1
|
Breusegem SY, Houghton J, Romero-Bueno R, Fragoso-Luna A, Kentistou KA, Ong KK, Janssen AFJ, Bright NA, Riedel CG, Perry JRB, Askjaer P, Larrieu D. A multiparametric anti-aging CRISPR screen uncovers a role for BAF in protein synthesis regulation. Nat Commun 2025; 16:1681. [PMID: 39956852 PMCID: PMC11830792 DOI: 10.1038/s41467-025-56916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/28/2025] [Indexed: 02/18/2025] Open
Abstract
Progeria syndromes are very rare, incurable premature aging conditions recapitulating most aging features. Here, we report a whole genome, multiparametric CRISPR screen, identifying 43 genes that can rescue multiple cellular phenotypes associated with progeria. We implement the screen in fibroblasts from Néstor-Guillermo Progeria Syndrome male patients, carrying a homozygous A12T mutation in BAF. The hits are enriched for genes involved in protein synthesis, protein and RNA transport and osteoclast formation and are validated in a whole-organism Caenorhabditis elegans model. We further confirm that BAF A12T can disrupt protein synthesis rate and fidelity, which could contribute to premature aging in patients. This work highlights the power of multiparametric genome-wide suppressor screens to identify genes enhancing cellular resilience in premature aging and provide insights into the biology underlying progeria-associated cellular dysfunction.
Collapse
Affiliation(s)
- Sophia Y Breusegem
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, UK
- Sophia Y. Breusegem: MRC toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Jack Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, UK
- Jack Houghton: Imperial College London, Exhibition Road, South Kensington, London, UK
| | - Raquel Romero-Bueno
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Adrián Fragoso-Luna
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Katherine A Kentistou
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Anne F J Janssen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, UK
- Anne F. J. Janssen: Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Nicholas A Bright
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, UK
| | | | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Peter Askjaer
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Delphine Larrieu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, UK.
- Delphine Larrieu: Altos Labs, Cambridge Institute of Science, Cambridge, UK.
| |
Collapse
|
2
|
Li Q, Ge C, Li L. Quantitative DIA-based proteomics unveils ribosomal biogenesis pathways associated with increased final size in three-year-old Chinese mitten crab (Eriocheir sinensis). BMC Genomics 2025; 26:45. [PMID: 39825215 PMCID: PMC11740361 DOI: 10.1186/s12864-024-11202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Temperature is a key determinant of ectotherms distribution and growth. During the Eriocheir sinensis breeding process, it was observed that crabs in high latitudes and altitude areas with low temperatures undergo diapause, they would overwinter and continue to grow into three-year-old individuals, whose final body size is significantly larger than the normal two-year-old crabs. The hepatopancreas is responsible for maintaining the nutritional balance and energy required for the crab survival. In this study, we aimed to compare the hepatopancreatic proteomic data between three-year-old and two-year-old crabs and clarify the relationship between genes and the final body size phenotype. RESULTS The analysis revealed that differentially expressed proteins were predominantly enriched in essential cellular processes such as ribosome, ribosome biogenesis, RNA degradation, proteasome, mRNA surveillance pathway, and RNA biogenesis. Increasing ribosome usage for protein biosynthesis was found to enhance the crab tolerance to low temperatures and extend their growth period. Simultaneously, the ubiquitin-proteasome pathway was primarily regulated to enhance the degradation of misfolded proteins induced by low temperatures, thus alleviating damage and ultimately resulting in a larger final size for the three-year-old crabs. CONCLUSION This study provides insights into how low temperatures contribute to individual body size differences and regulate the life cycle, providing a basis for the future artificial breeding of E. sinensis.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China.
- College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie, Guizhou Province, 551700, China.
- Department of Biology, Carleton University, Ottawa, ON, K1S5B6, Canada.
| | - Chuanlong Ge
- Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China
- College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie, Guizhou Province, 551700, China
| | - Lijuan Li
- Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China
- College of Ecological Engineering, Guizhou University of Engineering Science, College Road, Bijie, Guizhou Province, 551700, China
| |
Collapse
|
3
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Piscopo S, Beley N, Dzyha S, Smetanina K, Shanaida V, Resimont S, Bjorklund G. The Possible Roles of β-alanine and L-carnosine in Anti-aging. Curr Med Chem 2025; 32:6-22. [PMID: 38243982 DOI: 10.2174/0109298673263561231117054447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024]
Abstract
β-alanine (BA), being a non-proteinogenic amino acid, is an important constituent of L-carnosine (LC), which is necessary for maintaining the muscle buffering capacity and preventing a loss of muscle mass associated with aging effects. BA is also very important for normal human metabolism due to the formation of a part of pantothenate, which is incorporated into coenzyme A. BA is synthesized in the liver, and its combination with histidine results in the formation of LC, which accumulates in the muscles and brain tissues and has a well-defined physiological role as a good buffer for the pH range of muscles that caused its rapidly increased popularity as ergogenic support to sports performance. The main antioxidant mechanisms of LC include reactive oxygen species (ROS) scavenging and chelation of metal ions. With age, the buffering capacity of muscles also declines due to reduced concentration of LC and sarcopenia. Moreover, LC acts as an antiglycation agent, ultimately reducing the development of degenerative diseases. LC has an anti-inflammatory effect in autoimmune diseases such as osteoarthritis. As histidine is always present in the human body in higher concentrations than BA, humans have to get BA from dietary sources to support the required amount of this critical constituent to supply the necessary amount of LC synthesis. Also, BA has other beneficial effects, such as preventing skin aging and intestinal damage, improving the stress-- fighting capability of the muscle cells, and managing an age-related decline in memory and learning. In this review, the results of a detailed analysis of the role and various beneficial properties of BA and LC from the anti-aging perspective are presented.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Svitlana Dzyha
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Kateryna Smetanina
- Faculty of Postgraduate Education, Lesya Ukrainka Eastern European National University, Lutsk, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | - Stephane Resimont
- Research and Development Department, Nutri-Logics, Weiswampach, Luxembourg
| | - Geir Bjorklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
4
|
Zhou L, Zhuo H, Jin J, Pu A, Liu Q, Song J, Tong X, Tang H, Dai F. Temperature perception by ER UPR promotes preventive innate immunity and longevity. Cell Rep 2024; 43:115071. [PMID: 39675004 DOI: 10.1016/j.celrep.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Microbial infectivity increases with rising environmental temperature, heightening the risk of infection to host organisms. The host's basal immunity is activated accordingly to mitigate upcoming pathogenic threats; still, how animals sense temperature elevation to adjust their preventive immune response remains elusive. This study reports that high temperature enhances innate immunity differently from pathogen infection. Unlike pathogen invasion requiring the mitochondrial unfolded protein response (UPR), high temperature engages the endoplasmic reticulum (ER) UPR to trigger the innate immune response. Furthermore, chronic activation of the XBP-1 UPR branch represses nucleolar ribosome biogenesis, a highly energy-consuming process, leading to lipid accumulation. The subsequent increase in oleic acid promotes the activation of the PMK-1 immune pathway. Additionally, ribosome biogenesis was identified as a regulator of longevity, wherein its impact is dependent on lipid metabolism and innate immunity. Collectively, our findings reveal the crucial role of ER-nucleolus crosstalk in shaping preventive immune responses and lifespan regulation.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haoyu Zhuo
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqi Jin
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Anrui Pu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qin Liu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Chaudhari PS, Ermolaeva MA. Too old for healthy aging? Exploring age limits of longevity treatments. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:37. [PMID: 39678297 PMCID: PMC11638076 DOI: 10.1038/s44324-024-00040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
It is well documented that aging elicits metabolic failures, while poor metabolism contributes to accelerated aging. Metabolism in general, and energy metabolism in particular are also effective entry points for interventions that extend lifespan and improve organ function during aging. In this review, we discuss common metabolic remedies for healthy aging from the angle of their potential age-specificity. We demonstrate that some well-known metabolic treatments are mostly effective in young and middle-aged organisms, while others maintain high efficacy independently of age. The mechanistic basis of presence or lack of the age limitations is laid out and discussed.
