1
|
Harper CK. Poaching Forensics: Animal Victims in the Courtroom. Annu Rev Anim Biosci 2023; 11:269-286. [PMID: 36790886 DOI: 10.1146/annurev-animal-070722-084803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Poaching and the international trade in wildlife are escalating problems driven by poverty and greed and coordinated by increasingly sophisticated criminal networks. Biodiversity loss, caused by habitat change, is exacerbated by poaching, and species globally are facing extinction. Forensic evidence underpins human and animal criminal investigations and is critical in criminal prosecution and conviction. The application of forensic tools, particularly forensic genetics, to animal case work continues to advance, providing the systems to confront the challenges of wildlife investigations. This article discusses some of these tools, their development, and implementations, as well as recent advances. Examples of cases are provided in which forensic evidence played a key role in obtaining convictions, thus laying the foundation for the future application of techniques to disrupt the criminal networks and safeguard biodiversity through species protection.
Collapse
Affiliation(s)
- Cindy K Harper
- Veterinary Genetics Laboratory, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa;
| |
Collapse
|
2
|
Danielewski M, Żuraszek J, Zielińska A, Herzig KH, Słomski R, Walkowiak J, Wielgus K. Methodological Changes in the Field of Paleogenetics. Genes (Basel) 2023; 14:genes14010234. [PMID: 36672975 PMCID: PMC9859346 DOI: 10.3390/genes14010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Paleogenetics has significantly changed since its inception almost forty years ago. Initially, molecular techniques available to the researchers offered minimal possibilities for ancient DNA analysis. The subsequent expansion of the scientific tool cabinet allowed for more remarkable achievements, combined has with the newfound popularity of this budding field of science. Finally, a breakthrough was made with the development of next-generation sequencing (NGS) technologies and the update of DNA isolation protocols, through which even very fragmented aDNA samples could be used to sequence whole genomes. In this paper, we review the achievements made thus far and compare the methodologies utilized in this field of science, discussing their benefits and challenges.
Collapse
Affiliation(s)
- Mikołaj Danielewski
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Joanna Żuraszek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Karl-Heinz Herzig
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Medical Research Center, Oulu University Hospital, P.O. Box 5000, FIN-90014 Oulu, Finland
- Correspondence: (K.-H.H.); (K.W.)
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Karolina Wielgus
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
- Correspondence: (K.-H.H.); (K.W.)
| |
Collapse
|
3
|
Grealy A, Langmore NE, Joseph L, Holleley CE. Genetic barcoding of museum eggshell improves data integrity of avian biological collections. Sci Rep 2021; 11:1605. [PMID: 33452280 PMCID: PMC7810714 DOI: 10.1038/s41598-020-79852-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
Natural history collections are often plagued by missing or inaccurate metadata for collection items, particularly for specimens that are difficult to verify or rare. Avian eggshell in particular can be challenging to identify due to extensive morphological ambiguity among taxa. Species identifications can be improved using DNA extracted from museum eggshell; however, the suitability of current methods for use on small museum eggshell specimens has not been rigorously tested, hindering uptake. In this study, we compare three sampling methodologies to genetically identify 45 data-poor eggshell specimens, including a putatively extinct bird’s egg. Using an optimised drilling technique to retrieve eggshell powder, we demonstrate that sufficient DNA for molecular identification can be obtained from even the tiniest eggshells without significant alteration to the specimen’s appearance or integrity. This method proved superior to swabbing the external surface or sampling the interior; however, we also show that these methods can be viable alternatives. We then applied our drilling method to confirm that a purported clutch of Paradise Parrot eggs collected 40 years after the species’ accepted extinction date were falsely identified, laying to rest a 53-year-old ornithological controversy. Thus, even the smallest museum eggshells can offer new insights into old questions.
