1
|
Janampalli M, Kitchen ST, Vatolin S, Tang N, He M, Bearer CF. Choline supplementation mitigates effects of bilirubin in cerebellar granule neurons in vitro. Pediatr Res 2024; 96:97-103. [PMID: 38172213 DOI: 10.1038/s41390-023-02968-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Premature infants may suffer from high levels of bilirubin that could lead to neurotoxicity. Bilirubin has been shown to decrease L1-mediated ERK1/2 signaling, L1 phosphorylation, and L1 tyrosine 1176 dephosphorylation. Furthermore, bilirubin redistributes L1 into lipid rafts (LR) and decreases L1-mediated neurite outgrowth. We demonstrate that choline supplementation improves L1 function and signaling in the presence of bilirubin. METHODS Cerebellar granule neurons (CGN) were cultured with and without supplemental choline, and the effects on L1 signaling and function were measured in the presence of bilirubin. L1 activation of ERK1/2, L1 phosphorylation and dephosphorylation were measured. L1 distribution in LR was quantified and neurite outgrowth of CGN was determined. RESULTS Forty µM choline significantly reduced the effect of bilirubin on L1 activation of ERK1/2 by 220% (p = 0.04), and increased L1 triggered changes in tyrosine phosphorylation /dephosphorylation of L1 by 34% (p = 0.026) and 35% (p = 0.02) respectively. Choline ameliorated the redistribution of L1 in lipid rafts by 38% (p = 0.02) and increased L1-mediated mean neurite length by 11% (p = 0.04). CONCLUSION Choline pretreatment of CGN significantly reduced the disruption of L1 function by bilirubin. The supplementation of pregnant women and preterm infants with choline may increase infant resilience to the effects of bilirubin. IMPACT This article establishes choline as an intervention for the neurotoxic effects of bilirubin on lipid rafts. This article provides clear evidence toward establishing one intervention for bilirubin neurotoxicity, where little is understood. This article paves the way for future investigation into the mechanism of the ameliorative effect of choline on bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Mrinaj Janampalli
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Spencer T Kitchen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Sergei Vatolin
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Cynthia F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Division of Neonatology, Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Altounian M, Bellon A, Mann F. Neuronal miR-17-5p contributes to interhemispheric cortical connectivity defects induced by prenatal alcohol exposure. Cell Rep 2023; 42:113020. [PMID: 37610874 DOI: 10.1016/j.celrep.2023.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Structural and functional deficits in brain connectivity are reported in patients with fetal alcohol spectrum disorders (FASDs), but whether and how prenatal alcohol exposure (PAE) affects axonal development of neurons and disrupts wiring between brain regions is unknown. Here, we develop a mouse model of moderate alcohol exposure during prenatal brain wiring to study the effects of PAE on corpus callosum (CC) development. PAE induces aberrant navigation of interhemispheric CC axons that persists even after exposure ends, leading to ectopic termination in the contralateral cortex. The neuronal miR-17-5p and its target ephrin type A receptor 4 (EphA4) mediate the effect of alcohol on the contralateral targeting of CC axons. Thus, altered microRNA-mediated regulation of axonal guidance may have implications for interhemispheric cortical connectivity and associated behaviors in FASD.
Collapse
Affiliation(s)
| | - Anaïs Bellon
- Aix Marseille University, INSERM, INMED, Marseille, France
| | - Fanny Mann
- Aix Marseille University, CNRS, IBDM, Marseille, France.
| |
Collapse
|
3
|
Perez-Pouchoulen M, Jaiyesimi A, Bardhi K, Waddell J, Banerjee A. Hypothermia increases cold-inducible protein expression and improves cerebellar-dependent learning after hypoxia ischemia in the neonatal rat. Pediatr Res 2023; 94:539-546. [PMID: 36810641 PMCID: PMC10403381 DOI: 10.1038/s41390-023-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy remains a significant cause of developmental disability.1,2 The standard of care for term infants is hypothermia, which has multifactorial effects.3-5 Therapeutic hypothermia upregulates the cold-inducible protein RNA binding motif 3 (RBM3) that is highly expressed in developing and proliferative regions of the brain.6,7 The neuroprotective effects of RBM3 in adults are mediated by its ability to promote the translation of mRNAs such as reticulon 3 (RTN3).8 METHODS: Hypoxia ischemia or control procedure was conducted in Sprague Dawley rat pups on postnatal day 10 (PND10). Pups were immediately assigned to normothermia or hypothermia at the end of the hypoxia. In adulthood, cerebellum-dependent learning was tested using the conditioned eyeblink reflex. The volume of the cerebellum and the magnitude of cerebral injury were measured. A second study quantified RBM3 and RTN3 protein levels in the cerebellum and hippocampus collected during hypothermia. RESULTS Hypothermia reduced cerebral tissue loss and protected cerebellar volume. Hypothermia also improved learning of the conditioned eyeblink response. RBM3 and RTN3 protein expression were increased in the cerebellum and hippocampus of rat pups subjected to hypothermia on PND10. CONCLUSIONS Hypothermia was neuroprotective in male and female pups and reversed subtle changes in the cerebellum after hypoxic ischemic. IMPACT Hypoxic ischemic produced tissue loss and a learning deficit in the cerebellum. Hypothermia reversed both the tissue loss and learning deficit. Hypothermia increased cold-responsive protein expression in the cerebellum and hippocampus. Our results confirm cerebellar volume loss contralateral to the carotid artery ligation and injured cerebral hemisphere, suggesting crossed-cerebellar diaschisis in this model. Understanding the endogenous response to hypothermia might improve adjuvant interventions and expand the clinical utility of this intervention.
Collapse
Affiliation(s)
| | - Ayodele Jaiyesimi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keti Bardhi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Naik VD, Ramadoss J. Untargeted and Targeted Blood Lipidomic Signature Profile of Gestational Alcohol Exposure. Nutrients 2023; 15:1411. [PMID: 36986141 PMCID: PMC10051993 DOI: 10.3390/nu15061411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Alcohol consumption has a close relationship with blood lipid levels in a nonpregnant state, with a myriad of effects on the liver; however, little is known about the interaction of alcohol and lipids in the context of fetal alcohol spectrum disorders (FASD). We herein aimed to determine the effect of alcohol on the lipid profile in a pregnant rat model, with a focus on FASD. Dry blood spots (50 µL) were obtained from rat maternal blood collected on gestational day (GD) 20, two hours after the last binge alcohol exposure (4.5 g/kg, GD 5-10; 6 g/kg, GD 11-20). The samples were then analyzed using high-throughput untargeted and targeted lipid profiling via liquid chromatography-tandem mass spectrometry (LC-MS/MS). In untargeted lipidomics, 73 of 315 identified lipids were altered in the alcohol group compared to the pair-fed controls; 67 were downregulated and 6 were upregulated. In targeted analysis, 57 of the 260 studied lipid subspecies were altered, including Phosphatidylcholine (PC), Phosphatidylethanolamine (PE), Phosphatidylglycerol (PG), Phosphatidic Acid (PA), Phosphatidylinositol (PI), and Phosphatidylserine (PS); 36 of these were downregulated and 21 lipid subspecies were upregulated. These findings suggest alcohol-induced dysregulation of lipids in the maternal blood of rats and provide novel insights into possible FASD mechanisms.