Collapse
Affiliation(s)
| | - Maria A. Ermolaeva
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
6
|
St Ange J, Weng Y, Kaletsky R, Stevenson ME, Moore RS, Zhou S, Murphy CT. Adult single-nucleus neuronal transcriptomes of insulin signaling mutants reveal regulators of behavior and learning. CELL GENOMICS 2024; 4:100720. [PMID: 39637862 DOI: 10.1016/j.xgen.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/16/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Gene expression in individual neurons can change during development to adulthood and can have large effects on behavior. Additionally, the insulin/insulin-like signaling (IIS) pathway regulates many of the adult functions of Caenorhabditis elegans, including learning and memory, via transcriptional changes. We used the deep resolution of single-nucleus RNA sequencing to define the adult transcriptome of each neuron in wild-type and daf-2 mutants, revealing expression differences between L4 larval and adult neurons in chemoreceptors, synaptic genes, and learning/memory genes. We used these data to identify adult new AWC-specific regulators of chemosensory function that emerge upon adulthood. daf-2 gene expression changes correlate with improved cognitive functions, particularly in the AWC sensory neuron that controls learning and associative memory; behavioral assays of AWC-specific daf-2 genes revealed their roles in cognitive function. Combining technology and functional validation, we identified conserved genes that function in specific adult neurons to control behavior, including learning and memory.
Collapse
Affiliation(s)
- Jonathan St Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yifei Weng
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Morgan E Stevenson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca S Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shiyi Zhou
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
Ghosh A, Singh J. Translation initiation or elongation inhibition triggers contrasting effects on Caenorhabditis elegans survival during pathogen infection. mBio 2024; 15:e0248524. [PMID: 39347574 PMCID: PMC11559039 DOI: 10.1128/mbio.02485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Diverse microbial pathogens are known to attenuate host protein synthesis. Consequently, the host mounts a defense response against protein translation inhibition, leading to increased transcript levels of immune genes. The seemingly paradoxical upregulation of immune gene transcripts in response to blocked protein synthesis suggests that the defense mechanism against translation inhibition may not universally benefit host survival. However, a comprehensive assessment of host survival on pathogens upon blockage of different stages of protein synthesis is currently lacking. Here, we investigate the impact of knockdown of various translation initiation and elongation factors on the survival of Caenorhabditis elegans exposed to Pseudomonas aeruginosa. Intriguingly, we observe opposing effects on C. elegans survival depending on whether translation initiation or elongation is inhibited. While translation initiation inhibition enhances survival, elongation inhibition decreases it. Transcriptomic studies reveal that translation initiation inhibition activates a bZIP transcription factor ZIP-2-dependent innate immune response that protects C. elegans from P. aeruginosa infection. In contrast, inhibiting translation elongation triggers both ZIP-2-dependent and ZIP-2-independent immune responses that, while effective in clearing the infection, are detrimental to the host. Thus, our findings reveal the opposing roles of translation initiation and elongation inhibition in C. elegans survival during P. aeruginosa infection, highlighting distinct transcriptional reprogramming that may underlie these differences. IMPORTANCE Several microbial pathogens target host protein synthesis machinery, potentially limiting the innate immune responses of the host. In response, hosts trigger a defensive response, elevating immune gene transcripts. This counterintuitive response can have either beneficial or harmful effects on host survival. In this study, we conduct a comprehensive analysis of the impact of knocking down various translation initiation and elongation factors on the survival of Caenorhabditis elegans exposed to Pseudomonas aeruginosa. Intriguingly, inhibiting initiation and elongation factors has contrasting effects on C. elegans survival. Inhibiting translation initiation activates immune responses that protect the host from bacterial infection, while inhibiting translation elongation induces aberrant immune responses that, although clear the infection, are detrimental to the host. Our study reveals divergent roles of translation initiation and elongation inhibition in C. elegans survival during P. aeruginosa infection and identifies differential transcriptional reprogramming that could underlie these differences.
Collapse
Affiliation(s)
- Annesha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Jogender Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| |
Collapse
|
8
|
Kong W, Gu G, Dai T, Chen B, Wang Y, Zeng Z, Pu M. ELO-6 expression predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Commun 2024; 15:9470. [PMID: 39488532 PMCID: PMC11531548 DOI: 10.1038/s41467-024-53887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Variations of individual lifespans within genetically identical populations in homogenous environments are remarkable, with the cause largely unknown. Here, we show the expression dynamic of the Caenorhabditis elegans fatty acid elongase ELO-6 during aging predicts individual longevity in isogenic populations. elo-6 expression is reduced with age. ELO-6 expression level exhibits obvious variation between individuals in mid-aged worms and is positively correlated with lifespan and health span. Interventions that prolong longevity enhance ELO-6 expression stability during aging, indicating ELO-6 is also a populational lifespan predictor. Differentially expressed genes between short-lived and long-lived isogenic worms regulate lifespan and are enriched for PQM-1 binding sites. pqm-1 in young to mid-aged adults causes individual ELO-6 expression heterogeneity and restricts health span and life span. Thus, our study identifies ELO-6 as a predictor of individual and populational lifespan and reveals the role of pqm-1 in causing individual health span variation in the mid-aged C. elegans.
