMID: 33302995 PMCID: PMC7731773 DOI: 10.1186/s13024-020-00419-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Mutations in the PSEN1 and PSEN2 genes are the major cause of familial Alzheimer's disease. Previous studies demonstrated that Presenilin (PS), the catalytic subunit of γ-secretase, is required for survival of excitatory neurons in the cerebral cortex during aging. However, the role of PS in inhibitory interneurons had not been explored. METHODS To determine PS function in GABAergic neurons, we generated inhibitory neuron-specific PS conditional double knockout (IN-PS cDKO) mice, in which PS is selectively inactivated by Cre recombinase expressed under the control of the endogenous GAD2 promoter. We then performed behavioral, biochemical, and histological analyses to evaluate the consequences of selective PS inactivation in inhibitory neurons. RESULTS IN-PS cDKO mice exhibit earlier mortality and lower body weight despite normal food intake and basal activity. Western analysis of protein lysates from various brain sub-regions of IN-PS cDKO mice showed significant reduction of PS1 levels and dramatic accumulation of γ-secretase substrates. Interestingly, IN-PS cDKO mice develop age-dependent loss of GABAergic neurons, as shown by normal number of GAD67-immunoreactive interneurons in the cerebral cortex at 2-3 months of age but reduced number of cortical interneurons at 9 months. Moreover, age-dependent reduction of Parvalbumin- and Somatostatin-immunoreactive interneurons is more pronounced in the neocortex and hippocampus of IN-PS cDKO mice. Consistent with these findings, the number of apoptotic cells is elevated in the cerebral cortex of IN-PS cDKO mice, and the enhanced apoptosis is due to dramatic increases of apoptotic interneurons, whereas the number of apoptotic excitatory neurons is unaffected. Furthermore, progressive loss of interneurons in the cerebral cortex of IN-PS cDKO mice is accompanied with astrogliosis and microgliosis. CONCLUSION Our results together support a cell-autonomous role of PS in the survival of cortical interneurons during aging. Together with earlier studies, these findings demonstrate a universal, essential requirement of PS in the survival of both excitatory and inhibitory neurons during aging.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115 USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
10
|
Yin T, Yao W, Lemenze AD, D'Adamio L. Danish and British dementia ITM2b/BRI2 mutations reduce BRI2 protein stability and impair glutamatergic synaptic transmission. J Biol Chem 2020; 296:100054. [PMID: 33172889 PMCID: PMC7948410 DOI: 10.1074/jbc.ra120.015679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Mutations in integral membrane protein 2B (ITM2b/BRI2) gene cause familial British and Danish dementia (FBD and FDD), autosomal dominant disorders characterized by progressive cognitive deterioration. Two pathogenic mechanisms, which may not be mutually exclusive, have been proposed for FDD and FBD: 1) loss of BRI2 function; 2) accumulation of amyloidogenic mutant BRI2-derived peptides, but the mechanistic details remain unclear. We have previously reported a physiological role of BRI2 in excitatory synaptic transmission at both presynaptic termini and postsynaptic termini. To test whether pathogenic ITM2b mutations affect these physiological BRI2 functions, we analyzed glutamatergic transmission in FDD and FBD knock-in mice, which carry pathogenic FDD and FBD mutations into the mouse endogenous Itm2b gene. We show that in both mutant lines, spontaneous glutamate release and AMPAR-mediated responses are decreased, while short-term synaptic facilitation is increased, effects similar to those observed in Itm2bKO mice. In vivo and in vitro studies show that both pathogenic mutations alter maturation of BRI2 resulting in reduced levels of functional mature BRI2 protein at synapses. Collectively, the data show that FDD and FBD mutations cause a reduction of BRI2 levels and function at synapses, which results in reduced glutamatergic transmission. Notably, other genes mutated in Familial dementia, such as APP, PSEN1/PSEN2, are implicated in glutamatergic synaptic transmission, a function that is altered by pathogenic mutations. Thus, defects in excitatory neurotransmitter release may represent a general and convergent mechanism leading to neurodegeneration. Targeting these dysfunction may offer a unique disease modifying method of therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tao Yin
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Wen Yao
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Alexander D Lemenze
- Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA.
| |
Collapse
|
11
|
Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2019; 22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.
Collapse
Affiliation(s)
- Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore.,Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Yao W, Yin T, Tambini MD, D'Adamio L. The Familial dementia gene ITM2b/BRI2 facilitates glutamate transmission via both presynaptic and postsynaptic mechanisms. Sci Rep 2019; 9:4862. [PMID: 30890756 PMCID: PMC6425013 DOI: 10.1038/s41598-019-41340-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Integral membrane protein 2B (ITM2b/BRI2) gene, which codes for a protein called BRI2, cause familial British and Danish dementia (FBD and FDD). Loss of BRI2 function and/or accumulation of amyloidogenic mutant BRI2-derived peptides have been proposed to mediate FDD and FBD pathogenesis by impairing synaptic Long-term potentiation (LTP). However, the precise site and nature of the synaptic dysfunction remain unknown. Here we use a genetic approach to inactivate Itm2b in either presynaptic (CA3), postsynaptic (CA1) or both (CA3 + CA1) neurons of the hippocampal Schaeffer-collateral pathway in both female and male mice. We show that after CA3 + CA1 Itm2b inactivation, spontaneous glutamate release and AMPAR-mediated responses are decreased, while short-term synaptic facilitation is increased. Moreover, AMPAR-mediated responses are decreased after postsynaptic but not presynaptic deletion of Itm2b. In contrast, the probability of spontaneous glutamate release is decreased, while short-term synaptic facilitation is increased, primarily after presynaptic deletion of Itm2b. Collectively, these results indicate a dual physiological role of Itm2b in the regulation of excitatory synaptic transmission at both presynaptic termini and postsynaptic termini and suggest that presynaptic and postsynaptic dysfunctions may be a pathogenic event leading to dementia and neurodegeneration in FDD and FBD.