Collapse
Affiliation(s)
- Vishal D. Naik
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jayanth Ramadoss
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Komatsuya K, Kikuchi N, Hirabayashi T, Kasahara K. The Regulatory Roles of Cerebellar Glycosphingolipid Microdomains/Lipid Rafts. Int J Mol Sci 2023; 24:ijms24065566. [PMID: 36982638 PMCID: PMC10058044 DOI: 10.3390/ijms24065566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. Cerebellar lipid rafts are cell surface ganglioside microdomains for the attachment of GPI-anchored neural adhesion molecules and downstream signaling molecules such as Src-family kinases and heterotrimeric G proteins. In this review, we summarize our recent findings on signaling in ganglioside GD3 rafts of cerebellar granule cells and several findings by other groups on the roles of lipid rafts in the cerebellum. TAG-1, of the contactin group of immunoglobulin superfamily cell adhesion molecules, is a phosphacan receptor. Phosphacan regulates the radial migration signaling of cerebellar granule cells, via Src-family kinase Lyn, by binding to TAG-1 on ganglioside GD3 rafts. Chemokine SDF-1α, which induces the tangential migration of cerebellar granule cells, causes heterotrimeric G protein Goα translocation to GD3 rafts. Furthermore, the functional roles of cerebellar raft-binding proteins including cell adhesion molecule L1, heterotrimeric G protein Gsα, and L-type voltage-dependent calcium channels are discussed.
Collapse
|
6
|
Ghosal R, Borrego-Soto G, Eberhart JK. Embryonic ethanol exposure disrupts craniofacial neuromuscular integration in zebrafish larvae. Front Physiol 2023; 14:1131075. [PMID: 36824468 PMCID: PMC9941677 DOI: 10.3389/fphys.2023.1131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Forming a vertebrate head involves the meticulous integration of multiple tissue types during development. Prenatal alcohol exposure is known to cause a variety of birth defects, especially to tissues in the vertebrate head. However, a systematic analysis of coordinated defects across tissues in the head is lacking. Here, we delineate the effects of ethanol on individual tissue types and their integration during craniofacial development. We found that exposure to 1% ethanol induced ectopic cranial muscle and nerve defects with only slight effects on skeletal pattern. Ectopic muscles were, however, unaccompanied by ectopic tendons and could be partially rescued by anesthetizing the larvae before muscle fibers appeared. This finding suggests that the ectopic muscles result from fiber detachment and are not due to an underlying muscle patterning defect. Interestingly, immobilization did not rescue the nerve defects, thus ethanol has an independent effect on each tissue even though they are linked in developmental time and space. Time-course experiments demonstrated an increase in nerve defects with ethanol exposure between 48hpf-4dpf. Time-lapse imaging confirmed the absence of nerve pathfinding or misrouting defects until 48hpf. These results indicate that ethanol-induced nerve defects occur at the time of muscle innervation and after musculoskeletal patterning. Further, we investigated the effect of ethanol on the neuromuscular junctions of the craniofacial muscles and found a reduced number of postsynaptic receptors with no significant effect on the presynaptic terminals. Our study shows that craniofacial soft tissues are particularly susceptible to ethanol-induced damage and that these defects appear independent from one another. Thus, the effects of ethanol on the vertebrate head appear highly pleiotropic.
Collapse
Affiliation(s)
| | | | - Johann K. Eberhart
- Department of Molecular Biosciences, College of Natural Sciences and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
7
|
Neonatal hypoxia ischemia redistributes L1 cell adhesion molecule into rat cerebellar lipid rafts. Pediatr Res 2022; 92:1325-1331. [PMID: 35152267 PMCID: PMC9372221 DOI: 10.1038/s41390-022-01974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/23/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a devastating disease with lifelong disabilities. Hypothermia is currently the only treatment. At term, the neonatal cerebellum may be particularly vulnerable to the effects of HIE. At this time, many developmental processes depend on lipid raft function. These microdomains of the plasma membrane are critical for cellular signaling and axon extension. We hypothesized that HIE alters the protein content of lipid rafts in the cerebellum. METHODS Postnatal day (PN) 10 animals, considered human term equivalent, underwent hypoxic-ischemic (HI) injury by a right carotid artery ligation followed by hypoxia. For some animals, LPS was administered on PN7, and hypothermia (HT) was conducted for 4 h post-hypoxia. Lipid rafts were isolated from the right and left cerebella. The percent of total L1 cell adhesion molecule in lipid rafts was determined 4 and 72 h after hypoxia. RESULTS No sex differences were found. HI alone caused significant increases in the percent of L1 in lipid rafts which persisted until 72 h in the right but not the left cerebellum. A small but significant effect of LPS was detected in the left cerebellum 72 h after HI. Hypothermia had no effect. CONCLUSIONS Lipid rafts may be a new target for interventions of HIE. IMPACT This article investigates the effect of neonatal exposure to hypoxic-ischemic encephalopathy (HIE) on the distribution of membrane proteins in the cerebellum. This article explores the effectiveness of hypothermia as a prevention for the harmful effects of HIE on membrane protein distribution. This article shows an area of potential detriment secondary to HIE that persists with current treatments, and explores ideas for new treatments.
Collapse
|
8
|
Lu F, Ferriero DM, Jiang X. Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Curr Neuropharmacol 2022; 20:1400-1412. [PMID: 34766894 PMCID: PMC9881076 DOI: 10.2174/1570159x19666211111122311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) is enriched with important classes of lipids, in which cholesterol is known to make up a major portion of myelin sheaths, besides being a structural and functional unit of CNS cell membranes. Unlike in the adult brain, where the cholesterol pool is relatively stable, cholesterol is synthesized and accumulated at the highest rate in the developing brain to meet the needs of rapid brain growth at this stage, which is also a critical period for neuroplasticity. In addition to its biophysical role in membrane organization, cholesterol is crucial for brain development due to its involvement in brain patterning, myelination, neuronal differentiation, and synaptogenesis. Thus any injuries to the immature brain that affect cholesterol homeostasis may have long-term adverse neurological consequences. In this review, we describe the unique features of brain cholesterol biosynthesis and metabolism, cholesterol trafficking between different cell types, and highlight cholesterol-dependent biological processes during brain maturation. We also discuss the association of impaired cholesterol homeostasis with several forms of perinatal brain disorders in term and preterm newborns, including hypoxic-ischemic encephalopathy. Strategies targeting the cholesterol pathways may open new avenues for the diagnosis and treatment of developmental brain injury.