Collapse
Affiliation(s)
- Weilin Kong
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guoli Gu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Tong Dai
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Beibei Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yanli Wang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zheng Zeng
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mintie Pu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
9
|
Anver S, Sumit AF, Sun XM, Hatimy A, Thalassinos K, Marguerat S, Alic N, Bähler J. Ageing-associated long non-coding RNA extends lifespan and reduces translation in non-dividing cells. EMBO Rep 2024; 25:4921-4949. [PMID: 39358553 PMCID: PMC11549352 DOI: 10.1038/s44319-024-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Genomes produce widespread long non-coding RNAs (lncRNAs) of largely unknown functions. We characterize aal1 (ageing-associated lncRNA), which is induced in quiescent fission yeast cells. Deletion of aal1 shortens the chronological lifespan of non-dividing cells, while ectopic overexpression prolongs their lifespan, indicating that aal1 acts in trans. Overexpression of aal1 represses ribosomal-protein gene expression and inhibits cell growth, and aal1 genetically interacts with coding genes functioning in protein translation. The aal1 lncRNA localizes to the cytoplasm and associates with ribosomes. Notably, aal1 overexpression decreases the cellular ribosome content and inhibits protein translation. The aal1 lncRNA binds to the rpl1901 mRNA, encoding a ribosomal protein. The rpl1901 levels are reduced ~2-fold by aal1, which is sufficient to extend lifespan. Remarkably, the expression of the aal1 lncRNA in Drosophila boosts fly lifespan. We propose that aal1 reduces the ribosome content by decreasing Rpl1901 levels, thus attenuating the translational capacity and promoting longevity. Although aal1 is not conserved, its effect in flies suggests that animals feature related mechanisms that modulate ageing, based on the conserved translational machinery.
Collapse
Affiliation(s)
- Shajahan Anver
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Ahmed Faisal Sumit
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Xi-Ming Sun
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Samuel Marguerat
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Zhang A, Meecham-Garcia G, Nguyen Hong C, Xie P, Kern CC, Zhang B, Chapman H, Gems D. Characterization of Effects of mTOR Inhibitors on Aging in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2024; 79:glae196. [PMID: 39150882 PMCID: PMC11374883 DOI: 10.1093/gerona/glae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 08/18/2024] Open
Abstract
Pharmacological inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway with rapamycin can extend lifespan in several organisms. Although this includes the nematode Caenorhabditis elegans, effects in this species are relatively weak and sometimes difficult to reproduce. Here we test effects of drug dosage and timing of delivery to establish the upper limits of its capacity to extend life, and investigate drug effects on age-related pathology and causes of mortality. Liposome-mediated rapamycin treatment throughout adulthood showed a dose-dependent effect, causing a maximal 21.9% increase in mean lifespan, but shortening of lifespan at the highest dose, suggesting drug toxicity. Rapamycin treatment of larvae delayed development, weakly reduced fertility and modestly extended lifespan. By contrast, treatment initiated later in life robustly increased lifespan, even from Day 16 (or ~70 years in human terms). The rapalog temsirolimus extended lifespan similarly to rapamycin, but effects of everolimus were weaker. As in mouse, rapamycin had mixed effects on age-related pathologies, inhibiting one (uterine tumor growth) but not several others, suggesting a segmental antigeroid effect. These findings should usefully inform future experimental studies with rapamycin and rapalogs in C. elegans.
Collapse
Affiliation(s)
- Aihan Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Gadea Meecham-Garcia
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Chiminh Nguyen Hong
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Peiyun Xie
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Hannah Chapman
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
11
|
Li HY, Wang M, Jiang X, Jing Y, Wu Z, He Y, Yan K, Sun S, Ma S, Ji Z, Wang S, Belmonte JC, Qu J, Zhang W, Wei T, Liu GH. CRISPR screening uncovers nucleolar RPL22 as a heterochromatin destabilizer and senescence driver. Nucleic Acids Res 2024; 52:11481-11499. [PMID: 39258545 PMCID: PMC11514463 DOI: 10.1093/nar/gkae740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Dysfunction of the ribosome manifests during cellular senescence and contributes to tissue aging, functional decline, and development of aging-related disorders in ways that have remained enigmatic. Here, we conducted a comprehensive CRISPR-based loss-of-function (LOF) screen of ribosome-associated genes (RAGs) in human mesenchymal progenitor cells (hMPCs). Through this approach, we identified ribosomal protein L22 (RPL22) as the foremost RAG whose deficiency mitigates the effects of cellular senescence. Consequently, absence of RPL22 delays hMPCs from becoming senescent, while an excess of RPL22 accelerates the senescence process. Mechanistically, we found in senescent hMPCs, RPL22 accumulates within the nucleolus. This accumulation triggers a cascade of events, including heterochromatin decompaction with concomitant degradation of key heterochromatin proteins, specifically heterochromatin protein 1γ (HP1γ) and heterochromatin protein KRAB-associated protein 1 (KAP1). Subsequently, RPL22-dependent breakdown of heterochromatin stimulates the transcription of ribosomal RNAs (rRNAs), triggering cellular senescence. In summary, our findings unveil a novel role for nucleolar RPL22 as a destabilizer of heterochromatin and a driver of cellular senescence, shedding new light on the intricate mechanisms underlying the aging process.
Collapse
Affiliation(s)
- Hong-Yu Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaobin Jing
- International center for Aging and Cancer, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifang He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing 100101, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Weiqi Zhang
- CAS key laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Taotao Wei
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- International center for Aging and Cancer, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
12
|
Blank HM, Hammer SE, Boatright L, Roberts C, Heyden KE, Nagarajan A, Tsuchiya M, Brun M, Johnson CD, Stover PJ, Sitcheran R, Kennedy BK, Adams LG, Kaeberlein M, Field MS, Threadgill DW, Andrews-Polymenis HL, Polymenis M. Late-life dietary folate restriction reduces biosynthesis without compromising healthspan in mice. Life Sci Alliance 2024; 7:e202402868. [PMID: 39043420 PMCID: PMC11266815 DOI: 10.26508/lsa.202402868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low-folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Staci E Hammer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Laurel Boatright
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Courtney Roberts
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Katarina E Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Aravindh Nagarajan
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marcel Brun
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, TX, USA
| | - Charles D Johnson
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, TX, USA
| | - Patrick J Stover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - L Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M, College Station, TX, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Optispan, Inc., Seattle, WA, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - David W Threadgill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Helene L Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Min H, Spaulding EL, Sharp CS, Garg P, Jeon E, Miranda Portillo LS, Lind NA, Updike DL. A role for BYN-1/bystin in cellular uptake and clearance of residual bodies in the Caenorhabditis elegans germline. Development 2024; 151:dev202694. [PMID: 39377446 PMCID: PMC11488650 DOI: 10.1242/dev.202694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 10/09/2024]
Abstract
GLH/Vasa/DDX4 helicases are core germ-granule proteins that promote germline development and fertility. A yeast-two-hybrid screen using Caenorhabditis elegans GLH-1 as bait identified BYN-1, the homolog of human bystin/BYSL. In humans, bystin promotes cell adhesion and invasion in gliomas, and, with its binding partner trophinin, triggers embryonic implantation into the uterine wall. C. elegans embryos do not implant and lack a homolog of trophinin, but both trophinin and GLH-1 contain unique decapeptide phenylalanine-glycine (FG)-repeat domains. In germ cells, we find endogenous BYN-1 in the nucleolus, partitioned away from cytoplasmic germ granules. However, BYN-1 enters the cytoplasm during spermatogenesis to colocalize with GLH-1. Both proteins become deposited in residual bodies (RBs), which are then engulfed and cleared by the somatic gonad. We show that BYN-1 acts upstream of CED-1 to drive RB engulfment, and that removal of the FG-repeat domains from GLH-1 and GLH-2 can partially phenocopy byn-1 defects in RB clearance. These results point to an evolutionarily conserved pathway whereby cellular uptake is triggered by the cytoplasmic mobilization of bystin/BYN-1 to interact with proteins harboring FG-repeats.