Collapse
Affiliation(s)
- Wen Yao
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Tao Yin
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Marc D Tambini
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
13
|
Dhaliwal J, Kannangara TS, Vaculik M, Xue Y, Kumar KL, Maione A, Béïque JC, Shen J, Lagace DC. Adult hippocampal neurogenesis occurs in the absence of Presenilin 1 and Presenilin 2. Sci Rep 2018; 8:17931. [PMID: 30560948 PMCID: PMC6299003 DOI: 10.1038/s41598-018-36363-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/10/2018] [Indexed: 12/19/2022] Open
Abstract
Mutations in the presenilin genes (PS1 and PS2) are a major cause of familial-Alzheimer's disease (FAD). Presenilins regulate neurogenesis in the developing brain, with loss of PS1 inducing aberrant premature differentiation of neural progenitor cells, and additional loss of PS2 exacerbating this effect. It is unclear, however, whether presenilins are involved in adult neurogenesis, a process that may be impaired in Alzheimer's disease within the hippocampus. To investigate the requirement of presenilins in adult-generated dentate granule neurons, we examined adult neurogenesis in the PS2-/- adult brain and then employ a retroviral approach to ablate PS1 selectively in dividing progenitor cells of the PS2-/- adult brain. Surprisingly, the in vivo ablation of both presenilins resulted in no defects in the survival and differentiation of adult-generated neurons. There was also no change in the morphology or functional properties of the retroviral-labeled presenilin-null cells, as assessed by dendritic morphology and whole-cell electrophysiology analyses. Furthermore, while FACS analysis showed that stem and progenitor cells express presenilins, inactivation of presenilins from these cells, using a NestinCreERT2 inducible genetic approach, demonstrated no changes in the proliferation, survival, or differentiation of adult-generated cells. Therefore, unlike their significant role in neurogenesis during embryonic development, presenilins are not required for cell-intrinsic regulation of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Jagroop Dhaliwal
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, and Neuroscience Program, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada
| | - Timal S Kannangara
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, and Neuroscience Program, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada
| | - Michael Vaculik
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, and Neuroscience Program, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada
| | - Yingben Xue
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, and Neuroscience Program, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada
| | - Keren L Kumar
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, and Neuroscience Program, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada
| | - Amanda Maione
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, and Neuroscience Program, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, and Neuroscience Program, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada
| | - Jie Shen
- Department of Neurology, Brigham and Women's Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, and Neuroscience Program, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada.
| |
Collapse
|
14
|
Intraneuronal accumulation of C99 contributes to synaptic alterations, apathy-like behavior, and spatial learning deficits in 3×TgAD and 2×TgAD mice. Neurobiol Aging 2018; 71:21-31. [DOI: 10.1016/j.neurobiolaging.2018.06.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022]
|
15
|
Proteolytic Processing of Neurexins by Presenilins Sustains Synaptic Vesicle Release. J Neurosci 2017; 38:901-917. [PMID: 29229705 DOI: 10.1523/jneurosci.1357-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/03/2017] [Accepted: 11/26/2017] [Indexed: 11/21/2022] Open
Abstract
Proteolytic processing of synaptic adhesion components can accommodate the function of synapses to activity-dependent changes. The adhesion system formed by neurexins (Nrxns) and neuroligins (Nlgns) bidirectionally orchestrate the function of presynaptic and postsynaptic terminals. Previous studies have shown that presenilins (PS), components of the gamma-secretase complex frequently mutated in familial Alzheimer's disease, clear from glutamatergic terminals the accumulation of Nrxn C-terminal fragments (Nrxn-CTF) generated by ectodomain shedding. Here, we characterized the synaptic consequences of the proteolytic processing of Nrxns in cultured hippocampal neurons from mice and rats of both sexes. We show that activation of presynaptic Nrxns with postsynaptic Nlgn1 or inhibition of ectodomain shedding in axonal Nrxn1-β increases presynaptic release at individual terminals, likely reflecting an increase in the number of functional release sites. Importantly, inactivation of PS inhibits presynaptic release downstream of Nrxn activation, leaving synaptic vesicle recruitment unaltered. Glutamate-receptor signaling initiates the activity-dependent generation of Nrxn-CTF, which accumulate at presynaptic terminals lacking PS function. The sole expression of Nrxn-CTF decreases presynaptic release and calcium flux, recapitulating the deficits due to loss of PS function. Our data indicate that inhibition of Nrxn processing by PS is deleterious to glutamatergic function.SIGNIFICANCE STATEMENT To gain insight into the role of presenilins (PS) in excitatory synaptic function, we address the relevance of the proteolytic processing of presynaptic neurexins (Nrxns) in glutamatergic differentiation. Using synaptic fluorescence probes in cultured hippocampal neurons, we report that trans-synaptic activation of Nrxns produces a robust increase in presynaptic calcium levels and neurotransmitter release at individual glutamatergic terminals by a mechanism that depends on normal PS activity. Abnormal accumulation of Nrxn C-terminal fragments resulting from impaired PS activity inhibits presynaptic calcium signal and neurotransmitter release, assigning synaptic defects to Nrxns as a specific PS substrate. These data may provide links into how loss of PS activity inhibits glutamatergic synaptic function in Alzheimer's disease patients.
Collapse
|
16
|
Regulated intramembrane proteolysis: emergent role in cell signalling pathways. Biochem Soc Trans 2017; 45:1185-1202. [PMID: 29079648 DOI: 10.1042/bst20170002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Receptor signalling events including those initiated following activation of cytokine and growth factor receptors and the well-characterised death receptors (tumour necrosis factor receptor, type 1, FasR and TRAIL-R1/2) are initiated at the cell surface through the recruitment and formation of intracellular multiprotein signalling complexes that activate divergent signalling pathways. Over the past decade, research studies reveal that many of these receptor-initiated signalling events involve the sequential proteolysis of specific receptors by membrane-bound proteases and the γ-secretase protease complexes. Proteolysis enables the liberation of soluble receptor ectodomains and the generation of intracellular receptor cytoplasmic domain fragments. The combined and sequential enzymatic activity has been defined as regulated intramembrane proteolysis and is now a fundamental signal transduction process involved in the termination or propagation of receptor signalling events. In this review, we discuss emerging evidence for a role of the γ-secretase protease complexes and regulated intramembrane proteolysis in cell- and immune-signalling pathways.
