1
|
Yang D, Zhang Y, Sow IS, Liang H, El Manssouri N, Gelbcke M, Dong L, Chen G, Dufrasne F, Fontaine V, Li R. Antimycobacterial Activities of Hydroxamic Acids and Their Iron(II/III), Nickel(II), Copper(II) and Zinc(II) Complexes. Microorganisms 2023; 11:2611. [PMID: 37894269 PMCID: PMC10609363 DOI: 10.3390/microorganisms11102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Hydroxamic acid (HA) derivatives display antibacterial and antifungal activities. HA with various numbers of carbon atoms (C2, C6, C8, C10, C12 and C17), complexed with different metal ions, including Fe(II/III), Ni(II), Cu(II) and Zn(II), were evaluated for their antimycobacterial activities and their anti-biofilm activities. Some derivatives showed antimycobacterial activities, especially in biofilm growth conditions. For example, 20-100 µM of HA10Fe2, HA10FeCl, HA10Fe3, HA10Ni2 or HA10Cu2 inhibited Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium marinum biofilm development. HA10Fe2, HA12Fe2 and HA12FeCl could even attack pre-formed Pseudomonas aeruginosa biofilms at higher concentrations (around 300 µM). The phthiocerol dimycocerosate (PDIM)-deficient Mycobacterium tuberculosis H37Ra was more sensitive to the ion complexes of HA compared to other mycobacterial strains. Furthermore, HA10FeCl could increase the susceptibility of Mycobacterium bovis BCG to vancomycin. Proteomic profiles showed that the potential targets of HA10FeCl were mainly related to mycobacterial stress adaptation, involving cell wall lipid biosynthesis, drug resistance and tolerance and siderophore metabolism. This study provides new insights regarding the antimycobacterial activities of HA and their complexes, especially about their potential anti-biofilm activities.
Collapse
Affiliation(s)
- Dong Yang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Yanfang Zhang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Ibrahima Sory Sow
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Hongping Liang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China; (D.Y.)
| | - Naïma El Manssouri
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Michel Gelbcke
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - François Dufrasne
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium; (I.S.S.); (V.F.)
| | - Rongshan Li
- Department of Nephrology, Shanxi Kidney Disease Institute, The Affiliated People’s Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan 030001, China
| |
Collapse
|
2
|
Xu J, Li D, Shi J, Wang B, Ge F, Guo Z, Mu X, Nuermberger E, Lu Y. Bedquiline Resistance Mutations: Correlations with Drug Exposures and Impact on the Proteome in M. tuberculosis. Antimicrob Agents Chemother 2023; 67:e0153222. [PMID: 37255473 PMCID: PMC10353445 DOI: 10.1128/aac.01532-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Bedaquiline (BDQ) is an effective drug for the treatment of drug-resistant tuberculosis. Mutations in atpE, which encodes the target of BDQ, are associated with large increases in MICs. Mutations in Rv0678 that derepress the transcription of the MmpL5-MmpS5 efflux transporter are associated with smaller increases in MICs. However, Rv0678 mutations are the most common mutations that are associated with BDQ resistance in clinical isolates, and they also confer cross-resistance to clofazimine (CFZ). To investigate the mechanism of BDQ resistance and the correlation between Rv0678 mutations and target-based atpE mutations, M. tuberculosis strains were exposed to different concentrations of BDQ or CFZ to select Rv0678 mutations and atpE mutations. Gene overexpression strains were constructed to illustrate the roles of MmpL5 and MmpS5. A quantitative proteome analysis was performed to compare the BDQ-resistant mutants to the isogenic strain H37Rv. Here, we report that the Rv0678 mutations were more readily selected than were the atpE mutations at low concentrations of BDQ or CFZ. The atpE mutations were selected by high concentrations of BDQ exposure. The overexpression of both mmpL5 and mmpS5 reduced the susceptibility of Mycobacterium tuberculosis to BDQ and CFZ. Secreted immunogenic proteins and proteins involved in the biosynthesis and transport of phthiocerol dimycocerosates were associated with Rv0678 mutations conferring BDQ resistance in the proteome analysis. In conclusion, exposure to different bedaquiline concentrations resulted in the selection of different mutations. The coexpression of MmpL5 and MmpS5 contributed to drug resistance and upregulated pathogenic proteins in M. tuberculosis, suggesting MmpL5-MmpS5 as a new potential target for antituberculosis drug development. These results warrant further surveillance for the evolution of BDQ resistance during clinical usage.
Collapse
Affiliation(s)
- Jian Xu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dongshuo Li
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghua Shi
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fei Ge
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhenyong Guo
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaopan Mu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Ou T, Zhang M, Huang Y, Wang L, Wang F, Wang R, Liu X, Zhou Z, Xie J, Xiang Z. Role of Rhizospheric Bacillus megaterium HGS7 in Maintaining Mulberry Growth Under Extremely Abiotic Stress in Hydro-Fluctuation Belt of Three Gorges Reservoir. FRONTIERS IN PLANT SCIENCE 2022; 13:880125. [PMID: 35712602 PMCID: PMC9195505 DOI: 10.3389/fpls.2022.880125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 05/03/2023]
Abstract
Plant growth-promoting rhizobacteria have been shown to play important roles in maintaining host fitness under periods of abiotic stress, and yet their effect on mulberry trees which regularly suffer drought after flooding in the hydro-fluctuation belt of the Three Gorges Reservoir Region in China remains largely uncharacterized. In the present study, 74 bacterial isolates were obtained from the rhizosphere soil of mulberry after drought stress, including 12 phosphate-solubilizing and 10 indole-3-acetic-acid-producing isolates. Bacillus megaterium HGS7 was selected for further study due to the abundance of traits that might benefit plants. Genomic analysis revealed that strain HGS7 possessed multiple genes that contributed to plant growth promotion, stress tolerance enhancement, and antimicrobial compound production. B. megaterium HGS7 consistently exhibited antagonistic activity against phytopathogens and strong tolerance to abiotic stress in vitro. Moreover, this strain stimulated mulberry seed germination and seedling growth. It may also induce the production of proline and antioxidant enzymes in mulberry trees to enhance drought tolerance and accelerate growth recovery after drought stress. The knowledge of the interactions between rhizobacteria HGS7 and its host plant might provide a potential strategy to enhance the drought tolerance of mulberry trees in a hydro-fluctuation belt.