Collapse
Affiliation(s)
- Hyemin Min
- Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Emily L. Spaulding
- Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Catherine S. Sharp
- Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Pankaj Garg
- Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Esther Jeon
- Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Lyn S. Miranda Portillo
- Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Noah A. Lind
- Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Dustin L. Updike
- Davis Center for Regenerative Biology and Aging, The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| |
Collapse
|
14
|
Malik Y, Kulaberoglu Y, Anver S, Javidnia S, Borland G, Rivera R, Cranwell S, Medelbekova D, Svermova T, Thomson J, Broughton S, von der Haar T, Selman C, Tullet JMA, Alic N. Disruption of tRNA biogenesis enhances proteostatic resilience, improves later-life health, and promotes longevity. PLoS Biol 2024; 22:e3002853. [PMID: 39436952 PMCID: PMC11495624 DOI: 10.1371/journal.pbio.3002853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
tRNAs are evolutionarily ancient molecular decoders essential for protein translation. In eukaryotes, tRNAs and other short, noncoding RNAs are transcribed by RNA polymerase (Pol) III, an enzyme that promotes ageing in yeast, worms, and flies. Here, we show that a partial reduction in Pol III activity specifically disrupts tRNA levels. This effect is conserved across worms, flies, and mice, where computational models indicate that it impacts mRNA decoding. In all 3 species, reduced Pol III activity increases proteostatic resilience. In worms, it activates the unfolded protein response (UPR) and direct disruption of tRNA metabolism is sufficient to recapitulate this. In flies, decreasing Pol III's transcriptional initiation on tRNA genes by a loss-of-function in the TFIIIC transcription factor robustly extends lifespan, improves proteostatic resilience and recapitulates the broad-spectrum benefits to late-life health seen following partial Pol III inhibition. We provide evidence that a partial reduction in Pol III activity impacts translation, quantitatively or qualitatively, in both worms and flies, indicating a potential mode of action. Our work demonstrates a conserved and previously unappreciated role of tRNAs in animal ageing.
Collapse
Affiliation(s)
- Yasir Malik
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Yavuz Kulaberoglu
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Shajahan Anver
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Sara Javidnia
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Gillian Borland
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rene Rivera
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Stephen Cranwell
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Danel Medelbekova
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Tatiana Svermova
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| | - Jackie Thomson
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Susan Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | | | - Colin Selman
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Nazif Alic
- Institute of Healthy Ageing, Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
15
|
Cornwell AB, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. GeroScience 2024; 46:4827-4854. [PMID: 38878153 PMCID: PMC11336136 DOI: 10.1007/s11357-024-01197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam B Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- MURTI Centre and Department of Biotechnology, School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, Andhra Pradesh, 530045, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd, Batavia, NY, 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
16
|
Pak HH, Grossberg AN, Sanderfoot RR, Babygirija R, Green CL, Koller M, Dzieciatkowska M, Paredes DA, Lamming DW. Non-canonical metabolic and molecular effects of calorie restriction are revealed by varying temporal conditions. Cell Rep 2024; 43:114663. [PMID: 39167490 PMCID: PMC11427179 DOI: 10.1016/j.celrep.2024.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Calorie restriction (CR) extends lifespan and healthspan in diverse species. Comparing ad libitum- and CR-fed mice is challenging due to their significantly different feeding patterns, with CR-fed mice consuming their daily meal in 2 h and then subjecting themselves to a prolonged daily fast. Here, we examine how ad libitum- and CR-fed mice respond to tests performed at various times and fasting durations and find that the effects of CR-insulin sensitivity, circulating metabolite levels, and mechanistic target of rapamycin 1 (mTORC1) activity-result from the specific temporal conditions chosen, with CR-induced improvements in insulin sensitivity observed only after a prolonged fast, and the observed differences in mTORC1 activity between ad libitum- and CR-fed mice dependent upon both fasting duration and the specific tissue examined. Our results demonstrate that much of our understanding of the effects of CR are related to when, relative to feeding, we choose to examine the mice.
Collapse
Affiliation(s)
- Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Allison N Grossberg
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA; Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Rachel R Sanderfoot
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mikaela Koller
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Daniel A Paredes
- Department of Biological Sciences, University of Denver, Denver, CO, USA; Department of Electrical and Computer Engineering, University of Denver, Denver, CO, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
17
|
Altintas O, MacArthur MR. General control nonderepressible 2 (GCN2) as a therapeutic target in age-related diseases. FRONTIERS IN AGING 2024; 5:1447370. [PMID: 39319345 PMCID: PMC11420162 DOI: 10.3389/fragi.2024.1447370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
The function of General Control Nonderepressible 2 (GCN2), an evolutionary-conserved component of the integrated stress response (ISR), has been well-documented across organisms from yeast to mammals. Recently GCN2 has also gained attention for its role in health and disease states. In this review, we provide a brief overview of GCN2, including its structure, activation mechanisms and interacting partners, and explore its potential significance as a therapeutic target in various age-related diseases including neurodegeneration, inflammatory disorders and cancer. Finally, we summarize the barriers to effectively targeting GCN2 for the treatment of disease and to promote a healthier aging process.