Collapse
Affiliation(s)
- Fuxin Lu
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA;
| | - Donna M. Ferriero
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Departments of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Xiangning Jiang
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Address correspondence to this author at the Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane Room 494, San Francisco, CA 94158, USA; Tel/Fax: 415-502-7285; E-mail:
| |
Collapse
|
9
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
10
|
Waddell J, Rickman NC, He M, Tang N, Bearer CF. Choline supplementation prevents the effects of bilirubin on cerebellar-mediated behavior in choline-restricted Gunn rat pups. Pediatr Res 2021; 89:1414-1419. [PMID: 33027804 PMCID: PMC8024424 DOI: 10.1038/s41390-020-01187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bilirubin is produced by the breakdown of hemoglobin and is normally catabolized and excreted. Neurotoxic accumulation of serum bilirubin often occurs in premature infants. The homozygous Gunn rat lacks uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), the enzyme needed to biotransform bilirubin. This rodent model of hyperbilirubinemia emulates many aspects of bilirubin toxicity observed in the human infant. We demonstrate that choline supplementation in early postnatal development is neuroprotective in the choline-restricted Gunn rat, when hyperbilirubinemia is induced on postnatal day 5. METHODS We first compared behaviors and cerebellar weight of pups born to dams consuming regular rat chow to those of dams consuming choline-restricted diets. Second, we measured behaviors and cerebellar weights of pups born to choline-restricted dams, reared on a choline-restricted diet, supplemented with or without choline, and treated with or without sulfadimethoxine (SDMX). RESULTS A choline-restricted diet did not change the behavioral outcomes, but cerebellar weight was reduced in the choline-restricted group regardless of genotype or SDMX administration. SDMX induced behavioral deficits in jj pups, and choline supplementation improved most behavioral effects and cerebellar weight in SDMX-treated jj rats. CONCLUSIONS These results suggest that choline may be used as a safe and effective neuroprotective intervention against hyperbilirubinemia in the choline-deficient premature infant. IMPACT This article investigates the effect of neonatal jaundice/bilirubin neurotoxicity on cerebellar-mediated behaviors. This article explores the potential use of choline as an intervention capable of ameliorating the effect of bilirubin on the choline-restricted developing brain. This article opens the door for future studies on the action of choline in the presence of hyperbilirubinemia, especially in preterm neonates.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas C Rickman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cynthia F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Kitchen ST, Tang N, He M, Ly E, Mooney SM, Bearer CF. Bilirubin inhibits lipid raft dependent functions of L1 cell adhesion molecule in rat pup cerebellar granule neurons. Pediatr Res 2021; 89:1389-1395. [PMID: 32937649 PMCID: PMC9323028 DOI: 10.1038/s41390-020-01156-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanism of bilirubin neurotoxicity is poorly understood. We hypothesize that bilirubin inhibits the function of lipid rafts (LR), microdomains of the plasma membrane critical for signal transduction. To test this hypothesis, we measured the effect of free bilirubin (Bf) between 7.6 and 122.5 nM on LR-dependent functions of L1 cell adhesion molecule (L1). METHODS Cerebellar granule neurons (CGN) were plated on poly-L-lysine overnight, and neurite length was determined after 1 h treatment with L1 alone or L1 and bilirubin. L1 activation of ERK1/2 was measured in CGN in the presence or absence of bilirubin. The effect of bilirubin on L1 distribution in LR was quantitated, and the localization of bilirubin to LR was determined. RESULTS The addition of bilirubin to CGN treated with L1 significantly decreased neurite length compared to L1 alone. L1 activation of ERK1/2 was inhibited by bilirubin. Bilirubin redistributed L1 into LR. Bilirubin was associated only with LR-containing fractions of a sucrose density gradient. CONCLUSION Bf significantly inhibits LR-dependent functions of L1 and are found only associated with LR, suggesting one mechanism by which bilirubin may exert neurotoxicity is through the dysfunction of protein-LR interactions. IMPACT This article establishes lipid rafts as a target for the neurotoxic effects of bilirubin. This article provides clear evidence toward establishing one mechanism of bilirubin neurotoxicity, where little is understood. This article paves the way for future investigation into lipid raft dependent functions, and its role in neurodevelopmental outcome.
Collapse
Affiliation(s)
- Spencer T. Kitchen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21218
| | - Eric Ly
- Division of Neonatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Sandra M. Mooney
- Department of Nutrition, University of North Carolina School of Public Health, Chapel Hill, North Carolina, 27514
| | - Cynthia F. Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106,Corresponding author: Cynthia F. Bearer, M.D., Ph.D., Department of Pediatrics, 2109 Adelbert Rd, 8th floor, Cleveland, OH 44106, Tel. (410) 328-6003, Fax. (410) 328-1076,
| |
Collapse
|
12
|
Davis NL, Tang N, He M, Lee D, Bearer CF. Choline ameliorates ethanol induced alterations in tyrosine phosphorylation and distribution in detergent-resistant membrane microdomains of L1 cell adhesion molecule in vivo. Birth Defects Res 2020; 112:480-489. [PMID: 32052941 PMCID: PMC9741483 DOI: 10.1002/bdr2.1657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/18/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exposure to ethanol during pregnancy is the cause of fetal alcohol spectrum disorder. The function of L1 cell adhesion molecule (L1), critical for proper brain development, is dependent on detergent-resistant membrane microdomains (DRM). Ethanol at low concentrations disrupts L1 function measured by inhibition of downstream signaling and alterations in L1-DRM distribution in cerebellum in vivo and in cerebellar granule neurons (CGN) in vitro. We have previously shown that choline pretreatment of CGN partially prevents ethanol toxicity through improving L1 function in vitro. Here we show that choline supplementation reduces the impact of ethanol on L1 in cerebellum in vivo. METHODS Pregnant rat dams were placed on choline free diet on gestational Day 5 (G5). Pups were treated with saline or choline from postnatal day (P) 1-5. On P5, pups were intubated twice 2 hr apart with ethanol or Intralipid® for a total dose of 6 g/kg/d and sacrificed 1 hr after the last intubation. The cerebella were harvested and L1 phosphorylation/dephosphorylation status and distribution in DRM were analyzed. RESULTS Ethanol reduced L1 tyrosine phosphorylation and L1-Y1176 dephosphorylation in cerebella, and caused an increase in the percent of L1 in DRM. Choline supplementation of pups reduced the ethanol-induced changes in L1 phosphorylation status and ameliorated ethanol-induced redistribution of L1 into DRM. CONCLUSION Choline supplementation before an acute dose of ethanol ameliorates changes in L1 in vivo.