Collapse
Affiliation(s)
- Ting Ou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Meng Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yazhou Huang
- Kaizhou District Nature Reserve Management Center, Chongqing, China
| | - Li Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Ruolin Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaojiao Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jie Xie
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- *Correspondence: Jie Xie,
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Remm S, Earp JC, Dick T, Dartois V, Seeger MA. Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 46:6391500. [PMID: 34637511 PMCID: PMC8829022 DOI: 10.1093/femsre/fuab050] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can withstand months of antibiotic treatment. An important goal of tuberculosis research is to shorten the treatment to reduce the burden on patients, increase adherence to the drug regimen and thereby slow down the spread of drug resistance. Inhibition of drug efflux pumps by small molecules has been advocated as a promising strategy to attack persistent Mtb and shorten therapy. Although mycobacterial drug efflux pumps have been broadly investigated, mechanistic studies are scarce. In this critical review, we shed light on drug efflux in its larger mechanistic context by considering the intricate interplay between membrane transporters annotated as drug efflux pumps, membrane energetics, efflux inhibitors and cell wall biosynthesis processes. We conclude that a great wealth of data on mycobacterial transporters is insufficient to distinguish by what mechanism they contribute to drug resistance. Recent studies suggest that some drug efflux pumps transport structural lipids of the mycobacterial cell wall and that the action of certain drug efflux inhibitors involves dissipation of the proton motive force, thereby draining the energy source of all active membrane transporters. We propose recommendations on the generation and interpretation of drug efflux data to reduce ambiguities and promote assigning novel roles to mycobacterial membrane transporters.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
5
|
Yang D, Vandenbussche G, Vertommen D, Evrard D, Abskharon R, Cavalier JF, Berger G, Canaan S, Khan MS, Zeng S, Wohlkönig A, Prévost M, Soumillion P, Fontaine V. Methyl arachidonyl fluorophosphonate inhibits Mycobacterium tuberculosis thioesterase TesA and globally affects vancomycin susceptibility. FEBS Lett 2019; 594:79-93. [PMID: 31388991 DOI: 10.1002/1873-3468.13555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 11/11/2022]
Abstract
Phthiocerol dimycocerosates and phenolic glycolipids (PGL) are considered as major virulence elements of Mycobacterium tuberculosis, in particular because of their involvement in cell wall impermeability and drug resistance. The biosynthesis of these waxy lipids involves multiple enzymes, including thioesterase A (TesA). We observed that purified recombinant M. tuberculosis TesA is able to dimerize in the presence of palmitoyl-CoA and our 3D structure model of TesA with this acyl-CoA suggests hydrophobic interaction requirement for dimerization. Furthermore, we identified that methyl arachidonyl fluorophosphonate, which inhibits TesA by covalently modifying the catalytic serine, also displays a synergistic antimicrobial activity with vancomycin further warranting the development of TesA inhibitors as valuable antituberculous drug candidates.
Collapse
Affiliation(s)
- Dong Yang
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| | - Guy Vandenbussche
- Laboratory for the Structure and Function of Biological Membranes, Faculty of Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Damien Evrard
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Romany Abskharon
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.,VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| | | | - Mohammad Shahneawz Khan
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Sheng Zeng
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| | - Alexandre Wohlkönig
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Martine Prévost
- Laboratory for the Structure and Function of Biological Membranes, Faculty of Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Patrice Soumillion
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| |
Collapse
|
6
|
Tuning the Mycobacterium tuberculosis Alternative Sigma Factor SigF through the Multidomain Regulator Rv1364c and Osmosensory Kinase Protein Kinase D. J Bacteriol 2019; 201:JB.00725-18. [PMID: 30642988 DOI: 10.1128/jb.00725-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial alternative sigma factors are mostly regulated by a partner-switching mechanism. Regulation of the virulence-associated alternative sigma factor SigF of Mycobacterium tuberculosis has been an area of intrigue, with SigF having more predicted regulators than other sigma factors in this organism. Rv1364c is one such predicted regulator, the mechanism of which is confounded by the presence of both anti-sigma factor and anti-sigma factor antagonist functions in a single polypeptide. Using protein binding and phosphorylation assays, we demonstrate that the anti-sigma factor domain of Rv1364c mediates autophosphorylation of its antagonist domain and binds efficiently to SigF. Furthermore, we identified a direct role for the osmosensor serine/threonine kinase PknD in regulating the SigF-Rv1364c interaction, adding to the current understanding about the intersection of these discrete signaling networks. Phosphorylation of SigF also showed functional implications in its DNA binding ability, which may help in activation of the regulon. In M. tuberculosis, osmotic stress-dependent induction of espA, a SigF target involved in maintaining cell wall integrity, is curtailed upon overexpression of Rv1364c, showing its role as an anti-SigF factor. Overexpression of Rv1364c led to induction of another target, pks6, involved in lipid metabolism. This induction was, however, curtailed in the presence of osmotic stress conditions, suggesting modulation of SigF target gene expression via Rv1364c. These data provide evidence that Rv1364c acts an independent SigF regulator that is sensitive to the osmosensory signal, mediating the cross talk of PknD with the SigF regulon.IMPORTANCE Mycobacterium tuberculosis, capable of latently infecting the host and causing aggressive tissue damage during active tuberculosis, is endowed with a complex regulatory capacity built of several sigma factors, protein kinases, and phosphatases. These proteins regulate expression of genes that allow the bacteria to adapt to various host-derived stresses, like nutrient starvation, acidic pH, and hypoxia. The cross talk between these systems is not well understood. SigF is one such regulator of gene expression that helps M. tuberculosis to adapt to stresses and imparts virulence. This work provides evidence for its inhibition by the multidomain regulator Rv1364c and activation by the kinase PknD. The coexistence of negative and positive regulators of SigF in pathogenic bacteria reveals an underlying requirement for tight control of virulence factor expression.