Collapse
Affiliation(s)
- Ozlem Altintas
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael R. MacArthur
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| |
Collapse
|
18
|
Zhang T, Jing M, Fei L, Zhang Z, Yi P, Sun Y, Wang Y. Tetramethylpyrazine nitrone delays the aging process of C. elegans by improving mitochondrial function through the AMPK/mTORC1 signaling pathway. Biochem Biophys Res Commun 2024; 723:150220. [PMID: 38850811 DOI: 10.1016/j.bbrc.2024.150220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Aging is characterized as the process of functional decline in an organism from adulthood, often marked by a progressive loss of cellular function and systemic deterioration of multiple tissues. Among the numerous molecular, cellular, and systemic hallmarks associated with aging, mitochondrial dysfunction is considered one of the pivotal factors that initiates the aging process. During aging, mitochondria undergo varying degrees of damage, resulting in impaired energy production and disruption of the homeostatic regulation of mitochondrial quality control systems, which in turn affects cellular energy metabolism and results in cellular dysfunction, accelerating the aging process. AMP-activated protein kinase (AMPK) and the mechanistic target of rapamycin complex 1 (mTORC1) are two central kinase complexes responsible for sensing intracellular nutrient levels, regulating metabolic homeostasis, modulating aging and play a crucial role in maintaining the homeostatic balance of mitochondria. Our previous studies found that the novel compound tetramethylpyrazine nitrone (TBN) can protect mitochondria via the AMPK/mTOR pathway in many animal models, extending healthy lifespan through the Nrf2 signaling pathway in nematodes. Building upon this foundation, we have posited a reasonable hypothesis, TBN can improve mitochondrial function to delay aging by regulating the AMPK/mTORC1 signaling pathway. This study focuses on the C. elegans, exploring the impact and underlying mechanisms of TBN on aging and mitochondrial function (especially the mitochondrial quality control system) during the aging process. The present studies demonstrated that TBN extends lifespan of wild-type nematodes and is associated with the AMPK/mTORC1 signaling pathway. TBN elevated ATP and NAD+ levels in aging nematodes while orchestrating mitochondrial biogenesis and mitophagy. Moreover, TBN was observed to significantly enhance normal activities during aging in C. elegans, such as mobility and pharyngeal pumping, concurrently impeding lipofuscin accumulation that were closely associated with AMPK and mTORC1. This study not only highlights the delayed effects of TBN on aging but also underscores its potential application in strategies aimed at improving mitochondrial function via the AMPK/mTOR pathway in C. elegans.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Mei Jing
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Lili Fei
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Zaijun Zhang
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Peng Yi
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Yewei Sun
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Yuqiang Wang
- Institute of New Drug Research, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases and State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, Jinan University College of Pharmacy, Guangzhou, 510632, China
| |
Collapse
|
19
|
Kendirci-Katirci R, Sati L, Celik-Ozenci C. Deciphering the role of rapamycin in modulating decidual senescence: implications for decidual remodeling and implantation failure. J Assist Reprod Genet 2024; 41:2441-2456. [PMID: 39066928 PMCID: PMC11405573 DOI: 10.1007/s10815-024-03207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
PURPOSE Physiological decidual senescence promotes embryo implantation, whereas pathological decidual senescence causes many pregnancy pathologies. The aim of this study was to evaluate the effect of rapamycin on decidual cell subpopulations and endometrial function in physiological and induced senescence and to investigate the decidual cell subpopulations present in physiological conditions during early pregnancy and implantation in mice. METHODS Control, physiological decidualization (0.5 mM cAMP and 1 μM MPA added), and induced senescence (0.1 mM HU added) models with and without 200 nM rapamycin treatment were established using a human endometrial stromal cell line, and decidual cell subpopulations were analyzed by immunofluorescence and flow cytometry. The human extravillous trophoblast cell line AC-1M88 was also cultured in decidualization models, and spheroid expansion analysis was performed. In in vivo studies, decidual cell subpopulations were analyzed by immunofluorescence during early mouse pregnancy. RESULTS The results revealed that rapamycin decreased DIO2 and β-GAL expressions in physiological and induced senescence without FOXO1. Notably, in induced senescence, increased fragmentation was observed in AC-1M88 cells, and rapamycin treatment successfully attenuated the fragmentation of spheroids. We showed that the FOXO1-DIO2 signaling axis can trigger decidual senescence during early gestation and days of implantation in mice. CONCLUSIONS Our study underlines the importance of rapamycin in modulating decidual cell subpopulations and endometrial tissue function during decidual senescence. The information obtained may provide insight into the pathologies of pregnancy seen due to decidual senescence and guide better treatment strategies for reproductive problems.
Collapse
Affiliation(s)
| | - Leyla Sati
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Koc University, Istanbul, Turkey.
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
20
|
Kwon YY, Lee HJ, Lee MJ, Lee YS, Lee CK. The ICL1 and MLS1 Genes, Integral to the Glyoxylate Cycle, are Essential and Specific for Caloric Restriction-Mediated Extension of Lifespan in Budding Yeast. Adv Biol (Weinh) 2024; 8:e2400083. [PMID: 38717792 DOI: 10.1002/adbi.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Indexed: 10/26/2024]
Abstract
The regulation of complex energy metabolism is intricately linked to cellular energy demands. Caloric restriction (CR) plays a pivotal role in modulating the expression of genes associated with key metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle. In this study, the chronological lifespan (CLS) of 35 viable single-gene deletion mutants under both non-restricted and CR conditions, focusing on genes related to these metabolic pathways is evaluated. CR is found to increase CLS predominantly in mutants associated with the glycolysis and TCA cycle. However, this beneficial effect of CR is not observed in mutants of the glyoxylate cycle, particularly those lacking genes for critical enzymes like isocitrate lyase 1 (icl1Δ) and malate synthase 1 (mls1Δ). This analysis revealed an increase in isocitrate lyase activity, a key enzyme of the glyoxylate cycle, under CR, unlike the activity of isocitrate dehydrogenase, which remains unchanged and is specific to the TCA cycle. Interestingly, rapamycin, a compound known for extending lifespan, does not increase the activity of the glyoxylate cycle enzyme. This suggests that CR affects lifespan through a distinct metabolic mechanism.
Collapse
Affiliation(s)
- Young-Yon Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Han-Jun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Myung-Jin Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
21
|
Slade L, Etheridge T, Szewczyk NJ. Consolidating multiple evolutionary theories of ageing suggests a need for new approaches to study genetic contributions to ageing decline. Ageing Res Rev 2024; 100:102456. [PMID: 39153601 DOI: 10.1016/j.arr.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Understanding mechanisms of ageing remains a complex challenge for biogerontologists, but recent adaptations of evolutionary ageing theories offer a compelling lens in which to view both age-related molecular and physiological deterioration. Ageing is commonly associated with progressive declines in biochemical and molecular processes resulting from damage accumulation, yet the role of continued developmental gene activation is less appreciated. Natural selection pressures are at their highest in youthful periods to modify gene expression towards maximising reproductive capacity. After sexual maturation, selective pressure diminishes, subjecting individuals to maladaptive pleiotropic gene functions that were once beneficial for developmental growth but become pathogenic later in life. Due to this selective 'shadowing' in ageing, mechanisms to counter such hyper/hypofunctional genes are unlikely to evolve. Interventions aimed at targeting gene hyper/hypofunction during ageing might, therefore, represent an attractive therapeutic strategy. The nematode Caenorhabditis elegans offers a strong model for post-reproductive mechanistic and therapeutic investigations, yet studies examining the mechanisms of, and countermeasures against, ageing decline largely intervene from larval stages onwards. Importantly, however, lifespan extending conditions frequently impair early-life fitness and fail to correspondingly increase healthspan. Here, we consolidate multiple evolutionary theories of ageing and discuss data supporting hyper/hypofunctional changes at a global molecular and functional level in C. elegans, and how classical lifespan-extension mutations alter these dynamics. The relevance of such mutant models for exploring mechanisms of ageing are discussed, highlighting that post-reproductive gene optimisation represents a more translatable approach for C. elegans research that is not constrained by evolutionary trade-offs. Where some genetic mutations in C. elegans that promote late-life health map accordingly with healthy ageing in humans, other widely used genetic mutations that extend worm lifespan are associated with life-limiting pathologies in people. Lifespan has also become the gold standard for quantifying 'ageing', but we argue that gerospan compression (i.e., 'healthier' ageing) is an appropriate goal for anti-ageing research, the mechanisms of which appear distinct from those regulating lifespan alone. There is, therefore, an evident need to re-evaluate experimental approaches to study the role of hyper/hypofunctional genes in ageing in C. elegans.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, Exeter, UK.
| | - Timothy Etheridge
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Athens, OH 45701, United States.
