1
|
Lim J, Park J, Lee W, Choi HJ. GSK4716 enhances 5-HT1AR expression by glucocorticoid receptor signaling in hippocampal HT22 cells. Neurol Res 2024; 46:398-405. [PMID: 38555524 DOI: 10.1080/01616412.2024.2322180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES The serotonin (5-hydroxytryptamine, 5-HT) receptor 1A (5-HT1AR) is closely associated with serotonergic neurotransmission in the brain, being the most prevalent and widely distributed receptor of its kind. The purpose of this study is to investigate the regulation mechanism of 5-HT1AR by GSK4716. METHODS To investigate the mechanism of GSK4716-mediated 5-HT1AR regulation, we used hippocampus-derived HT22 cells expressing 5-HT1AR. The expression level of 5-HT1AR and associated proteins, were detected by reporter gene assay and western blotting. RESULTS GSK4716, an estrogen-related receptor gamma agonist increased 5-HT1AR expression by interacting with the GR, a repressor of 5-HT1AR transcription. Dexamethasone, a GR agonist, decreased the GSK4716-induced increase in 5-HT1AR, which was associated with an alteration in nuclear GR. Furthermore, GR antagonist RU486 reversed the effects induced by dexamethasone, including the elevation of nuclear GR levels and the reduction of 5-HT1AR transcription and expression. CONCLUSION The results could provide insight into the potential applications of small molecules, such as GSK4716, in the regulation of 5-HT1AR expression, which plays a role in serotonergic neurotransmission.
Collapse
Affiliation(s)
- Juhee Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jiyeon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Wonwoong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Guo X, Zhang R, Jin Q, Cao N, Shi J, Zong X, Chen X, Wang C, Li X, Pang S, Li L. The kisspeptin-GnIH signaling pathway in the role of zebrafish courtship and aggressive behavior induced by azoxystrobin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121461. [PMID: 36934963 DOI: 10.1016/j.envpol.2023.121461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Azoxystrobin, a strobilurin widely used to control rice diseases, has raised concerns about possible adverse effects on aquatic ecosystems. At present, very little is known about the effects of azoxystrobin on courtship and aggressive behavior and the potential underlying mechanisms. In the present study, after exposing adult male and female zebrafish to worst-case scenario concentrations of azoxystrobin (0, 2 μg/L, 20 μg/L, and 200 μg/L) for 42 d, we observed a decrease in courtship behavior and an increase in aggressive behavior in both male and female zebrafish. In addition, to elucidate the molecular mechanism of the behavioral effects of azoxystrobin, we quantified the changes in the concentrations of kisspeptin, 5-HT, GnIH, and their corresponding receptor mRNA expression in the brain. The results showed that 200 μg/L azoxystrobin decreased the concentrations of kisspeptin and increased the concentration of GnIH in both male and female zebrafish brain. In addition, azoxystrobin also significantly reduced 5-HT concentration in female zebrafish brain. Further investigation revealed that altered courtship and aggressive behavior were associated with the expression levels of genes (kiss1, kiss2, gnrh3, gnrhr3, 5ht1a, and 5ht2a) involved in kisspeptin-GnIH signaling pathway. In conclusion, our study suggested that azoxystrobin may impair courtship and aggressive behavior in zebrafish by interfering with the kisspeptin-GnIH signaling pathway, which may have more profound effects on natural zebrafish populations.
Collapse
Affiliation(s)
- Xuanjun Guo
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Niannian Cao
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xuefeng Li
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Sen Pang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
3
|
Serotonergic receptor gene polymorphism and response to selective serotonin reuptake inhibitors in ethnic Malay patients with first episode of major depressive disorder. THE PHARMACOGENOMICS JOURNAL 2021; 21:498-509. [PMID: 33731884 DOI: 10.1038/s41397-021-00228-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
The polymorphisms of the 5HTR1A and 5HTR2A receptor genes (rs6295C/G and rs6311G/A) have been evaluated for association with SSRI treatment outcome in various populations with different results. The present study was carried out to determine the association between genotypes of HTR1A-rs6295 and HTR2A-rs6311 with SSRI treatment outcome among the ethnic Malay patients diagnosed with first-episode major depressive disorder (MDD). The patients were recruited from four tertiary hospitals in the Klang Valley region of Malaysia. Predefined efficacy phenotypes based on 25% (partial early response) and 50% (clinical efficacy response) reduction in Montgomery Asberg Depression Rating Scale-self Rated score (MADRS-S) were adopted for assessment of treatment efficacy in this study. Self-reporting for adverse effects (AE) was documented using the Patient Rated Inventory of Side Effect (PRISE) after treatment with SSRI for up to 6 weeks. Adjusted binary logistic regression between genotypes of the polymorphism obtained using sequencing technique with the treatment outcome phenotypes was performed. The 142 patients recruited were made up of 96 females (67.6%) and 46 males (32.4%). Clinical efficacy and Partial early response phenotypes were not significantly associated with genotypes of HTR1A and HTR2A polymorphism. The GG genotype of HTR2A polymorphism has decreased odds for dizziness (CNS) and increased odds for poor concentration. The GA genotype increases the odd for excessive sweating, diarrhoea, constipation and blurred vision. The CC genotype of HTR1A-rs6295 decreases the odd for nausea/vomiting and increases the odd for anxiety. Thus, some genotypes of HTR1A and HTR2A polymorphism were associated with SSRI treatment outcomes in ethnic Malay MDD patients.