Collapse
Affiliation(s)
- Alicia Grealy
- Langmore Group, Research School of Biology, Australian National University, Building 46, Canberra, 0200, Australia. .,Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, 2601, Australia.
| | - Naomi E Langmore
- Langmore Group, Research School of Biology, Australian National University, Building 46, Canberra, 0200, Australia
| | - Leo Joseph
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, 2601, Australia
| | - Clare E Holleley
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, 2601, Australia
| |
Collapse
|
4
|
Modernizing the Toolkit for Arthropod Bloodmeal Identification. INSECTS 2021; 12:insects12010037. [PMID: 33418885 PMCID: PMC7825046 DOI: 10.3390/insects12010037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary The ability to identify the source of vertebrate blood in mosquitoes, ticks, and other blood-feeding arthropod vectors greatly enhances our knowledge of how vector-borne pathogens are spread. The source of the bloodmeal is identified by analyzing the remnants of blood remaining in the arthropod at the time of capture, though this is often fraught with challenges. This review provides a roadmap and guide for those considering modern techniques for arthropod bloodmeal identification with a focus on progress made in the field over the past decade. We highlight genome regions that can be used to identify the vertebrate source of arthropod bloodmeals as well as technological advances made in other fields that have introduced innovative new ways to identify vertebrate meal source based on unique properties of the DNA sequence, protein signatures, or residual molecules present in the blood. Additionally, engineering progress in miniaturization has led to a number of field-deployable technologies that bring the laboratory directly to the arthropods at the site of collection. Although many of these advancements have helped to address the technical challenges of the past, the challenge of successfully analyzing degraded DNA in bloodmeals remains to be solved. Abstract Understanding vertebrate–vector interactions is vitally important for understanding the transmission dynamics of arthropod-vectored pathogens and depends on the ability to accurately identify the vertebrate source of blood-engorged arthropods in field collections using molecular methods. A decade ago, molecular techniques being applied to arthropod blood meal identification were thoroughly reviewed, but there have been significant advancements in the techniques and technologies available since that time. This review highlights the available diagnostic markers in mitochondrial and nuclear DNA and discusses their benefits and shortcomings for use in molecular identification assays. Advances in real-time PCR, high resolution melting analysis, digital PCR, next generation sequencing, microsphere assays, mass spectrometry, and stable isotope analysis each offer novel approaches and advantages to bloodmeal analysis that have gained traction in the field. New, field-forward technologies and platforms have also come into use that offer promising solutions for point-of-care and remote field deployment for rapid bloodmeal source identification. Some of the lessons learned over the last decade, particularly in the fields of DNA barcoding and sequence analysis, are discussed. Though many advancements have been made, technical challenges remain concerning the prevention of sample degradation both by the arthropod before the sample has been obtained and during storage. This review provides a roadmap and guide for those considering modern techniques for arthropod bloodmeal identification and reviews how advances in molecular technology over the past decade have been applied in this unique biomedical context.
Collapse
|
5
|
Shultz AJ, Adams BJ, Bell KC, Ludt WB, Pauly GB, Vendetti JE. Natural history collections are critical resources for contemporary and future studies of urban evolution. Evol Appl 2021; 14:233-247. [PMID: 33519967 PMCID: PMC7819571 DOI: 10.1111/eva.13045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Urban environments are among the fastest changing habitats on the planet, and this change has evolutionary implications for the organisms inhabiting them. Herein, we demonstrate that natural history collections are critical resources for urban evolution studies. The specimens housed in these collections provide great potential for diverse types of urban evolution research, and strategic deposition of specimens and other materials from contemporary studies will determine the resources and research questions available to future urban evolutionary biologists. As natural history collections are windows into the past, they provide a crucial historical timescale for urban evolution research. While the importance of museum collections for research is generally appreciated, their utility in the study of urban evolution has not been explicitly evaluated. Here, we: (a) demonstrate that museum collections can greatly enhance urban evolution studies, (b) review patterns of specimen use and deposition in the urban evolution literature, (c) analyze how urban versus rural and native versus nonnative vertebrate species are being deposited in museum collections, and (d) make recommendations to researchers, museum professionals, scientific journal editors, funding agencies, permitting agencies, and professional societies to improve archiving policies. Our analyses of recent urban evolution studies reveal that museum specimens can be used for diverse research questions, but they are used infrequently. Further, although nearly all studies we analyzed generated resources that could be deposited in natural history collections (e.g., collected specimens), a minority (12%) of studies actually did so. Depositing such resources in collections is crucial to allow the scientific community to verify, replicate, and/or re-visit prior research. Therefore, to ensure that adequate museum resources are available for future urban evolutionary biology research, the research community-from practicing biologists to funding agencies and professional societies-must make adjustments that prioritize the collection and deposition of urban specimens.