| |
Collapse
|
22
|
Troise D, Mercuri S, Infante B, Losappio V, Cirolla L, Netti GS, Ranieri E, Stallone G. mTOR and SGLT-2 Inhibitors: Their Synergistic Effect on Age-Related Processes. Int J Mol Sci 2024; 25:8676. [PMID: 39201363 PMCID: PMC11354721 DOI: 10.3390/ijms25168676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The aging process contributes significantly to the onset of chronic diseases, which are the primary causes of global mortality, morbidity, and healthcare costs. Numerous studies have shown that the removal of senescent cells from tissues extends lifespan and reduces the occurrence of age-related diseases. Consequently, there is growing momentum in the development of drugs targeting these cells. Among them, mTOR and SGLT-2 inhibitors have garnered attention due to their diverse effects: mTOR inhibitors regulate cellular growth, metabolism, and immune responses, while SGLT-2 inhibitors regulate glucose reabsorption in the kidneys, resulting in various beneficial metabolic effects. Importantly, these drugs may act synergistically by influencing senescence processes and pathways. Although direct studies on the combined effects of mTOR inhibition and SGLT-2 inhibition on age-related processes are limited, this review aims to highlight the potential synergistic benefits of these drugs in targeting senescence.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Vincenzo Losappio
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Luciana Cirolla
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
23
|
Kumar A, Saha MK, Kumar V, Bhattacharya A, Barge S, Mukherjee AK, Kalita MC, Khan MR. Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immun Ageing 2024; 21:52. [PMID: 39095841 PMCID: PMC11295351 DOI: 10.1186/s12979-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | | | - Vipin Kumar
- Application Specialist, Research Business Cytiva, Gurugram, Haryana, India
| | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Sagar Barge
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India.
| |
Collapse
|
24
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
25
|
Malik Y, Goncalves Silva I, Diazgranados RR, Selman C, Alic N, Tullet JM. Timing of TORC1 inhibition dictates Pol III involvement in Caenorhabditis elegans longevity. Life Sci Alliance 2024; 7:e202402735. [PMID: 38740431 PMCID: PMC11091362 DOI: 10.26508/lsa.202402735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in Caenorhabditis elegans, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in C. elegans muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult C. elegans.
Collapse
Affiliation(s)
- Yasir Malik
- Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, Kent
| | - Isabel Goncalves Silva
- Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, Kent
| | | | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland
| | - Nazif Alic
- UCL Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, London, UK
| | - Jennifer Ma Tullet
- Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, Kent
| |
Collapse
|
26
|
Breen PC, Kanakanui KG, Newman MA, Dowen RH. The F-box protein FBXL-5 governs vitellogenesis and lipid homeostasis in C. elegans. Front Cell Dev Biol 2024; 12:1389077. [PMID: 38946799 PMCID: PMC11211535 DOI: 10.3389/fcell.2024.1389077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
The molecular mechanisms that govern the metabolic commitment to reproduction, which often occurs at the expense of somatic reserves, remain poorly understood. We identified the Caenorhabditis elegans F-box protein FBXL-5 as a negative regulator of maternal provisioning of vitellogenin lipoproteins, which mediate the transfer of intestinal lipids to the germline. Mutations in fbxl-5 partially suppress the vitellogenesis defects observed in the heterochronic mutants lin-4 and lin-29, both of which ectopically express fbxl-5 at the adult developmental stage. FBXL-5 functions in the intestine to negatively regulate expression of the vitellogenin genes; and consistently, intestine-specific over-expression of FBXL-5 is sufficient to inhibit vitellogenesis, restrict lipid accumulation, and shorten lifespan. Our epistasis analyses suggest that fbxl-5 functions in concert with cul-6, a cullin gene, and the Skp1-related gene skr-3 to regulate vitellogenesis. Additionally, fbxl-5 acts genetically upstream of rict-1, which encodes the core mTORC2 protein Rictor, to govern vitellogenesis. Together, our results reveal an unexpected role for a SCF ubiquitin-ligase complex in controlling intestinal lipid homeostasis by engaging mTORC2 signaling.
Collapse
Affiliation(s)
- Peter C Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Kendall G Kanakanui
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Martin A Newman
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Robert H Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| |
Collapse
|
27
|
Govindhan T, Amirthalingam M, Govindan S, Duraisamy K, Cho JH, Tawata S, Periyakali SB, Palanisamy S. Diosgenin intervention: targeting lipophagy to counter high glucose diet-induced lipid accumulation and lifespan reduction. 3 Biotech 2024; 14:171. [PMID: 38828099 PMCID: PMC11143156 DOI: 10.1007/s13205-024-04017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Diosgenin (DG), a well-known steroidal sapogenin, is abundantly found in the plants of the Dioscoreaceae family and exhibits diverse pharmacological properties. In our previous study, we demonstrated that DG supplementation protected Caenorhabditis elegans from high glucose-induced lipid deposition, oxidative damage, and lifespan reduction. Nevertheless, the precise biological mechanisms underlying the beneficial effects of DG have not yet been described. In this context, the present study aims to elucidate how DG reduces molecular and cellular declines induced by high glucose, using the powerful genetics of the C. elegans model. Treatment with DG significantly (p < 0.01) prevented fat accumulation and extended lifespan under high-glucose conditions without affecting physiological functions. DG-induced lifespan extension was found to rely on longevity genes daf-2, daf-16, skn-1, glp-1, eat-2, let-363, and pha-4. Specifically, DG regulates lipophagy, the autophagy-mediated degradation of lipid droplets, in C. elegans, thereby inhibiting fat accumulation. Furthermore, DG treatment did not alter the triglyceride levels in the fat-6 and fat-7 single mutants and fat-6;fat-7 double mutants, indicating the significant role of stearoyl-CoA desaturase genes in mediating the reduction of fat deposition by DG. Our results provide new insight into the fat-reducing mechanisms of DG, which might develop into a multitarget drug for preventing obesity and associated health complications; however, preclinical studies are required to investigate the effect of DG on higher models. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04017-3.