Collapse
|
4
|
Lewis MW, Jones RT, Davis MT. Exploring the impact of trauma type and extent of exposure on posttraumatic alterations in 5-HT1A expression. Transl Psychiatry 2020; 10:237. [PMID: 32678079 PMCID: PMC7366706 DOI: 10.1038/s41398-020-00915-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The long-term behavioral, psychological, and neurobiological effects of exposure to potentially traumatic events vary within the human population. Studies conducted on trauma-exposed human subjects suggest that differences in trauma type and extent of exposure combine to affect development, maintenance, and treatment of a variety of psychiatric syndromes. The serotonin 1-A receptor (5-HT1A) is an inhibitory G protein-coupled serotonin receptor encoded by the HTR1A gene that plays a role in regulating serotonin release, physiological stress responding, and emotional behavior. Studies from the preclinical and human literature suggest that dysfunctional expression of 5-HT1A is associated with a multitude of psychiatric symptoms commonly seen in trauma-exposed individuals. Here, we synthesize the literature, including numerous preclinical studies, examining differences in alterations in 5-HT1A expression following trauma exposure. Collectively, these findings suggest that the impact of trauma exposure on 5-HT1A expression is dependent, in part, on trauma type and extent of exposure. Furthermore, preclinical and human studies suggest that this observation likely applies to additional molecular targets and may help explain variation in trauma-induced changes in behavior and treatment responsivity. In order to understand the neurobiological impact of trauma, including the impact on 5-HT1A expression, it is crucial to consider both trauma type and extent of exposure.
Collapse
|
5
|
Yabuki Y, Fukunaga K. Clinical Therapeutic Strategy and Neuronal Mechanism Underlying Post-Traumatic Stress Disorder (PTSD). Int J Mol Sci 2019; 20:ijms20153614. [PMID: 31344835 PMCID: PMC6695947 DOI: 10.3390/ijms20153614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by an exaggerated response to contextual memory and impaired fear extinction, with or without mild cognitive impairment, learning deficits, and nightmares. PTSD is often developed by traumatic events, such as war, terrorist attack, natural calamities, etc. Clinical and animal studies suggest that aberrant susceptibility of emotion- and fear-related neurocircuits, including the amygdala, prefrontal cortex (PFC), and hippocampus may contribute to the development and retention of PTSD symptoms. Psychological and pharmacological therapy, such as cognitive behavioral therapy (CBT), and treatment with anti-depressive agents and/or antipsychotics significantly attenuate PTSD symptoms. However, more effective therapeutics are required for improvement of quality of life in PTSD patients. Previous studies have reported that ω3 long-chain polyunsaturated fatty acid (LCPUFA) supplements can suppress the development of PTSD symptoms. Fatty acid binding proteins (FABPs) are essential for LCPUFA intracellular trafficking. In this review, we have introduced Fabp3 null mice as an animal model of PTSD with impaired fear extinction. Moreover, we have addressed the neuronal circuits and novel therapeutic strategies for PTSD symptoms.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
6
|
Fukunaga K, Yabuki Y, Takahata I, Matsuo K. [Neurological mechanism and therapeutic strategy for posttraumatic stress disorders]. Nihon Yakurigaku Zasshi 2019; 152:194-201. [PMID: 30298841 DOI: 10.1254/fpj.152.194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Posttraumatic stress disorder (PTSD) is most often induced by traumatic events and serious public health problems. PTSD is characterized by excessive response to contextual memory and impaired fear extinction and also associated with mild cognitive impairment, attention and learning deficits. Clinical and animal studies suggest that increased susceptibility of emotion- and fear-related neuronal circuits, including those in the amygdala, prefrontal cortex and hippocampus, contributes to development and retention of PTSD symptoms. However, mechanisms underlying this susceptibility to fear are not known and the useful therapeutic approaches are limited. Recently, there have been reports that ω3 LCPUFA supplementation can prevent development of PTSD and significantly ameliorate symptoms in patients with PTSD after accidental injury such as motor vehicle accidents and natural calamities. Importantly, Fabp7 null mice exhibit enhancement of fear memory consolidation and anxiety-related behaviors that resemble PTSD-like behaviors in humans. In this review, we focused behavioral phenotype of PTSD in Fabp3 null mice. The Fabp3 null mice exhibit cognitive deficits, hyperlocomotion and impaired fear extinction, and thus show PTSD-like behaviors. Chronic administration of ramelteon, a melatonin receptor agonist, improved all PTSD-like behaviors tested in Fabp3-/- mice. Relevant to mechanisms underlying impaired fear extinction, we observed that Ca2+/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation increases in the basolateral amygdala (BLA) but remained unchanges in the hippocampus of Fabp3-/- mice. Likewise, the number of c-Fos positive neurons in BLA significantly increased after exposure to contextual fear conditions. Finally, chronic ramelteon administration restored abnormal c-Fos expression and CaMKII autophosphorylation in the BLA of Fabp3-/- mice. Taken together, Fabp3-/- mice show PTSD-like behaviors, and ramelteon is an attractive candidate for PTSD therapeutics in human.