Collapse
|
17
|
Tian Y, Yang C, Shang S, Cai Y, Deng X, Zhang J, Shao F, Zhu D, Liu Y, Chen G, Liang J, Sun Q, Qiu Z, Zhang C. Loss of FMRP Impaired Hippocampal Long-Term Plasticity and Spatial Learning in Rats. Front Mol Neurosci 2017; 10:269. [PMID: 28894415 PMCID: PMC5581399 DOI: 10.3389/fnmol.2017.00269] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/09/2017] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene that inactivate expression of the gene product, the fragile X mental retardation 1 protein (FMRP). In this study, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology to generate Fmr1 knockout (KO) rats by disruption of the fourth exon of the Fmr1 gene. Western blotting analysis confirmed that the FMRP was absent from the brains of the Fmr1 KO rats (Fmr1exon4-KO ). Electrophysiological analysis revealed that the theta-burst stimulation (TBS)-induced long-term potentiation (LTP) and the low-frequency stimulus (LFS)-induced long-term depression (LTD) were decreased in the hippocampal Schaffer collateral pathway of the Fmr1exon4-KO rats. Short-term plasticity, measured as the paired-pulse ratio, remained normal in the KO rats. The synaptic strength mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) was also impaired. Consistent with previous reports, the Fmr1exon4-KO rats demonstrated an enhanced 3,5-dihydroxyphenylglycine (DHPG)-induced LTD in the present study, and this enhancement is insensitive to protein translation. In addition, the Fmr1exon4-KO rats showed deficits in the probe trial in the Morris water maze test. These results demonstrate that deletion of the Fmr1 gene in rats specifically impairs long-term synaptic plasticity and hippocampus-dependent learning in a manner resembling the key symptoms of FXS. Furthermore, the Fmr1exon4-KO rats displayed impaired social interaction and macroorchidism, the results consistent with those observed in patients with FXS. Thus, Fmr1exon4-KO rats constitute a novel rat model of FXS that complements existing mouse models.
Collapse
Affiliation(s)
- Yonglu Tian
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing, China
| | - Chaojuan Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Shujiang Shang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Yijun Cai
- CAS Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Chinese Academy of SciencesShanghai, China
| | - Xiaofei Deng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Jian Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Feng Shao
- Department of Psychology, Peking UniversityBeijing, China
| | - Desheng Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Yunbo Liu
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical SciencesBeijing, China
| | - Guiquan Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Jing Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Qiang Sun
- CAS Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Chinese Academy of SciencesShanghai, China
| | - Zilong Qiu
- CAS Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Chinese Academy of SciencesShanghai, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking UniversityBeijing, China
| |
Collapse
|
18
|
Loss of Aβ43 Production Caused by Presenilin-1 Mutations in the Knockin Mouse Brain. Neuron 2017; 90:417-22. [PMID: 27100200 DOI: 10.1016/j.neuron.2016.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 02/20/2016] [Accepted: 03/10/2016] [Indexed: 11/22/2022]
Abstract
We recently reported that homozygous Presenilin-1 (Psen1) knockin (KI) mice carrying the familial Alzheimer's disease (FAD) mutation L435F or C410Y recapitulate the phenotypes of Psen1(-/-) mice. Production and steady-state levels of Aβ40 and Aβ42 are undetectable in KI/KI brains and reduced in KI/+ brains, though the Aβ42/Aβ40 ratio is slightly increased in KI/+ brains. Moreover, the FAD mutation impairs synaptic function, learning and memory, and age-dependent neuronal survival in the adult brain. Here we extend our analysis of the effects of the L435F and C410Y mutations to the generation of Aβ43. Similar to Aβ40 and Aβ42, production of Aβ43 is undetectable in KI/KI brains and reduced in KI/+ brains. These results support our previous conclusions that the L435F and C410Y mutations cause loss of Presenilin function and γ-secretase activity, including impaired Aβ production in the brain. This Matters Arising Response paper addresses the Veugelen et al. (2016) Matters Arising paper, published concurrently in Neuron.
