1
|
Bloomfield SJ, Palau R, Holden ER, Webber MA, Mather AE. Genomic characterization of Pseudomonas spp. on food: implications for spoilage, antimicrobial resistance and human infection. BMC Microbiol 2024; 24:20. [PMID: 38212698 PMCID: PMC10782663 DOI: 10.1186/s12866-023-03153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Pseudomonas species are common on food, but their contribution to the antimicrobial resistance gene (ARG) burden within food or as a source of clinical infection is unknown. Pseudomonas aeruginosa is an opportunistic pathogen responsible for a wide range of infections and is often hard to treat due to intrinsic and acquired ARGs commonly carried by this species. This study aimed to understand the potential role of Pseudomonas on food as a reservoir of ARGs and to assess the presence of potentially clinically significant Pseudomonas aeruginosa strains on food. To achieve this, we assessed the genetic relatedness (using whole genome sequencing) and virulence of food-derived isolates to those collected from humans. RESULTS A non-specific culturing approach for Pseudomonas recovered the bacterial genus from 28 of 32 (87.5%) retail food samples, although no P. aeruginosa was identified. The Pseudomonas species recovered were not clinically relevant, contained no ARGs and are likely associated with food spoilage. A specific culture method for P. aeruginosa resulted in the recovery of P. aeruginosa from 14 of 128 (11%) retail food samples; isolates contained between four and seven ARGs each and belonged to 16 sequence types (STs), four of which have been isolated from human infections. Food P. aeruginosa isolates from these STs demonstrated high similarity to human-derived isolates, differing by 41-312 single nucleotide polymorphisms (SNPs). There were diverse P. aeruginosa collected from the same food sample with distinct STs present on some samples and isolates belonging to the same ST differing by 19-67 SNPs. The Galleria mellonella infection model showed that 15 of 16 STs isolated from food displayed virulence between a low-virulence (PAO1) and a high virulence (PA14) control. CONCLUSION The most frequent Pseudomonas recovered from food examined in this study carried no ARGs and are more likely to play a role in food spoilage rather than infection. P. aeruginosa isolates likely to be able to cause human infections and with multidrug resistant genotypes are present on a relatively small but still substantial proportions of retail foods examined. Given the frequency of exposure, the potential contribution of food to the burden of P. aeruginosa infections in humans should be evaluated more closely.
Collapse
Affiliation(s)
| | - Raphaёlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Emma R Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- University of East Anglia, Norwich, UK.
| |
Collapse
|
2
|
Guidotti-Takeuchi M, Melo RTD, Ribeiro LNDM, Dumont CF, Ribeiro RAC, Brum BDA, de Amorim Junior TLIF, Rossi DA. Interference with Bacterial Conjugation and Natural Alternatives to Antibiotics: Bridging a Gap. Antibiotics (Basel) 2023; 12:1127. [PMID: 37508224 PMCID: PMC10376302 DOI: 10.3390/antibiotics12071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing the microbial repertoire for the evolution and spread of antimicrobial resistance and is a major target for controlling pathogens of public health concern in food ecosystems. In this study, we investigated Salmonella Heidelberg (SH) and Escherichia coli (EC) regarding gene exchange under conditions mimicking the industrial environment, with the coproducts whey (SL) and chicken juice (CJ). The S. Heidelberg strain was characterized by antibiotic susceptibility standards and PCR to detect the blaTEM gene. A concentration of 0.39 mg/mL was determined to evaluate the anti-conjugation activity of nanostructured lipid nanocarriers (NLCs) of essential oils to mitigate β-lactam resistance gene transfer. The results showed that the addition of these coproducts promoted an increase of more than 3.5 (whey) and 2.5 (chicken juice) orders of magnitude in the conjugation process (p < 0.01), and NLCs of sage essential oil significantly reduced the conjugation frequency (CF) by 74.90, 90.6, and 124.4 times when compared to the transfers in the absence of coproducts and the presence of SL and CJ, respectively. For NLCs from olibanum essential oil, the decrease was 4.46-fold for conjugations without inhibitors and 3.12- and 11.3-fold in the presence of SL and CJ. NLCs associated with sage and olibanum essential oils effectively control the transfer of antibiotic resistance genes and are a promising alternative for use at industrial levels.
Collapse
Affiliation(s)
- Micaela Guidotti-Takeuchi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Bárbara de Araújo Brum
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| | | | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|
3
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
4
|
Isolation, Identification and Genetic Characterization of Antibiotic Resistant Escherichia coli from Frozen Chicken Meat Obtained from Supermarkets at Dhaka City in Bangladesh. Antibiotics (Basel) 2022; 12:antibiotics12010041. [PMID: 36671242 PMCID: PMC9855094 DOI: 10.3390/antibiotics12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobials have been used to improve animal welfare, food security, and food safety that promote the emergence, selection, and dissemination of antimicrobial-resistant (AMR) bacteria. In this study, 50 E. coli were isolated from frozen chicken meat samples in Dhaka city. Antibiotic sensitivity patterns were assessed through the disk diffusion method and finally screened for the presence of antimicrobial resistance genes (ARG) using the polymerase chain reaction (PCR). Among the 160 samples, the prevalence of E. coli was observed in fifty samples (31.25%). All of these isolates were found resistant to at least one antimicrobial agent, and 52.0% of the isolates were resistant against 4-7 different antimicrobials. High resistance was shown to tetracycline (66.0%), followed by resistance to erythromycin (42.0%), ampicillin and streptomycin (38.0%), and sulfonamide (28.0%). In addition, the most prevalent ARGs were tet(A) (66.0%), ereA (64.0%), tet(B) (60.0%), aadA1 and sulI (56.0%), blaCITM (48.0%) and blaSHV (40.0%). About 90.0% of isolates were multidrug resistant. This study reveals for the first time the current situation of E. coli AMR in broilers, which is helpful for the clinical control of disease as well as for the development of policies and guidelines to reduce AMR in broilers production in Bangladesh.
