1
|
Picciotti U, Araujo Dalbon V, Ciancio A, Colagiero M, Cozzi G, De Bellis L, Finetti-Sialer MM, Greco D, Ippolito A, Lahbib N, Logrieco AF, López-Llorca LV, Lopez-Moya F, Luvisi A, Mincuzzi A, Molina-Acevedo JP, Pazzani C, Scortichini M, Scrascia M, Valenzano D, Garganese F, Porcelli F. "Ectomosphere": Insects and Microorganism Interactions. Microorganisms 2023; 11:440. [PMID: 36838405 PMCID: PMC9967823 DOI: 10.3390/microorganisms11020440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).
Collapse
Affiliation(s)
- Ugo Picciotti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | | | - Aurelio Ciancio
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via G. Amendola 122/D, 70126 Bari, Italy
| | - Mariantonietta Colagiero
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via G. Amendola 122/D, 70126 Bari, Italy
| | - Giuseppe Cozzi
- Institute of Food Production Sciences, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Nada Lahbib
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 1002, Tunisia
| | - Antonio Francesco Logrieco
- Institute of Food Production Sciences, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | | | - Federico Lopez-Moya
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Annamaria Mincuzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Juan Pablo Molina-Acevedo
- Colombian Corporation for Agricultural Research Agrosavia C. I. Turipana-AGROSAVIA, Km. 13, Vía Montería-Cereté 230558, Colombia
| | - Carlo Pazzani
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), 00134 Roma, Italy
| | - Maria Scrascia
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Domenico Valenzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
2
|
Gao Z, Ju X, Yang M, Xue R, Li Q, Fu K, Guo W, Tong L, Song Y, Zeng R, Wang J. Colorado potato beetle exploits frass-associated bacteria to suppress defense responses in potato plants. PEST MANAGEMENT SCIENCE 2022; 78:3778-3787. [PMID: 35102699 DOI: 10.1002/ps.6823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorado potato beetle (CPB; Leptinotarsa decemlineata) is a destructive quarantine pest that develops broad physiological adaptations to potato plants. During feeding, CPB deposits a copious amount of wet frass onto the surface of leaves and stems that remains in place for long periods. Insect behaviors such as feeding, crawling and oviposition are able to mediate plant defenses. However, the specific role of CPB defecation-associated cues in manipulating plant defenses remains unclear. RESULTS CPB larval frass significantly suppressed potato polyphenol oxidase activity and enhanced larval growth on treated potato plants. The incorporation of antibiotics into larval frass triggered higher jasmonic acid (JA)-regulated defense responses in potato plants compared with antibiotic-free frass. Four bacterial symbionts belonging to the genera Acinetobacter, Citrobacter, Enterobacter and Pantoea were isolated from larval frass and suppressed plant defenses. After reinoculation of these bacteria into axenic larvae, Acinetobacter and Citrobacter were found to be highly abundant in the frass, whereas Enterobacter and Pantoea were less abundant probably due to the negative effect of potato steroidal glycoalkaloids (SGA) such as α-solanine. Furthermore, direct application of Acinetobacter and Citrobacter to wounded potato plants significantly inhibited the expression of genes associated with the JA-mediated defense signaling pathway and SGA biosynthesis. CONCLUSION Our findings demonstrate that CPB exploits frass-associated bacteria as a deceptive strategy of plant defense suppression, adding an interesting dimension to our understanding of how CPB successfully specializes on potato plants. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhou Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyang Ju
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Department of Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaiyun Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wenchao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Lu Tong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Alshammari N, Alazmi M, Alanazi NA, Sulieman AME, Veettil VN, Ponce-Alonso M. A Comparative Study on the Microbial Communities of Rhynchophorus ferrugineus (Red Palm Weevil)-Infected and Healthy Palm Trees. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractSeveral studies have investigated palm trees’ microbiota infected with red palm weevil (RPW) (Rhynchophorus ferrugineus), the major pest of palm trees. This study compared the microbial communities of infected and uninfected palm trees in the Hail region, Northern Saudi Arabia, determined by high-throughput 16S rRNA gene sequencing by Illumina MiSeq. The results indicated that taxonomic diversity variation was higher for infected tree trunk than the healthy tree trunk. Soil samples from the vicinity of healthy and infected trees did not have a significant variation in bacterial diversity. Myxococcota, Acidobacteriota, and Firmicutes were the dominant phyla in RPW-infected tree trunk, and Pseudomonadaceae was the most prominent family. This study is the first report on the characterization of RPW-infected and healthy palm trees’ microbiome.
Collapse
|
4
|
Ji T, Xu Z, Jia Q, Wang G, Hou Y. Non-palm Plant Volatile α-Pinene Is Detected by Antenna-Biased Expressed Odorant Receptor 6 in the Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Front Physiol 2021; 12:701545. [PMID: 34434116 PMCID: PMC8381602 DOI: 10.3389/fphys.2021.701545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
The majority of insects rely on a highly complex and precise olfactory system to detect various volatile organic compounds released by host and non-host plants in environments. The odorant receptors (ORs) are considered to play an important role in odor recognition and the molecular basis of ORs, particularly in coleopterans they are relatively poorly understood. The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), is one of the most destructive pests of the global palm industry. Although feeding and egg oviposition behaviors of RPW can be repelled by some non-palm plant volatiles, such as α-pinene, geraniol, or 1-octen-3-ol, there is limited understanding of how RPW recognizes the non-host plant volatiles. In this study, three candidate RferOrs were identified from the Rfer-specific clade, and the tissue expression analysis used was mainly expressed in the antennae of both sexes. Functional characterization of RferOr6, RferOr40, and RferOr87 was analyzed by using the Xenopus oocyte expression system, and the results indicated that RferOr6/RferOrco was narrowly tuned to α-pinene. The behavioral experiment showed that α-pinene at the concentrations of 10 and 100 μg/μl can cause a significantly repelled behavioral response of RPW. In conclusion, this study reveals that RferOr6 is an antenna-biased expressed OR used by RPW to detect the volatile compound α-pinene in non-palm plants, and our results provide a foundation for further in vivo functional studies of Or6 in RPW, including in vivo knockout/knockdown and feeding/ovipositing behavioral studies of RPW and further pest control.