Collapse
Affiliation(s)
- Natalie L. Davis
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Ningfeng Tang
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Min He
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Daniel Lee
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Cynthia F. Bearer
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| |
Collapse
|
13
|
Flentke GR, Baulch J, Berres ME, Garic A, Smith SM. Alcohol-mediated calcium signals dysregulate pro-survival Snai2/PUMA/Bcl2 networks to promote p53-mediated apoptosis in avian neural crest progenitors. Birth Defects Res 2019; 111:686-699. [PMID: 31021056 PMCID: PMC7017393 DOI: 10.1002/bdr2.1508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/27/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prenatal alcohol exposure causes distinctive craniofacial anomalies that arise, in part, from the apoptotic elimination of neural crest (NC) progenitors that form the face. This vulnerability of NC to alcohol is puzzling as they normally express the transcriptional repressor Snail1/2 (in chick Snai2), which suppresses apoptosis and promotes their migration. Here, we investigate alcohol's impact upon Snai2 function. METHODS Chick cranial NC cells were treated with acute alcohol (52 mM, 2 hr). We evaluated NC migration, gene expression, proliferation, and apoptosis thereafter. RESULTS Transient alcohol exposure induced Snai2 (191% ± 23%; p = .003) and stimulated NC migration (p = .0092). An alcohol-induced calcium transient mediated this Snai2 induction, and BAPTA-AM blocked whereas ionomycin mimicked these pro-migratory effects. Alcohol suppressed CyclinD1 protein content (59.1 ± 12%, p = .007) and NC proliferation (19.7 ± 5.8%, p < .001), but these Snai2-enriched cells still apoptosed in response to alcohol. This was explained because alcohol induced p53 (198 ± 29%, p = .023), and the p53 antagonist pifithrin-α prevented their apoptosis. Moreover, alcohol counteracted Snai2's pro-survival signals, and Bcl2 was repressed (68.5 ± 6.0% of controls, p = .016) and PUMA was not induced, while ATM (1.32-fold, p = .01) and PTEN (1.30-fold, p = .028) were elevated. CONCLUSIONS Alcohol's calcium transient uncouples the Snai2/p53 regulatory loop that normally prevents apoptosis during EMT. This represents a novel pathway in alcohol's neurotoxicity, and complements demonstrations that alcohol suppresses PUMA in mouse NC. We propose that the NCs migratory behavior, and their requirement for Snai2/p53 co-expression, makes them vulnerable to stressors that dysregulate Snai2/p53 interactions, such as alcohol.
Collapse
Affiliation(s)
- George R. Flentke
- Nutrition Research Institute, Dept. Nutrition, University of North Carolina at Chapel Hill, Kannapolis NC 28081
- Dept. Nutritional Sciences, University of Wisconsin-Madison, Madison WI 53706
| | - Joshua Baulch
- Nutrition Research Institute, Dept. Nutrition, University of North Carolina at Chapel Hill, Kannapolis NC 28081
| | - Mark E. Berres
- Dept. Nutritional Sciences, University of Wisconsin-Madison, Madison WI 53706
| | - Ana Garic
- Dept. Nutritional Sciences, University of Wisconsin-Madison, Madison WI 53706
| | - Susan M. Smith
- Nutrition Research Institute, Dept. Nutrition, University of North Carolina at Chapel Hill, Kannapolis NC 28081
- Dept. Nutritional Sciences, University of Wisconsin-Madison, Madison WI 53706
| |
Collapse
|
14
|
Segal D, Bale AS, Phillips LJ, Sasso A, Schlosser PM, Starkey C, Makris SL. Issues in assessing the health risks of n-butanol. J Appl Toxicol 2019; 40:72-86. [PMID: 31231852 DOI: 10.1002/jat.3820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/25/2023]
Abstract
A literature review and health effects evaluation were conducted for n-butanol, a chemical that occurs naturally in some foods, which is an intermediate in the production of butyl esters and can be used as a gasoline additive or blend. Studies evaluating n-butyl acetate were included in the review as n-butyl acetate is rapidly converted to n-butanol following multiple routes of exposure. The primary n-butanol health effects identified were developmental and nervous system endpoints. In conducting the literature review and evaluating study findings, the following observations were made: (1) developmental findings were consistently identified; (2) neurodevelopmental findings were inconsistent; (3) evidence for nervous system effects was weak; (4) comparing internal doses from oral and inhalation exposures using physiologically based pharmacokinetic models introduces uncertainties; and (5) a lack of mechanistic information for n-butanol resulted in the reliance on mechanistic data for ethanol, which may or may not be applicable to n-butanol. This paper presents findings from a literature review on the health effects of n-butanol and proposes research to help reduce uncertainty that exists due to database limitations.
Collapse
Affiliation(s)
- Deborah Segal
- EPA Office of Research and Development (ORD), National Center for Environmental Assessment (NCEA), Washington, DC
| | - Ambuja S Bale
- EPA Office of Research and Development (ORD), National Center for Environmental Assessment (NCEA), Washington, DC
| | - Linda J Phillips
- EPA Office of Research and Development (ORD), National Center for Environmental Assessment (NCEA), Washington, DC
| | - Alan Sasso
- EPA Office of Research and Development (ORD), National Center for Environmental Assessment (NCEA), Washington, DC
| | | | - C Starkey
- Formerly ORISE Research Fellow at EPA,, Alexandria, Virginia
| | - Susan L Makris
- EPA Office of Research and Development (ORD), National Center for Environmental Assessment (NCEA), Washington, DC
| |
Collapse
|
15
|
Tobin SJ, Wakefield DL, Terenius L, Vukojević V, Jovanović-Talisman T. Ethanol and Naltrexone Have Distinct Effects on the Lateral Nano-organization of Mu and Kappa Opioid Receptors in the Plasma Membrane. ACS Chem Neurosci 2019; 10:667-676. [PMID: 30418735 DOI: 10.1021/acschemneuro.8b00488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The complex spatiotemporal organization of proteins and lipids in the plasma membrane is an important determinant of receptor function. Certain substances, such as ethanol, can penetrate into the hydrophobic regions of the plasma membrane. By altering protein-lipid and protein-protein interactions, these substances can modify the dynamic lateral organization and the function of plasma membrane receptors. To assess changes in plasma membrane receptor organization, we used photoactivated localization microscopy (PALM). This single molecule localization microscopy technique was employed to quantitatively characterize the effects of pharmacologically relevant concentrations of ethanol and naltrexone (an opioid receptor antagonist and medication used to treat alcohol use disorders) on the lateral nano-organization of mu and kappa opioid receptors (MOR and KOR, respectively). Ethanol affected the lateral organization of MOR and KOR similarly: It reduced the size and occupancy of opioid receptor nanodomains and increased the fraction of opioid receptors residing outside of nanodomains. In contrast, naltrexone affected MOR and KOR lateral organization differently. It significantly increased KOR surface density, nanodomain size, and the occupancy of KOR nanodomains. However, naltrexone marginally affected these parameters for MOR. Pretreatment with naltrexone largely protected against ethanol-induced changes in MOR and KOR lateral organization. Based on these data, we propose a putative mechanism of naltrexone action that operates in addition to its canonical antagonistic effect on MOR- and KOR-mediated signaling.