Collapse
|
19
|
Lee SH, Lutz D, Mossalam M, Bolshakov VY, Frotscher M, Shen J. Presenilins regulate synaptic plasticity and mitochondrial calcium homeostasis in the hippocampal mossy fiber pathway. Mol Neurodegener 2017; 12:48. [PMID: 28619096 PMCID: PMC5472971 DOI: 10.1186/s13024-017-0189-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 11/24/2022] Open
Abstract
Background Presenilins play a major role in the pathogenesis of Alzheimer’s disease, in which the hippocampus is particularly vulnerable. Previous studies of Presenilin function in the synapse, however, focused exclusively on the hippocampal Schaffer collateral (SC) pathway. Whether Presenilins play similar or distinct roles in other hippocampal synapses is unknown. Methods To investigate the role of Presenilins at mossy fiber (MF) synapses we performed field and whole-cell electrophysiological recordings and Ca2+ imaging using acute hippocampal slices of postnatal forebrain-restricted Presenilin conditional double knockout (PS cDKO) and control mice at 2 months of age. We also performed quantitative electron microscopy (EM) analysis to determine whether mitochondrial content is affected at presynaptic MF boutons of PS cDKO mice. We further conducted behavioral analysis to assess spatial learning and memory of PS cDKO and control mice at 2 months in the Morris water maze. Results We found that long-term potentiation and short-term plasticity, such as paired-pulse and frequency facilitation, are impaired at MF synapses of PS cDKO mice. Moreover, post-tetanic potentiation (PTP), another form of short-term plasticity, is also impaired at MF synapses of PS cDKO mice. Furthermore, blockade of mitochondrial Ca2+ efflux mimics and occludes the PTP deficits at MF synapses of PS cDKO mice, suggesting that mitochondrial Ca2+ homeostasis is impaired in the absence of PS. Quantitative EM analysis showed normal number and area of mitochondria at presynaptic MF boutons of PS cDKO mice, indicating unchanged mitochondrial content. Ca2+ imaging of dentate gyrus granule neurons further revealed that cytosolic Ca2+ increases induced by tetanic stimulation are reduced in PS cDKO granule neurons in acute hippocampal slices, and that inhibition of mitochondrial Ca2+ release during high frequency stimulation mimics and occludes the Ca2+ defects observed in PS cDKO neurons. Consistent with synaptic plasticity impairment observed at MF and SC synapses in acute PS cDKO hippocampal slices, PS cDKO mice exhibit profound spatial learning and memory deficits in the Morris water maze. Conclusions Our findings demonstrate the importance of PS in the regulation of synaptic plasticity and mitochondrial Ca2+ homeostasis in the hippocampal MF pathway.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Lutz
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, D-20246, Hamburg, Germany
| | - Mohanad Mossalam
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, D-20246, Hamburg, Germany
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Beart PM. Synaptic signalling and its interface with neuropathologies: snapshots from the past, present and future. J Neurochem 2016; 139 Suppl 2:76-90. [PMID: 27144305 DOI: 10.1111/jnc.13598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
This 'Past to Future' Review as part of the 60th anniversary year of the Journal of Neurochemistry focuses on synaptic transmission and associated signalling, and seeks to identify seminal progress in neurochemistry over the last 10 years which has advanced our understanding of neuronal communication in brain. The approach adopted analyses neurotransmitters on a case by case basis (i.e. amino acids, monoamines, acetylcholine, neuropeptides, ATP/purines and gasotransmitters) to highlight novel findings that have changed the way we view each type of transmitter, to explore commonalities and interactions, and to note how new insights have changed the way we view the biology of degenerative, psychiatric and behavioural conditions. Across all transmitter systems there was remarkable growth in the identification of targets likely to provide therapeutic benefit and which undoubtedly was driven by the elucidation of circuit function and new vistas of synaptic signalling. There has been an increasing trend to relate signalling to disease, notably for Alzheimer's and Parkinson's disease and related conditions, and which has occurred for each transmitter family. Forebrain circuitry and tonic excitatory control have been the centre of great attention yielding novel findings that will impact upon cognitive, emotional and addictive behaviours. Other impressive insights focus on gasotransmitters integrating activity as volume transmitters. Exciting developments in how serotonin, cholinergic, l-glutamate, galanin and adenosine receptors and their associated signalling can be beneficially targeted should underpin the development of new therapies. Clearly integrated, multifaceted neurochemistry has changed the way we view synaptic signalling and its relevance to pathobiology. Highlighted are important advances in synaptic signalling over the last decade in the Journal of Neurochemistry. Across all transmitter systems elucidation of circuit function, and notably molecular insights, have underpinned remarkable growth in the identification of targets likely to provide therapeutic benefit in neuropathologies. Another commonality was wide interest in forebrain circuitry and its tonic excitatory control. Increasingly observations relate to signalling in disease and behavioural conditions. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Philip M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
21
|
Puzzo D, Gulisano W, Arancio O, Palmeri A. The keystone of Alzheimer pathogenesis might be sought in Aβ physiology. Neuroscience 2015; 307:26-36. [PMID: 26314631 PMCID: PMC4591241 DOI: 10.1016/j.neuroscience.2015.08.039] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023]
Abstract
For several years Amyloid-beta peptide (Aβ) has been considered the main pathogenetic factor of Alzheimer's disease (AD). According to the so called Amyloid Cascade Hypothesis the increase of Aβ triggers a series of events leading to synaptic dysfunction and memory loss as well as to the structural brain damage in the later stage of the disease. However, several evidences suggest that this hypothesis is not sufficient to explain AD pathogenesis, especially considering that most of the clinical trials aimed to decrease Aβ levels have been unsuccessful. Moreover, Aβ is physiologically produced in the healthy brain during neuronal activity and it is needed for synaptic plasticity and memory. Here we propose a model interpreting AD pathogenesis as an alteration of the negative feedback loop between Aβ and its physiological receptors, focusing on alpha7 nicotinic acetylcholine receptors (α7-nAchRs). According to this vision, when Aβ cannot exert its physiological function a negative feedback mechanism would induce a compensatory increase of its production leading to an abnormal accumulation that reduces α7-nAchR function, leading to synaptic dysfunction and memory loss. In this perspective, the indiscriminate Aβ removal might worsen neuronal homeostasis, causing a further impoverishment of learning and memory. Even if further studies are needed to better understand and validate these mechanisms, we believe that to deepen the role of Aβ in physiological conditions might represent the keystone to elucidate important aspects of AD pathogenesis.
Collapse
Affiliation(s)
- D Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, Viale A. Doria 6 (ed. 2), University of Catania, Catania 95125, Italy.
| | - W Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, Viale A. Doria 6 (ed. 2), University of Catania, Catania 95125, Italy
| | - O Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, 630 West 168th Street, Columbia University, New York, NY 10032, USA
| | - A Palmeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, Viale A. Doria 6 (ed. 2), University of Catania, Catania 95125, Italy
| |
Collapse
|
22
|
Xia D, Watanabe H, Wu B, Lee SH, Li Y, Tsvetkov E, Bolshakov VY, Shen J, Kelleher RJ. Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer's disease. Neuron 2015; 85:967-81. [PMID: 25741723 DOI: 10.1016/j.neuron.2015.02.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/30/2014] [Accepted: 02/04/2015] [Indexed: 12/15/2022]
Abstract
Presenilins play essential roles in memory formation, synaptic function, and neuronal survival. Mutations in the Presenilin-1 (PSEN1) gene are the major cause of familial Alzheimer's disease (FAD). How PSEN1 mutations cause FAD is unclear, and pathogenic mechanisms based on gain or loss of function have been proposed. Here, we generated Psen1 knockin (KI) mice carrying the FAD mutation L435F or C410Y. Remarkably, KI mice homozygous for either mutation recapitulate the phenotypes of Psen1(-/-) mice. Neither mutation altered Psen1 mRNA expression, but both abolished γ-secretase activity. Heterozygosity for the KI mutation decreased production of Aβ40 and Aβ42, increased the Aβ42/Aβ40 ratio, and exacerbated Aβ deposition. Furthermore, the L435F mutation impairs hippocampal synaptic plasticity and memory and causes age-dependent neurodegeneration in the aging cerebral cortex. Collectively, our findings reveal that FAD mutations can cause complete loss of Presenilin-1 function in vivo, suggesting that clinical PSEN mutations produce FAD through a loss-of-function mechanism.