Collapse
|
5
|
Samtiya M, Matthews KR, Dhewa T, Puniya AK. Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods 2022; 11:2966. [PMID: 36230040 PMCID: PMC9614604 DOI: 10.3390/foods11192966] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) remains of major interest for different types of food stakeholders since it can negatively impact human health on a global scale. Antimicrobial-resistant bacteria and/or antimicrobial resistance genes (transfer in pathogenic bacteria) may contaminate food at any stage, from the field to retail. Research demonstrates that antimicrobial-resistant bacterial infection(s) occur more frequently in low- and middle-income countries (LMICs) than in developed countries. Worldwide, foodborne pathogens are a primary cause of morbidity and mortality. The spread of pathogenic bacteria from food to consumers may occur by direct or indirect routes. Therefore, an array of approaches both at the national and international level to control the spread of foodborne pathogens and promote food safety and security are essential. Zoonotic microbes can spread through the environment, animals, humans, and the food chain. Antimicrobial drugs are used globally to treat infections in humans and animals and prophylactically in production agriculture. Research highlights that foods may become contaminated with AMR bacteria (AMRB) during the continuum from the farm to processing to retail to the consumer. To mitigate the risk of AMRB in humans, it is crucial to control antibiotic use throughout food production, both for animal and crop agriculture. The main inferences of this review are (1) routes by which AMRB enters the food chain during crop and animal production and other modes, (2) prevention and control steps for AMRB, and (3) impact on human health if AMR is not addressed globally. A thorough perspective is presented on the gaps in current systems for surveillance of antimicrobial use in food production and/ or AMR in the food chain.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123029, India
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123029, India
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| |
Collapse
|
6
|
Antibiotic Resistance: From Pig to Meat. Antibiotics (Basel) 2021; 10:antibiotics10101209. [PMID: 34680790 PMCID: PMC8532907 DOI: 10.3390/antibiotics10101209] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Pork meat is in high demand worldwide and this is expected to increase. Pork is often raised in intensive conditions, which is conducive to the spread of infectious diseases. Vaccines, antibiotics, and other biosafety measures help mitigate the impact of infectious diseases. However, bacterial strains resistant to antibiotics are more and more frequently found in pig farms, animals, and the environment. It is now recognized that a holistic perspective is needed to sustainably fight antibiotic resistance, and that an integrated One Health approach is essential. With this in mind, this review tackles antibiotic resistance throughout the pork raising process, including their microbiome; many factors of their environment (agricultural workers, farms, rivers, etc.); and an overview of the impact of antibiotic resistance on pork meat, which is the end product available to consumers. Antibiotic resistance, while a natural process, is a public health concern. If we react, and act, collectively, it is expected to be, at least partially, reversible with judicious antibiotic usage and the development of innovative strategies and tools to foster animal health.
Collapse
|
7
|
Makinde OM, Adetunji MC, Ezeokoli OT, Odumosu BT, Ngoma L, Mwanza M, Ezekiel CN. Bacterial contaminants and their antibiotic susceptibility patterns in ready-to-eat foods vended in Ogun state, Nigeria. Lett Appl Microbiol 2020; 72:187-195. [PMID: 33030749 DOI: 10.1111/lam.13407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Contamination of ready-to-eat (RTE) foods by pathogenic bacteria may predispose consumers to foodborne diseases. This study investigated the presence of bacterial contaminants and their antibiotic susceptibility patterns in three locally processed RTE foods (eko, fufu and zobo) vended in urban markets in Ogun state, Nigeria. Bacteria isolated from a total of 120 RTE food samples were identified by 16S rRNA gene phylogeny while susceptibility patterns to eight classes of antibiotics were determined by the disc diffusion method. Species belonging to the genera Acinetobacter and Enterobacter were recovered from all RTE food types investigated, Klebsiella and Staphylococcus were recovered from eko and fufu samples, while those of Shigella were recovered from eko samples. Enterobacter hormaechei was the most prevalent species in all three RTE food types. Precisely 99% of 149 isolates were multidrug-resistant, suggesting a high risk for RTE food handlers and consumers. Co-resistance to ampicillin and cephalothin was the most frequently observed resistance phenotype. Results demonstrate that improved hygiene practices by food processors and vendors are urgently required during RTE processing and retail. Also, adequate food safety guidelines, regulation and enforcement by relevant government agencies are needed to improve the safety of RTE foods and ensure the protection of consumer health.