Collapse
|
7
|
Otchere ID, van Tonder AJ, Asante-Poku A, Sánchez-Busó L, Coscollá M, Osei-Wusu S, Asare P, Aboagye SY, Ekuban SA, Yahayah AI, Forson A, Baddoo A, Laryea C, Parkhill J, Harris SR, Gagneux S, Yeboah-Manu D. Molecular epidemiology and whole genome sequencing analysis of clinical Mycobacterium bovis from Ghana. PLoS One 2019; 14:e0209395. [PMID: 30830912 PMCID: PMC6398925 DOI: 10.1371/journal.pone.0209395] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/19/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bovine tuberculosis (bTB) caused by Mycobacterium bovis is a re-emerging problem in both livestock and humans. The association of some M. bovis strains with hyper-virulence, MDR-TB and disseminated disease makes it imperative to understand the biology of the pathogen. METHODS Mycobacterium bovis (15) among 1755 M. tuberculosis complex (MTBC) isolated between 2012 and 2014 were characterized and analyzed for associated patient demography and other risk factors. Five of the M. bovis isolates were whole-genome sequenced and comparatively analyzed against a global collection of published M. bovis genomes. RESULTS Mycobacterium bovis was isolated from 3/560(0.5%) females and 12/1195(1.0%) males with pulmonary TB. The average age of M. bovis infected cases was 46.8 years (7-72years). TB patients from the Northern region of Ghana (1.9%;4/212) had a higher rate of infection with M. bovis (OR = 2.7,p = 0.0968) compared to those from the Greater Accra region (0.7%;11/1543). Among TB patients with available HIV status, the odds of isolating M. bovis from HIV patients (2/119) was 3.3 higher relative to non-HIV patients (4/774). Direct contact with livestock or their unpasteurized products was significantly associated with bTB (p<0.0001, OR = 124.4,95% CI = 30.1-508.3). Two (13.3%) of the M. bovis isolates were INH resistant due to the S315T mutation in katG whereas one (6.7%) was RIF resistant with Q432P and I1491S mutations in rpoB. M. bovis from Ghana resolved as mono-phyletic branch among mostly M. bovis from Africa irrespective of the host and were closest to the root of the global M. bovis phylogeny. M. bovis-specific amino acid mutations were detected among MTBC core genes such as mce1A, mmpL1, pks6, phoT, pstB, glgP and Rv2955c. Additional mutations P6T in chaA, G187E in mgtC, T35A in Rv1979c, S387A in narK1, L400F in fas and A563T in eccA1 were restricted to the 5 clinical M. bovis from Ghana. CONCLUSION Our data indicate potential zoonotic transmission of bTB in Ghana and hence calls for intensified public education on bTB, especially among risk groups.
Collapse
Affiliation(s)
- Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Mireia Coscollá
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Yaw Aboagye
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | | | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Akosua Baddoo
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Clement Laryea
- Public Health Department, 37 Military Hospital, Accra, Ghana
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Simon R. Harris
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
8
|
Ample glycosylation in membrane and cell envelope proteins may explain the phenotypic diversity and virulence in the Mycobacterium tuberculosis complex. Sci Rep 2019; 9:2927. [PMID: 30814666 PMCID: PMC6393673 DOI: 10.1038/s41598-019-39654-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Multiple regulatory mechanisms including post-translational modifications (PTMs) confer complexity to the simpler genomes and proteomes of Mycobacterium tuberculosis (Mtb). PTMs such as glycosylation play a significant role in Mtb adaptive processes. The glycoproteomic patterns of clinical isolates of the Mycobacterium tuberculosis complex (MTBC) representing the lineages 3, 4, 5 and 7 were characterized by mass spectrometry. A total of 2944 glycosylation events were discovered in 1325 proteins. This data set represents the highest number of glycosylated proteins identified in Mtb to date. O-glycosylation constituted 83% of the events identified, while 17% of the sites were N-glycosylated. This is the first report on N-linked protein glycosylation in Mtb and in Gram-positive bacteria. Collectively, the bulk of Mtb glycoproteins are involved in cell envelope biosynthesis, fatty acid and lipid metabolism, two-component systems, and pathogen-host interaction that are either surface exposed or located in the cell wall. Quantitative glycoproteomic analysis revealed that 101 sites on 67 proteins involved in Mtb fitness and survival were differentially glycosylated between the four lineages, among which 64% were cell envelope and membrane proteins. The differential glycosylation pattern may contribute to phenotypic variabilities across Mtb lineages. The study identified several clinically important membrane-associated glycolipoproteins that are relevant for diagnostics as well as for drug and vaccine discovery.
Collapse
|
9
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
10
|
Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis. J Mol Biol 2018; 430:5120-5136. [DOI: 10.1016/j.jmb.2018.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 01/25/2023]
|
11
|
α-pyrones and their hydroxylated analogs as promising scaffolds against Mycobacterium tuberculosis. Future Med Chem 2017; 9:2053-2067. [DOI: 10.4155/fmc-2017-0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tuberculosis ranks as the leading cause of global human mortality from a single infectious agent. To address the uprising issues of drug resistance, intense research efforts have been directed towards drug discovery. However, it is a long and economically challenging process that is often associated with high failure rates. Therefore, it seems prudent to take forward the core scaffolds that have already acclaimed clinical relevance. In this direction, hydroxylated α-pyrone scaffold has received US FDA approval for human use against HIV. Interestingly, literature review reveals the potential applicability of α-pyrones in TB drug discovery. On one hand, α-pyrones play a vital role in the cell wall of Mycobacterium tuberculosis and on the other hand natural α-pyrones display appreciable anti-TB activity. This review aims to rekindle the interest of researchers toward α-pyrone as a new anti-TB drug that may possibly tackle drug resistance and open a dual frontier in TB and HIV drug discovery.
Collapse
|
12
|
Te Brake LHM, de Knegt GJ, de Steenwinkel JE, van Dam TJP, Burger DM, Russel FGM, van Crevel R, Koenderink JB, Aarnoutse RE. The Role of Efflux Pumps in Tuberculosis Treatment and Their Promise as a Target in Drug Development: Unraveling the Black Box. Annu Rev Pharmacol Toxicol 2017; 58:271-291. [PMID: 28715978 DOI: 10.1146/annurev-pharmtox-010617-052438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insight into drug transport mechanisms is highly relevant to the efficacious treatment of tuberculosis (TB). Major problems in TB treatment are related to the transport of antituberculosis (anti-TB) drugs across human and mycobacterial membranes, affecting the concentrations of these drugs systemically and locally. Firstly, transporters located in the intestines, liver, and kidneys all determine the pharmacokinetics and pharmacodynamics of anti-TB drugs, with a high risk of drug-drug interactions in the setting of concurrent use of antimycobacterial, antiretroviral, and antidiabetic agents. Secondly, human efflux transporters limit the penetration of anti-TB drugs into the brain and cerebrospinal fluid, which is especially important in the treatment of TB meningitis. Finally, efflux transporters located in the macrophage and Mycobacterium tuberculosis cell membranes play a pivotal role in the emergence of phenotypic tolerance and drug resistance, respectively. We review the role of efflux transporters in TB drug disposition and evaluate the promise of efflux pump inhibition from a novel holistic perspective.