Collapse
Affiliation(s)
- Dan Xia
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hirotaka Watanabe
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bei Wu
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sang Hun Lee
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Li
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Evgeny Tsvetkov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Shen
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Raymond J Kelleher
- Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Abstract
Mutations in the presenilin (PSEN1 and PSEN2) genes are linked to familial Alzheimer's disease (AD) and cause loss of its essential function. Complete inactivation of presenilins in excitatory neurons of the adult mouse cerebral cortex results in progressive memory impairment and age-dependent neurodegeneration, recapitulating key features of AD. In this study, we examine the effects of varying presenilin dosage on cortical neuron survival by generating presenilin-1 conditional knock-out (PS1 cKO) mice carrying two, one, or zero copies of the PS2 gene. We found that PS1 cKO;PS2(+/-) mice at 16 months exhibit marked neurodegeneration in the cerebral cortex with ∼17% reduction of cortical volume and neuron number, as well as astrogliosis and microgliosis compared with ∼50% reduction of cortical volume and neuron number in PS1 cKO;PS2(-/-) mice. Moreover, there are more apoptotic neurons labeled by activated caspase-3 immunoreactivity and TUNEL assay in PS1 cKO;PS2(+/-) mice at 16 months, whereas apoptotic neurons are increased in the PS1 cKO;PS2(-/-) cerebral cortex at 4 months. The accumulation of the C-terminal fragments of the amyloid precursor protein is inversely correlated with PS dosage. Interestingly, levels of PS2 are higher in the cerebral cortex of PS1 cKO mice, suggesting a compensatory upregulation that may provide protection against neurodegeneration in these mice. Together, our findings show that partial to complete loss of presenilin activity causes progressively more severe neurodegeneration in the mouse cerebral cortex during aging, suggesting that impaired presenilin function by PSEN mutations may lead to neurodegeneration and dementia in AD.
Collapse
|
24
|
Abstract
Synaptic dysfunction is widely thought to play a key role in the pathogenesis of Alzheimer's disease (AD). Presenilins, the major gene products involved in familial AD, are essential for short- and long-term synaptic plasticity in mature neurons as well as for the survival of cortical neurons during aging. Presenilin and nicastrin are both indispensable components of the γ-secretase complex, but it remains unknown whether presenilin regulates synaptic function in a γ-secretase-dependent or γ-secretase-independent manner and whether nicastrin plays similar roles in central synapses. In the current study, we address these questions using an electrophysiological approach to analyze nicastrin conditional knockout (cKO) mice in the hippocampal Schaffer collateral pathway. In these mice, we found that, even at 2 mo of age, deletion of nicastrin in excitatory neurons of the postnatal forebrain using Cre recombinase expressed under the control of the αCaMKII promoter led to deficits in presynaptic short-term plasticity including paired-pulse facilitation and frequency facilitation. Depletion of Ca(2+) in the endoplasmic reticulum mimics and occludes the presynaptic facilitation deficits in nicastrin cKO mice, suggesting that disrupted intracellular Ca(2+) homeostasis underlies the presynaptic deficits. In addition, NMDA receptor-mediated responses and long-term potentiation induced by theta-burst stimulation were decreased in nicastrin cKO mice at 3 mo but not at 2 mo of age. Together, these findings show that, similar to presenilins, nicastrin plays essential roles in the regulation of short- and long-term synaptic plasticity, highlighting the importance of γ-secretase in the function of mature synapses.
Collapse
|
25
|
Sorrentino P, Iuliano A, Polverino A, Jacini F, Sorrentino G. The dark sides of amyloid in Alzheimer's disease pathogenesis. FEBS Lett 2014; 588:641-52. [PMID: 24491999 DOI: 10.1016/j.febslet.2013.12.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 11/15/2022]
Abstract
Although widely explored, the pathogenesis of Alzheimer's disease (AD) has yet to be cleared. Over the past twenty years the so call amyloid cascade hypothesis represented the main research paradigm in AD pathogenesis. In spite of its large consensus, the proposed role of β-amyloid (Aβ) remain to be elucidated. Many evidences are starting to cast doubt on Aβ as the primary causative factor in AD. For instance, Aβ is deposited in the brain following many different kinds of injury. Also, concentration of Aβ needed to induce toxicity in vitro are never reached in vivo. In this review we propose an amyloid-independent interpretation of several AD pathogenic features, such as synaptic plasticity, endo-lysosomal trafficking, cell cycle regulation and neuronal survival.
Collapse
Affiliation(s)
- Pierpaolo Sorrentino
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonietta Iuliano
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Arianna Polverino
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Francesca Jacini
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Giuseppe Sorrentino
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy; Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy.