Collapse
Affiliation(s)
- O M Makinde
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - M C Adetunji
- Department of Animal Health, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa.,Department of Biological Sciences, Trinity University, Yaba, Lagos, Nigeria
| | - O T Ezeokoli
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - B T Odumosu
- Department of Microbiology, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - L Ngoma
- Department of Animal Health, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - M Mwanza
- Department of Animal Health, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - C N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| |
Collapse
|
8
|
Terra MR, Tosoni NF, Furlaneto MC, Furlaneto-Maia L. Assessment of vancomycin resistance transfer among enterococci of clinical importance in milk matrix. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:925-929. [PMID: 31382830 DOI: 10.1080/03601234.2019.1647753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dissemination of vancomycin resistance in enterococci has been associated with horizontal transfer of mobile genetic elements. Aim of the study was to evaluate if milk matrix is a suitable environment to support transferability of vancomycin resistance (vanA) gene from clinical vancomycin-resistant Enterococcus faecium to vancomycin-sensitive Enterococcus faecalis. Enterococci strains were firstly screened for the presence of cpd (inducible sex pheromone determinant) gene, vanA and tetL genes (vancomycin and tetracycline resistance markers, respectively) and the gelE (extracellular metalloendopeptidase) gene to define the mating pairs. Based on these selection markers, we investigated the transferability of eight plasmid-borne vanA harbored by E. faecium (vanA+, cpd-, tetL- and gelE-) into two E. faecalis (vanA-, cpd+, tetL + and gelE+) recipient strains in milk matrix. The strains were mated in a 1:1 ratio in 7% reconstituted milk and incubated at 37 °C. Transconjugants emerged from all 16 matings within 2 h of incubation and were evidenced by dual antibiotic resistance (vancomycin and tetracycline). The vancomycin-resistance of trasconjugants was maintained even after ten subsequent passages on nonselective medium. Transconjugants were positive for vanA, tetL and gelE genes. This study indicates milk matrix as suitable environment to support gene exchange between Enterococcus species.
Collapse
Affiliation(s)
- Marcia R Terra
- Department of Microbiology, Universitry Campus, State University of Londrina, Londrina, Brazil
| | - Natara F Tosoni
- Department of Food Technology, Campus of Londrina, Federal Technological University of Paraná, Londrina, Brazil
| | - Marcia C Furlaneto
- Department of Microbiology, Universitry Campus, State University of Londrina, Londrina, Brazil
| | - Luciana Furlaneto-Maia
- Department of Food Technology, Campus of Londrina, Federal Technological University of Paraná, Londrina, Brazil
| |
Collapse
|
9
|
Haubert L, Cruxen CEDS, Fiorentini ÂM, Silva WPD. Tetracycline resistance transfer from foodborne Listeria monocytogenes to Enterococcus faecalis in Minas Frescal cheese. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Nyambe S, Burgess C, Whyte P, Bolton D. An investigation of vtx 2 bacteriophage transduction to different Escherichia coli patho-groups in food matrices and nutrient broth. Food Microbiol 2017; 68:1-6. [PMID: 28800816 DOI: 10.1016/j.fm.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 12/14/2022]
Abstract
This study investigated bacteriophage (phage) mediated transfer of the vtx2 gene from a donor Escherichia coli (C600φ3538(Δvtx2::cat)) to enteropathogenic (EPEC), enterotoxigenic (ETEC), enteroaggregative (EAEC), enteroinvasive (EIEC) and diffusely adherent (DAEC) E. coli strains in LB broth, milk, ground beef and lettuce. Two bacterial concentrations for both the E. coli donor and recipient strains, 3 and 5 log10 CFU/ml (LB broth and milk)/g (beef) or/cm2 (lettuce), were used. When transductants were obtained, the location of insertion of the phage (insertion sites wrbA, yehA, sbcB, yecE and/or Z2577) in the E. coli chromosome was investigated by PCR. The vtx2 gene was readily transferred to EAEC O104:H4 (E99518) in all matrices and inserted into the chromosome at the sbcB locus. At higher cell concentrations, transductants were also obtained with ETEC E4683, ETEC E8057 (insertion site unknown) and DAEC O75:H- E66438 (insertion site unknown) in LB broth and milk. It was concluded that the vtx2 gene may be transferred by bacteriophage to different E. coli pathotypes in laboratory and food matrices, resulting in the spread of the vtx2 gene and the emergence of novel foodborne pathogens.