Collapse
Affiliation(s)
- Steven J. Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Lars Terenius
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Vladana Vukojević
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Tijana Jovanović-Talisman
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
16
|
Lutte AH, Nazario LR, Majolo JH, Pereira TCB, Altenhofen S, Dadda ADS, Bogo MR, Da Silva RS. Persistent increase in ecto‑5'‑nucleotidase activity from encephala of adult zebrafish exposed to ethanol during early development. Neurotoxicol Teratol 2018; 70:60-66. [PMID: 30366104 DOI: 10.1016/j.ntt.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure causes alterations to the brain and can lead to numerous cognitive and behavioral outcomes. Long-lasting effects of early ethanol exposure have been registered in glutamatergic and dopaminergic systems. The purinergic system has been registered as an additional target of ethanol exposure. The objective of this research was to evaluate if the ecto‑5'‑nucleotidase and adenosine deaminase activities and gene expression of adult zebrafish exposed to 1% ethanol during early development could be part of the long-lasting targets of ethanol. Zebrafish embryos were exposed to 1% ethanol in two distinct developmental phases: gastrula/segmentation (5-24 h post-fertilization) or pharyngula (24-48 h post-fertilization). At the end of three months, after checking for morphological outcomes, the evaluation of enzymatic activity and gene expression was performed. Exposure to ethanol did not promote gross morphological defects; however, a significant decrease in the body length was observed (17% in the gastrula and 22% in the pharyngula stage, p < 0.0001). Ethanol exposure during the gastrula/segmentation stage promoted an increase in ecto‑5'‑nucleotidase activity (39.5%) when compared to the control/saline group (p < 0.0001). The ecto‑5'‑nucleotidase gene expression and the deamination of adenosine exerted by ecto and cytosolic adenosine deaminase were not affected by exposure to ethanol in both developmental stages. HPLC experiments did not identify differences in adenosine concentration on the whole encephala of adult animals exposed to ethanol during the gastrula stage or on control animals (p > 0.05). Although the mechanism underlying these findings requires further investigation, these results indicate that ethanol exposure during restricted periods of brain development can have long-term consequences on ecto‑5'‑nucleotidase activity, which could have an impact on subtle sequels of ethanol early exposure.
Collapse
Affiliation(s)
- Aline Haab Lutte
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Reali Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Huppes Majolo
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adilio da Silva Dadda
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
He Y, Dong L, Zhou S, Jia Y, Gu R, Bai Q, Gao J, Li Y, Xiao H. Chromium resistance characteristics of Cr(VI) resistance genes ChrA and ChrB in Serratia sp. S2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:417-423. [PMID: 29655157 DOI: 10.1016/j.ecoenv.2018.03.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To find an efficient chromium (VI) resistance system, with a highly efficient, economical, safe, and environmentally friendly chromium-removing strain, ChrA, ChrB, and ChrAB fragments of the chromium (VI) resistance gene in Serratia sp. S2 were cloned, and their prokaryotic expression vectors were constructed and transformed into E. coli BL21. The anti-chromium (VI) capacity and characteristics of engineered bacteria, role of ChrA and ChrB genes in the anti-chromium (VI) processes, and the mechanism of chromium metabolism, were explored. METHODS The PCR technique was used to amplify ChrA, ChrB, and ChrAB genes from the Serratia sp. S2 genome. ChrA, ChrB, and ChrAB genes were connected to the prokaryotic expression vector pET-28a and transferred into E. coli BL21 for prokaryotic expression. Cr-absorption and Cr-efflux ability of the engineered strains were determined. The effects of respiratory inhibitors and oxygenated anions on Cr-efflux of ChrA and ChrB engineered strains were explored. RESULTS ChrA, ChrB, and ChrAB engineered strains were constructed successfully; there was no significant difference between the control strain and the ChrB engineered strain for Cr-metabolism (P > 0.05). Cr-absorption and Cr-efflux of ChrA and ChrAB engineered strains were significantly stronger than the control strain (P < 0.05). Oxyanions (sulfate and molybdate) and inhibitors (valinomycin and CN-) could significantly inhibit the Cr-efflux capacities of ChrA and ChrAB engineered strains (P < 0.05), while NADPH could significantly promote such capacities (P < 0.05). CONCLUSION The Cr-transporter, encoded by ChrA gene, confer the ability to pump out intracellular Cr on ChrA and ChrAB engineered strains. The ChrB gene plays a positive regulatory role in ChrA gene regulation. The Cr-metabolism ability of the ChrAB engineered strain is stronger than the ChrA engineered strain. ChrA and ChrAB genes in the Cr-resistance system may involve a variety of mechanisms, such as sulfate ion channel and respiratory chain electron transfer.
Collapse
Affiliation(s)
- Yuan He
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Medical 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Lanlan Dong
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Medical 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Simin Zhou
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Medical 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Yan Jia
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Medical 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China; Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, China
| | - Ruijia Gu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Medical 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Qunhua Bai
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Medical 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China; Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, China
| | - Jieying Gao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Medical 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China; Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing 400016, China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Medical 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China; Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing 400016, China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Medical 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China; Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
18
|
Muralidharan S, Lim A, Catalano D, Mandrekar P. Human Binge Alcohol Intake Inhibits TLR4-MyD88 and TLR4-TRIF Responses but Not the TLR3-TRIF Pathway: HspA1A and PP1 Play Selective Regulatory Roles. THE JOURNAL OF IMMUNOLOGY 2018; 200:2291-2303. [PMID: 29445009 DOI: 10.4049/jimmunol.1600924] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/19/2018] [Indexed: 12/26/2022]
Abstract
Binge/moderate alcohol suppresses TLR4-MyD88 proinflammatory cytokines; however, alcohol's effects on TLR-TRIF signaling, especially after in vivo exposure in humans, are unclear. We performed a comparative analysis of the TLR4-MyD88, TLR4-TRIF, and TLR3-TRIF pathways in human monocytes following binge alcohol exposure. Mechanistic regulation of TLR-TRIF signaling by binge alcohol was evaluated by analyzing IRF3 and TBK1, upstream regulator protein phosphatase 1 (PP1), and immunoregulatory stress proteins HspA1A and XBP-1 in alcohol-treated human and mouse monocytes/macrophages. Two approaches for alcohol exposure were used: in vivo exposure of primary monocytes in binge alcohol-consuming human volunteers or in vitro exposure of human monocytes/murine macrophages to physiological alcohol concentrations (25-50 mM ethanol), followed by LPS (TLR4) or polyinosinic-polycytidylic acid (TLR3) stimulation ex vivo. In vivo and in vitro binge alcohol exposure significantly inhibited the TLR4-MyD88 cytokines TNF-α and IL-6, as well as the TLR4-TRIF cytokines/chemokines IFN-β, IP-10, and RANTES, in human monocytes, but not TLR3-TRIF-induced cytokines/chemokines, as detected by quantitative PCR and ELISA. Mechanistic analyses revealed TBK-1-independent inhibition of the TLR4-TRIF effector IRF3 in alcohol-treated macrophages. Although stress protein XBP-1, which is known to regulate IRF3-mediated IFN-β induction, was not affected by alcohol, HspA1A was induced by in vivo alcohol in human monocytes. Alcohol-induced HspA1A was required for inhibition of TLR4-MyD88 signaling but not TLR4-TRIF cytokines in macrophages. In contrast, inhibition of PP1 prevented alcohol-mediated TLR4-TRIF tolerance in macrophages. Collectively, our results demonstrate that in vivo and in vitro binge alcohol exposure in humans suppresses TLR4-MyD88 and TLR4-TRIF, but not TLR3-TRIF, responses. Whereas alcohol-mediated effects on the PP1-IRF3 axis inhibit the TLR4-TRIF pathway, HspA1A selectively suppresses the TLR4-MyD88 pathway in monocytes/macrophages.