Collapse
Affiliation(s)
- Tianliang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchen Jia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Liu QX, Su ZP, Liu HH, Lu SP, Ma B, Zhao Y, Hou YM, Shi ZH. The Effect of Gut Bacteria on the Physiology of Red Palm Weevil, Rhynchophorus ferrugineus Olivier and Their Potential for the Control of This Pest. INSECTS 2021; 12:insects12070594. [PMID: 34208921 PMCID: PMC8307761 DOI: 10.3390/insects12070594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022]
Abstract
Red Palm Weevil (RPW), Rhynchophorus ferrugineus Olivier, is a notorious pest, which infests palm trees and has caused great economic losses worldwide. At present, insecticide applications are still the main way to control this pest. However, pesticide resistance has been detected in the field populations of RPW. Thus, future management strategies based on the novel association biological control need be developed. Recent studies have shown that the intestinal tract of RPW is often colonized by multiple microbial species as mammals and model insects, and gut bacteria have been found to promote the growth, development and immune activity of RPW larvae by modulating nutrient metabolism. Furthermore, two peptidoglycan recognition proteins (PGRPs), PGRP-LB and PGRP-S1, can act as the negative regulators to modulate the intestinal immunity to maintain the homeostasis of gut bacteria in RPW larvae. Here, we summarized the current knowledge on the gut bacterial composition of RPW and their impact on the physiological traits of RPW larvae. In contrast with metazoans, it is much easier to make genetic engineered microbes to produce some active molecules against pests. From this perspective, because of the profound effects of gut bacteria on host phenotypes, it is promising to dissect the molecular mechanisms behind their effect on host physiology and facilitate the development of microbial resource-based management methods for pest control.
Collapse
Affiliation(s)
- Qian-Xia Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; (Q.-X.L.); (Z.-P.S.); (H.-H.L.); (S.-P.L.); (B.M.); (Y.Z.); (Y.-M.H.)
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Ping Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; (Q.-X.L.); (Z.-P.S.); (H.-H.L.); (S.-P.L.); (B.M.); (Y.Z.); (Y.-M.H.)
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui-Hui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; (Q.-X.L.); (Z.-P.S.); (H.-H.L.); (S.-P.L.); (B.M.); (Y.Z.); (Y.-M.H.)
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sheng-Ping Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; (Q.-X.L.); (Z.-P.S.); (H.-H.L.); (S.-P.L.); (B.M.); (Y.Z.); (Y.-M.H.)
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bing Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; (Q.-X.L.); (Z.-P.S.); (H.-H.L.); (S.-P.L.); (B.M.); (Y.Z.); (Y.-M.H.)
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; (Q.-X.L.); (Z.-P.S.); (H.-H.L.); (S.-P.L.); (B.M.); (Y.Z.); (Y.-M.H.)
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; (Q.-X.L.); (Z.-P.S.); (H.-H.L.); (S.-P.L.); (B.M.); (Y.Z.); (Y.-M.H.)
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhang-Hong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; (Q.-X.L.); (Z.-P.S.); (H.-H.L.); (S.-P.L.); (B.M.); (Y.Z.); (Y.-M.H.)
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
6
|
Yang H, Xu D, Zhuo Z, Hu J, Lu B. Transcriptome and gene expression analysis of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) during developmental stages. PeerJ 2020; 8:e10223. [PMID: 33194414 PMCID: PMC7643551 DOI: 10.7717/peerj.10223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/29/2020] [Indexed: 01/15/2023] Open
Abstract
Background Red palm weevil, Rhynchophorus ferrugineus Olivier, is one of the most destructive pests harming palm trees. However, genomic resources for R. ferrugineus are still lacking, limiting the ability to discover molecular and genetic means of pest control. Methods In this study, PacBio Iso-Seq and Illumina RNA-seq were used to generate transcriptome from three developmental stages of R. ferrugineus (pupa, 7th-instar larva, adult) to increase the understanding of the life cycle and molecular characteristics of the pest. Results Sequencing generated 625,983,256 clean reads, from which 63,801 full-length transcripts were assembled with N50 of 3,547 bp. Expression analyses revealed 8,583 differentially expressed genes (DEGs). Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these DEGs were mainly related to the peroxisome pathway which associated with metabolic pathways, material transportation and organ tissue formation. In summary, this work provides a valuable basis for further research on the growth and development, gene expression and gene prediction, and pest control of R. ferrugineus.