Collapse
Affiliation(s)
- Sepo Nyambe
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Declan Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
11
|
Kennedy CA, Fanning S, Karczmarczyk M, Byrne B, Monaghan Á, Bolton D, Sweeney T. Characterizing the Multidrug Resistance of non-O157 Shiga Toxin-ProducingEscherichia coliIsolates from Cattle Farms and Abattoirs. Microb Drug Resist 2017; 23:781-790. [DOI: 10.1089/mdr.2016.0082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Carrie-Ann Kennedy
- Cell Molecular Biology Laboratory, School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Maria Karczmarczyk
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Brian Byrne
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
| | - Áine Monaghan
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
| | - Declan Bolton
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
| | - Torres Sweeney
- Cell Molecular Biology Laboratory, School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Pathogens of Food Animals: Sources, Characteristics, Human Risk, and Methods of Detection. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:277-365. [PMID: 28427535 DOI: 10.1016/bs.afnr.2016.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogens associated with food production (livestock) animals come in many forms causing a multitude of disease for humans. For the purpose of this review, these infectious agents can be divided into three broad categories: those that are associated with bacterial disease, those that are associated with viruses, and those that are parasitic in nature. The goal of this chapter is to provide the reader with an overview of the most common pathogens that cause disease in humans through exposure via the food chain and the consequence of this exposure as well as risk and detection methods. We have also included a collection of unusual pathogens that although rare have still caused disease, and their recognition is warranted in light of emerging and reemerging diseases. These provide the reader an understanding of where the next big outbreak could occur. The influence of the global economy, the movement of people, and food makes understanding production animal-associated disease paramount to being able to address new diseases as they arise.
Collapse
|
13
|
Jung Y, Matthews KR. Potential transfer of extended spectrum β-lactamase encoding gene, blashv18 gene, between Klebsiella pneumoniae in raw foods. Food Microbiol 2016; 60:39-48. [PMID: 27554144 DOI: 10.1016/j.fm.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023]
Abstract
This study investigated the transfer frequency of the extended-spectrum β-lactamase-encoding gene (blaSHV18) among Klebsiella pneumoniae in tryptic soy broth (TSB), pasteurized milk, unpasteurized milk, alfalfa sprouts and chopped lettuce at defined temperatures. All transconjugants were characterized phenotypically and genotypically. KP04(ΔKM) and KP08(ΔKM) isolated from seed sprouts and KP342 were used as recipients in mating experiments with K. pneumoniae ATCC 700603 serving as the donor. In mating experiments, no transconjugants were detected at 4 °C in liquid media or chopped lettuce, but detected in all media tested at 15 °C, 24 °C, and 37 °C. At 24 °C, the transfer of blaSHV18 gene occurred more frequently in alfalfa sprouts (5.15E-04 transconjugants per recipient) and chopped lettuce (3.85E-05) than liquid media (1.08E-05). On chopped lettuce, transconjugants were not detected at day 1 post-mating at 15 °C, but observed on day 2 (1.43E-05). Transconjugants carried the blaSHV18 gene transferred from the donor and the virulence gene harbored by recipient. More importantly, a class 1 integrase gene and resistance to tetracycline, trimethoprim/sulfamethoxazole were co-transferred during mating. These quantitative results suggest that fresh produce exposed to temperature abuse may serve as a competent vehicle for the spread of gene encoding for antibiotic resistance, having a potential negative impact on human health.
Collapse
Affiliation(s)
- Yangjin Jung
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Karl R Matthews
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
14
|
Listeria monocytogenes – An examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiol 2016. [DOI: 10.1016/j.fm.2014.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Van Meervenne E, Van Coillie E, Van Weyenberg S, Boon N, Herman L, Devlieghere F. Low Temperature and Modified Atmosphere: Hurdles for Antibiotic Resistance Transfer? J Food Prot 2015; 78:2191-9. [PMID: 26613914 DOI: 10.4315/0362-028x.jfp-15-105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food is an important dissemination route for antibiotic-resistant bacteria. Factors used during food production and preservation may contribute to the transfer of antibiotic resistance genes, but research on this subject is scarce. In this study, the effect of temperature (7 to 37°C) and modified atmosphere packaging (air, 50% CO2-50% N2, and 100% N2) on antibiotic resistance transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes was evaluated. Filter mating was performed on nonselective agar plates with high-density inocula. A more realistic setup was created by performing modified atmosphere experiments on cooked ham using high-density and low-density inocula. Plasmid transfer was observed between 10 and 37°C, with plasmid transfer also observed at 7°C during a prolonged incubation period. When high-density inocula were used, transconjugants were detected, both on agar plates and cooked ham, under the three atmospheres (air, 50% CO2-50% N2, and 100% N2) at 7°C. This yielded a median transfer ratio (number of transconjugants/number of recipients) with an order of magnitude of 10(-4) to 10(-6). With low-density inocula, transfer was only detected under the 100% N2 atmosphere after 10-day incubation at 7°C, yielding a transfer ratio of 10(-5). Under this condition, the highest bacterial density was obtained. The results indicate that low temperature and modified atmosphere packaging, two important hurdles in the food industry, do not necessarily prevent plasmid transfer from Lactobacillus sakei subsp. sakei to Listeria monocytogenes.