Collapse
Affiliation(s)
- Sujatha Muralidharan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Arlene Lim
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
19
|
Accessibility of axonal G protein coupled mu-opioid receptors requires conceptual changes of axonal membrane targeting for pain modulation. J Control Release 2017; 268:352-363. [PMID: 29054370 DOI: 10.1016/j.jconrel.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Abstract
The mechanisms of axonal trafficking and membrane targeting are well established for sodium channels, which are the principle targets for perineurally applied local anaesthetics. However, they have not been thoroughly investigated for G protein coupled receptors such as mu-opioid receptors (MOR). Focusing on these axonal mechanisms, we found that axonal MOR functionality is quite distinct in two different pain states, i.e. hindpaw inflammation and nerve injury. We observed axonal membrane MOR binding and functional G protein coupling exclusively at sites of CCI nerve injury. Moreover at these axonal membrane sites, MOR exhibited extensive co-localization with the membrane proteins SNAP and Na/K-ATPase as well as NGF-dependent enhanced lipid rafts and L1CAM anchoring proteins. Silencing endogenous L1CAM with intrathecal L1CAM specific siRNA, disrupting lipid rafts with the perineurial cholesterol-sequestering agent MβCD, as well as suppressing NGF receptor activation with the perineurial NGF receptor inhibitor K252a abrogated MOR axonal membrane integration, functional coupling, and agonist-elicited antinociception at sites of nerve injury. These findings suggest that local conceptual changes resulting from nerve injury are required for the establishment of functional axonal membrane MOR. Axonal integration and subsequent accessibility of functionally coupled MOR are of great relevance particularly for patients suffering from severe pain due to nerve injury or tumour infiltration.
Collapse
|
20
|
White KM, Sabatino JA, He M, Davis N, Tang N, Bearer CF. Toluene disruption of the functions of L1 cell adhesion molecule at concentrations associated with occupational exposures. Pediatr Res 2016; 80:145-50. [PMID: 27027721 PMCID: PMC4929035 DOI: 10.1038/pr.2016.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/05/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prenatal toluene exposure can cause neurodevelopmental disabilities similar to fetal alcohol syndrome. Both share neuroanatomic pathologies similar to children with mutations in L1 cell adhesion molecule (L1). L1 mediates neurite outgrowth (NOG) via signaling through ERK1/2, which require trafficking of L1 through lipid rafts. Our objective is to determine if toluene inhibits L1-mediated NOG and toluene inhibits L1 signaling at concentrations achieved during occupational exposure. METHODS Concentrations of toluene reflective of blood concentrations achieved in solvent abusers and occupational settings are used. Cerebellar granule neurons (CGN) harvested from postnatal day 6 rat pups are plated on coverslips coated with poly-L-lysine (PLL) alone or PLL followed by laminin. L1 is added to the media of CGN plated on PLL alone. Toluene is added 2 h after plating. Cells are fixed at 24 h and neurite length is measured. ERK1/2 activation by L1 in CGN is analyzed by immunoblot. RESULTS Toluene significantly reduced mean neurite length of CGN exposed to L1 but not laminin. Toluene significantly reduced L1-mediated ERK1/2 phosphorylation. CONCLUSION Results suggest that toluene inhibits L1-lipid raft interactions at occupationally relevant concentrations and may lead to a fetal solvent spectrum disorder similar to fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Kimberly M.R. White
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Julia A. Sabatino
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Min He
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Natalie Davis
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ningfeng Tang
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cynthia F Bearer
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Choline Ameliorates Deficits in Balance Caused by Acute Neonatal Ethanol Exposure. THE CEREBELLUM 2016; 14:413-20. [PMID: 26085462 DOI: 10.1007/s12311-015-0691-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) is estimated to occur in 1 % of all live births. The developing cerebellum is vulnerable to the toxic effects of alcohol. People with FASD have cerebellar hypoplasia and developmental deficits associated with cerebellar injury. Choline is an essential nutrient, but many diets in the USA are choline deficient. In rats, choline given with or following alcohol exposure reduces many alcohol-induced neurobehavioral deficits but not those associated with cerebellar function. Our objective was to determine if choline supplementation prior to alcohol exposure would ameliorate the impact of ethanol on a cerebellar-associated behavioral test in mice. Pregnant C57Bl6/J mice were maintained on a choline-deficient diet from embryonic day 4.5. On postnatal day 1 (P1), pups were assigned to one of eight treatment groups: choline (C) or saline (S) pre-treatment from P1 to P5, ethanol (6 g/kg) or Intralipid(®) on P5, C and or S post-treatment from P6 to P20. On P30, balance and coordination were tested using the dowel crossing test. Overall, there was a significant effect of treatment and females crossed longer distances than males. Ethanol exposure significantly reduced the total distance crossed. Choline pre-treatment increased the distance crossed by males, and both pre- and post-treatment with choline significantly increased total distance crossed for females and males. There was no effect of choline on Intralipid®-exposed animals. This is the first study to show that choline ameliorates ethanol-induced effects on balance and coordination when given before ethanol exposure. Choline fortification of common foodstuffs may reduce the effects of alcohol.
Collapse
|
22
|
Bale AS, Lee JS. An overview of butanol-induced developmental neurotoxicity and the potential mechanisms related to these observed effects. Neurotoxicol Teratol 2015; 53:33-40. [PMID: 26582497 DOI: 10.1016/j.ntt.2015.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/28/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
The purpose of this article is to briefly review the published literature on the developmental neurotoxic effects, including potential mechanisms, of four butanols: n-butanol, sec-butanol, tert-butanol, isobutanol, and identify data gaps and research needs for evaluation of human health risks in this area. Exposure potential to these four butanols is considerable given the high production volume (>1 billion lb) of n- and tert-butanol and moderate production volumes (100-500 million lb) of sec- and isobutanol. With the impetus to derive cleaner gasoline blends, butanols are being considered for use as fuel oxygenates. Notable signs of neurotoxicity and developmental neurotoxicity have been observed in some studies where laboratory animals (rodents) were gestationally exposed to n- or tert-butanol. Mechanistic data relevant to the observed developmental neurotoxicity endpoints were also reviewed to hypothesize potential mechanisms associated with the developmental neurotoxicity outcome. Data from the related and highly characterized alcohol, ethanol, were included to examine consistencies between this compound and the four butanols. It is widely known that alcohols, including butanols, interact with several ion channels and modulate the function of these targets following both acute and chronic exposures. In addition, n- and sec-butanol have been demonstrated to inhibit fetal rat brain astroglial cell proliferation. Further, rat pups exposed to n-butanol in utero were also reported to have significant increases in brain levels of dopamine and serotonin, but decreases in serotonin levels were noted with gestational exposure to tert-butanol. tert-Butanol was reported to inhibit muscarinic receptor-stimulated phosphoinositide metabolism which has been hypothesized to be a possible target for the neurotoxic effects of ethanol during brain development. The mechanistic data for the butanols support developmental neurotoxicity that has been observed in some of the rodent studies. However, careful studies evaluating the neurobehavior of developing pups in sensitive strains, as well as characterizing the plausible mechanisms involved, need to be conducted in order to further elucidate the neurodevelopmental effects of butanols for risk evaluation.