Collapse
Affiliation(s)
- Allison J. Shultz
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Ornithology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Benjamin J. Adams
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Entomology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Department of Biological SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Kayce C. Bell
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Mammalogy DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - William B. Ludt
- Ichthyology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Gregory B. Pauly
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Herpetology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Jann E. Vendetti
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Malacology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| |
Collapse
|
6
|
Grealy A, Bunce M, Holleley CE. Avian mitochondrial genomes retrieved from museum eggshell. Mol Ecol Resour 2019; 19:1052-1062. [DOI: 10.1111/1755-0998.13007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Alicia Grealy
- Trace and Environmental DNA (TrEnD) Laboratory, Department of Environment and Agriculture Curtin University Bentley Western Australia Australia
- Australian National Wildlife Collection, National Research Collections Australia CSIRO Canberra Australian Capital Territory Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, Department of Environment and Agriculture Curtin University Bentley Western Australia Australia
| | - Clare E Holleley
- Australian National Wildlife Collection, National Research Collections Australia CSIRO Canberra Australian Capital Territory Australia
| |
Collapse
|
7
|
Montanari S. Cracking the egg: the use of modern and fossil eggs for ecological, environmental and biological interpretation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180006. [PMID: 30110435 PMCID: PMC6030333 DOI: 10.1098/rsos.180006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
A myriad of extant and extinct vertebrates produce eggs. Eggs and eggshells provide a useful substrate for reconstructing environment, ecology and biology over a range of time scales from deep time to the present. In this review, methods for analysing and understanding records of diet, climate, environment and biology preserved in eggshells are presented. Topics covered include eggshell structure, assessing diagenesis, stable isotope geochemistry and morphological investigations of eggshell characteristics. This review emphasizes the use of eggshells in the modern and fossil record, as they allow for interpretation of characteristics of a wide variety of amniotes across geological history, uniquely informing environmental and ecological investigations.
Collapse
|
8
|
Pitteloud C, Arrigo N, Suchan T, Mastretta-Yanes A, Vila R, Dincă V, Hernández-Roldán J, Brockmann E, Chittaro Y, Kleckova I, Fumagalli L, Buerki S, Pellissier L, Alvarez N. Climatic niche evolution is faster in sympatric than allopatric lineages of the butterfly genus Pyrgus. Proc Biol Sci 2017; 284:rspb.2017.0208. [PMID: 28404781 DOI: 10.1098/rspb.2017.0208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/14/2017] [Indexed: 01/24/2023] Open
Abstract
Understanding how speciation relates to ecological divergence has long fascinated biologists. It is assumed that ecological divergence is essential to sympatric speciation, as a mechanism to avoid competition and eventually lead to reproductive isolation, while divergence in allopatry is not necessarily associated with niche differentiation. The impact of the spatial context of divergence on the evolutionary rates of abiotic dimensions of the ecological niche has rarely been explored for an entire clade. Here, we compare the magnitude of climatic niche shifts between sympatric versus allopatric divergence of lineages in butterflies. By combining next-generation sequencing, parametric biogeography and ecological niche analyses applied to a genus-wide phylogeny of Palaearctic Pyrgus butterflies, we compare evolutionary rates along eight climatic dimensions across sister lineages that diverged in large-scale sympatry versus allopatry. In order to examine the possible effects of the spatial scale at which sympatry is defined, we considered three sets of biogeographic assignments, ranging from narrow to broad definition. Our findings suggest higher rates of niche evolution along all climatic dimensions for sister lineages that diverge in sympatry, when using a narrow delineation of biogeographic areas. This result contrasts with significantly lower rates of climatic niche evolution found in cases of allopatric speciation, despite the biogeographic regions defined here being characterized by significantly different climates. Higher rates in allopatry are retrieved when biogeographic areas are too widely defined-in such a case allopatric events may be recorded as sympatric. Our results reveal the macro-evolutionary significance of abiotic niche differentiation involved in speciation processes within biogeographic regions, and illustrate the importance of the spatial scale chosen to define areas when applying parametric biogeographic analyses.