Collapse
Affiliation(s)
- Lindsey H M Te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; .,Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Gerjo J de Knegt
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Jurriaan E de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Teunis J P van Dam
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - David M Burger
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| |
Collapse
|
13
|
Abrahams KA, Chung CW, Ghidelli-Disse S, Rullas J, Rebollo-López MJ, Gurcha SS, Cox JAG, Mendoza A, Jiménez-Navarro E, Martínez-Martínez MS, Neu M, Shillings A, Homes P, Argyrou A, Casanueva R, Loman NJ, Moynihan PJ, Lelièvre J, Selenski C, Axtman M, Kremer L, Bantscheff M, Angulo-Barturen I, Izquierdo MC, Cammack NC, Drewes G, Ballell L, Barros D, Besra GS, Bates RH. Identification of KasA as the cellular target of an anti-tubercular scaffold. Nat Commun 2016; 7:12581. [PMID: 27581223 PMCID: PMC5025758 DOI: 10.1038/ncomms12581] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related β-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis.
Collapse
Affiliation(s)
- Katherine A. Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Chun-wa Chung
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | - Joaquín Rullas
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - María José Rebollo-López
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Sudagar S. Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jonathan A. G. Cox
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alfonso Mendoza
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Elena Jiménez-Navarro
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | | | - Margarete Neu
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | - Paul Homes
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | - Ruth Casanueva
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Nicholas J. Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Patrick J. Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joël Lelièvre
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Carolyn Selenski
- GlaxoSmithKline, 709 Swedeland Road, PO Box 1539, King of Prussia, Pennsylvania 19406-0939, USA
| | - Matthew Axtman
- GlaxoSmithKline, 709 Swedeland Road, PO Box 1539, King of Prussia, Pennsylvania 19406-0939, USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, CPBS, 34293 Montpellier, France
| | - Marcus Bantscheff
- Cellzome—a GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Iñigo Angulo-Barturen
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Mónica Cacho Izquierdo
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Nicholas C. Cammack
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Gerard Drewes
- Cellzome—a GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - David Barros
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert H. Bates
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| |
Collapse
|
14
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
15
|
Biosynthesis of cell envelope-associated phenolic glycolipids in Mycobacterium marinum. J Bacteriol 2015; 197:1040-50. [PMID: 25561717 DOI: 10.1128/jb.02546-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenolic glycolipids (PGLs) are polyketide synthase-derived glycolipids unique to pathogenic mycobacteria. PGLs are found in several clinically relevant species, including various Mycobacterium tuberculosis strains, Mycobacterium leprae, and several nontuberculous mycobacterial pathogens, such as M. marinum. Multiple lines of investigation implicate PGLs in virulence, thus underscoring the relevance of a deep understanding of PGL biosynthesis. We report mutational and biochemical studies that interrogate the mechanism by which PGL biosynthetic intermediates (p-hydroxyphenylalkanoates) synthesized by the iterative polyketide synthase Pks15/1 are transferred to the noniterative polyketide synthase PpsA for acyl chain extension in M. marinum. Our findings support a model in which the transfer of the intermediates is dependent on a p-hydroxyphenylalkanoyl-AMP ligase (FadD29) acting as an intermediary between the iterative and the noniterative synthase systems. Our results also establish the p-hydroxyphenylalkanoate extension ability of PpsA, the first-acting enzyme of a multisubunit noniterative polyketide synthase system. Notably, this noniterative system is also loaded with fatty acids by a specific fatty acyl-AMP ligase (FadD26) for biosynthesis of phthiocerol dimycocerosates (PDIMs), which are nonglycosylated lipids structurally related to PGLs. To our knowledge, the partially overlapping PGL and PDIM biosynthetic pathways provide the first example of two distinct, pathway-dedicated acyl-AMP ligases loading the same type I polyketide synthase system with two alternate starter units to produce two structurally different families of metabolites. The studies reported here advance our understanding of the biosynthesis of an important group of mycobacterial glycolipids.
Collapse
|
16
|
Quadri LEN. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit Rev Biochem Mol Biol 2014; 49:179-211. [DOI: 10.3109/10409238.2014.896859] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Vilchèze C, Hartman T, Weinrick B, Jacobs WR. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat Commun 2013; 4:1881. [PMID: 23695675 PMCID: PMC3698613 DOI: 10.1038/ncomms2898] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/16/2013] [Indexed: 11/09/2022] Open
Abstract
Drugs that kill tuberculosis more quickly could shorten chemotherapy significantly. In Escherichia coli, a common mechanism of cell death by bactericidal antibiotics involves the generation of highly reactive hydroxyl radicals via the Fenton reaction. Here we show that vitamin C, a compound known to drive the Fenton reaction, sterilizes cultures of drug-susceptible and drug-resistant Mycobacterium tuberculosis, the causative agent of tuberculosis. While M. tuberculosis is highly susceptible to killing by vitamin C, other Gram-positive and Gram-negative pathogens are not. The bactericidal activity of vitamin C against M. tuberculosis is dependent on high ferrous ion levels and reactive oxygen species production, and causes a pleiotropic effect affecting several biological processes. This study enlightens the possible benefits of adding vitamin C to an anti-tuberculosis regimen and suggests that the development of drugs that generate high oxidative burst could be of great use in tuberculosis treatment.