Collapse
Affiliation(s)
- Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences
| | - Yasushi Yabuki
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences
| | - Ibuki Takahata
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences
| | - Kazuya Matsuo
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences
| |
Collapse
|
7
|
Albert PR, Vahid-Ansari F. The 5-HT1A receptor: Signaling to behavior. Biochimie 2019; 161:34-45. [DOI: 10.1016/j.biochi.2018.10.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
|
8
|
Vahid-Ansari F, Zhang M, Zahrai A, Albert PR. Overcoming Resistance to Selective Serotonin Reuptake Inhibitors: Targeting Serotonin, Serotonin-1A Receptors and Adult Neuroplasticity. Front Neurosci 2019; 13:404. [PMID: 31114473 PMCID: PMC6502905 DOI: 10.3389/fnins.2019.00404] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is the most prevalent mental illness contributing to global disease burden. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are the first-line treatment for MDD, but are only fully effective in 30% of patients and require weeks before improvement may be seen. About 30% of SSRI-resistant patients may respond to augmentation or switching to another antidepressant, often selected by trial and error. Hence a better understanding of the causes of SSRI resistance is needed to provide models for optimizing treatment. Since SSRIs enhance 5-HT, in this review we discuss new findings on the circuitry, development and function of the 5-HT system in modulating behavior, and on how 5-HT neuronal activity is regulated. We focus on the 5-HT1A autoreceptor, which controls 5-HT activity, and the 5-HT1A heteroreceptor that mediates 5-HT actions. A series of mice models now implicate increased levels of 5-HT1A autoreceptors in SSRI resistance, and the requirement of hippocampal 5-HT1A heteroreceptor for neurogenic and behavioral response to SSRIs. We also present clinical data that show promise for identifying biomarkers of 5-HT activity, 5-HT1A regulation and regional changes in brain activity in MDD patients that may provide biomarkers for tailored interventions to overcome or bypass resistance to SSRI treatment. We identify a series of potential strategies including inhibiting 5-HT auto-inhibition, stimulating 5-HT1A heteroreceptors, other monoamine systems, or cortical stimulation to overcome SSRI resistance.
Collapse
Affiliation(s)
| | | | | | - Paul R. Albert
- Brain and Mind Research Institute, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
LRRK2 G2019S Induces Anxiety/Depression-like Behavior before the Onset of Motor Dysfunction with 5-HT 1A Receptor Upregulation in Mice. J Neurosci 2018; 38:1611-1621. [PMID: 29305532 DOI: 10.1523/jneurosci.4051-15.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of Parkinson's disease (PD). The neuropathology of LRRK2 mutation-related PD, including increased dopaminergic neurodegeneration and Lewy bodies, is indistinguishable from that of idiopathic PD. The subtle nonmotor phenotypes of LRRK2 mutation-related PD have not been fully evaluated. In the present study, we examined anxiety/depression-like behaviors and accompanying neurochemical changes in differently aged transgenic (Tg) mice expressing human mutant LRRK2 G2019S. Through multiple behavioral tests, including light-dark test, elevated plus maze, sucrose preference test, forced swimming test, and tail-suspension test, we found that anxiety/depression-like behavior appeared in middle-aged (43-52 weeks) Tg mice before the onset of PD-like motor dysfunction. These behavioral tests were performed using both male and female mice, and there were no sex-related differences in behavioral changes in the middle-aged Tg mice. Along with behavioral changes, serotonin levels also significantly declined in the hippocampus of Tg mice. Additionally, increases in the expression of the 5-HT1A receptor (5-HT1AR) grew more significant with aging and were detected in the hippocampus, amygdala, and dorsal raphe nucleus. In vitro study using the serotonergic RN46A and hippocampal HT22 cells showed that 5-HT1AR upregulation was related to enhanced expression of LRRK2 G2019S and was attenuated by the LRRK2 inhibitor LRRK2-IN-1. Wild-type LRRK2 had no significant effect on 5-HT1AR transcription. The present study provides the first in vivo and in vitro evidence demonstrating abnormal regulation of 5-HT1AR along with the manifestation of anxiety/depression-like, nonmotor symptom in PD related to LRRK2.SIGNIFICANCE STATEMENT Parkinson's disease (PD), the second most common neurodegenerative disorder, is clinically characterized by motor dysfunctions. In most cases, various nonmotor symptoms present several years before the onset of the classical motor features of PD and severely affect the quality of life of patients. Here, we demonstrate the causative role of leucine-rich repeat kinase 2 (LRRK2), a common PD-linked mutation, in the development of anxiety/depression-like behaviors. We found that age-dependent 5-HT1A receptor upregulation in the hippocampus, amygdala, and dorsal raphe nucleus is accompanied by the expression of the LRRK2 mutant phenotype. Our findings demonstrating a potential mechanism for nonmotor psychiatric symptoms produced by LRRK2 mutation suggest that directly targeting the 5-HT1A receptor can improve the therapeutic efficacy of drugs for PD-associated depression.