Collapse
Affiliation(s)
- Hongjun Yang
- College of Life Science, China West Normal University, Nanchong, Sichuan, China.,Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan,China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong, Sichuan, China.,Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan,China.,Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiameng Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan,China
| | - Baoqian Lu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture China, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
7
|
Liao Q, Guo Y, Zhou J, Wan Y, Carballar-Lejarazú R, Sheng L, Zhang F, Wu S, Zou S. Characterization of Bacterial Communities Associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) and its Host Phoenix sylvestris. Curr Microbiol 2020; 77:3321-3329. [PMID: 32939641 DOI: 10.1007/s00284-020-02196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
This study measured the changes of microorganisms in the midgut and habitat niche of Rhynchophorus ferrugineus Olivier, an invasive quarantine pest, by Illumina sequencing. The bacterial diversity in the R. ferrugineus larvae midgut and their habitat niche was compared to the uninfected P. sylvestris. The Proteobacteria and Firmicutes occupied a dominant position in the R. ferrugineus midgut and infected P. sylvestris, while in the uninfected P. sylvestris the predominant bacterial phylum was the Cyanobacteria. Enterobacter, Dysgonomonas, and Entomoplasma were the dominant bacterial genera in R. ferrugineus midgut and also within the infected trees and uninfected trees with low relative abundance. These bacteria could be exploited as the biopesticide vector to control R. ferrugineus population. Besides, Sphingobacterium, Shinella, and Rhodobacter genera had the same distribution pattern in the infected and uninfected P. sylvestris, and these bacteria were not found in the midgut of R. ferrugineus. Interestingly, Paludibacter and Parabacteroides were only distributed in the wood fiber of the infected P. sylvestris, which could be used as potential microbial markers to detect if the palm plants are damaged by the R. ferrugineus. The results of this study will be beneficial to the development of control strategies for R. ferrugineus.
Collapse
Affiliation(s)
- Qiliao Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Jianshuang Zhou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yi Wan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Liangjing Sheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
| |
Collapse
|
8
|
Delhoumi M, Catania V, Zaabar W, Tolone M, Quatrini P, Achouri MS. The gut microbiota structure of the terrestrial isopod Porcellionides pruinosus (Isopoda: Oniscidea). EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1781269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. Delhoumi
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Tunisia
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - V. Catania
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - W. Zaabar
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Tunisia
| | - M. Tolone
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
| | - P. Quatrini
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - M. S. Achouri
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Tunisia
| |
Collapse
|
9
|
Zhang H, Bai J, Huang S, Liu H, Lin J, Hou Y. Neuropeptides and G-Protein Coupled Receptors (GPCRs) in the Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front Physiol 2020; 11:159. [PMID: 32184735 PMCID: PMC7058690 DOI: 10.3389/fphys.2020.00159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
The red palm weevil Rhynchophorus ferrugineus is a devastating, invasive pest that causes serious damages to palm trees, and its invasiveness depends on its strong ability of physiological and behavioral adaptability. Neuropeptides and their receptors regulate physiology and behavior of insects, but these protein partners have not been identified from many insects. Here, we systematically identified neuropeptide precursors and the corresponding receptors in the red palm weevil, and analyzed their tissue expression patterns under control conditions and after pathogen infection. A total of 43 putative neuropeptide precursors were identified, including an extra myosuppressin peptide was identified with amino acid substitutions at two conserved sites. Forty-four putative neuropeptide receptors belonging to three classes were also identified, in which neuropeptide F receptors and insulin receptors were expanded compared to those in other insects. Based on qRT-PCR analyses, genes coding for several neuropeptide precursors and receptors were highly expressed in tissues other than the nervous system, suggesting that these neuropeptides and receptors play other roles in addition to neuro-reception. Some of the neuropeptides and receptors, like the tachykinin-related peptide and receptor, were significantly induced by pathogen infection, especially sensitive to Bacillus thuringiensis and Metarhizium anisopliae. Systemic identification and initial characterization of neuropeptides and their receptors in the red palm weevil provide a framework for further studies to reveal the functions of these ligand- and receptor-couples in regulating physiology, behavior, and immunity in this important insect pest species.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Juan Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Shuning Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Huihui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
10
|
Meng F, Bar-Shmuel N, Shavit R, Behar A, Segoli M. Gut bacteria of weevils developing on plant roots under extreme desert conditions. BMC Microbiol 2019; 19:311. [PMID: 31888482 PMCID: PMC6937996 DOI: 10.1186/s12866-019-1690-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many phytophagous insects, whose diet is generally nitrogen-poor, rely on gut bacteria to compensate for nutritional deficits. Accordingly, we hypothesized that insects in desert environments may evolve associations with gut bacteria to adapt to the extremely low nutrient availability. For this, we conducted a systematic survey of bacterial communities in the guts of weevils developing inside mud chambers affixed to plant roots in the Negev Desert of Israel, based on 16S rRNA gene amplicon sequencing. RESULTS Our analyses revealed that gut bacterial communities in weevil larvae were similar across a wide geographical range, but differed significantly from those of the mud chambers and of the surrounding soils. Nevertheless, a high proportion of bacteria (including all of the core bacteria) found in the weevils were also detected in the mud chambers and soils at low relative abundances. The genus Citrobacter (of the Enterobacteriaceae family) was the predominant group in the guts of all individual weevils. The relative abundance of Citrobacter significantly decreased at the pupal and adult stages, while bacterial diversity increased. A mini literature survey revealed that members of the genus Citrobacter are associated with nitrogen fixation, recycling of uric acid nitrogen, and cellulose degradation in different insects. CONCLUSIONS The results suggest that although weevils could potentially acquire their gut bacteria from the soil, weevil host internal factors, rather than external environmental factors, were more important in shaping their gut bacterial communities, and suggest a major role for Citrobacter in weevil nutrition in this challenging environment. This study highlights the potential involvement of gut bacteria in the adaptation of insects to nutritional deficiencies under extreme desert conditions.