Collapse
Affiliation(s)
- Camille Pitteloud
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland .,Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland.,Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Nils Arrigo
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tomasz Suchan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Alicia Mastretta-Yanes
- CONACYT Research Fellow assigned to CONABIO, Comisión Nacional para el conocimiento y uso de la Biodiversidad, Mexico City, Mexico
| | - Roger Vila
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Vlad Dincă
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.,Center for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Juan Hernández-Roldán
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.,Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Yannick Chittaro
- Centre Suisse de Cartographie de la Faune, Neuchâtel, Switzerland
| | - Irena Kleckova
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Luca Fumagalli
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Sven Buerki
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK
| | - Loïc Pellissier
- Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland.,Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Nadir Alvarez
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Green EJ, Speller CF. Novel Substrates as Sources of Ancient DNA: Prospects and Hurdles. Genes (Basel) 2017; 8:E180. [PMID: 28703741 PMCID: PMC5541313 DOI: 10.3390/genes8070180] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
Following the discovery in the late 1980s that hard tissues such as bones and teeth preserve genetic information, the field of ancient DNA analysis has typically concentrated upon these substrates. The onset of high-throughput sequencing, combined with optimized DNA recovery methods, has enabled the analysis of a myriad of ancient species and specimens worldwide, dating back to the Middle Pleistocene. Despite the growing sophistication of analytical techniques, the genetic analysis of substrates other than bone and dentine remain comparatively "novel". Here, we review analyses of other biological substrates which offer great potential for elucidating phylogenetic relationships, paleoenvironments, and microbial ecosystems including (1) archaeological artifacts and ecofacts; (2) calcified and/or mineralized biological deposits; and (3) biological and cultural archives. We conclude that there is a pressing need for more refined models of DNA preservation and bespoke tools for DNA extraction and analysis to authenticate and maximize the utility of the data obtained. With such tools in place the potential for neglected or underexploited substrates to provide a unique insight into phylogenetics, microbial evolution and evolutionary processes will be realized.
Collapse
Affiliation(s)
- Eleanor Joan Green
- BioArCh, Department of Archaeology, University of York, Wentworth Way, York YO10 5DD, UK.
| | - Camilla F Speller
- BioArCh, Department of Archaeology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
10
|
Are mini DNA-barcodes sufficiently informative to resolve species identities? An in silico analysis using Phyllanthus. J Genet 2015; 93:823-9. [PMID: 25572242 DOI: 10.1007/s12041-014-0432-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Dos Remedios N, Lee PLM, Burke T, Székely T, Küpper C. North or south? Phylogenetic and biogeographic origins of a globally distributed avian clade. Mol Phylogenet Evol 2015; 89:151-9. [PMID: 25916188 DOI: 10.1016/j.ympev.2015.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
Establishing phylogenetic relationships within a clade can help to infer ancestral origins and indicate how widespread species reached their current biogeographic distributions. The small plovers, genus Charadrius, are cosmopolitan shorebirds, distributed across all continents except Antarctica. Here we present a global, species-level molecular phylogeny of this group based on four nuclear (ADH5, FIB7, MYO2 and RAG1) and two mitochondrial (COI and ND3) genes, and use the phylogeny to examine the biogeographic origin of the genus. A Bayesian multispecies coalescent approach identified two major clades (CRD I and CRD II) within the genus. Clade CRD I contains three species (Thinornis novaeseelandiae, Thinornis rubricollis and Eudromias morinellus), and CRD II one species (Anarhynchus frontalis), that were previously placed outside the Charadrius genus. In contrast to earlier work, ancestral area analyses using parsimony and Bayesian methods supported an origin of the Charadrius plovers in the Northern hemisphere. We propose that major radiations in this group were associated with shifts in the range of these ancestral plover species, leading to colonisation of the Southern hemisphere.