Collapse
|
10
|
Deneris E, Gaspar P. Serotonin neuron development: shaping molecular and structural identities. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.301. [PMID: 29072810 PMCID: PMC5746461 DOI: 10.1002/wdev.301] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 02/03/2023]
Abstract
The continuing fascination with serotonin (5-hydroxytryptamine, 5-HT) as a nervous system chemical messenger began with its discovery in the brains of mammals in 1953. Among the many reasons for this decades-long interest is that the small numbers of neurons that make 5-HT influence the excitability of neural circuits in nearly every region of the brain and spinal cord. A further reason is that 5-HT dysfunction has been linked to a range of psychiatric and neurological disorders many of which have a neurodevelopmental component. This has led to intense interest in understanding 5-HT neuron development with the aim of determining whether early alterations in their generation lead to brain disease susceptibility. Here, we present an overview of the neuroanatomical organization of vertebrate 5-HT neurons, their neurogenesis, and prodigious axonal architectures, which enables the expansive reach of 5-HT neuromodulation in the central nervous system. We review recent findings that have revealed the molecular basis for the tremendous diversity of 5-HT neuron subtypes, the impact of environmental factors on 5-HT neuron development, and how 5-HT axons are topographically organized through disparate signaling pathways. We summarize studies of the gene regulatory networks that control the differentiation, maturation, and maintenance of 5-HT neurons. These studies show that the regulatory factors controlling acquisition of 5-HT-type transmitter identity continue to play critical roles in the functional maturation and the maintenance of 5-HT neurons. New insights are presented into how continuously expressed 5-HT regulatory factors control 5-HT neurons at different stages of life and how the regulatory networks themselves are maintained. WIREs Dev Biol 2018, 7:e301. doi: 10.1002/wdev.301 This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Nervous System Development > Secondary: Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Evan Deneris
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, Campus Jussieu, Paris, France
| |
Collapse
|
11
|
Neufang S, Akhrif A, Herrmann CG, Drepper C, Homola GA, Nowak J, Waider J, Schmitt AG, Lesch KP, Romanos M. Serotonergic modulation of 'waiting impulsivity' is mediated by the impulsivity phenotype in humans. Transl Psychiatry 2016; 6:e940. [PMID: 27824354 PMCID: PMC5314122 DOI: 10.1038/tp.2016.210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/04/2016] [Accepted: 09/12/2016] [Indexed: 11/09/2022] Open
Abstract
In rodents, the five-choice serial reaction time task (5-CSRTT) has been established as a reliable measure of waiting impulsivity being defined as the ability to regulate a response in anticipation of reinforcement. Key brain structures are the nucleus accumbens (NAcc) and prefrontal regions (for example, pre- and infralimbic cortex), which are, together with other transmitters, modulated by serotonin. In this functional magnetic resonance imaging study, we examined 103 healthy males while performing the 5-CSRTT measuring brain activation in humans by means of a paradigm that has been widely applied in rodents. Subjects were genotyped for the tryptophan hydroxylase-2 (TPH2; G-703T; rs4570625) variant, an enzyme specific for brain serotonin synthesis. We addressed neural activation patterns of waiting impulsivity and the interaction between the NAcc and the ventromedial prefrontal cortex (vmPFC) using dynamic causal modeling. Genetic influence was examined via interaction analyses between the TPH2 genotype (GG homozygotes vs T allele carriers) and the degree of impulsivity as measured by the 5-CSRTT. We found that the driving input of the vmPFC was reduced in highly impulsive T allele carriers (reflecting a reduced top-down control) in combination with an enhanced response in the NAcc after correct target processing (reflecting an augmented response to monetary reward). Taken together, we found a high overlap of our findings with reports from animal studies in regard to the underlying cognitive processes, the brain regions associated with waiting impulsivity and the neural interplay between the NAcc and vmPFC. Therefore, we conclude that the 5-CSRTT is a promising tool for translational studies.
Collapse
Affiliation(s)
- S Neufang
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany,Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, Wuerzburg D-97080, Germany. E-mail:
| | - A Akhrif
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - C G Herrmann
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - C Drepper
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - G A Homola
- Department of Neuroradiology, University of Wuerzburg, Wuerzburg, Germany
| | - J Nowak
- Department of Neuroradiology, University of Wuerzburg, Wuerzburg, Germany,Department of Radiology, University of Wuerzburg, Wuerzburg, Germany
| | - J Waider
- Center of Mental Health, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - A G Schmitt
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - K-P Lesch
- Center of Mental Health, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - M Romanos
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
12
|
Wyler SC, Donovan LJ, Yeager M, Deneris E. Pet-1 Controls Tetrahydrobiopterin Pathway and Slc22a3 Transporter Genes in Serotonin Neurons. ACS Chem Neurosci 2015; 6:1198-205. [PMID: 25642596 PMCID: PMC4504805 DOI: 10.1021/cn500331z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coordinated serotonin (5-HT) synthesis and reuptake depends on coexpression of Tph2, Aadc (Ddc), and Sert (Slc6a4) in brain 5-HT neurons. However, other gene products play critical roles in brain 5-HT synthesis and transport. For example, 5-HT synthesis depends on coexpression of genes encoding the enzymatic machinery necessary for the production and regeneration of tetrahydrobiopterin (BH4). In addition, the organic cation transporter 3 (Oct3, Slc22a3) functions as a low affinity, high capacity 5-HT reuptake protein in 5-HT neurons. The regulatory strategies controlling BH4 and Oct3 gene expression in 5-HT neurons have not been investigated. Our previous studies showed that Pet-1 is a critical transcription factor in a regulatory program that controls coexpression of Tph2, Aadc, and Sert in 5-HT neurons. Here, we investigate whether a common regulatory program determines global 5-HT synthesis and reuptake through coordinate transcriptional control. We show with comparative microarray profiling of flow sorted YFP(+) Pet-1(-/-) and wild type 5-HT neurons that Pet-1 regulates BH4 pathway genes, Gch1, Gchfr, and Qdpr. Thus, Pet-1 coordinates expression of all rate-limiting enzymatic (Tph2, Gch1) and post-translational regulatory (Gchfr) steps that determine the level of mammalian brain 5-HT synthesis. Moreover, Pet-1 globally controls acquisition of 5-HT reuptake in dorsal raphe 5-HT neurons by coordinating expression of Slc6a4 and Slc22a3. In situ hybridizations revealed that virtually all 5-HT neurons in the dorsal raphe depend on Pet-1 for Slc22a3 expression; similar results were obtained for Htr1a. Therefore, few if any 5-HT neurons in the dorsal raphe are resistant to loss of Pet-1 for their full neuron-type identity.