Collapse
Affiliation(s)
- Eva Van Meervenne
- Institute for Agricultural and Fisheries Research, Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium; Laboratory of Food Microbiology and Food Preservation, Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els Van Coillie
- Institute for Agricultural and Fisheries Research, Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Stephanie Van Weyenberg
- Institute for Agricultural and Fisheries Research, Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | | | - Lieve Herman
- Institute for Agricultural and Fisheries Research, Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | | |
Collapse
|
16
|
Bhutani N, Muraleedharan C, Talreja D, Rana SW, Walia S, Kumar A, Walia SK. Occurrence of Multidrug Resistant Extended Spectrum Beta-Lactamase-Producing Bacteria on Iceberg Lettuce Retailed for Human Consumption. BIOMED RESEARCH INTERNATIONAL 2015; 2015:547547. [PMID: 26064922 PMCID: PMC4433657 DOI: 10.1155/2015/547547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/18/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022]
Abstract
Antibiotic resistance in bacteria is a global problem exacerbated by the dissemination of resistant bacteria via uncooked food, such as green leafy vegetables. New strains of bacteria are emerging on a daily basis with novel expanded antibiotic resistance profiles. In this pilot study, we examined the occurrence of antibiotic resistant bacteria against five classes of antibiotics on iceberg lettuce retailed in local convenience stores in Rochester, Michigan. In this study, 138 morphologically distinct bacterial colonies from 9 iceberg lettuce samples were randomly picked and tested for antibiotic resistance. Among these isolates, the vast majority (86%) demonstrated resistance to cefotaxime, and among the resistant bacteria, the majority showed multiple drug resistance, particularly against cefotaxime, chloramphenicol, and tetracycline. Three bacterial isolates (2.17%) out of 138 were extended spectrum beta-lactamase (ESBL) producers. Two ESBL producers (T1 and T5) were identified as Klebsiella pneumoniae, an opportunistic pathogen with transferable sulfhydryl variable- (SHV-) and TEM-type ESBLs, respectively. The DNA sequence analysis of the bla SHV detected in K. pneumoniae isolate T1 revealed 99% relatedness to bla SHV genes found in clinical isolates. This implies that iceberg lettuce is a potential reservoir of newly emerging and evolving antibiotic resistant bacteria and its consumption poses serious threat to human health.
Collapse
Affiliation(s)
- Natasha Bhutani
- Department of Biological Sciences, Oakland University, 375 Dodge Hall of Engineering, Rochester, MI 48309, USA
| | - Chithra Muraleedharan
- Department of Biological Sciences, Oakland University, 375 Dodge Hall of Engineering, Rochester, MI 48309, USA
| | - Deepa Talreja
- Department of Biological Sciences, Oakland University, 375 Dodge Hall of Engineering, Rochester, MI 48309, USA
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, 4717 Saint Antoine Street, Detroit, MI 48201, USA
| | - Sonia Walia Rana
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, 4717 Saint Antoine Street, Detroit, MI 48201, USA
| | - Sandeep Walia
- Department of Gastroenterology, Henry Ford Health System, Detroit, MI 48208, USA
| | - Ashok Kumar
- Department of Biological Sciences, Oakland University, 375 Dodge Hall of Engineering, Rochester, MI 48309, USA
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, 4717 Saint Antoine Street, Detroit, MI 48201, USA
| | - Satish K. Walia
- Department of Biological Sciences, Oakland University, 375 Dodge Hall of Engineering, Rochester, MI 48309, USA
| |
Collapse
|
17
|
Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist 2015; 8:49-61. [PMID: 25878509 PMCID: PMC4388096 DOI: 10.2147/idr.s55778] [Citation(s) in RCA: 386] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
One of the major breakthroughs in the history of medicine is undoubtedly the discovery of antibiotics. Their use in animal husbandry and veterinary medicine has resulted in healthier and more productive farm animals, ensuring the welfare and health of both animals and humans. Unfortunately, from the first use of penicillin, the resistance countdown started to tick. Nowadays, the infections caused by antibiotic-resistant bacteria are increasing, and resistance to antibiotics is probably the major public health problem. Antibiotic use in farm animals has been criticized for contributing to the emergence of resistance. The use and misuse of antibiotics in farm animal settings as growth promoters or as nonspecific means of infection prevention and treatment has boosted antibiotic consumption and resistance among bacteria in the animal habitat. This reservoir of resistance can be transmitted directly or indirectly to humans through food consumption and direct or indirect contact. Resistant bacteria can cause serious health effects directly or via the transmission of the antibiotic resistance traits to pathogens, causing illnesses that are difficult to treat and that therefore have higher morbidity and mortality rates. In addition, the selection and proliferation of antibiotic-resistant strains can be disseminated to the environment via animal waste, enhancing the resistance reservoir that exists in the environmental microbiome. In this review, an effort is made to highlight the various factors that contribute to the emergence of antibiotic resistance in farm animals and to provide some insights into possible solutions to this major health issue.
Collapse
Affiliation(s)
- Vangelis Economou
- Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Gousia
- Food-Water Microbiology Unit, Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
18
|
Kalantar E, Soltani J, Hatami S, Habibi N, Pormazaheri H, Amin Marashi SM, Amini K, Afshar A, Kabir K, Safari AA. Assessment of the Bacteriological Quality of Food Samples May Offer Clues the Antibiotic Resistance Pattern. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2015. [DOI: 10.17795/ijep22885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Rossi F, Rizzotti L, Felis GE, Torriani S. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives. Food Microbiol 2014; 42:232-43. [DOI: 10.1016/j.fm.2014.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/10/2014] [Indexed: 01/01/2023]
|
20
|
Antimicrobial resistance in the food chain: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:2643-69. [PMID: 23812024 PMCID: PMC3734448 DOI: 10.3390/ijerph10072643] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.