| |
Collapse
|
26
|
Chakroborty S, Stutzmann GE. Calcium channelopathies and Alzheimer's disease: insight into therapeutic success and failures. Eur J Pharmacol 2013; 739:83-95. [PMID: 24316360 DOI: 10.1016/j.ejphar.2013.11.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 01/06/2023]
Abstract
Calcium ions are versatile and universal biological signaling factors that regulate numerous cellular processes ranging from cell fertilization, to neuronal plasticity that underlies learning and memory, to cell death. For these functions to be properly executed, calcium signaling requires precise regulation, and failure of this regulation may tip the scales from a signal for life to a signal for death. Disruptions in calcium channel function can generate complex multi-system disorders collectively referred to as "calciumopathies" that can target essentially any cell type or organ. In this review, we focus on the multifaceted involvement of calcium signaling in the pathophysiology of Alzheimer's disease (AD), and summarize the various therapeutic options currently available to combat this disease. Detailing the series of disappointing AD clinical trial results on cognitive outcomes, we emphasize the urgency to design alternative therapeutic strategies if synaptic and memory functions are to be preserved. One such approach is to target early calcium channelopathies centrally linked to AD pathogenesis.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| |
Collapse
|
27
|
Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci 2013; 33:12915-28, 12928a. [PMID: 23926248 DOI: 10.1523/jneurosci.5910-12.2013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The metalloproteinase ADAM10 is of importance for Notch-dependent cortical brain development. The protease is tightly linked with α-secretase activity toward the amyloid precursor protein (APP) substrate. Increasing ADAM10 activity is suggested as a therapy to prevent the production of the neurotoxic amyloid β (Aβ) peptide in Alzheimer's disease. To investigate the function of ADAM10 in postnatal brain, we generated Adam10 conditional knock-out (A10cKO) mice using a CaMKIIα-Cre deleter strain. The lack of ADAM10 protein expression was evident in the brain cortex leading to a reduced generation of sAPPα and increased levels of sAPPβ and endogenous Aβ peptides. The A10cKO mice are characterized by weight loss and increased mortality after weaning associated with seizures. Behavioral comparison of adult mice revealed that the loss of ADAM10 in the A10cKO mice resulted in decreased neuromotor abilities and reduced learning performance, which were associated with altered in vivo network activities in the hippocampal CA1 region and impaired synaptic function. Histological and ultrastructural analysis of ADAM10-depleted brain revealed astrogliosis, microglia activation, and impaired number and altered morphology of postsynaptic spine structures. A defect in spine morphology was further supported by a reduction of the expression of NMDA receptors subunit 2A and 2B. The reduced shedding of essential postsynaptic cell adhesion proteins such as N-Cadherin, Nectin-1, and APP may explain the postsynaptic defects and the impaired learning, altered network activity, and synaptic plasticity of the A10cKO mice. Our study reveals that ADAM10 is instrumental for synaptic and neuronal network function in the adult murine brain.
Collapse
|
28
|
Abstract
The presenilin(PS) genes harbor approximately 90% of the identified mutations linked to familial forms of Alzheimer's disease, and the presenilin (PS) proteins are essential components of the γ-secretase complex involved in the proteolytic cleavage of type I receptors, such as Notch and the amyloid precursor protein. Genetic analysis employing cell type-specific conditional knockout technology highlighted the importance of PS in the adult brain, including learning and memory, synaptic function and age-dependent neuronal survival. In the central synapse, PS regulates neurotransmitter release, short- and long-term synaptic plasticity and calcium homeostasis. However, the molecular mechanisms by which PS maintains these essential functions are less clear. Although many γ-secretase substrates have been identified, their physiological relevance is often unclear. The findings that nicastrin and PS conditional knockout mice exhibit similar deficits in memory and age-dependent neurodegeneration are consistent with the notion that γ-secretase-dependent activities of PS are required for the maintenance of memory and neuronal survival, though the γ-secretase physiological substrates, Notch receptors, are not targets of PS in the adult brain. Thus, despite of the intense interest in PS since its identification in 1995, more work is needed to define the molecular and cellular mechanisms by which PS controls brain functions and the dysfunction conferred by disease-causing mutations.
Collapse
Affiliation(s)
- Jie Shen
- Center for Neurologic Diseases, Brigham and Women's Hospital, Program in Neuroscience, Harvard Medical School, Boston, Mass., USA
| |
Collapse
|
29
|
Popugaeva E, Bezprozvanny I. Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease. Front Mol Neurosci 2013; 6:29. [PMID: 24065882 PMCID: PMC3776136 DOI: 10.3389/fnmol.2013.00029] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/30/2013] [Indexed: 01/24/2023] Open
Abstract
Alzheimer disease (AD) is a major threat of twenty-first century that is responsible for the majority of dementia in the elderly. Development of effective AD-preventing therapies are the top priority tasks for neuroscience research. Amyloid hypothesis of AD is a dominant idea in the field, but so far all amyloid-targeting therapies have failed in clinical trials. In addition to amyloid accumulation, there are consistent reports of abnormal calcium signaling in AD neurons. AD neurons exhibit enhanced intracellular calcium (Ca2+) liberation from the endoplasmic reticulum (ER) and reduced store-operated Ca2+ entry (SOC). These changes occur primarily as a result of ER Ca2+ overload. We argue that normalization of intracellular Ca2+ homeostasis could be a strategy for development of effective disease-modifying therapies. The current review summarizes recent data about changes in ER Ca2+ signaling in AD. Ca2+ channels that are discussed in the current review include: inositol trisphosphate receptors, ryanodine receptors, presenilins as ER Ca2+ leak channels, and neuronal SOC channels. We discuss how function of these channels is altered in AD and how important are resulting Ca2+ signaling changes for AD pathogenesis.
Collapse
Affiliation(s)
- Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Saint Petersburg State Polytechnical University Saint Petersburg, Russia
| | | |
Collapse
|
30
|
Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc Natl Acad Sci U S A 2013; 110:15091-6. [PMID: 23918386 DOI: 10.1073/pnas.1304171110] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presenilin (PS) plays a central role in the pathogenesis of Alzheimer's disease, and loss of PS causes progressive memory impairment and age-related neurodegeneration in the mouse cerebral cortex. In hippocampal neurons, PS is essential for neurotransmitter release, NMDA receptor-mediated responses, and long-term potentiation. PS is also involved in the regulation of calcium homeostasis, although the precise site of its action is less clear. Here we investigate the mechanism by which PS regulates synaptic function and calcium homeostasis using acute hippocampal slices from PS conditional knockout mice and primary cultured postnatal hippocampal neurons, in which PS is inducibly inactivated. Using two different calcium probes, Fura-2 and Mag-Fura-2, we found that inactivation of PS in primary hippocampal neurons does not affect calcium concentration in the endoplasmic reticulum. Rather, in the absence of PS, levels of ryanodine receptor (RyR) are reduced in the hippocampus, measured by Western analysis and radioligand binding assay, although the mRNA expression is unaffected. RyR-mediated function is also impaired, as indicated by reduced RyR agonist-induced calcium release from the ER and RyR-mediated synaptic responses in the absence of PS. Furthermore, knockdown of RyR expression in wild-type hippocampal neurons by two independent shRNAs to levels comparable with the RyR protein reduction in PS-deficient hippocampal neurons mimics the defects exhibited in calcium homeostasis and presynaptic function. Collectively, our findings show that PS regulates calcium homeostasis and synaptic function via RyR and suggest that disruption of intracellular calcium homeostasis may be an early pathogenic event leading to presynaptic dysfunction in Alzheimer's disease.