Collapse
Affiliation(s)
| | - Mohankumar Amirthalingam
- PAK Research Center, University of the Ryukyus, Senbaru 1, Nishihara-Cho, Okinawa, 903-0213 Japan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112 USA
| | - Shanmugam Govindan
- Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Kalaiselvi Duraisamy
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452 Republic of Korea
| | - Shinkichi Tawata
- PAK Research Center, University of the Ryukyus, Senbaru 1, Nishihara-Cho, Okinawa, 903-0213 Japan
| | | | | |
Collapse
|
28
|
Hafiz Rothi M, Sarkar GC, Haddad JA, Mitchell W, Ying K, Pohl N, Sotomayor-Mena RG, Natale J, Dellacono S, Gladyshev VN, Lieberman Greer E. The 18S rRNA Methyltransferase DIMT-1 Regulates Lifespan in the Germline Later in Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594211. [PMID: 38798397 PMCID: PMC11118296 DOI: 10.1101/2024.05.14.594211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ribosome heterogeneity has emerged as an important regulatory control feature for determining which proteins are synthesized, however, the influence of age on ribosome heterogeneity is not fully understood. Whether mRNA transcripts are selectively translated in young versus old cells and whether dysregulation of this process drives organismal aging is unknown. Here we examined the role of ribosomal RNA (rRNA) methylation in maintaining appropriate translation as organisms age. In a directed RNAi screen, we identified the 18S rRNA N6'-dimethyl adenosine (m6,2A) methyltransferase, dimt-1, as a regulator of C. elegans lifespan and stress resistance. Lifespan extension induced by dimt-1 deficiency required a functional germline and was dependent on the known regulator of protein translation, the Rag GTPase, raga-1, which links amino acid sensing to the mechanistic target of rapamycin complex (mTORC)1. Using an auxin-inducible degron tagged version of dimt-1, we demonstrate that DIMT-1 functions in the germline after mid-life to regulate lifespan. We further found that knock-down of dimt-1 leads to selective translation of transcripts important for stress resistance and lifespan regulation in the C. elegans germline in mid-life including the cytochrome P450 daf-9, which synthesizes a steroid that signals from the germline to the soma to regulate lifespan. We found that dimt-1 induced lifespan extension was dependent on the daf-9 signaling pathway. This finding reveals a new layer of proteome dysfunction, beyond protein synthesis and degradation, as an important regulator of aging. Our findings highlight a new role for ribosome heterogeneity, and specific rRNA modifications, in maintaining appropriate translation later in life to promote healthy aging.
Collapse
Affiliation(s)
- M. Hafiz Rothi
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Gautam Chandra Sarkar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Al Haddad
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Kejun Ying
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Nancy Pohl
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Roberto G. Sotomayor-Mena
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Julia Natale
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Scarlett Dellacono
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
29
|
Jonak K, Suppanz I, Bender J, Chacinska A, Warscheid B, Topf U. Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions. Life Sci Alliance 2024; 7:e202302300. [PMID: 38383455 PMCID: PMC10881836 DOI: 10.26508/lsa.202302300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Oxidative post-translational modifications of protein thiols are well recognized as a readily occurring alteration of proteins, which can modify their function and thus control cellular processes. The development of techniques enabling the site-specific assessment of protein thiol oxidation on a proteome-wide scale significantly expanded the number of known oxidation-sensitive protein thiols. However, lacking behind are large-scale data on the redox state of proteins during ageing, a physiological process accompanied by increased levels of endogenous oxidants. Here, we present the landscape of protein thiol oxidation in chronologically aged wild-type Saccharomyces cerevisiae in a time-dependent manner. Our data determine early-oxidation targets in key biological processes governing the de novo production of proteins, protein folding, and degradation, and indicate a hierarchy of cellular responses affected by a reversible redox modification. Comparison with existing datasets in yeast, nematode, fruit fly, and mouse reveals the evolutionary conservation of these oxidation targets. To facilitate accessibility, we integrated the cross-species comparison into the newly developed OxiAge Database.
Collapse
Affiliation(s)
- Katarzyna Jonak
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
| | - Julian Bender
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
30
|
Breen PC, Kanakanui KG, Newman MA, Dowen RH. The F-box protein FBXL-5 governs vitellogenesis and lipid homeostasis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590113. [PMID: 38712300 PMCID: PMC11071313 DOI: 10.1101/2024.04.18.590113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The molecular mechanisms that govern the metabolic commitment to reproduction, which often occurs at the expense of somatic reserves, remain poorly understood. We identified the C. elegans F-box protein FBXL-5 as a negative regulator of maternal provisioning of vitellogenin lipoproteins, which mediate the transfer of intestinal lipids to the germline. Mutations in fbxl-5 partially suppress the vitellogenesis defects observed in the heterochronic mutants lin-4 and lin-29, both of which ectopically express fbxl-5 at the adult developmental stage. FBXL-5 functions in the intestine to negatively regulate expression of the vitellogenin genes; and consistently, intestine-specific over-expression of FBXL-5 is sufficient to inhibit vitellogenesis, restrict lipid accumulation, and shorten lifespan. Our epistasis analyses suggest that fbxl-5 functions in concert with cul-6 , a cullin gene, and the Skp1-related gene skr-3 to regulate vitellogenesis. Additionally, fbxl-5 acts genetically upstream of rict-1 , which encodes the core mTORC2 protein Rictor, to govern vitellogenesis. Together, our results reveal an unexpected role for a SCF ubiquitin-ligase complex in controlling intestinal lipid homeostasis by engaging mTORC2 signaling.
Collapse
|
31
|
Reda GK, Ndunguru SF, Csernus B, Knop R, Lugata JK, Szabó C, Czeglédi L, Lendvai ÁZ. Dietary restriction reveals sex-specific expression of the mTOR pathway genes in Japanese quails. Sci Rep 2024; 14:8314. [PMID: 38594358 PMCID: PMC11004124 DOI: 10.1038/s41598-024-58487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
Limited resources affect an organism's physiology through the conserved metabolic pathway, the mechanistic target of rapamycin (mTOR). Males and females often react differently to nutritional limitation, but whether it leads to differential mTOR pathway expression remains unknown. Recently, we found that dietary restriction (DR) induced significant changes in the expression of mTOR pathway genes in female Japanese quails (Coturnix japonica). We simultaneously exposed 32 male and female Japanese quails to either 20%, 30%, 40% restriction or ad libitum feeding for 14 days and determined the expression of six key genes of the mTOR pathway in the liver to investigate sex differences in the expression patterns. We found that DR significantly reduced body mass, albeit the effect was milder in males compared to females. We observed sex-specific liver gene expression. DR downregulated mTOR expression more in females than in males. Under moderate DR, ATG9A and RPS6K1 expressions were increased more in males than in females. Like females, body mass in males was correlated positively with mTOR and IGF1, but negatively with ATG9A and RS6K1 expressions. Our findings highlight that sexes may cope with nutritional deficits differently and emphasise the importance of considering sexual differences in studies of dietary restriction.
Collapse
Affiliation(s)
- Gebrehaweria K Reda
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary.
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary.
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary.
| | - Sawadi F Ndunguru
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
| | - James K Lugata
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| |
Collapse
|
32
|
Venz R, Goyala A, Soto-Gamez A, Yenice T, Demaria M, Ewald CY. In-vivo screening implicates endoribonuclease Regnase-1 in modulating senescence-associated lysosomal changes. GeroScience 2024; 46:1499-1514. [PMID: 37644339 PMCID: PMC10828269 DOI: 10.1007/s11357-023-00909-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Accumulation of senescent cells accelerates aging and age-related diseases, whereas preventing this accumulation extends the lifespan in mice. A characteristic of senescent cells is increased staining with β-galactosidase (β-gal) ex vivo. Here, we describe a progressive accumulation of β-gal staining in the model organism C. elegans during aging. We show that distinct pharmacological and genetic interventions targeting the mitochondria and the mTORC1 to the nuclear core complex axis, the non-canonical apoptotic, and lysosomal-autophagy pathways slow the age-dependent accumulation of β-gal. We identify a novel gene, rege-1/Regnase-1/ZC3H12A/MCPIP1, modulating β-gal staining via the transcription factor ets-4/SPDEF. We demonstrate that knocking down Regnase-1 in human cell culture prevents senescence-associated β-gal accumulation. Our data provide a screening pipeline to identify genes and drugs modulating senescence-associated lysosomal phenotypes.