Collapse
|
21
|
Phenotypic-genotypic resistance in Salmonella spp. isolated from cattle carcasses from the north central zone of the State of Mexico. Trop Anim Health Prod 2012; 45:995-1000. [PMID: 23224863 DOI: 10.1007/s11250-012-0323-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
Salmonella is a public and animal health problem due to the generation of strains multiresistant to antimicrobial products. The objective of this study was to determine prevalence and antimicrobial phenotypic and genotypic resistance of Salmonella spp. isolated from beef cattle carcasses killed in slaughterhouses of the north central zone of the State of Mexico. Sampling was carried out according to the European Directive 2001/471/EC; isolation and identification of the strain was carried out according to the Mexican Official Standard NOM-114-SSA1-1994; resistance was established by CMI according to the National Committees for Clinical Laboratory Standards (NCLS) and multiplex PCR according to Ahmed et al. (Journal of Applied Microbiology 106:402-409, 2009) with PSE-1, tetG, qnrS, FloR, STR, and sul1 oligonucleotides. Twenty-seven strains of Salmonella spp. were obtained from 327 samples (prevalence of 0.083); 19 strains (70 %) were resistant to 10 μg/ml of ampicillin, 15 of these (79 %) had the PSE-1 gene; 22 strains (84 %) were resistant to 30 μg/ml streptomycin, 14 of these (63.6 %) had the STR gene. Genes PSE-1 and STR were factors in the presence of resistance, the rest of the genes (tetG, qnrS, FloR, and sul1) were not factors of resistance in the studied strains.
Collapse
|
22
|
Sheikh AA, Checkley S, Avery B, Chalmers G, Bohaychuk V, Boerlin P, Reid-Smith R, Aslam M. Antimicrobial Resistance and Resistance Genes in Escherichia coli Isolated from Retail Meat Purchased in Alberta, Canada. Foodborne Pathog Dis 2012; 9:625-31. [DOI: 10.1089/fpd.2011.1078] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ali Ahmad Sheikh
- Agriculture and Agri-Food Canada, Lacombe Research Centre, Lacombe, Alberta, Canada
| | - Sylvia Checkley
- Department of Ecosystem and Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Brent Avery
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Gabhan Chalmers
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Valerie Bohaychuk
- Agri-Food Laboratories Branch, Alberta Agriculture and Rural Development, Edmonton, Alberta, Canada
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Richard Reid-Smith
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Mueen Aslam
- Agriculture and Agri-Food Canada, Lacombe Research Centre, Lacombe, Alberta, Canada
| |
Collapse
|
23
|
Amalaradjou MAR, Bhunia AK. Modern approaches in probiotics research to control foodborne pathogens. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 67:185-239. [PMID: 23034117 PMCID: PMC7150249 DOI: 10.1016/b978-0-12-394598-3.00005-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Foodborne illness is a serious public health concern. There are over 200 known microbial, chemical, and physical agents that are known to cause foodborne illness. Efforts are made for improved detection, control and prevention of foodborne pathogen in food, and pathogen associated diseases in the host. Several commonly used approaches to control foodborne pathogens include antibiotics, natural antimicrobials, bacteriophages, bacteriocins, ionizing radiations, and heat. In addition, probiotics offer a potential intervention strategy for the prevention and control of foodborne infections. This review focuses on the use of probiotics and bioengineered probiotics to control foodborne pathogens, their antimicrobial actions, and their delivery strategies. Although probiotics have been demonstrated to be effective in antagonizing foodborne pathogens, challenges exist in the characterization and elucidation of underlying molecular mechanisms of action and in the development of potential delivery strategies that could maintain the viability and functionality of the probiotic in the target organ.
Collapse
|
24
|
|
25
|
Melendez S, Hanning I, Han J, Nayak R, Clement A, Wooming A, Hererra P, Jones F, Foley S, Ricke S. Salmonella enterica isolates from pasture-raised poultry exhibit antimicrobial resistance and class I integrons. J Appl Microbiol 2010; 109:1957-66. [DOI: 10.1111/j.1365-2672.2010.04825.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Johny AK, Hoagland T, Venkitanarayanan K. Effect of Subinhibitory Concentrations of Plant-Derived Molecules in Increasing the Sensitivity of Multidrug-Resistant Salmonella enterica Serovar Typhimurium DT104 to Antibiotics. Foodborne Pathog Dis 2010; 7:1165-70. [DOI: 10.1089/fpd.2009.0527] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Thomas Hoagland
- Department of Animal Science, University of Connecticut, Storrs, Connecticut
| | | |
Collapse
|
27
|
Scaria J, Warnick LD, Kaneene JB, May K, Teng CH, Chang YF. Comparison of phenotypic and genotypic antimicrobial profiles in Escherichia coli and Salmonella enterica from the same dairy cattle farms. Mol Cell Probes 2010; 24:325-45. [PMID: 20688154 DOI: 10.1016/j.mcp.2010.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/17/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
Transmission of antimicrobial drug resistance from resistant bacteria to non-resistant strains is an important public health issue. In this study, we have examined the possibility of multiple resistance gene transfer between Escherichia coli and Salmonella in the natural setting. Bacteria isolated from calves concurrently shedding E. coli and Salmonella showed similar antimicrobial drug resistance patterns as measured by a broth dilution method. However, microarray analysis of the antibiotic resistance at the gene level revealed several differences in resistance gene profile. Resistance profiles of E. coli isolated from different farms were closer than the profile of E. coli and Salmonella isolated from the same farm. This shows that the chance of multiple resistance gene transfers between these species is unlikely.