Collapse
Affiliation(s)
| | | | - Mia Yeager
- Department of Neurosciences, Case Western Reserve University Cleveland, Ohio, 44106, United States
| | - Evan Deneris
- Department of Neurosciences, Case Western Reserve University Cleveland, Ohio, 44106, United States
| |
Collapse
|
13
|
Genetic Variations in the Serotonergic System Mediate a Combined, Weakened Response to SSRI Treatment: A Proposed Model. eNeuro 2015; 2:eN-TNC-0032-14. [PMID: 26464988 PMCID: PMC4586934 DOI: 10.1523/eneuro.0032-14.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 05/01/2015] [Accepted: 05/06/2015] [Indexed: 12/16/2022] Open
Abstract
Individuals with the short (S) allele in the promoter region of the serotonin transporter gene (5-HTTLPR) show a less favorable response to selective serotonin reuptake inhibitor (SSRI) treatment than individuals with the long (L) allele. Similarly, individuals with the C(-1019)G allele for the mutation found in the promoter region of the serotonin 1A receptor gene (5-HTR1A) have shown blunted responses to SSRI treatment when compared with individuals lacking this polymorphism. While these findings have been replicated across multiple studies, only two studies to date have reported data for a gene-gene interaction associated with response to SSRI treatment. Both of these studies reported a combined effect for these genotypes, with individuals homozygous for the L allele and the C allele (5-HTT(L/L)-1A(C/C)) reporting the most favorable response to SSRI treatment, and individuals homozygous for the S allele and the G allele (5-HTT(S/S)-1A(G/G)) reporting the least favorable response to SSRI treatment. Additionally, no neural mechanisms have been proposed to explain why this gene-gene interaction has been observed. To that end, this article provides a review of the relevant literature associated with these polymorphisms and proposes a feasible model that describes a genotype-dependent modulation of postsynaptic serotonin signaling associated with the 5-HTT and 5-HTR1A genes.
Collapse
|
14
|
Albert PR, Fiori LM. Transcriptional dys-regulation in anxiety and major depression: 5-HT1A gene promoter architecture as a therapeutic opportunity. Curr Pharm Des 2015; 20:3738-50. [PMID: 24180393 DOI: 10.2174/13816128113196660740] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022]
Abstract
The etiology of major depression remains unclear, but reduced activity of the serotonin (5-HT) system remains implicated and treatments that increase 5-HT neurotransmission can ameliorate depressive symptoms. 5-HT1A receptors are critical regulators of the 5- HT system. They are expressed as both presynaptic autoreceptors that negatively regulate 5-HT neurons, and as post-synaptic heteroreceptors on non-serotonergic neurons in the hippocampus, cortex, and limbic system that are critical to mediate the antidepressant actions of 5-HT. Thus, 5-HT1A auto- and heteroreceptors have opposite actions on serotonergic neurotransmission. Because most 5-HT1A ligands target both auto- and heteroreceptors their efficacy has been limited, resulting in weak or unclear responses. We propose that by understanding the transcriptional regulation of the 5-HT1A receptor it may be possible to regulate its expression differentially in raphe and projection regions. Here we review the transcriptional architecture of the 5-HT1A gene (HTR1A) with a focus on specific DNA elements and transcription factors that have been shown to regulate 5-HT1A receptor expression in the brain. Association studies with the functional HTR1A promoter polymorphism rs6295 suggest a new model for the role of the 5-HT1A receptor in susceptibility to depression involving early deficits in cognitive, fear and stress reactivity as stressors that may ultimately lead to depression. We present evidence that by targeting specific transcription factors it may be possible to oppositely regulate 5-HT1A auto- and heteroreceptor expression, synergistically increasing serotonergic neurotransmission for the treatment of depression.
Collapse
Affiliation(s)
| | - Laura M Fiori
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H-8M5.
| |
Collapse
|
15
|
Smidt MP, van Hooft JA. Subset specification of central serotonergic neurons. Front Cell Neurosci 2013; 7:200. [PMID: 24198761 PMCID: PMC3813900 DOI: 10.3389/fncel.2013.00200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 10/11/2013] [Indexed: 11/13/2022] Open
Abstract
The last decade the serotonin (5-hydroxytryptamine; 5-HT) system has received enormous attention due to its role in regulation of behavior, exemplified by the discovery that increased 5-HT tone in the central nervous system is able to alleviate affective disorders. Here, we review the developmental processes, with a special emphasis on subset specification, leading to the formation of the 5-HT system in the brain. Molecular classification of 5-HT neuronal groups leads to the definition of two independent rostral groups positioned in rhombomere 1 and 2/3 and a caudal group in rhombomere 5-8. In addition, more disperse refinement of these subsets is present as shown by the selective expression of the 5-HT1A autoreceptor, indicating functional diversity between 5-HT subsets. The functional significance of the molecular coding differences is not well known and the molecular basis of described specific connectivity patterns remain to be elucidated. Recent developments in genetic lineage tracing models will provide these data and form a major step-up toward the full understanding of the importance of developmental programming and function of 5-HT neuronal subsets.