Collapse
|
31
|
The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration. Mol Neurodegener 2013; 8:23. [PMID: 23829673 PMCID: PMC3708831 DOI: 10.1186/1750-1326-8-23] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/05/2013] [Indexed: 01/02/2023] Open
Abstract
Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration.
Collapse
|
32
|
Chen Y, Tian Z, Liang Z, Sun S, Dai CL, Lee MH, LaFerla FM, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX. Brain gene expression of a sporadic (icv-STZ Mouse) and a familial mouse model (3xTg-AD mouse) of Alzheimer's disease. PLoS One 2012; 7:e51432. [PMID: 23236499 PMCID: PMC3517562 DOI: 10.1371/journal.pone.0051432] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/01/2012] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) can be divided into sporadic AD (SAD) and familial AD (FAD). Most AD cases are sporadic and may result from multiple etiologic factors, including environmental, genetic and metabolic factors, whereas FAD is caused by mutations of presenilins or amyloid-β (Aβ) precursor protein (APP). A commonly used mouse model for AD is 3xTg-AD mouse, which is generated by over-expression of mutated presenilin 1, APP and tau in the brain and thus represents a mouse model of FAD. A mouse model generated by intracerebroventricular (icv) administration of streptozocin (STZ), icv-STZ mouse, shows many aspects of SAD. Despite the wide use of these two models for AD research, differences in gene expression between them are not known. Here, we compared the expression of 84 AD-related genes in the hippocampus and the cerebral cortex between icv-STZ mice and 3xTg-AD mice using a custom-designed qPCR array. These genes are involved in APP processing, tau/cytoskeleton, synapse function, apoptosis and autophagy, AD-related protein kinases, glucose metabolism, insulin signaling, and mTOR pathway. We found altered expression of around 20 genes in both mouse models, which affected each of above categories. Many of these gene alterations were consistent with what was observed in AD brain previously. The expression of most of these altered genes was decreased or tended to be decreased in the hippocampus of both mouse models. Significant diversity in gene expression was found in the cerebral cortex between these two AD mouse models. More genes related to synaptic function were dysregulated in the 3xTg-AD mice, whereas more genes related to insulin signaling and glucose metabolism were down-regulated in the icv-STZ mice. The present study provides important fundamental knowledge of these two AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Consequences of inhibiting amyloid precursor protein processing enzymes on synaptic function and plasticity. Neural Plast 2012; 2012:272374. [PMID: 22792491 PMCID: PMC3390164 DOI: 10.1155/2012/272374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/22/2012] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, one of whose major pathological hallmarks is the accumulation of amyloid plaques comprised of aggregated β-amyloid (Aβ) peptides. It is now recognized that soluble Aβ oligomers may lead to synaptic dysfunctions early in AD pathology preceding plaque deposition. Aβ is produced by a sequential cleavage of amyloid precursor protein (APP) by the activity of β- and γ-secretases, which have been identified as major candidate therapeutic targets of AD. This paper focuses on how Aβ alters synaptic function and the functional consequences of inhibiting the activity of the two secretases responsible for Aβ generation. Abnormalities in synaptic function resulting from the absence or inhibition of the Aβ-producing enzymes suggest that Aβ itself may have normal physiological functions which are disrupted by abnormal accumulation of Aβ during AD pathology. This interpretation suggests that AD therapeutics targeting the β- and γ-secretases should be developed to restore normal levels of Aβ or combined with measures to circumvent the associated synaptic dysfunction(s) in order to have minimal impact on normal synaptic function.
Collapse
|
34
|
Andreyeva A, Nieweg K, Horstmann K, Klapper S, Müller-Schiffmann A, Korth C, Gottmann K. C-terminal fragment of N-cadherin accelerates synapse destabilization by amyloid-β. Brain 2012; 135:2140-54. [DOI: 10.1093/brain/aws120] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
35
|
Kawamoto EM, Vivar C, Camandola S. Physiology and pathology of calcium signaling in the brain. Front Pharmacol 2012; 3:61. [PMID: 22518105 PMCID: PMC3325487 DOI: 10.3389/fphar.2012.00061] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/26/2012] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca(2+)) plays fundamental and diversified roles in neuronal plasticity. As second messenger of many signaling pathways, Ca(2+) as been shown to regulate neuronal gene expression, energy production, membrane excitability, synaptogenesis, synaptic transmission, and other processes underlying learning and memory and cell survival. The flexibility of Ca(2+) signaling is achieved by modifying cytosolic Ca(2+) concentrations via regulated opening of plasma membrane and subcellular Ca(2+) sensitive channels. The spatiotemporal patterns of intracellular Ca(2+) signals, and the ultimate cellular biological outcome, are also dependent upon termination mechanism, such as Ca(2+) buffering, extracellular extrusion, and intra-organelle sequestration. Because of the central role played by Ca(2+) in neuronal physiology, it is not surprising that even modest impairments of Ca(2+) homeostasis result in profound functional alterations. Despite their heterogeneous etiology neurodegenerative disorders, as well as the healthy aging process, are all characterized by disruption of Ca(2+) homeostasis and signaling. In this review we provide an overview of the main types of neuronal Ca(2+) channels and their role in neuronal plasticity. We will also discuss the participation of Ca(2+) signaling in neuronal aging and degeneration.