Collapse
Affiliation(s)
- Catherine Vilchèze
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
18
|
Gokulan K, O'Leary SE, Russell WK, Russell DH, Lalgondar M, Begley TP, Ioerger TR, Sacchettini JC. Crystal structure of Mycobacterium tuberculosis polyketide synthase 11 (PKS11) reveals intermediates in the synthesis of methyl-branched alkylpyrones. J Biol Chem 2013; 288:16484-16494. [PMID: 23615910 DOI: 10.1074/jbc.m113.468892] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKS11 is one of three type III polyketide synthases (PKSs) identified in Mycobacterium tuberculosis. Although many PKSs in M. tuberculosis have been implicated in producing complex cell wall glycolipids, the biological function of PKS11 is unknown. PKS11 has previously been proposed to synthesize alkylpyrones from fatty acid substrates. We solved the crystal structure of M. tuberculosis PKS11 and found the overall fold to be similar to other type III PKSs. PKS11 has a deep hydrophobic tunnel proximal to the active site Cys-138 to accommodate substrates. We observed electron density in this tunnel from a co-purified molecule that was identified by mass spectrometry to be palmitate. Co-crystallization with malonyl-CoA (MCoA) or methylmalonyl-CoA (MMCoA) led to partial turnover of the substrate, resulting in trapped intermediates. Reconstitution of the reaction in solution confirmed that both co-factors are required for optimal activity, and kinetic analysis shows that MMCoA is incorporated first, then MCoA, followed by lactonization to produce methyl-branched alkylpyrones.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Departments of Biochemistry and Biophysics, College Station, Texas 77843
| | | | | | | | | | | | - Thomas R Ioerger
- Computer Science and Engineering, Texas A&M University, College Station, Texas 77843
| | | |
Collapse
|
19
|
Letzel AC, Pidot SJ, Hertweck C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 2012; 30:392-428. [PMID: 23263685 DOI: 10.1039/c2np20103h] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A total of 211 complete and published genomes from anaerobic bacteria are analysed for the presence of secondary metabolite biosynthesis gene clusters, in particular those tentatively coding for polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). We investigate the distribution of these gene clusters according to bacterial phylogeny and, if known, correlate these to the type of metabolic pathways they encode. The potential of anaerobes as secondary metabolite producers is highlighted.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Leibniz Institute for Natural Product Research and Infection Biology HKI, Beutenbergstr. 11a, Jena, 07745, Germany
| | | | | |
Collapse
|
20
|
Favrot L, Ronning DR. Targeting the mycobacterial envelope for tuberculosis drug development. Expert Rev Anti Infect Ther 2012; 10:1023-36. [PMID: 23106277 PMCID: PMC3571691 DOI: 10.1586/eri.12.91] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The bacterium that causes tuberculosis, Mycobacterium tuberculosis, possesses a rather unique outer membrane composed largely of lipids that possess long-chain and branched fatty acids, called mycolic acids. These lipids form a permeability barrier that prevents entry of many environmental solutes, thereby making these bacteria acid-fast and able to survive extremely hostile surroundings. Antitubercular drugs must penetrate this layer to reach their target. This review highlights drug development efforts that have added to the slowly growing tuberculosis drug pipeline, identified new enzyme activities to target with drugs and increased the understanding of important biosynthetic pathways for mycobacterial outer membrane and cell wall core assembly. In addition, a portion of this review looks at discovery efforts aimed at weakening this barrier to decrease mycobacterial virulence, decrease fitness in the host or enhance the efficacy of the current drug repertoire by disrupting the permeability barrier.
Collapse
Affiliation(s)
- Lorenza Favrot
- Department of Chemistry, University of Toledo, Toledo, OH 43606, USA
| | - Donald R Ronning
- Department of Chemistry, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
21
|
Kirksey MA, Tischler AD, Siméone R, Hisert KB, Uplekar S, Guilhot C, McKinney JD. Spontaneous phthiocerol dimycocerosate-deficient variants of Mycobacterium tuberculosis are susceptible to gamma interferon-mediated immunity. Infect Immun 2011; 79:2829-38. [PMID: 21576344 PMCID: PMC3191967 DOI: 10.1128/iai.00097-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
Onset of the adaptive immune response in mice infected with Mycobacterium tuberculosis is accompanied by slowing of bacterial replication and establishment of a chronic infection. Stabilization of bacterial numbers during the chronic phase of infection is dependent on the activity of the gamma interferon (IFN-γ)-inducible nitric oxide synthase (NOS2). Previously, we described a differential signature-tagged mutagenesis screen designed to identify M. tuberculosis "counterimmune" mechanisms and reported the isolation of three mutants in the H37Rv strain background containing transposon insertions in the rv0072, rv0405, and rv2958c genes. These mutants were impaired for replication and virulence in NOS2(-/-) mice but were growth-proficient and virulent in IFN-γ(-/-) mice, suggesting that the disrupted genes were required for bacterial resistance to an IFN-γ-dependent immune mechanism other than NOS2. Here, we report that the attenuation of these strains is attributable to an underlying transposon-independent deficiency in biosynthesis of phthiocerol dimycocerosate (PDIM), a cell wall lipid that is required for full virulence in mice. We performed whole-genome resequencing of a PDIM-deficient clone and identified a spontaneous point mutation in the putative polyketide synthase PpsD that results in a G44C amino acid substitution. We demonstrate by complementation with the wild-type ppsD gene and reversion of the ppsD gene to the wild-type sequence that the ppsD(G44C) point mutation is responsible for PDIM deficiency, virulence attenuation in NOS2(-/-) and wild-type C57BL/6 mice, and a growth advantage in vitro in liquid culture. We conclude that PDIM biosynthesis is required for M. tuberculosis resistance to an IFN-γ-mediated immune response that is independent of NOS2.