Collapse
Affiliation(s)
- Marten P Smidt
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | | |
Collapse
|
16
|
Massey CA, Kim G, Corcoran AE, Haynes RL, Paterson DS, Cummings KJ, Dymecki SM, Richerson GB, Nattie EE, Kinney HC, Commons KG. Development of brainstem 5-HT1A receptor-binding sites in serotonin-deficient mice. J Neurochem 2013; 126:749-57. [PMID: 23692315 DOI: 10.1111/jnc.12311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/06/2013] [Accepted: 05/10/2013] [Indexed: 11/27/2022]
Abstract
The sudden infant death syndrome is associated with a reduction in brainstem serotonin 5-hydroxytryptamine (5-HT) and 5-HT(1A) receptor binding, yet it is unknown if and how these findings are linked. In this study, we used quantitative tissue autoradiography to determine if post-natal development of brainstem 5-HT(1A) receptors is altered in two mouse models where the development of 5-HT neurons is defective, the Lmx1b(f/f/p) , and the Pet-1⁻/⁻ mouse. 5-HT(1A) receptor agonist-binding sites were examined in both 5-HT-source nuclei (autoreceptors) and in sites that receive 5-HT innervation (heteroreceptors). In control mice between post-natal day (P) 3 and 10, 5-HT(1A) receptor binding increased in several brainstem sites; by P25, there were region-specific increases and decreases, refining the overall binding pattern. In the Lmx1b(f/f/p) and Pet-1⁻/⁻ mice, 5-HT(1A)-autoreceptor binding was significantly lower than in control mice at P3, and remained low at P10 and P25. In contrast, 5-HT(1A) heteroreceptor levels were comparable between control and 5-HT-deficient mice. These data define the post-natal development of 5-HT(1A)-receptor binding in the mouse brainstem. Furthermore, the data suggest that 5-HT(1A)-heteroreceptor deficits detected in sudden infant death syndrome are not a direct consequence of a 5-HT neuron dysfunction nor reduced brain 5-HT levels. To elucidate the developmental relationship between serotonin (5-HT) levels and 5-HT(1A) receptors in the brainstem, we examined 5-HT(1A) binding in two 5-HT-deficient mouse models. In nuclei containing 5-HT neurons, 5-HT(1A) binding was decreased (autoreceptors), while binding was maintained in projection sites (heteroreceptors). Thus, brainstem 5-HT(1A)-heteroreceptor-binding sites do not appear developmentally sensitive to reduced brain 5-HT levels.
Collapse
Affiliation(s)
- Caitlin A Massey
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Albert PR. Transcriptional regulation of the 5-HT1A receptor: implications for mental illness. Philos Trans R Soc Lond B Biol Sci 2012; 367:2402-15. [PMID: 22826341 DOI: 10.1098/rstb.2011.0376] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The serotonin-1A (5-HT(1A)) receptor is an abundant post-synaptic 5-HT receptor (heteroreceptor) implicated in regulation of mood, emotion and stress responses and is the major somatodendritic autoreceptor that negatively regulates 5-HT neuronal activity. Based on animal models, an integrated model for opposing roles of pre- and post-synaptic 5-HT(1A) receptors in anxiety and depression phenotypes and response to antidepressants is proposed. Understanding differential transcriptional regulation of pre- versus post-synaptic 5-HT(1A) receptors could provide better tools for their selective regulation. This review examines the transcription factors that regulate brain region-specific basal and stress-induced expression of the 5-HT(1A) receptor gene (Htr1a). A functional polymorphism, rs6295 in the Htr1a promoter region, blocks the function of specific repressors Hes1, Hes5 and Deaf1, resulting in increased 5-HT(1A) autoreceptor expression in animal models and humans. Its association with altered 5-HT(1A) expression, depression, anxiety and antidepressant response are related to genotype frequency in different populations, sample homogeneity, disease outcome measures and severity. Preliminary evidence from gene × environment studies suggests the potential for synergistic interaction of stress-mediated repression of 5-HT(1A) heteroreceptors, and rs6295-induced upregulation of 5-HT(1A) autoreceptors. Targeted therapeutics to inhibit 5-HT(1A) autoreceptor expression and induce 5-HT(1A) heteroreceptor expression may ameliorate treatment of anxiety and major depression.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, , 451 Smyth Road, Ottawa, ON, Canada , K1H 8M5.
| |
Collapse
|
18
|
Lesch KP, Waider J. Serotonin in the Modulation of Neural Plasticity and Networks: Implications for Neurodevelopmental Disorders. Neuron 2012; 76:175-91. [DOI: 10.1016/j.neuron.2012.09.013] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2012] [Indexed: 12/23/2022]
|
19
|
GPR30 is necessary for estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the rat hypothalamus. Psychoneuroendocrinology 2012; 37:1248-60. [PMID: 22265196 PMCID: PMC3342396 DOI: 10.1016/j.psyneuen.2011.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/12/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022]
Abstract
Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-HT(1A)) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI therapeutic efficacy. Estradiol modifies 5-HT(1A) receptor signaling and induces a partial desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the mechanisms underlying this effect are currently unknown. The purpose of this study was to identify the estrogen receptor necessary for estradiol-induced 5-HT(1A) receptor desensitization. We previously showed that estrogen receptor β is not necessary for 5-HT(1A) receptor desensitization and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30 expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-HT(1A) receptor as measured by hormonal responses to the selective 5-HT(1A) receptor agonist, (+)8-OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated protein and mRNA levels of 5-HT(1A) receptor signaling components including 5-HT(1A) receptor, Gαz, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of RGSz1, and decreased 5-HT(1A) receptor protein but increased 5-HT(1A) mRNA; GPR30 knockdown prevented the estradiol-induced changes in 5-HT(1A) receptor protein in the PVN. Taken together, these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT(1A) receptor signaling pathway and desensitization of 5-HT(1A) receptor signaling.