Collapse
Affiliation(s)
- Natalie Dos Remedios
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; NERC-Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Patricia L M Lee
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria 3280, Australia; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Terry Burke
- NERC-Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tamás Székely
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Clemens Küpper
- NERC-Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
12
|
Zuccon D, Brisset J, Corbari L, Puillandre N, Utge J, Samadi S. An optimised protocol for barcoding museum collections of decapod crustaceans: a case-study for a 10 - 40-years-old collection. INVERTEBR SYST 2012. [DOI: 10.1071/is12027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The sequencing of the crustacean collection of the MNHN, Paris, constitutes a promising yet very challenging barcoding project. For the collection’s crustacean specimens preserved in ethanol, some of which were collected up to 40 years ago, the conventional COI barcoding procedure of amplification with Folmer primers failed for more than half of the specimens (58%, n = 1920). We hypothesised that this failure may have been due to incompatible mismatches between the crustaceans targeted and the Folmer primer sequences and/or the amount of degradation of the DNA extracted from museum specimens. The comparison of the Folmer primers against the COI sequences from GenBank complete decapod mitochondrial genomes revealed that the annealing regions were, in fact, rather conserved, suggesting that the amplification failures were due more likely to the low quality of the DNA isolated. Using an alignment of all available decapod sequences we designed two internal primers in the middle of the barcoding COI region and also selected two additional external primers to be used as alternative to the standard Folmer primers. Using a two-overlapping-fragments amplification strategy and different primer combinations, our new protocol significantly increased the amplification success rate of the collection material from 42% with the Folmer primers to 84%, recovering an additional 364 complete barcodes and 443 minibarcodes (i.e. fragments of less than 400 base pairs), and expanding the species coverage from 254 to 397 barcoded crustaceans.
Collapse
|
13
|
Abstract
Conventional DNA barcoding uses an approximately 650 bp DNA barcode of the mitochondrial gene COI for species identification in animal groups. Similar size fragments from chloroplast genes have been proposed as barcode markers for plants. While PCR amplification and sequencing of a 650 bp fragment is consistent in freshly collected and well-preserved specimens, it is difficult to obtain a full-length barcode in older museum specimens and samples which have been preserved in formalin or similar DNA-unfriendly preservatives. A comparable issue may prevent effective DNA-based authentication and testing in processed biological materials, such as food products, pharmaceuticals, and nutraceuticals. In these cases, shorter DNA sequences-mini-barcodes-have been robustly recovered and shown to be effective in identifying majority of specimens to a species level. Furthermore, short DNA regions can be utilized via high-throughput sequencing platforms providing an inexpensive and comprehensive means of large-scale species identification. These properties of mini-barcodes, coupled with the availability of standardized and universal primers make mini-barcodes a feasible option for DNA barcode analysis in museum samples and applied diagnostic and environmental biodiversity analysis.
Collapse
Affiliation(s)
- Mehrdad Hajibabaei
- Biodiversity Institute of Ontario & Integrative Biology, University of Guelph, Guelph, ON, Canada.
| | | |
Collapse
|
14
|
Rheindt FE, Székely T, Edwards SV, Lee PLM, Burke T, Kennerley PR, Bakewell DN, Alrashidi M, Kosztolányi A, Weston MA, Liu WT, Lei WP, Shigeta Y, Javed S, Zefania S, Küpper C. Conflict between genetic and phenotypic differentiation: the evolutionary history of a 'lost and rediscovered' shorebird. PLoS One 2011; 6:e26995. [PMID: 22096515 PMCID: PMC3212520 DOI: 10.1371/journal.pone.0026995] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/07/2011] [Indexed: 12/03/2022] Open
Abstract
Understanding and resolving conflicts between phenotypic and genetic differentiation is central to evolutionary research. While phenotypically monomorphic species may exhibit deep genetic divergences, some morphologically distinct taxa lack notable genetic differentiation. Here we conduct a molecular investigation of an enigmatic shorebird with a convoluted taxonomic history, the White-faced Plover (Charadrius alexandrinus dealbatus), widely regarded as a subspecies of the Kentish Plover (C. alexandrinus). Described as distinct in 1863, its name was consistently misapplied in subsequent decades until taxonomic clarification ensued in 2008. Using a recently proposed test of species delimitation, we reconfirm the phenotypic distinctness of dealbatus. We then compare three mitochondrial and seven nuclear DNA markers among 278 samples of dealbatus and alexandrinus from across their breeding range and four other closely related plovers. We fail to find any population genetic differentiation between dealbatus and alexandrinus, whereas the other species are deeply diverged at the study loci. Kentish Plovers join a small but growing list of species for which low levels of genetic differentiation are accompanied by the presence of strong phenotypic divergence, suggesting that diagnostic phenotypic characters may be encoded by few genes that are difficult to detect. Alternatively, gene expression differences may be crucial in producing different phenotypes whereas neutral differentiation may be lagging behind.