Collapse
Affiliation(s)
- Fengqun Meng
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| | - Nitsan Bar-Shmuel
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Adi Behar
- Division of Parasitology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Michal Segoli
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
11
|
Muhammad A, Habineza P, Hou Y, Shi Z. Preparation of Red Palm Weevil Rhynchophorus Ferrugineus (Olivier) (Coleoptera: Dryophthoridae) Germ-free Larvae for Host-gut Microbes Interaction Studies. Bio Protoc 2019; 9:e3456. [PMID: 33654951 DOI: 10.21769/bioprotoc.3456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 11/02/2022] Open
Abstract
Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, is a devastating pest of palm trees worldwide. RPW gut is colonized by diverse bacterial species which profoundly influence host development and nutritional metabolism. However, the molecular mechanisms behind the interactions between RPW and its gut microbiota remain mostly unknown. Antibiotics are usually employed to remove gut bacteria to investigate the impact of gut bacteria on insect fitness. However, administration of antibiotics cannot thoroughly remove gut bacteria for most insect species. Therefore, establishing germfree (GF) organisms is a powerful way to reveal the mutual interactions between gut bacteria and their insect hosts. Here, we describe a protocol to generate and maintain RPW GF larvae, being completely devoid of gut bacteria in laboratory. RPW GF larvae were established from the dechorionated fresh eggs which were reared on the sterilized artificial food under axenic conditions. The establishment of GF larvae set a solid foundation to deeply elucidate the molecular mechanisms behind the interactions between RPW and its gut microbiota.
Collapse
Affiliation(s)
- Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Prosper Habineza
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
12
|
Muhammad A, Habineza P, Ji T, Hou Y, Shi Z. Intestinal Microbiota Confer Protection by Priming the Immune System of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front Physiol 2019; 10:1303. [PMID: 31681013 PMCID: PMC6805723 DOI: 10.3389/fphys.2019.01303] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
The immune system of animals, including insects, is the vital factor to maintain the symbiotic interactions between animals and their associated microbes. However, the effects of gut microbiota on insect immunity remain mostly elusive. Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, is a destructive pest of palm trees worldwide, which has forged alliances with its gut microbiota. Here, we found that the aposymbiotic insects succumbed at a significantly faster rate than conventionally reared (CR) ones upon bacterial infection. Physiological assays confirmed that CR insects had stronger antimicrobial activity and higher phenoloxidase activity in contrast to germfree (GF) ones, indicating that the systemic immune responses of GF individuals were compromised markedly. Interestingly, under the bacterial challenge conditions, the reassociation of gut microbiota with GF insects could enhance their survival rate by rescuing their immunocompetence. Furthermore, comparative transcriptome analysis uncovered that 35 immune-related genes, including pathogen recognition receptors, effectors and immune signaling pathway, were significantly downregulated in GF insects as compared to CR ones. Collectively, our findings corrobate that intestinal commensal bacteria have profound immunostimulatory effects on RPW larvae. Therefore, knowledge on the effects of gut microbiota on RPW immune defenses may contribute to of set up efficient control strategies of this pest.
Collapse
Affiliation(s)
- Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Prosper Habineza
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianliang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Xiao R, Wang X, Xie E, Ji T, Li X, Muhammad A, Yin X, Hou Y, Shi Z. An IMD-like pathway mediates the intestinal immunity to modulate the homeostasis of gut microbiota in Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:20-27. [PMID: 30914318 DOI: 10.1016/j.dci.2019.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Most animals have established the mutualistic interactions with their intestinal microbes which provide multiple benefits to their host physiology. However, the mechanisms behind hosts determine the load and composition of gut microbiota are still poorly understood outside dipteran insects. Here, the gene, encoding the NF-κB-like transcription factor Relish, being designated as RfRelish, was identified and analyzed in red palm weevil (RPW), Rhynchophorus ferrugineus Olivier. We revealed that the abundance of RfRelish transcripts in the fat body, hemolymph and gut are significantly higher than that in non-immunity-related tissues, and its expression level can be markedly induced by bacterial challenges. When RfRelish was silenced, the ability of individuals to clear the pathogenic bacteria in body cavity and gut was significantly compromised, suggesting that both the systemic and gut local immunity were impaired dramatically by RfRelish knockdown. Additionally, the silenced insects exhibited increased gut bacterial load, and the relative abundance of some gut bacteria was changed as compared to controls. Collectively, our findings demonstrate that the IMD-like pathway restricts the proliferation of gut bacteria and shapes the commensal community structure in the intestine of R. ferrugineus by mediating the secretion of antimicrobial peptides. We provide a striking example on how an insect pest maintains the homeostasis of gut microbiota via a conserved immune pathway without compromising the advantages of the mutualistic relationships.
Collapse
Affiliation(s)
- Rong Xiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinghong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Erming Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianliang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiongwei Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianyuan Yin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
14
|
Habineza P, Muhammad A, Ji T, Xiao R, Yin X, Hou Y, Shi Z. The Promoting Effect of Gut Microbiota on Growth and Development of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by Modulating Its Nutritional Metabolism. Front Microbiol 2019; 10:1212. [PMID: 31191510 PMCID: PMC6549218 DOI: 10.3389/fmicb.2019.01212] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/14/2019] [Indexed: 01/14/2023] Open
Abstract
Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, is a destructive pest for palm trees worldwide. Recent studies have shown that RPW gut is colonized by microbes and alterations in gut microbiota can significantly modify its hemolymph nutrition content. However, the exact effects of gut microbiota on RPW phenotype and the underlying mechanisms remain elusive. Here germ-free (GF) RPW larvae were generated from dechorionated eggs which were reared on sterilized artificial food under axenic conditions. Compared with controls, the larval development of GF RPW individuals was markedly depressed and their body mass was reduced as well. Furthermore, the content of hemolymph protein, glucose and triglyceride were dropped significantly in GF RPW larvae. Interestingly, introducing gut microbiota into GF individuals could significantly increase the levels of the three nutrition indices. Additionally, it has also been demonstrated that RPW larvae monoassociated with Lactococcus lactis exhibited the same level of protein content with the CR (conventionally reared) insects while feeding Enterobacter cloacae to GF larvae increased their hemolymph triglyceride and glucose content markedly. Consequently, our findings suggest that gut microbiota profoundly affect the development of this pest by regulating its nutrition metabolism and different gut bacterial species show distinct impact on host physiology. Taken together, the establishment of GF and gnotobiotic RPW larvae will advance the elucidation of molecular mechanisms behind the interactions between RPW and its gut microbiota.