Collapse
|
20
|
The native serotonin 5-HT(5A) receptor: electrophysiological characterization in rodent cortex and 5-HT(1A)-mediated compensatory plasticity in the knock-out mouse. J Neurosci 2012; 32:5804-9. [PMID: 22539842 DOI: 10.1523/jneurosci.4849-11.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 5-HT(5A) receptor is the least understood serotonin (5-HT) receptor. Here, we electrophysiologically identify and characterize a native 5-HT(5A) receptor current in acute ex vivo brain slices of adult rodent prefrontal cortex. In the presence of antagonists for the previously characterized 5-HT(1A) and 5-HT₂ receptors, a proportion of layer V pyramidal neurons continue to show 5-HT-elicited outward currents in both rats and mice. These 5-HT currents are suppressed by the selective 5-HT(5A) antagonist, SB-699551, and are not observed in 5-HT(5A) receptor knock-out mice. Further characterization reveals that the 5-HT(5A) current is activated by submicromolar concentrations of 5-HT, is inwardly rectifying with a reversal potential near the equilibrium potential for K+ ions, and is suppressed by blockers of Kir3 channels. Finally, we observe that genetic deletion of the inhibitory 5-HT(5A) receptor results in an unexpected, large increase in the inhibitory 5-HT(1A) receptor currents. The presence of functional prefrontal 5-HT(5A) receptors in normal rodents along with compensatory plasticity in 5-HT(5A) receptor knock-out mice testifies to the significance of this receptor in the healthy prefrontal cortex.
Collapse
|
21
|
Effects of environmental manipulations in genetically targeted animal models of affective disorders. Neurobiol Dis 2012; 57:12-27. [PMID: 22525570 DOI: 10.1016/j.nbd.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 12/31/2022] Open
Abstract
Mental illness is the leading cause of disability worldwide. We are only just beginning to reveal and comprehend the complex interaction that exists between the genetic makeup of an organism and the potential modifying effect of the environment in which it lives, and how this translates into mediating susceptibility to neurological and psychiatric conditions. The capacity to address this issue experimentally has been facilitated by the availability of rodent models which allow the precise manipulation of genetic and environmental factors. In this review, we discuss the valuable nature of animal models in furthering our understanding of the relationship between genetic and environmental factors in affective illnesses, such as anxiety and depressive disorders. We first highlight the behavioral impairments exhibited by genetically targeted animal models of affective disorders, and then provide a discussion of the underlying neurobiology, focusing on animal models that involve exposure to stress. This is followed by a review of recent studies that report of beneficial effects of environmental manipulations such as environmental enrichment and enhanced physical activity and discuss the likely mechanisms that mediate those benefits.
Collapse
|
22
|
Serotonergic transcriptional networks and potential importance to mental health. Nat Neurosci 2012; 15:519-27. [PMID: 22366757 DOI: 10.1038/nn.3039] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcription regulatory networks governing the genesis, maturation and maintenance of vertebrate brain serotonin (5-HT) neurons determine the level of serotonergic gene expression and signaling throughout an animal's lifespan. Recent studies suggest that alterations in these networks can cause behavioral and physiological pathogenesis in mice. Here, we synthesize findings from vertebrate loss-of-function and gain-of-function studies to build a new model of the transcriptional regulatory networks that specify 5-HT neurons during fetal life, integrate them into CNS circuitry in early postnatal life and maintain them in adulthood. We then describe findings from animal and human genetic studies that support possible alterations in the activity of serotonergic regulatory networks in the etiology of mental illness. We conclude with a discussion of the potential utility of our model, as an experimentally well-defined molecular pathway, to predict and interpret the biological effect of genetic variation that may be discovered in the orthologous human network.
Collapse
|
23
|
Czesak M, Le François B, Millar AM, Deria M, Daigle M, Visvader JE, Anisman H, Albert PR. Increased serotonin-1A (5-HT1A) autoreceptor expression and reduced raphe serotonin levels in deformed epidermal autoregulatory factor-1 (Deaf-1) gene knock-out mice. J Biol Chem 2012; 287:6615-27. [PMID: 22232550 PMCID: PMC3307310 DOI: 10.1074/jbc.m111.293027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/23/2011] [Indexed: 02/02/2023] Open
Abstract
Altered regulation of the serotonin-1A (5-HT1A) receptor gene is implicated in major depression and mood disorders. The functional human 5-HT1A C(-1019)G promoter polymorphism (rs6295), which prevents the binding of Deaf-1/NUDR leading to dysregulation of the receptor, has been associated with major depression. In cell models Deaf-1 displays dual activity, repressing 5-HT1A autoreceptor expression in serotonergic raphe cells while enhancing postsynaptic 5-HT1A heteroreceptor expression in nonserotonergic neurons. A functional Deaf-1 binding site on the mouse 5-HT1A promoter was recognized by Deaf-1 in vitro and in vivo and mediated dual activity of Deaf-1 on 5-HT1A gene transcription. To address regulation by Deaf-1 in vivo, Deaf-1 knock-out mice bred to a C57BL/6 background were compared with wild-type siblings for changes in 5-HT1A RNA and protein by quantitative RT-PCR, in situ hybridization, and immunofluorescence. In the dorsal raphe, Deaf-1 knock-out mice displayed increased 5-HT1A mRNA, protein, and 5-HT1A-positive cell counts but reduced 5-HT levels, whereas other serotonergic markers, such as tryptophan hydroxylase (TPH)- or 5-HT-positive cells and TPH2 RNA levels, were unchanged. By contrast, 5-HT1A mRNA and 5-HT1A-positive cells were reduced in the frontal cortex of Deaf-1-null mice, with no significant change in hippocampal 5-HT1A RNA, protein, or cell counts. The region-specific alterations of brain 5-HT1A gene expression and reduced raphe 5-HT content in Deaf-1(-/-) mice indicate the importance of Deaf-1 in regulation of 5-HT1A gene expression and provide insight into the role of the 5-HT1A G(-1019) allele in reducing serotonergic neurotransmission by derepression of 5-HT1A autoreceptors.