Collapse
Affiliation(s)
- Elisa Mitiko Kawamoto
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Carmen Vivar
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| |
Collapse
|
36
|
Ho A, Shen J. Presenilins in synaptic function and disease. Trends Mol Med 2011; 17:617-24. [PMID: 21795114 DOI: 10.1016/j.molmed.2011.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 12/30/2022]
Abstract
The presenilin genes harbor approximately 90% of mutations linked to early-onset familial Alzheimer's disease (FAD), but how these mutations cause the disease is still being debated. Genetic analysis in Drosophila and mice demonstrate that presenilin plays essential roles in synaptic function, learning and memory, as well as neuronal survival in the adult brain, and the FAD-linked mutations alter the normal function of presenilin in these processes. Presenilin has also been reported to regulate the calcium homeostasis of intracellular stores, and presynaptic presenilin controls neurotransmitter release and long-term potentiation through modulation of calcium release from intracellular stores. In this review, we highlight recent advances in deciphering the role of presenilin in synaptic function, calcium regulation and disease, and pose key questions for future studies.
Collapse
Affiliation(s)
- Angela Ho
- Department of Biology, Boston University, 5 Cummington Street, Boston MA 02215, USA
| | | |
Collapse
|
37
|
Wesson DW, Nixon RA, Levy E, Wilson DA. Mechanisms of neural and behavioral dysfunction in Alzheimer's disease. Mol Neurobiol 2011; 43:163-79. [PMID: 21424679 DOI: 10.1007/s12035-011-8177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
This review critically examines progress in understanding the link between Alzheimer's disease (AD) molecular pathogenesis and behavior, with an emphasis on the impact of amyloid-β. We present the argument that the AD research field requires more multifaceted analyses into the impacts of Alzheimer's pathogenesis which combine simultaneous molecular-, circuit-, and behavior-level approaches. Supporting this argument is a review of particular research utilizing similar, "systems-level" methods in mouse models of AD. Related to this, a critique of common physiological and behavioral models is made-highlighting the likely usefulness of more refined and specific tools in understanding the relationship between candidate molecular pathologies and behavioral dysfunction. Finally, we propose challenges for future research which, if met, may greatly extend our current understanding of how AD molecular pathology impacts neural network function and behavior and possibly may lead to refinements in disease therapeutics.
Collapse
Affiliation(s)
- Daniel W Wesson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, New York University School of Medicine, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
38
|
Rothenberg KG, Siedlak SL, Lee HG, Zhu X, Perry G, Smith MA. Neurodegenerative processes in Alzheimer’s disease: an overview of pathogenesis with strategic biomarker potential. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.10.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since Alzheimer’s disease (AD) is the leading cause of senile dementia in the USA, affecting 15% of people over the age of 65 years and almost 50% of those aged over 85 years, the need for an adequate and early diagnosis as well as preventative measure against disease onset and progression is increasing. Epidemiological and molecular studies suggest that AD has multiple etiologies, including genetic mutations, genetic variations affecting susceptibility and environmental factors. All these aspects can promote the formation and the accumulation of insoluble amyloid-β and hyperphosphorylated tau. Since the disease is multifactorial and clinical diagnosis is highly exclusive, the need for a sensitive, specific and reliable biomarker for the disease is crucial. While amyloid and amyloid-related compounds may be useful biomarkers in the early diagnosis of AD, the multitude of other characteristic features of AD presented in this article may be similarly appropriate. For example, genetic mutations play a role in a subset of AD patients (often with early disease onset and more severe disease progression), and genetic analysis could thus play a role in disease diagnosis. Similarly, oxidative damage to various proteins, nucleic acids and other cellular compounds, probably arising from mitochondrial abnormalities, is found early in the disease and may provide certain biochemical signatures of disease. Ultimately, specific assays for genetic, protein and oxidative profiles and mitochondrial abnormalities, as well as those for amyloid-β and its immunological response, may serve as a relevant group of biomarkers that could be informative to individuals regarding risk of disease, as well as for indicators of the progression of disease. Correspondingly, new developments in treatment options will probably be available.
Collapse
Affiliation(s)
- Kasia Gustaw Rothenberg
- Department of Psychiatry, University Hospitals Case Medical Center, Cleveland, OH, USA
- Deptartment of Neurodegenerative Diseases, Institute of Agricultural Medicine, 2 Jaczewskiego Street, 20-095, Lublin, Poland
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Hyoung-gon Lee
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - George Perry
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
- Neurosciences Institute & Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mark A Smith
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| |
Collapse
|
39
|
Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH. Amyloid-independent mechanisms in Alzheimer's disease pathogenesis. J Neurosci 2010; 30:14946-54. [PMID: 21068297 PMCID: PMC3426835 DOI: 10.1523/jneurosci.4305-10.2010] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 12/17/2022] Open
Abstract
Despite the progress of the past two decades, the cause of Alzheimer's disease (AD) and effective treatments against it remain elusive. The hypothesis that amyloid-β (Aβ) peptides are the primary causative agents of AD retains significant support among researchers. Nonetheless, a growing body of evidence shows that Aβ peptides are unlikely to be the sole factor in AD etiology. Evidence that Aβ/amyloid-independent factors, including the actions of AD-related genes, also contribute significantly to AD pathogenesis was presented in a symposium at the 2010 Annual Meeting of the Society for Neuroscience. Here we summarize the studies showing how amyloid-independent mechanisms cause defective endo-lysosomal trafficking, altered intracellular signaling cascades, or impaired neurotransmitter release and contribute to synaptic dysfunction and/or neurodegeneration, leading to dementia in AD. A view of AD pathogenesis that encompasses both the amyloid-dependent and -independent mechanisms will help fill the gaps in our knowledge and reconcile the findings that cannot be explained solely by the amyloid hypothesis.
Collapse
Affiliation(s)
- Sanjay W Pimplikar
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA.
| | | | | | | | | |
Collapse
|