Collapse
Affiliation(s)
- Prosper Habineza
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Tianliang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Rong Xiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Xianyuan Yin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
15
|
Dawadi B, Wang X, Xiao R, Muhammad A, Hou Y, Shi Z. PGRP-LB homolog acts as a negative modulator of immunity in maintaining the gut-microbe symbiosis of red palm weevil, Rhynchophorus ferrugineus Olivier. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:65-77. [PMID: 29715482 DOI: 10.1016/j.dci.2018.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 05/08/2023]
Abstract
Many notorious insect pests live in the symbiotic associations with gut microbiota. However, the mechanisms underlying how they host their gut microbiota are unknown. Most gut bacteria can release peptidoglycan (PGN) which is an important antigen to activate the immune response. Therefore, how to keep the appropriate gut immune intensity to host commensals while to efficiently remove enteropathogens is vital for insect health. This study is aimed at elucidating the roles of an amidase PGRP, Rf PGRP-LB, in maintaining the gut-microbe symbiosis of Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier. RfPGRP-LB is a secreted protein containing a typical PGRP domain. The existence of five conservative amino acid residues, being required for amidase activity, showed that RfPGRP-LB is a catalytic protein. Expression analysis revealed abundance of RfPGRP-LB transcripts in gut was dramatically higher than those in other tissues. RfPGRP-LB could be significantly induced against the infection of Escherichia coli. In vitro assays revealed that rRfPGRP-LB impaired the growth of E. coli and agglutinated bacteria cells obviously, suggesting RfPGRP-LB is a pathogen recognition receptor and bactericidal molecule. RfPGRP-LB knockdown reduced the persistence of E. coli in gut and load of indigenous gut microbiota significantly. Furthermore, the community structure of indigenous gut microbiota was also intensively altered by RfPGRP-LB silence. Higher levels of the antimicrobial peptide, attacin, were detected in guts of RfPGRP-LB silenced larvae than controls. Collectively, RfPGRP-LB plays multiple roles in modulating the homeostasis of RPW gut microbiota not only by acting as a negative regulator of mucosal immunity through PGN degradation but also as a bactericidal effector to prevent overgrowth of commensals and persistence of noncommensals.
Collapse
Affiliation(s)
- Bishnu Dawadi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinghong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rong Xiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
16
|
Abstract
Phoenix canariensis Chabaud (Canary Palm) is one of the most distinctive landscape elements of several coastal urban centers in Italy. However, over the past few years, international trade has increased the risk of the introduction of Rhynchophorus ferrugineus (Red Palm Weevil) in the country, causing the death of numerous plants. In this work we assessed the damage caused by the insect to Canary Palm in the City of Bari, Apulia Region, furnishing useful information to decision makers and communities for proper preservation measures in favor of this important urban-green resource. The findings shed light on effective and efficient spending strategies of public funds for urban green inside areas affected by the Red Palm Weevil, also based on cost-benefit approaches.
Collapse
|
17
|
Muhammad A, Fang Y, Hou Y, Shi Z. The Gut Entomotype of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) and Their Effect on Host Nutrition Metabolism. Front Microbiol 2017; 8:2291. [PMID: 29209298 PMCID: PMC5702300 DOI: 10.3389/fmicb.2017.02291] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
For invasive insects, the potential roles of gut microbiota in exploiting new food resources and spreading remain elusive. Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, is an invasive destructive pest which feeds on nutrient-poor tender tissues and has caused extensive mortality of palm trees. The microbes associated with insects can improve their nutrition assimilation. However, experimental evidence on the interactions between RPW and its gut microbiota is still absent. The aim of this study is to determine the dynamics changes and the bacterial entomotype in the RPW gut and its potential physiological roles. Here, we confirmed RPW harbors a complex gut microbiota mainly constituted by bacteria in the families Enterobacteriaceae, Lactobacillaceae, Entomoplasmataceae, and Streptococcaceae. RPW gut microbiota exhibited a highly stable microbial community with low variance in abundance across different life stages and host plants. Furthermore, the abundance of Enterobacteriaceae was markedly increased but that of Acetobacteraceae was reduced significantly after administration of antibiotics. Although no significant effects were found on the body weight gain of RPW larvae, these alterations dramatically decreased the concentration of hemolymph protein and glucose while that of hemolymph triglyceride increased. In the gut of wild-caught RPW larvae, seven bacterial species in the genera Klebsiella, Serratia, Enterobacter, and Citrobacter were shown to have an ability to degrade cellulose. Together, RPW accommodate a stable gut microbiota which can degrade plant polysaccharides and confer their host optimal adaptation to its environment by modulating its metabolism.