Collapse
Affiliation(s)
- Joy Scaria
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
28
|
Fleming LR, Bolzan DN, Nascimento JDS. Antimicrobial substances produced by coliform strains active against foodborne pathogens. Foodborne Pathog Dis 2010; 7:243-7. [PMID: 19895262 DOI: 10.1089/fpd.2009.0333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study, 31 coliform strains were isolated from salad, cheese, and meat products sold in commercial establishments in Rio de Janeiro city, and were tested for antibiotic resistance and antimicrobial substance production. Thirteen strains (41.9%) were resistant to at least one antibiotic tested, among which one presented resistance to nine different antibiotics. Two strains (6.4%) exhibited inhibitory activity against the indicator strains, Escherichia coli LMIFRJ and Salmonella enterica I. The antimicrobial substances that they produced were sensitive to proteolytic enzymes, suggesting that they might be bacteriocins. The producer strains were identified as Klebsiella ozaenae and Raoultella terrigena. Although they had similar spectrums of action, the bacteriocins were shown to be different. Both of them were able to inhibit E. coli, Klebsiella, Enterobacter, and Salmonella strains, including antibiotic-resistant ones. Our results suggest that these bacteriocins, named klebicin K and raoultellin L, could have potential use against some foodborne pathogens.
Collapse
Affiliation(s)
- Luana Rocha Fleming
- Laboratory of Microbiology, Federal Institute of Education, Science, and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
29
|
Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 2010; 139 Suppl 1:S3-15. [PMID: 20153070 PMCID: PMC7132498 DOI: 10.1016/j.ijfoodmicro.2010.01.021] [Citation(s) in RCA: 599] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 12/07/2009] [Accepted: 01/18/2010] [Indexed: 12/18/2022]
Abstract
The burden of diseases caused by food-borne pathogens remains largely unknown. Importantly data indicating trends in food-borne infectious intestinal disease is limited to a few industrialised countries, and even fewer pathogens. It has been predicted that the importance of diarrhoeal disease, mainly due to contaminated food and water, as a cause of death will decline worldwide. Evidence for such a downward trend is limited. This prediction presumes that improvements in the production and retail of microbiologically safe food will be sustained in the developed world and, moreover, will be rolled out to those countries of the developing world increasingly producing food for a global market. In this review evidence is presented to indicate that the microbiological safety of food remains a dynamic situation heavily influenced by multiple factors along the food chain from farm to fork. Sustaining food safety standards will depend on constant vigilance maintained by monitoring and surveillance but, with the rising importance of other food-related issues, such as food security, obesity and climate change, competition for resources in the future to enable this may be fierce. In addition the pathogen populations relevant to food safety are not static. Food is an excellent vehicle by which many pathogens (bacteria, viruses/prions and parasites) can reach an appropriate colonisation site in a new host. Although food production practices change, the well-recognised food-borne pathogens, such as Salmonella spp. and Escherichia coli, seem able to evolve to exploit novel opportunities, for example fresh produce, and even generate new public health challenges, for example antimicrobial resistance. In addition, previously unknown food-borne pathogens, many of which are zoonotic, are constantly emerging. Current understanding of the trends in food-borne diseases for bacterial, viral and parasitic pathogens has been reviewed. The bacterial pathogens are exemplified by those well-recognized by policy makers; i.e. Salmonella, Campylobacter, E. coli and Listeria monocytogenes. Antimicrobial resistance in several bacterial food-borne pathogens (Salmonella, Campylobacter, Shigella and Vibrio spp., methicillin resistant Staphylcoccus aureas, E. coli and Enterococci) has been discussed as a separate topic because of its relative importance to policy issues. Awareness and surveillance of viral food-borne pathogens is generally poor but emphasis is placed on Norovirus, Hepatitis A, rotaviruses and newly emerging viruses such as SARS. Many food-borne parasitic pathogens are known (for example Ascaris, Cryptosporidia and Trichinella) but few of these are effectively monitored in foods, livestock and wildlife and their epidemiology through the food-chain is poorly understood. The lessons learned and future challenges in each topic are debated. It is clear that one overall challenge is the generation and maintenance of constructive dialogue and collaboration between public health, veterinary and food safety experts, bringing together multidisciplinary skills and multi-pathogen expertise. Such collaboration is essential to monitor changing trends in the well-recognised diseases and detect emerging pathogens. It will also be necessary understand the multiple interactions these pathogens have with their environments during transmission along the food chain in order to develop effective prevention and control strategies.