Collapse
Affiliation(s)
- Frank E Rheindt
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Töpfer T, Gamauf A, Haring E. Utility of arsenic-treated bird skins for DNA extraction. BMC Res Notes 2011; 4:197. [PMID: 21676254 PMCID: PMC3138465 DOI: 10.1186/1756-0500-4-197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 06/15/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Natural history museums receive a rapidly growing number of requests for tissue samples from preserved specimens for DNA-based studies. Traditionally, dried vertebrate specimens were treated with arsenic because of its toxicity and insect-repellent effect. Arsenic has negative effects on in vivo DNA repair enzymes and consequently may inhibit PCR performance. In bird collections, foot pad samples are often requested since the feet were not regularly treated with arsenic and because they are assumed to provide substantial amounts of DNA. However, the actual influence of arsenic on DNA analyses has never been tested. FINDINGS PCR success of both foot pad and body skin samples was significantly lower in arsenic-treated samples. In general, foot pads performed better than body skin samples. Moreover, PCR success depends on collection date in which younger samples yielded better results. While the addition of arsenic solution to the PCR mixture had a clear negative effect on PCR performance after the threshold of 5.4 μg/μl, such high doses of arsenic are highly unlikely to occur in dried zoological specimens. CONCLUSIONS While lower PCR success in older samples might be due to age effects and/or DNA damage through arsenic treatment, our results show no inhibiting effect on DNA polymerase. We assume that DNA degradation proceeds more rapidly in thin tissue layers with low cell numbers that are susceptible to external abiotic influences. In contrast, in thicker parts of a specimen, such as foot pads, the outermost horny skin may act as an additional barrier. Since foot pads often performed better than body skin samples, the intention to preserve morphologically important structures of a specimen still conflicts with the aim to obtain optimal PCR success. Thus, body skin samples from recently collected specimens should be considered as alternative sources of DNA.
Collapse
Affiliation(s)
- Till Töpfer
- Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt/M,, Germany.
| | | | | |
Collapse
|
16
|
Bédarida S, Dutour O, Buzhilova AP, de Micco P, Biagini P. Identification of viral DNA (Anelloviridae) in a 200-year-old dental pulp sample (Napoleon's Great Army, Kaliningrad, 1812). INFECTION GENETICS AND EVOLUTION 2011; 11:358-62. [DOI: 10.1016/j.meegid.2010.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 11/28/2022]
|
17
|
|
18
|
Impact of time since collection on avian eggshell color: a comparison of museum and fresh egg specimens. Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-1027-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
VAN HOUDT JKJ, BREMAN FC, VIRGILIO M, DE MEYER M. Recovering full DNA barcodes from natural history collections of Tephritid fruitflies (Tephritidae, Diptera) using mini barcodes. Mol Ecol Resour 2010; 10:459-65. [DOI: 10.1111/j.1755-0998.2009.02800.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J. K. J. VAN HOUDT
- Royal Museum for Central Africa, Leuvensesteenweg 13, B‐3080 Tervuren, Belgium
| | - F. C. BREMAN
- Royal Museum for Central Africa, Leuvensesteenweg 13, B‐3080 Tervuren, Belgium
| | - M. VIRGILIO
- Royal Museum for Central Africa, Leuvensesteenweg 13, B‐3080 Tervuren, Belgium
- Royal Belgian Institute for Natural Sciences, Vautierstraat 29, B‐1000 Brussels, Belgium
| | - M. DE MEYER
- Royal Museum for Central Africa, Leuvensesteenweg 13, B‐3080 Tervuren, Belgium
| |
Collapse
|
20
|
Oskam CL, Haile J, McLay E, Rigby P, Allentoft ME, Olsen ME, Bengtsson C, Miller GH, Schwenninger JL, Jacomb C, Walter R, Baynes A, Dortch J, Parker-Pearson M, Gilbert MTP, Holdaway RN, Willerslev E, Bunce M. Fossil avian eggshell preserves ancient DNA. Proc Biol Sci 2010; 277:1991-2000. [PMID: 20219731 DOI: 10.1098/rspb.2009.2019] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.