Collapse
Affiliation(s)
- Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Ya Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fujian, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
18
|
Riccobono G, Pastorella G, Vicari F, D'Angelo A, Galia A, Quatrini P, Scialdone O. Abatement of AO7 in a divided microbial fuel cells by sequential cathodic and anodic treatment powered by different microorganisms. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Xu L, Lu M, Xu D, Chen L, Sun J. Sexual variation of bacterial microbiota of Dendroctonus valens guts and frass in relation to verbenone production. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:110-117. [PMID: 27677696 DOI: 10.1016/j.jinsphys.2016.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Gut microbiota are widely involved in insect biology, and many factors can influence the microbiota in guts and frass. Dendroctonus valens is a very destructive forest pest in China, and the mass-attacking behavior is regulated by several semiochemicals, including verbenone, a multifunctional pheromone. The beetle harbors a variety of bacteria in its guts and frass and some of them are capable of verbenone production. D. valens is characterized by monogamy and female-initiated attacking behavior. Whether the bacterial communities fluctuate according to sex, and whether the variation influences the verbenone production, remains to be determined. In this study, the bacterial microbiota in D. valens guts and frass were analyzed, and verbenone production by their crude bacterial suspensions was compared in vitro. Bacterial diversity in female frass is more abundant compared to male frass, and the percentages and total amounts of main genera like Lactococcus and Pseudomonas in female frass are significantly higher than those in male frass. The verbenone produced by the female frass suspension is significantly higher than male frass. This study presents a comprehensive comparison of bacterial communities in guts and frass between both sexes of D. valens, highlighting the potential significance of female frass microbiota in verbenone production.
Collapse
Affiliation(s)
- Letian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Dandan Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
20
|
Scrascia M, Pazzani C, Valentini F, Oliva M, Russo V, D'Addabbo P, Porcelli F. Identification of pigmented Serratia marcescens symbiotically associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae). Microbiologyopen 2016; 5:883-890. [PMID: 27250586 PMCID: PMC5061723 DOI: 10.1002/mbo3.377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 11/08/2022] Open
Abstract
To characterize red pigment‐producing bacteria (RPPB) regularly released during oviposition by red palm weevil (RPW), RPPB were recovered from eggs deposited in apples supplied as substrate for oviposition. The presence of RPPB was also detected from gut, the reproductive apparatus of dissected adult and virgin insects and from pupal cases collected within infested palms. RPPB were also identified all along the tissue of these palms. Analysis of the 16S rDNA, gyrB, rpoB, recA, and groEL sequences assigned RPPB to the species Serratia marcescens. RPPB exhibited an antimicrobial activity assessed by the agar well diffusion method against a number of gram‐positive and gram‐negative bacteria. In this study, we first report the identification of a red pigment‐producing S. marcescens as extracellular symbiont of RPW. Route of transmission, detection within different organs, and a wide spread along the infested palm tissue, suggested S. marcescens is present as extracellular symbiont in different developmental stages of the RPW. Additionally, the antimicrobial activity exhibited versus Bacillus spp., Paenibacillus spp., and Lysinibacillus spp., reported as insect pathogens and potential candidates for biocontrol agents, could ascribe for S. marcescens a potential protective role.
Collapse
Affiliation(s)
- Maria Scrascia
- Department of Biology, University of Bari "Aldo Moro", Via E. Orobona 4, 70125, Bari, Italy
| | - Carlo Pazzani
- Department of Biology, University of Bari "Aldo Moro", Via E. Orobona 4, 70125, Bari, Italy.
| | - Franco Valentini
- Mediterranean Agronomic Institute of Bari/International Centre for Advanced Mediterranean Agronomic Studies, Via Ceglie 9, 70010, Valenzano (BA), Italy
| | - Marta Oliva
- Department of Biology, University of Bari "Aldo Moro", Via E. Orobona 4, 70125, Bari, Italy
| | - Valentina Russo
- Department of Biology, University of Bari "Aldo Moro", Via E. Orobona 4, 70125, Bari, Italy
| | - Pietro D'Addabbo
- Department of Biology, University of Bari "Aldo Moro", Via E. Orobona 4, 70125, Bari, Italy
| | - Francesco Porcelli
- Department of Soil Sciences, of Plants and Food, University of Bari "Aldo Moro", Via G. Amendola, 165/A 70126, Bari, Italy
| |
Collapse
|
21
|
Giovino A, Martinelli F, Saia S. Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:388-96. [PMID: 26399847 DOI: 10.1111/jipb.12430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/21/2015] [Indexed: 05/24/2023]
Abstract
The red palm weevil (RPW; Rhynchophorus ferrugineus) is spreading worldwide and severely harming many palm species. However, most studies on RPW focused on insect biology, and little information is available about the plant response to the attack. In the present experiment, we used metabolomics to study the alteration of the leaf metabolome of Phoenix canariensis at initial (1st stage) or advanced (2nd stage) attack by RPW compared with healthy (unattacked) plants. The leaf metabolome significantly varied among treatments. At the 1st stage of attack, plants showed a reprogramming of carbohydrate and organic acid metabolism; in contrast, peptides and lipid metabolic pathways underwent more changes during the 2nd than 1st stage of attack. Enrichment metabolomics analysis indicated that RPW attack mostly affected a particular group of compounds rather than rearranging plant metabolic pathways. Some compounds selectively affected during the 1st rather than 2nd stage (e.g. phenylalanine; tryptophan; cellobiose; xylose; quinate; xylonite; idonate; and iso-threonate; cellobiotol and arbutine) are upstream events in the phenylpropanoid, terpenoid and alkaloid biosynthesis. These compounds could be designated as potential markers of initial RPW attack. However, further investigation is needed to determine efficient early screening methods of RPW attack based on the concentrations of these molecules.