Collapse
Affiliation(s)
- Meghan A. Kirksey
- Laboratory of Infection Biology, The Rockefeller University, New York, New York 10021
| | - Anna D. Tischler
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Roxane Siméone
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique and Université P. Sabatier (Unité Mixte de Recherche 5089), 31077 Toulouse Cedex, France
| | - Katherine B. Hisert
- Laboratory of Infection Biology, The Rockefeller University, New York, New York 10021
| | - Swapna Uplekar
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique and Université P. Sabatier (Unité Mixte de Recherche 5089), 31077 Toulouse Cedex, France
| | - John D. McKinney
- Laboratory of Infection Biology, The Rockefeller University, New York, New York 10021
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Chavadi SS, Edupuganti UR, Vergnolle O, Fatima I, Singh SM, Soll CE, Quadri LEN. Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria. J Biol Chem 2011; 286:24616-25. [PMID: 21592957 DOI: 10.1074/jbc.m111.247601] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) are structurally related lipids noncovalently bound to the outer cell wall layer of Mycobacterium tuberculosis, Mycobacterium leprae, and several opportunistic mycobacterial human pathogens. PDIMs and PGLs are important effectors of virulence. Elucidation of the biosynthesis of these complex lipids will not only expand our understanding of mycobacterial cell wall biosynthesis, but it may also illuminate potential routes to novel therapeutics against mycobacterial infections. We report the construction of an in-frame deletion mutant of tesA (encoding a type II thioesterase) in the opportunistic human pathogen Mycobacterium marinum and the characterization of this mutant and its corresponding complemented strain control in terms of PDIM and PGL production. The growth and antibiotic susceptibility of these strains were also probed and compared with the parental wild-type strain. We show that deletion of tesA leads to a mutant that produces only traces of PDIMs and PGLs, has a slight growth yield increase and displays a substantial hypersusceptibility to several antibiotics. We also provide a robust model for the three-dimensional structure of M. marinum TesA (TesAmm) and demonstrate that a Ser-to-Ala substitution in the predicted catalytic Ser of TesAmm renders a mutant that recapitulates the phenotype of the tesA deletion mutant. Overall, our studies demonstrate a critical role for tesA in mycobacterial biology, advance our understanding of the biosynthesis of an important group of polyketide synthase-derived mycobacterial lipids, and suggest that drugs aimed at blocking PDIM and/or PGL production might synergize with antibiotic therapy in the control of mycobacterial infections.
Collapse
|
23
|
Alibaud L, Rombouts Y, Trivelli X, Burguière A, Cirillo SLG, Cirillo JD, Dubremetz JF, Guérardel Y, Lutfalla G, Kremer L. A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos. Mol Microbiol 2011; 80:919-34. [PMID: 21375593 DOI: 10.1111/j.1365-2958.2011.07618.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection of the zebrafish with Mycobacterium marinum is regarded as a well-established experimental model to study the pathogenicity of Mycobacterium tuberculosis. Herein, a M. marinum transposon mutant library was screened for attenuated M. marinum phenotypes using a Dictyostelium discoideum assay. In one attenuated mutant, the transposon was located within tesA, encoding a putative type II thioesterase. Thin-layer chromatography analyses indicated that the tesA::Tn mutant failed to produce two major cell wall-associated lipids. Mass spectrometry and nuclear magnetic resonance clearly established the nature of missing lipids as phthioglycol diphthioceranates and phenolic glycolipids, respectively, indicating that TesA is required for the synthesis of both lipids. When injected into the zebrafish embryo bloodstream, the mutant was found to be highly attenuated, thus validating the performance and relevance of the Dictyostelium screen. Consistent with these in vivo findings, tesA::Tn exhibited increased permeability defects in vitro, which may explain its failure to survive in host macrophages. Unexpectedly, virulence was retained when bacteria were injected into the notochord. Histological and ultrastructural studies of the infected notochord revealed the presence of actively proliferating mycobacteria, leading to larval death. This work presents for the first time the notochord as a compartment highly susceptible to mycobacterial infection.
Collapse
Affiliation(s)
- Laeticia Alibaud
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier II et I, CNRS; UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zheng J, Wei C, Zhao L, Liu L, Leng W, Li W, Jin Q. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin. BMC Genomics 2011; 12:40. [PMID: 21241518 PMCID: PMC3032701 DOI: 10.1186/1471-2164-12-40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 01/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions. RESULTS Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well in our work. CONCLUSIONS In this study, we utilized LC-MS/MS in combination with blue native PAGE to characterize modular components of multiprotein complexes in BCG membrane fractions. The results demonstrated that the proteomic strategy was a reliable and reproducible tool for analysis of BCG multiprotein complexes. The identification in our study may provide some evidence for further study of BCG protein interaction.
Collapse
Affiliation(s)
- Jianhua Zheng
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Beaulieu AM, Rath P, Imhof M, Siddall ME, Roberts J, Schnappinger D, Nathan CF. Genome-wide screen for Mycobacterium tuberculosis genes that regulate host immunity. PLoS One 2010; 5:e15120. [PMID: 21170273 PMCID: PMC3000826 DOI: 10.1371/journal.pone.0015120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/22/2010] [Indexed: 12/17/2022] Open
Abstract
In spite of its highly immunogenic properties, Mycobacterium tuberculosis (Mtb) establishes persistent infection in otherwise healthy individuals, making it one of the most widespread and deadly human pathogens. Mtb's prolonged survival may reflect production of microbial factors that prevent even more vigorous immunity (quantitative effect) or that divert the immune response to a non-sterilizing mode (qualitative effect). Disruption of Mtb genes has produced a list of several dozen candidate immunomodulatory factors. Here we used robotic fluorescence microscopy to screen 10,100 loss-of-function transposon mutants of Mtb for their impact on the expression of promoter-reporter constructs for 12 host immune response genes in a mouse macrophage cell line. The screen identified 364 candidate immunoregulatory genes. To illustrate the utility of the candidate list, we confirmed the impact of 35 Mtb mutant strains on expression of endogenous immune response genes in primary macrophages. Detailed analysis focused on a strain of Mtb in which a transposon disrupts Rv0431, a gene encoding a conserved protein of unknown function. This mutant elicited much more macrophage TNFα, IL-12p40 and IL-6 in vitro than wild type Mtb, and was attenuated in the mouse. The mutant list provides a platform for exploring the immunobiology of tuberculosis, for example, by combining immunoregulatory mutations in a candidate vaccine strain.