Collapse
|
30
|
Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res Microbiol 2010; 161:127-35. [PMID: 20074643 DOI: 10.1016/j.resmic.2009.12.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 11/24/2009] [Accepted: 12/02/2009] [Indexed: 11/22/2022]
Abstract
Lactic acid bacteria isolated from Irish pork and beef abattoirs were analysed for their susceptibility to antimicrobials. Thirty-seven isolates (12 enterococci, 10 lactobacilli, 8 streptococci, 3 lactococci, 2 Leuconostoc, and 2 pediococci) were examined for phenotypic resistance using the E-test and their minimum inhibitory concentration to a panel of six antibiotics (ampicillin, chloramphenicol, erythromycin, streptomycin, tetracycline, and vancomycin) was recorded. The corresponding genetic determinants responsible were characterised by PCR. Also, the transferability of these resistance markers was assessed in filter mating assays. Of the 37 isolates, 33 were found to be resistant to one or more antibiotics. All strains were susceptible to ampicillin and chloramphenicol. The erm(B) and msrA/B genes were detected among the 11 erythromycin-resistant strains of enterococci, lactobacilli, and streptococci. Two tetracycline-resistant strains, Lactobacillus plantarum and Leuconostoc mesenteroides spp., contained tet(M) and tet(S) genes respectively. Intrinsic streptomycin resistance was observed in lactobacilli, streptococci, lactococci and Leuconostoc species; none of the common genetic determinants (strA, strB, aadA, aadE) were identified. Four of 10 strains of Enterococcus faecium were resistant to vancomycin; however, no corresponding genetic determinants for this phenotype were identified. Enterococcus faecalis strains were susceptible to vancomycin. L. plantarum, L. mesenteroides and Pediococcus pentosaceus were intrinsically resistant to vancomycin. Transfer of antibiotic resistance determinants was demonstrated in one strain, wherein the tet(M) gene of L. plantarum (23) isolated from a pork abattoir was transferred to Lactococcus lactis BU-2-60 and to E. faecalis JH2-2. This study identified the presence of antibiotic resistance markers in Irish meat isolates and, in one example, resistance was conjugally transferred to other LAB strains.
Collapse
|
31
|
Abstract
New concepts have emerged in the past few years that help us to better understand the emergence and spread of antimicrobial resistance (AMR). These include, among others, the discovery of the mutator state and the concept of mutant selection window for resistances emerging primarily through mutations in existing genes. Our understanding of horizontal gene transfer has also evolved significantly in the past few years, and important new mechanisms of AMR transfer have been discovered, including, among others, integrative conjugative elements and ISCR (insertion sequences with common regions) elements. Simultaneously, large-scale studies have helped us to start comprehending the immense and yet untapped reservoir of both AMR genes and mobile genetic elements present in the environment. Finally, new PCR- and DNA sequencing-based techniques are being developed that will allow us to better understand the epidemiology of classical vectors of AMR genes, such as plasmids, and to monitor them in a more global and systematic way.
Collapse
|
32
|
Aarestrup FM, Wegener HC, Collignon P. Resistance in bacteria of the food chain: epidemiology and control strategies. Expert Rev Anti Infect Ther 2008; 6:733-50. [PMID: 18847409 DOI: 10.1586/14787210.6.5.733] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacteria have evolved multiple mechanisms for the efficient evolution and spread of antimicrobial resistance. Modern food production facilitates the emergence and spread of resistance through the intensive use of antimicrobial agents and international trade of both animals and food products. The main route of transmission between food animals and humans is via food products, although other modes of transmission, such as direct contact and through the environment, also occur. Resistance can spread as resistant pathogens or via transferable genes in different commensal bacteria, making quantification of the transmission difficult. The exposure of humans to antimicrobial resistance from food animals can be controlled by either limiting the selective pressure from antimicrobial usage or by limiting the spread of the bacteria/genes. A number of control options are reviewed, including drug licensing, removing financial incentives, banning or restricting the use of certain drugs, altering prescribers behavior, improving animal health, improving hygiene and implementing microbial criteria for certain types of resistant pathogens for use in the control of trade of both food animals and food.
Collapse
Affiliation(s)
- Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Copenhagen V, Denmark.
| | | | | |
Collapse
|
33
|
Meta-analysis of experimental data concerning antimicrobial resistance gene transfer rates during conjugation. Appl Environ Microbiol 2008; 74:6085-90. [PMID: 18708517 DOI: 10.1128/aem.01036-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper presents the results of a meta-analysis of published transfer rates of antimicrobial resistance genes. A total of 34 papers were identified, of which 28 contained rates estimated in relation to either donor or recipient bacterial counts. The published rates ranged from 10(-2) to 10(-9). Generalized linear modeling was conducted to identify the factors influencing this variation. Highly significant associations between transfer frequency and both the donor (P = 1.2 x 10(-4)) and recipient (P = 1.0 x 10(-5)) genera were found. Also significant was whether the donor and recipient strains were of the same genus (P = 0.023) and the nature of the genetic element (P = 0.0019). The type of experiment, in vivo or in vitro, approached statistical significance (P = 0.12). Parameter estimates from a general linear model were used to estimate the probability of transfer of antimicrobial resistance genes to potential pathogens in the intestine following oral ingestion. The mean logarithms of these probabilities are in the range of [-7.0, -3.1]. These probability distributions are suitable for use in the quantitative assessment of the risk of transfer of antimicrobial resistance genes to the intestinal flora of humans and animals.
Collapse
|
34
|
Foodborne antimicrobial resistance as a biological hazard - Scientific Opinion of the Panel on Biological Hazards. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.765] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|