Collapse
Affiliation(s)
- Ambuja S Bale
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Washington, DC 20460, United States
| | - Janice S Lee
- Research Triangle Park, NC, 27711, United States
| |
Collapse
|
23
|
Dou X, Charness ME. Effect of lipid raft disruption on ethanol inhibition of l1 adhesion. Alcohol Clin Exp Res 2015; 38:2707-11. [PMID: 25421507 PMCID: PMC4278581 DOI: 10.1111/acer.12556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/24/2014] [Indexed: 12/21/2022]
Abstract
Background Alcohol causes fetal alcohol spectrum disorders in part by disrupting the function of the neural cell adhesion molecule L1. Alcohol inhibits L1-mediated cell–cell adhesion in diverse cell types and inhibits L1-mediated neurite outgrowth in cerebellar granule neurons (CGNs). A recent report indicates that ethanol (EtOH) induces the translocation of L1 into CGN lipid rafts and that disruption of lipid rafts prevents EtOH inhibition of L1-mediated neurite outgrowth. The same butanol–pentanol cutoff was noted for alcohol-induced translocation of L1 into lipid rafts that was reported previously for alcohol inhibition of L1 adhesion, suggesting that EtOH might inhibit L1 adhesion by shifting L1 into lipid rafts. Methods The NIH/3T3 cell line, 2A2-L1s, is a well-characterized EtOH-sensitive clonal cell line that stably expresses human L1. Cells were treated with 25 mM EtOH, 5 μM filipin, or both. Lipid rafts were enriched in membrane fractions by preparation of detergent-resistant membrane (DRMs) fractions. Caveolin-1 was used as a marker of lipid rafts, and L1 and Src were quantified by Western blotting in lipid-raft-enriched membrane fractions and by immunohistochemistry. Results EtOH (25 mM) increased the percentage of L1, but not Src, in 2A2-L1s membrane fractions enriched in lipid rafts. Filipin, an agent known to disrupt lipid rafts, decreased the percentage of caveolin and L1 in DRMs from 2A2-L1s cells. Filipin also blocked EtOH-induced translocation of L1 into lipid rafts from 2A2-L1s cells but did not significantly affect L1 adhesion or EtOH inhibition of L1 adhesion. Conclusions These findings indicate that EtOH does not inhibit L1 adhesion in NIH/3T3 cells by inducing the translocation of L1 into lipid rafts.
Collapse
Affiliation(s)
- Xiaowei Dou
- VA Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts
| | | |
Collapse
|
24
|
Tang N, Bamford P, Jones J, He M, Kane MA, Mooney SM, Bearer CF. Choline partially prevents the impact of ethanol on the lipid raft dependent functions of l1 cell adhesion molecule. Alcohol Clin Exp Res 2015; 38:2722-30. [PMID: 25421509 DOI: 10.1111/acer.12554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/23/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorder, the leading known cause of mental retardation, is caused by alcohol exposure during pregnancy. One mechanism of ethanol (EtOH) teratogenicity is the disruption of the functions of L1 cell adhesion molecule (L1). These functions include enhancement of neurite outgrowth, trafficking through lipid rafts, and signal transduction. Recent data have shown that choline supplementation of rat pups reduces the effects of EtOH on neurobehavior. We sought to determine whether choline could prevent the effect of EtOH on L1 function using a simple experimental system. METHODS Cerebellar granule neurons (CGN) from postnatal day 6 rat pups were cultured with and without supplemental choline, and the effects on L1 signaling, lipid raft distribution, and neurite outgrowth were measured in the presence or absence of EtOH. RESULTS Choline significantly reduced the effect of EtOH on L1 signaling, the distribution of L1 in lipid rafts and L1-mediated neurite outgrowth. However, choline supplemented EtOH-exposed cultures remained significantly different than controls. CONCLUSIONS Choline pretreatment of CGN significantly reduces the disruption of L1 function by EtOH, but does not completely return L1 function to baseline. This experimental system will enable discovery of the mechanism of the neuroprotective effect of choline.
Collapse
Affiliation(s)
- Ningfeng Tang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
25
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|
26
|
Bearer CF. How Mary Ellen Avery Influenced my Career as an Investigator. Front Pediatr 2014; 2:20. [PMID: 24795870 PMCID: PMC4006020 DOI: 10.3389/fped.2014.00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/08/2014] [Indexed: 11/23/2022] Open
|
27
|
Sulik KK. Fetal alcohol spectrum disorder: pathogenesis and mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:463-75. [PMID: 25307590 DOI: 10.1016/b978-0-444-62619-6.00026-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This chapter provides an overview of animal model-based studies that have generated information critical to our understanding of the pathogenesis and mechanisms underlying alcohol-induced birth defects, in particular those involving the brain. Focus is placed on the developing organism itself, rather than the mother, placenta, or other extraembryonic tissues. Components of the cascades of alcohol-induced damage that are considered herein are excessive cell death, changes in the cell cycle and proliferation, cell migration, cell morphogenesis, and gene expression as well as free radical damage and interference with cell signaling. The roles played by one or more of these various factors in the genesis of structural and functional birth defects are dependent upon alcohol exposure patterns and dosage, the involved tissue, and the prenatal stage(s) at the time of exposure. Technologic advances and rapidly increasing knowledge in the fields of genetics, cell, developmental, and neurobiology are critical to accurately piecing together experimental evidence in refining our understanding of the genesis of alcohol-induced birth defects, to the planning and execution of future studies, and to applying the knowledge gained to diminish the severity or occurrence of fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Kathleen K Sulik
- Department of Cell Biology and Physiology and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
28
|
Chlorhexidine inhibits L1 cell adhesion molecule-mediated neurite outgrowth in vitro. Pediatr Res 2014; 75:8-13. [PMID: 24126818 PMCID: PMC3946665 DOI: 10.1038/pr.2013.175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chlorhexidine is a skin disinfectant that reduces skin and mucous membrane bacterial colonization and inhibits organism growth. Despite numerous studies assessing chlorhexidine safety in term infants, residual concerns have limited its use in hospitalized neonates, especially low-birth-weight preterm infants. The aim of this study was to assess the potential neurotoxicity of chlorhexidine on the developing central nervous system using a well-established in vitro model of neurite outgrowth that includes laminin and L1 cell adhesion molecule (L1) as neurite outgrowth-promoting substrates. METHODS Cerebellar granule neurons are plated on poly L-lysine, L1, or laminin. Chlorhexidine, hexachlorophene, or their excipients are added to the media. Neurons are grown for 24 h, fixed, and neurite length is measured. RESULTS Chlorhexidine significantly reduced the length of neurites grown on L1 but not on laminin. Chlorhexidine concentrations as low as 125 ng/ml statistically significantly reduced neurite length on L1. Hexachlorophene did not affect neurite length. CONCLUSION Chlorhexidine at concentrations detected in the blood following topical applications in preterm infants specifically inhibited L1-mediated neurite outgrowth of cerebellar granule neurons. It is now vital to determine whether the blood-brain barrier is permeable to chlorhexidine in preterm infants.