Collapse
Affiliation(s)
- Aimee M. Beaulieu
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Poonam Rath
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Marianne Imhof
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Mark E. Siddall
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Carl F. Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Domenech P, Reed MB. Rapid and spontaneous loss of phthiocerol dimycocerosate (PDIM) from Mycobacterium tuberculosis grown in vitro: implications for virulence studies. MICROBIOLOGY (READING, ENGLAND) 2009; 155:3532-3543. [PMID: 19661177 PMCID: PMC5154741 DOI: 10.1099/mic.0.029199-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Isolated in vitro more than half a century ago, the H37Rv strain of Mycobacterium tuberculosis still remains the strain of choice for the majority of laboratories conducting in vivo studies of TB pathogenesis. In this report we reveal that H37Rv is highly prone to losing the ability to synthesize the cell wall lipid phthiocerol dimycocerosate (PDIM) during extended periods of in vitro culture. In addition, H37Rv stocks that have been held in vitro for even a short length of time should be thought of as a heterogeneous population of PDIM-positive and PDIM-negative cell types. We demonstrate that after weekly subculture of PDIM-positive isolates over a period of 20 weeks, the proportion of PDIM-negative cells rises above 30 %. That PDIM biosynthesis is negatively selected in vitro is evident from the broad range of mutation types we observe within cultures originating from a single PDIM-positive parental clone. Moreover, the appearance of these multiple mutation types coupled with an enhanced growth rate of PDIM-negative bacteria ensures that 'PDIM-less' clones rapidly dominate in vitro cultures. It has been known for almost a decade that strains of M. tuberculosis that lack PDIM are severely attenuated during in vivo infection. Therefore, the loss of PDIM raises a very serious issue in regard to the interpretation of putative virulence factors where heterogeneous parental cultures are potentially being compared in vivo to recombinant clones isolated within a PDIM-negative background. It is essential that researchers undertaking in vivo virulence studies confirm the presence of PDIM within all recombinant clones and the parental strains they are derived from.
Collapse
Affiliation(s)
- Pilar Domenech
- Research Institute of the McGill University Health Centre, 1625 Pine Ave, West Montreal, QC H3G 1A4, Canada
| | - Michael B Reed
- Research Institute of the McGill University Health Centre, 1625 Pine Ave, West Montreal, QC H3G 1A4, Canada
| |
Collapse
|
27
|
Chopra T, Gokhale RS. Chapter 12 Polyketide Versatility in the Biosynthesis of Complex Mycobacterial Cell Wall Lipids. Methods Enzymol 2009; 459:259-94. [DOI: 10.1016/s0076-6879(09)04612-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Li AH, Lam WL, Stokes RW. Characterization of genes differentially expressed within macrophages by virulent and attenuated Mycobacterium tuberculosis identifies candidate genes involved in intracellular growth. MICROBIOLOGY-SGM 2008; 154:2291-2303. [PMID: 18667562 DOI: 10.1099/mic.0.2008/019661-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify genes involved in the intracellular survival of Mycobacterium tuberculosis we compared the transcriptomes of virulent (H37Rv) and attenuated (H37Ra) strains during their interaction with murine bone-marrow-derived macrophages. Expression profiling was accomplished via the bacterial artificial chromosome fingerprint array (BACFA) technique. Genes identified with BACFA, and confirmed via qPCR to be upregulated in the attenuated H37Ra at 168 h post-infection, were frdB, frdC and frdD. Genes upregulated in the virulent H37Rv were pks2, aceE and Rv1571. Further qPCR analysis of these genes at 4 and 96 h post-infection revealed that the frd operon (encoding the fumarate reductase enzyme complex) is expressed at higher levels in the virulent H37Rv at earlier time points while the expression of aceE and pks2 is higher in the virulent strain throughout the course of infection. Assessment of frd transcripts in oxygen-limited cultures of M. tuberculosis H37Ra and H37Rv showed that the attenuated strain displayed a lag in frdA and frdB expression at the onset of microaerophilic culture, when compared to microaerophilic cultures of H37Rv and aerated cultures of H37Ra. Lastly, treatment of intracellular bacteria with a putative inhibitor of fumarate reductase resulted in a significant reduction of bacterial growth.
Collapse
Affiliation(s)
- Alice H Li
- Department of Pathology and Laboratory Medicine, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Wan L Lam
- Department of Pathology and Laboratory Medicine, University of British Columbia, Department of Cancer Genetics, BC Cancer Research Centre, 601 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Richard W Stokes
- Departments of Paediatrics and Pathology and Laboratory Medicine, University of British Columbia, Division of Infectious and Immunological Diseases, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
29
|
Lynett J, Stokes RW. Selection of transposon mutants of Mycobacterium tuberculosis with increased macrophage infectivity identifies fadD23 to be involved in sulfolipid production and association with macrophages. Microbiology (Reading) 2007; 153:3133-3140. [PMID: 17768256 DOI: 10.1099/mic.0.2007/007864-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alterations to the composition or architecture of the mycobacterial cell envelope can affect the macrophage infectivity of the bacillus. To further characterize the mycobacterial gene products that modulate the interaction with host cells, we employed transposon mutagenesis and screened for mutants that demonstrated an enhanced binding affinity toward macrophages. After successive rounds of mutant selection and enrichment, a total of five mutants were isolated that harboured gene disruptions within loci involved in lipid synthetic pathways as well as genes coding for putative hypothetical proteins. One mutant in particular, with a disruption in the Rv3826 gene (fadD23), was repeatedly isolated during library screening. Analysis of the cell envelope constituents of the Tn : : fadD23 strain revealed a lack of sulfolipid production which was restored following complementation with the wild-type gene.
Collapse
Affiliation(s)
- Jennifer Lynett
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Richard W Stokes
- Departments of Microbiology and Immunology and Paediatrics, University of British Columbia; Division of Infectious and Immunological Diseases, British Columbia's Children's Hospital, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
30
|
Waddell SJ, Butcher PD. Microarray analysis of whole genome expression of intracellular Mycobacterium tuberculosis. Curr Mol Med 2007; 7:287-96. [PMID: 17504113 PMCID: PMC3123378 DOI: 10.2174/156652407780598548] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Analysis of the changing mRNA expression profile of Mycobacterium tuberculosis though the course of infection promises to advance our understanding of how mycobacteria are able to survive the host immune response. The difficulties of sample extraction from distinct mycobacterial populations, and of measuring mRNA expression profiles of multiple genes has limited the impact of gene expression studies on our interpretation of this dynamic infection process. The development of whole genome microarray technology together with advances in sample collection have allowed the expression pattern of the whole M. tuberculosis genome to be compared across a number of different in vitro conditions, murine and human tissue culture models and in vivo infection samples. This review attempts to produce a summative model of the M. tuberculosis response to infection derived from or reflected in these gene expression datasets. The mycobacterial response to the intracellular environment is characterised by the utilisation of lipids as a carbon source and the switch from aerobic/microaerophilic to anaerobic respiratory pathways. Other genes induced in the macrophage phagosome include those likely to be involved in the maintenance of the cell wall and genes related to DNA damage, heat shock, iron sequestration and nutrient limitation. The comparison of transcriptional data from in vitro models of infection with complex in vivo samples, together with the use of bacterial RNA amplification strategies to sample defined populations of bacilli, should allow us to make conclusions about M. tuberculosis physiology and host microenvironments during natural infection.