Collapse
Affiliation(s)
- Charlotte L Oskam
- Ancient DNA Laboratory, School of Biological Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boessenkool S, Star B, Scofield RP, Seddon PJ, Waters JM. Lost in translation or deliberate falsification? Genetic analyses reveal erroneous museum data for historic penguin specimens. Proc Biol Sci 2009; 277:1057-64. [PMID: 20007185 DOI: 10.1098/rspb.2009.1837] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Historic museum specimens are increasingly used to answer a wide variety of questions in scientific research. Nevertheless, the scientific value of these specimens depends on the authenticity of the data associated with them. Here we use individual-based genetic analyses to demonstrate erroneous locality information for archive specimens from the late nineteenth century. Specifically, using 10 microsatellite markers, we analysed 350 contemporary and 43 historic yellow-eyed penguin (Megadyptes antipodes) specimens from New Zealand's South Island and sub-Antarctic regions. Factorial correspondence analysis and an assignment test strongly suggest that eight of the historic specimens purportedly of sub-Antarctic origin were in fact collected from the South Island. Interestingly, all eight specimens were obtained by the same collector, and all are currently held in the same museum collection. Further inspection of the specimen labels and evaluation of sub-Antarctic voyages did not reveal whether the erroneous data are caused by incorrect labelling or whether deliberate falsification was at play. This study highlights a promising extension to the well-known applications of assignment tests in molecular ecology, which can complement methods that are currently being applied for error detection in specimen data. Our results also serve as a warning to all who use archive specimens to invest time in the verification of collection information.
Collapse
Affiliation(s)
- Sanne Boessenkool
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
22
|
BEJA‐PEREIRA ALBANO, OLIVEIRA RITA, ALVES PAULOC, SCHWARTZ MICHAELK, LUIKART GORDON. Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 2009; 9:1279-301. [DOI: 10.1111/j.1755-0998.2009.02699.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- ALBANO BEJA‐PEREIRA
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
| | - RITA OLIVEIRA
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
- Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169‐007 Porto, Portugal
| | - PAULO C. ALVES
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
- Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169‐007 Porto, Portugal
| | - MICHAEL K. SCHWARTZ
- USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| | - GORDON LUIKART
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485‐661 Vairão, Portugal
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
23
|
Sarre SD, Georges A. Genetics in conservation and wildlife management: a revolution since Caughley. WILDLIFE RESEARCH 2009. [DOI: 10.1071/wr08066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In his 1994 review of conservation biology, Graeme Caughley questioned the central role for genetics in that discipline. His central theme was that there was no known case of genetic malfunction leading to the extinction of a population or species, and that driving forces such as overkill, habitat fragmentation and introduced predators as well as environmental and demographic stochasticity of small populations should be considered ahead of genetics in the debate about extinction prevention. At the time, only indirect and theoretical evidence existed for genetic contributions to the declines of wildlife and most of the debate revolved around the impact of genetic variation on fitness and long-term persistence. In addition, the application of DNA technologies to the study of wildlife was in its infancy. Though this was not Caughley’s intention, many within wildlife management took his criticisms of genetic aspects of species decline as the cue to dismiss this branch of science as of minor relevance to conservation biology. Since Caughley’s critique, there has been a revolution in genetic technologies for non-model organisms with the arrival of highly informative hypervariable DNA markers. Perhaps even more importantly, developments in DNA and gene technologies have provided the opportunity to study fundamental life-history traits such as disease resistance in more direct ways than previously possible. In concert with these tools, conservation geneticists have risen to Caughley’s challenge and demonstrated unambiguously a clear role for genetic analysis in conservation biology. Despite these impressive advances, there remains an important gap between the genetic approaches available and their uptake by managers. Bridging this gap will greatly increase the capacity of wildlife managers to generate the data necessary for sound management.
Collapse
|