Collapse
Affiliation(s)
- Antonio Giovino
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia agraria (CREA), Unità di ricerca per il recupero e la valorizzazione delle Specie Floricole Mediterranee (CREA-SFM), 90011, Bagheria (PA), Italy
| | - Federico Martinelli
- Dipartimento di Scienze Agrarie e Forestali (SAF), University of Palermo, Viale delle Scienze, Edif. 4, 90128, Palermo, Italy
- Istituto Euromediterraneo di Scienza e Tecnologia (IEMEST), Via E. Amari 123, 90139, Palermo, Italy
| | - Sergio Saia
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia agraria (CREA), Unità di ricerca per il recupero e la valorizzazione delle Specie Floricole Mediterranee (CREA-SFM), 90011, Bagheria (PA), Italy
| |
Collapse
|
22
|
Montagna M, Chouaia B, Mazza G, Prosdocimi EM, Crotti E, Mereghetti V, Vacchini V, Giorgi A, De Biase A, Longo S, Cervo R, Lozzia GC, Alma A, Bandi C, Daffonchio D. Effects of the diet on the microbiota of the red palm weevil (Coleoptera: Dryophthoridae). PLoS One 2015; 10:e0117439. [PMID: 25635833 PMCID: PMC4311986 DOI: 10.1371/journal.pone.0117439] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/23/2014] [Indexed: 11/18/2022] Open
Abstract
Rhynchophorus ferrugineus, also known as the red palm weevil, is regarded as the major pest of palm trees. Although studies of the microbiota associated with this species have been performed in recent years, little attention has been dedicated to the influence of the diet in shaping the host bacterial community. Here, we investigated the influence of food sources (i.e. palm tissues vs apple based substrate) on the microbial diversity associated with RPW, which was compared with the microbiota associated with wild individuals of the sister species Rhynchophorus vulneratus. The bacterial characterization was performed using a culture independent approach, i.e. the 16S rRNA pyrotag, and a culture dependent approach for a subset of the samples, in order to obtain bacterial isolates from RPW tissues. The bacterial community appeared significantly influenced by diet. Proteobacteria resulted to be the most abundant clade and was present in all the specimens of the three examined weevil groups. Within Proteobacteria, Enterobacteriaceae were identified in all the organs analysed, including hemolymph and reproductive organs. The apple-fed RPWs and the wild R. vulneratus showed a second dominant taxon within Firmicutes that was scarcely present in the microbiota associated with palm-fed RPWs. A comparative analysis on the bacteria associated with the palm tissues highlighted that 12 bacterial genera out of the 13 identified in the plant tissues were also present in weevils, thus indicating that palm tissues may present a source for bacterial acquisition.
Collapse
Affiliation(s)
- Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| | - Bessem Chouaia
- Dipartimento di Scienze per gli Alimenti, la Nutrizione, l’Ambiente, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Mazza
- Consiglio per la ricerca e la sperimentazione in agricoltura, Research Centre for Agrobiology and Pedology, Cascine del Riccio, Italy
| | - Erica Maria Prosdocimi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione, l’Ambiente, Università degli Studi di Milano, Milano, Italy
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione, l’Ambiente, Università degli Studi di Milano, Milano, Italy
| | - Valeria Mereghetti
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy
| | - Violetta Vacchini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione, l’Ambiente, Università degli Studi di Milano, Milano, Italy
| | - Annamaria Giorgi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Alessio De Biase
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Università degli Studi di Roma “La Sapienza”, Roma, Italy
| | - Santi Longo
- Dipartimento di Gestione dei Sistemi Agroalimentari e Ambientali, Università di Catania, Catania, Italy
| | - Rita Cervo
- Dipartimento di Biologia, Università degli Studi di Firenze, Firenze, Italy
| | - Giuseppe Carlo Lozzia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Italy
| | - Claudio Bandi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy
| | - Daniele Daffonchio
- Dipartimento di Scienze per gli Alimenti, la Nutrizione, l’Ambiente, Università degli Studi di Milano, Milano, Italy
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Characterization of cellulolytic activity in the gut of the terrestrial land slug Arion ater: Biochemical identification of targets for intensive study. Comp Biochem Physiol B Biochem Mol Biol 2014; 177-178:29-35. [PMID: 25150536 DOI: 10.1016/j.cbpb.2014.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/13/2014] [Accepted: 08/06/2014] [Indexed: 11/23/2022]
Abstract
The level of cellulolytic activity in different areas of the gut of the terrestrial slug Arion ater was assayed at different temperatures and pH values. To do this, crude gut proteins were isolated and assayed using modified dinitrosalicylic acid reducing sugar assay. Crude protein samples were also separated and cellulolytic activity identified using in gel CMC zymography and esculin hydrate activity gel assays. pH and temperature profiling revealed optimum cellulolytic activity between pH5.0 and 6.0 for different gut regions and retention of up to 90% of activity at temperatures up to 50°C. Zymograms and activity gels revealed multiple endoglucanase and β-glucosidase enzymes. To further investigate the source of this cellulolytic activity bacterial isolates from the gut were tested for endoglucanase and β-glucosidase activity using growth plate assays. 12 cellulolytic microbes were identified using 16S rDNA gene sequencing. These include members of the genera Buttiauxella, Enterobacter, Citrobacter, Serratia and Klebsiella. Gut metagenomic DNA was then subjected to PCR, targeting a 400bp region of the 16SrDNA gene which was subsequently separated and individuals identified using DGGE. This identified members of the genera Citrobacter, Serratia, Pectobacterium, Acinetobacter, Mycoplasma, Pantoea and Erwinia. In summary, multiple glycoside hydrolase enzymes active over a broad range of temperature and pH values in a relatively under studied organism were detected, indicating that the gut of A. ater is a viable target for intensive study to identify novel carbohydrate active enzymes that may be used in the biofuel industry.