Collapse
|
29
|
Tagliavacca L, Colombo F, Racchetti G, Meldolesi J. L1CAM and its cell-surface mutants: new mechanisms and effects relevant to the physiology and pathology of neural cells. J Neurochem 2012; 124:397-409. [PMID: 22973895 PMCID: PMC3557714 DOI: 10.1111/jnc.12015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 11/27/2022]
Abstract
The L1 syndrome, a genetic disease that affects 1/30 000 newborn males, is sustained by numerous missense mutations of L1 cell adhesion molecule (L1CAM), an adhesion surface protein active also in transmembrane signaling, essential for the development and function of neurons. To investigate the cell biology of L1CAM, we employed a high RE1-silencing transcription (factor) clone of the pheochromocytoma PC12 line, defective in L1CAM expression and neurite outgrowth. The clone was transfected with wild-type L1CAM and four missense, disease-inducing point mutants encoding proteins distributed to the cell surface. The mutant-expressing cells, defective in adhesion to extracellular matrix proteins and in migration, exhibited unchanged proliferation. The nerve growth factor (NGF)-induced neurite outgrowth was re-established in defective clone cells transfected with the wild-type and the H210Q and I219T L1CAMs mutants, but not in the others. The stimulated outgrowth was confirmed in a second defective PC12 clone over-expressing the NGF receptor TrkA, treated with NGF and/or a recombinant L1CAM chimera. These results revealed a new function of L1CAM, a positive, robust and dose-dependent modulation of the TrkA receptor activated spontaneously or by NGF. The variable effects observed with the different L1CAM mutants suggest that this function contributes to the marked heterogeneity of symptoms and severity observed in the patients affected by the L1 syndrome.
Collapse
Affiliation(s)
- Luigina Tagliavacca
- Department of Neuroscience, Vita-Salute San Raffaele University and San Raffaele Institute, Milano, Italy
| | | | | | | |
Collapse
|
30
|
Littner Y, Tang N, He M, Bearer CF. L1 cell adhesion molecule signaling is inhibited by ethanol in vivo. Alcohol Clin Exp Res 2012; 37:383-9. [PMID: 23050935 DOI: 10.1111/j.1530-0277.2012.01944.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorder is an immense public health problem. In vitro studies support the hypothesis that L1 cell adhesion molecule (L1) is a target for ethanol (EtOH) developmental neurotoxicity. L1 is critical for the development of the central nervous system. It functions through signal transduction leading to phosphorylation and dephosphorylation of tyrosines on its cytoplasmic domain. The function of L1 is also dependent on trafficking through lipid rafts (LRs). Our hypothesis is that L1 is a target for EtOH neurotoxicity in vivo. Our objective is to demonstrate changes in L1 phosphorylation/dephosphorylation and LR association in vivo. METHODS Rat pups on postnatal day 6 are administered 4.5, 5.25, and 6 g/kg of EtOH divided into 2 doses 2 hours apart, then killed. Cerebella are rapidly frozen for assay. Blood is analyzed for blood EtOH concentration. L1 tyrosine phosphorylation is determined by immunoprecipitation and dephosphorylation of tyrosine 1176 determined by immunoblot. LRs are isolated by sucrose density gradient, and the distribution of L1 in LRs is determined. RESULTS EtOH at all doses reduced the relative amount of Y1176 dephosphorylation as well as the relative amount of L1 phosphorylated on other tyrosines. The proportion of L1 present in LRs is significantly increased in pups who received 6 g/kg EtOH compared to intubated controls. CONCLUSIONS L1 is a target for EtOH developmental neurotoxicity in vivo.
Collapse
Affiliation(s)
- Yoav Littner
- Department of Neuroscience, Lerner Research Institute, Children's Hospital, The Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
31
|
Chen S, Charness ME. Ethanol disrupts axon outgrowth stimulated by netrin-1, GDNF, and L1 by blocking their convergent activation of Src family kinase signaling. J Neurochem 2012; 123:602-12. [PMID: 22924694 DOI: 10.1111/j.1471-4159.2012.07954.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/23/2012] [Accepted: 08/23/2012] [Indexed: 01/17/2023]
Abstract
Pre-natal alcohol exposure causes fetal alcohol spectrum disorders (FASD), the most common, preventable cause of developmental disability. The developing cerebellum is particularly vulnerable to the effects of ethanol. We reported that ethanol inhibits the stimulation of axon outgrowth in cerebellar granule neurons (CGN) by NAP, an active motif of activity-dependent neuroprotective protein (ADNP), by blocking NAP activation of Fyn kinase and its downstream signaling molecule, the scaffolding protein Cas. Here, we asked whether ethanol inhibits the stimulation of axon outgrowth by diverse axon guidance molecules through a common action on the Src family kinases (SFK). We first demonstrated that netrin-1, glial cell line-derived neurotrophic factor (GDNF), and neural cell adhesion molecule L1 stimulate axon outgrowth in CGNs by activating SFK, Cas, and extracellular signal-regulated kinase 1 and 2 (ERK1/2). The specific SFK inhibitor, PP2, blocked the stimulation of axon outgrowth and the activation of the SFK-Cas-ERK1/2 signaling pathway by each of these axon-guidance molecules. In contrast, brain-derived neurotrophic factor (BDNF) stimulated axon outgrowth and activated ERK1/2 without first activating SFK or Cas. Clinically relevant concentrations of ethanol inhibited axon outgrowth and the activation of the SFK-Cas-ERK1/2 pathway by netrin-1, GDNF, and L1, but did not disrupt BDNF-induced axon outgrowth or ERK1/2 activation. These results indicate that SFK, but not ERK1/2, is a primary target for ethanol inhibition of axon outgrowth. The ability of ethanol to block the convergent activation of the SFK-Cas-ERK1/2 pathway by netrin-1, GDNF, L1, and ADNP could contribute significantly to the pathogenesis of FASD.
Collapse
Affiliation(s)
- Suzhen Chen
- VA Boston Healthcare System and Department of Neurology, Harvard Medical School, West Roxbury, MA, USA
| | | |
Collapse
|