Collapse
MESH Headings
- Animals
- Autoreceptors/genetics
- Autoreceptors/metabolism
- DNA-Binding Proteins
- Depressive Disorder/metabolism
- Depressive Disorder/physiopathology
- Female
- Fluorescent Antibody Technique
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Polymorphism, Genetic/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/metabolism
- Raphe Nuclei/physiology
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Serotonin/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tryptophan Hydroxylase/genetics
- Tryptophan Hydroxylase/metabolism
Collapse
Affiliation(s)
- Margaret Czesak
- From the Ottawa Hospital Research Institute (Neuroscience), Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Brice Le François
- From the Ottawa Hospital Research Institute (Neuroscience), Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Anne M. Millar
- From the Ottawa Hospital Research Institute (Neuroscience), Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mariam Deria
- From the Ottawa Hospital Research Institute (Neuroscience), Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mireille Daigle
- From the Ottawa Hospital Research Institute (Neuroscience), Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jane E. Visvader
- the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia, and
| | - Hymie Anisman
- the Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Paul R. Albert
- From the Ottawa Hospital Research Institute (Neuroscience), Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
24
|
Bethea CL, Smith AW, Centeno ML, Reddy AP. Long-term ovariectomy decreases serotonin neuron number and gene expression in free ranging macaques. Neuroscience 2011; 192:675-88. [PMID: 21763405 DOI: 10.1016/j.neuroscience.2011.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/06/2011] [Accepted: 06/01/2011] [Indexed: 01/08/2023]
Abstract
The serotonin system responds to the ovarian steroids, estradiol (E) and progesterone (P), in women and female animal models. In macaques, ovarian steroid administration to ovariectomized (Ovx) individuals improves serotonin neural function through actions on pivotal serotonin-related genes and proteins, such as TPH2 (tryptophan hydroxylase 2), SERT (serotonin reuptake transporter), and the 5HT1A autoreceptor. In addition, ovarian steroid administration reduces gene and protein expression in the caspase-independent pathway and reduces DNA fragmentation in serotonin neurons. This study examines the hypothesis that long-term ovariectomy will lead to a loss of serotonin neurons and compromised gene expression in serotonin neurons. Female Japanese macaques were ovariectomized or tubal ligated (n=5/group) at 3 years of age and returned to their natal troop. After 3 years, the animals were collected, administered a fenfluramine challenge to determine global serotonin availability, and then euthanized. Fev, TPH2, SERT, and 5HT1A expression were examined with digoxigenin in situ hybridization (ISH) and quantitative image analysis. Cell number, positive pixel area, and average pixel density were determined. In the Ovx group, Fev, TPH2, SERT, and 5HT1A showed a significant decease in average and total cell number and positive pixel area. The reduction in Fev-positive neurons suggests that there were fewer serotonin neurons in Ovx animals compared to ovary-intact animals. The decrease in TPH2 in the Ovx animals was consistent with earlier results in 5-month Ovx animals, but it may be due to the decrease in cell number rather than a decrease in expression on an individual cell basis. The decrease in SERT and 5HT1A in long-term Ovx differed from previous studies in short-term Ovx. In summary, long-term ovarian steroid loss resulted in fewer serotonin neurons and overall lower Fev, TPH2, SERT, and 5HT1A gene expression. This may be due to serotonin cell death or to a negative impact on a long-term developmental process in young female macaques.
Collapse
Affiliation(s)
- C L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
25
|
Albert PR, Le François B, Millar AM. Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness. Mol Brain 2011; 4:21. [PMID: 21619616 PMCID: PMC3130656 DOI: 10.1186/1756-6606-4-21] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/27/2011] [Indexed: 12/15/2022] Open
Abstract
The serotonin-1A (5-HT1A) receptor is among the most abundant and widely distributed 5-HT receptors in the brain, but is also expressed on serotonin neurons as an autoreceptor where it plays a critical role in regulating the activity of the entire serotonin system. Over-expression of the 5-HT1A autoreceptor has been implicated in reducing serotonergic neurotransmission, and is associated with major depression and suicide. Extensive characterization of the transcriptional regulation of the 5-HT1A gene (HTR1A) using cell culture systems has revealed a GC-rich "housekeeping" promoter that non-selectively drives its expression; this is flanked by a series of upstream repressor elements for REST, Freud-1/CC2D1A and Freud-2/CC2D1B factors that not only restrict its expression to neurons, but may also regulate the level of expression of 5-HT1A receptors in various subsets of neurons, including serotonergic neurons. A separate set of allele-specific factors, including Deaf1, Hes1 and Hes5 repress at the HTR1A C(-1019)G (rs6295) polymorphism in serotonergic neurons in culture, as well as in vivo. Pet1, an obligatory enhancer for serotonergic differentiation, has been identified as a potent activator of 5-HT1A autoreceptor expression. Taken together, these results highlight an integrated regulation of 5-HT1A autoreceptors that differs in several aspects from regulation of post-synaptic 5-HT1A receptors, and could be selectively targeted to enhance serotonergic neurotransmission.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.
| | | | | |
Collapse
|