Collapse
|
24
|
Vacas S, Abad-Payá M, Primo J, Navarro-Llopis V. Identification of pheromone synergists for Rhynchophorus ferrugineus trapping systems from Phoenix canariensis palm volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6053-6064. [PMID: 24930773 DOI: 10.1021/jf502663y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Trapping systems for the red palm weevil, Rhynchophorus ferrugineus Olivier, rely on the use of natural plant odor sources to boost the attractiveness of the aggregation pheromone. The identification of the key odorants involved in attraction is essential in the development of a synthetic pheromone synergist to replace the nonstandardized use of plant material in traps. Canary Islands date palms (Phoenix canariensis) have become preferred hosts for R. ferrugineus in Europe; thus, the volatile profile of different P. canariensis plant materials, including healthy and infested tissues, is investigated in the present work by means of solid phase microextraction (SPME-GC-MS), aimed to identify pheromone synergists. The electroantennography (EAG) response of the compounds identified was recorded, as well as the preliminary field response of several EAG-active compounds. The so-called "palm esters" (ethyl acetate, ethyl propionate, ethyl butyrate, and propyl butyrate) elicit the strongest EAG responses but performed poorly in the field. Mixtures of esters and alcohols give evidence of better performance, but release rates need further optimization.
Collapse
Affiliation(s)
- Sandra Vacas
- Centro de Ecología Quı́mica Agrícola, Instituto Agroforestal del Mediterráneo, Universitat Politècnica de València, edificio 6C, 5a planta, Cmno. de Vera s/n, 46022 Valencia, Spain
| | | | | | | |
Collapse
|
25
|
Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol 2014; 14:136. [PMID: 24884866 PMCID: PMC4060583 DOI: 10.1186/1471-2180-14-136] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/25/2014] [Indexed: 01/21/2023] Open
Abstract
Background The red palm weevil (RPW) Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) is one of the major pests of palms. The larvae bore into the palm trunk and feed on the palm tender tissues and sap, leading the host tree to death. The gut microbiota of insects plays a remarkable role in the host life and understanding the relationship dynamics between insects and their microbiota may improve the biological control of insect pests. The purpose of this study was to analyse the diversity of the gut microbiota of field-caught RPW larvae sampled in Sicily (Italy). Results The 16S rRNA gene-based Temporal Thermal Gradient Gel Electrophoresis (TTGE) of the gut microbiota of RPW field-trapped larvae revealed low bacterial diversity and stability of the community over seasons and among pools of larvae from different host trees. Pyrosequencing of the 16S rRNA gene V3 region confirmed low complexity and assigned 98% of the 75,564 reads to only three phyla: Proteobacteria (64.7%) Bacteroidetes (23.6%) and Firmicutes (9.6%) and three main families [Enterobacteriaceae (61.5%), Porphyromonadaceae (22.1%) and Streptococcaceae (8.9%)]. More than half of the reads could be classified at the genus level and eight bacterial genera were detected in the larval RPW gut at an abundance ≥1%: Dysgonomonas (21.8%), Lactococcus (8.9%), Salmonella (6.8%), Enterobacter (3.8%), Budvicia (2.8%), Entomoplasma (1.4%), Bacteroides (1.3%) and Comamonas (1%). High abundance of Enterobacteriaceae was also detected by culturing under aerobic conditions. Unexpectedly, acetic acid bacteria (AAB), that are known to establish symbiotic associations with insects relying on sugar-based diets, were not detected. Conclusions The RPW gut microbiota is composed mainly of facultative and obligate anaerobic bacteria with a fermentative metabolism. These bacteria are supposedly responsible for palm tissue fermentation in the tunnels where RPW larvae thrive and might have a key role in the insect nutrition, and other functions that need to be investigated.
Collapse
Affiliation(s)
| | | | | | | | - Paola Quatrini
- Department STEBICEF, University of Palermo Viale delle Scienze Ed,16, Palermo 90128, Italy.
| |
Collapse
|
26
|
Biological activity of Bacillus spp. evaluated on eggs and larvae of red palm weevil Rhynchophorus ferrugineus. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0881-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Lu F, Kang X, Jiang C, Lou B, Jiang M, Way MO. Isolation and characterization of bacteria from midgut of the rice water weevil (Coleoptera: Curculionidae). ENVIRONMENTAL ENTOMOLOGY 2013; 42:874-881. [PMID: 24331600 DOI: 10.1603/en13111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gut bacteria are known to play important and often essential roles in the biology of insects. Theoretically, they can be genetically manipulated, then reintroduced into insects to negatively modify specific biological features. The weevil superfamily Curculionoidea is one of the most species-rich and successful animal groups on earth, but currently the overall knowledge of the bacterial communities in weevils and their associations with hosts is still limited. In this study, we isolated and characterized the bacteria in the midgut of an invasive weevil, Lissorhoptrus oryzophilus Kuschel, by culturing methods. Female adults of this weevil were collected from four different geographic regions of the United States and mainland China. Sequencing of the bacterial 16S rRNA amplicons demonstrated that the major culturable gut bacteria of rice water weevil are γ-proteobacteria and Bacilli. The gut bacterial composition differs among regions, with many of the bacteria isolated from only a single region while several were detected from more than one region. Overall, the diversity of gut bacteria in rice water weevil is relatively low. The possible origins of certain bacteria are discussed in relation to the weevil, rice plant, and bacteria.
Collapse
Affiliation(s)
- Fang Lu
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | | | | | | | | | | |
Collapse
|