Collapse
Affiliation(s)
- Simon J Waddell
- Medical Microbiology, Division of Cellular & Molecular Medicine, St. George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| | | |
Collapse
|
31
|
Beste DJV, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 2007; 8:R89. [PMID: 17521419 PMCID: PMC1929162 DOI: 10.1186/gb-2007-8-5-r89] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/16/2007] [Accepted: 05/23/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND An impediment to the rational development of novel drugs against tuberculosis (TB) is a general paucity of knowledge concerning the metabolism of Mycobacterium tuberculosis, particularly during infection. Constraint-based modeling provides a novel approach to investigating microbial metabolism but has not yet been applied to genome-scale modeling of M. tuberculosis. RESULTS GSMN-TB, a genome-scale metabolic model of M. tuberculosis, was constructed, consisting of 849 unique reactions and 739 metabolites, and involving 726 genes. The model was calibrated by growing Mycobacterium bovis bacille Calmette Guérin in continuous culture and steady-state growth parameters were measured. Flux balance analysis was used to calculate substrate consumption rates, which were shown to correspond closely to experimentally determined values. Predictions of gene essentiality were also made by flux balance analysis simulation and were compared with global mutagenesis data for M. tuberculosis grown in vitro. A prediction accuracy of 78% was achieved. Known drug targets were predicted to be essential by the model. The model demonstrated a potential role for the enzyme isocitrate lyase during the slow growth of mycobacteria, and this hypothesis was experimentally verified. An interactive web-based version of the model is available. CONCLUSION The GSMN-TB model successfully simulated many of the growth properties of M. tuberculosis. The model provides a means to examine the metabolic flexibility of bacteria and predict the phenotype of mutants, and it highlights previously unexplored features of M. tuberculosis metabolism.
Collapse
Affiliation(s)
- Dany JV Beste
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Tracy Hooper
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Graham Stewart
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Bhushan Bonde
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Claudio Avignone-Rossa
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Michael E Bushell
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Paul Wheeler
- Tuberculosis Research Group, Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone KT15 3NB, UK
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse, D-39106 Magdeburg, Germany
| | - Andrzej M Kierzek
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| | - Johnjoe McFadden
- School of Biomedical and Molecular Sciences, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
32
|
Jackson M, Stadthagen G, Gicquel B. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis (Edinb) 2006; 87:78-86. [PMID: 17030019 DOI: 10.1016/j.tube.2006.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
The cell envelope of pathogenic mycobacteria is highly distinctive in that it contains a number of lipids esterified with structurally related long-chain multi-methyl-branched fatty acids. These lipids have long been thought to play important roles in the cell envelope structure as well as in the pathogenicity of the tubercle bacillus. This review summarizes what is known about the biosynthesis of long-chain multiple methyl-branched fatty acid-containing lipids in Mycobacterium tuberculosis and describes the most recent findings about their regulation, transport across the different layers of the cell envelope and their biological functions.
Collapse
Affiliation(s)
- Mary Jackson
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
33
|
N/A, 张 万. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:1714-1720. [DOI: 10.11569/wcjd.v14.i17.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
34
|
Mehta PK, Pandey AK, Subbian S, El-Etr SH, Cirillo SLG, Samrakandi MM, Cirillo JD. Identification of Mycobacterium marinum macrophage infection mutants. Microb Pathog 2006; 40:139-51. [PMID: 16451826 DOI: 10.1016/j.micpath.2005.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/10/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022]
Abstract
Mycobacterium marinum is an important pathogen of humans, amphibians and fish. Most pathogenic mycobacteria, including M. marinum, infect, survive and replicate primarily intracellularly within macrophages. We constructed a transposon mutant library in M. marinum using Tn5367 delivered by phage transduction in the shuttle phasmid phAE94. We screened 529 clones from the transposon library directly in macrophage infection assays. All clones were screened for their ability to initially infect macrophages as well as survive and replicate intracellularly. We identified 19 mutants that fit within three classes: class I) defective for growth in association with macrophages (42%), class II) defective for macrophage infection (21%) and class III) defective for infection of and growth in association with macrophages (37%). Although 14 of the macrophage infection mutants (Mim) carry insertions in genes that have not been previously identified, five are associated with virulence of mycobacteria in animal models. These observations confirm the utility of mutant screens directly in association with macrophages to identify new virulence determinants in mycobacteria. We complemented four of the Mim mutants with their M. tuberculosis homologue, demonstrating that secondary mutations are not responsible for the observed defect in macrophage infection. The genes we identified provide insight into the molecular mechanisms of macrophage infection by M. marinum.
Collapse
Affiliation(s)
- Parmod K Mehta
- Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center, 471 Reynolds Medical Building, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Onwueme KC, Vos CJ, Zurita J, Ferreras JA, Quadri LEN. The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 2005; 44:259-302. [PMID: 16115688 DOI: 10.1016/j.plipres.2005.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent advances in the study of mycobacterial lipids indicate that the class of outer membrane lipids known as dimycocerosate esters (DIMs) are major virulence factors of clinically relevant mycobacteria including Mycobacterium tuberculosis and Mycobacterium leprae. DIMs are a structurally intriguing class of polyketide synthase-derived wax esters discovered over seventy years ago, yet, little was known until recently about their biosynthesis. Availability of several mycobacterial genomes has accelerated progress toward clarifying steps in the DIM biosynthetic pathway and it is our belief that reviewing the bases of our current knowledge will clarify outstanding issues and help direct future endeavors.
Collapse
Affiliation(s)
- Kenolisa C Onwueme
- Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|