Collapse
Affiliation(s)
- Richard Venz
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Tugce Yenice
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
33
|
Snow S, Mir D, Ma Z, Horrocks J, Cox M, Ruzga M, Sayed H, Rogers AN. Neuronal CBP-1 is required for enhanced body muscle proteostasis in response to reduced translation downstream of mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585263. [PMID: 38559178 PMCID: PMC10980069 DOI: 10.1101/2024.03.15.585263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The ability to maintain muscle function decreases with age and loss of proteostatic function. Diet, drugs, and genetic interventions that restrict nutrients or nutrient signaling help preserve long-term muscle function and slow age-related decline. Previously, it was shown that attenuating protein synthesis downstream of the mechanistic target of rapamycin (mTOR) gradually increases expression of heat shock response (HSR) genes in a manner that correlates with increased resilience to protein unfolding stress. Here, we investigate the role of specific tissues in mediating the cytoprotective effects of low translation. Methods This study uses genetic tools (transgenic C. elegans , RNA interference and gene expression analysis) as well as physiological assays (survival and paralysis assays) in order to better understand how specific tissues contribute to adaptive changes involving cellular cross-talk that enhance proteostasis under low translation conditions. Results We use the C. elegans system to show that lowering translation in neurons or the germline increases heat shock gene expression and survival under conditions of heat stress. In addition, we find that low translation in these tissues protects motility in a body muscle-specific model of proteotoxicity that results in paralysis. Low translation in neurons or germline also results in increased expression of certain muscle regulatory and structural genes, reversing reduced expression normally observed with aging in C. elegans . Enhanced resilience to protein unfolding stress requires neuronal expression of cbp-1 . Conclusion Low translation in either neurons or the germline orchestrate protective adaptation in other tissues, including body muscle.
Collapse
|
34
|
Fujiwara K, Miyazaki S, Maekawa K. Candidate target genes of the male-specific expressed Doublesex in the termite Reticulitermes speratus. PLoS One 2024; 19:e0299900. [PMID: 38427681 PMCID: PMC10906832 DOI: 10.1371/journal.pone.0299900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024] Open
Abstract
Eusocial insects such as termites, ants, bees, and wasps exhibit a reproductive division of labor. The developmental regulation of reproductive organ (ovaries and testes) is crucial for distinguishing between reproductive and sterile castes. The development of reproductive organ in insects is regulated by sex-determination pathways. The sex determination gene Doublesex (Dsx), encoding transcription factors, plays an important role in this pathway. Therefore, clarifying the function of Dsx in the developmental regulation of sexual traits is important to understand the social evolution of eusocial insects. However, no studies have reported the function of Dsx in hemimetabolous eusocial group termites. In this study, we searched for binding sites and candidate target genes of Dsx in species with available genome information as the first step in clarifying the function of Dsx in termites. First, we focused on the Reticulitermes speratus genome and identified 101 candidate target genes of Dsx. Using a similar method, we obtained 112, 39, and 76 candidate Dsx target genes in Reticulitermes lucifugus, Coptotermes formosanus, and Macrotermes natalensis, respectively. Second, we compared the candidate Dsx target genes between species and identified 37 common genes between R. speratus and R. lucifugus. These included several genes probably involved in spermatogenesis and longevity. However, only a few common target genes were identified between R. speratus and the other two species. Finally, Dsx dsRNA injection resulted in the differential expression of several target genes, including piwi-like protein and B-box type zinc finger protein ncl-1 in R. speratus. These results provide valuable resource data for future functional analyses of Dsx in termites.
Collapse
Affiliation(s)
- Kokuto Fujiwara
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Satoshi Miyazaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Kiyoto Maekawa
- Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
35
|
Liu H, Xing H, Xia Z, Wu T, Liu J, Li A, Bi F, Sun Y, Zhang J, He P. Mechanisms of harmful effects of Microcystis aeruginosa on a brackish water organism Moina mongolica based on physiological and transcriptomic responses. HARMFUL ALGAE 2024; 133:102588. [PMID: 38485443 DOI: 10.1016/j.hal.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
To investigate the detrimental impacts of cyanobacterial bloom, specifically Microcystis aeruginosa, on brackish water ecosystems, the study used Moina mongolica, a cladoceran species, as the test organism. In a chronic toxicology experiment, the survival and reproductive rates of M. mongolica were assessed under M. aeruginosa stress. It was observed that the survival rate of M. mongolica fed with M. aeruginosa significantly decreased with time and their reproduction rate dropped to zero, while the control group remained maintained stable and normal reproduction. To further explore the underlying molecular mechanisms of the effects of M. aeruginosa on M. mongolica, we conducted a transcriptomic analysis on newly hatched M. mongolica cultured under different food conditions for 24 h. The results revealed significant expression differences in 572 genes, with 233 genes significantly up-regulated and 339 genes significantly down-regulated. Functional analysis of these differentially expressed genes identified six categories of physiological functional changes, including nutrition and metabolism, oxidative phosphorylation, neuroimmunology, cuticle and molting, reproduction, and programmed cell death. Based on these findings, we outlined the basic mechanisms of microcystin toxicity. The discovery provides critical insights into the mechanisms of Microcystis toxicity on organisms and explores the response mechanisms of cladocerans under the stress of Microcystis.
Collapse
Affiliation(s)
- Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Hao Xing
- Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhangyi Xia
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Tingting Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinlin Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Aiqin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fangling Bi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuqing Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Water Environment and Ecology Engineering Research Center of the Shanghai Institution of Higher Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, 201702, China.
| |
Collapse
|
36
|
Sharifi S, Chaudhari P, Martirosyan A, Eberhardt AO, Witt F, Gollowitzer A, Lange L, Woitzat Y, Okoli EM, Li H, Rahnis N, Kirkpatrick J, Werz O, Ori A, Koeberle A, Bierhoff H, Ermolaeva M. Reducing the metabolic burden of rRNA synthesis promotes healthy longevity in Caenorhabditis elegans. Nat Commun 2024; 15:1702. [PMID: 38402241 PMCID: PMC10894287 DOI: 10.1038/s41467-024-46037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Ribosome biogenesis is initiated by RNA polymerase I (Pol I)-mediated synthesis of pre-ribosomal RNA (pre-rRNA). Pol I activity was previously linked to longevity, but the underlying mechanisms were not studied beyond effects on nucleolar structure and protein translation. Here we use multi-omics and functional tests to show that curtailment of Pol I activity remodels the lipidome and preserves mitochondrial function to promote longevity in Caenorhabditis elegans. Reduced pre-rRNA synthesis improves energy homeostasis and metabolic plasticity also in human primary cells. Conversely, the enhancement of pre-rRNA synthesis boosts growth and neuromuscular performance of young nematodes at the cost of accelerated metabolic decline, mitochondrial stress and premature aging. Moreover, restriction of Pol I activity extends lifespan more potently than direct repression of protein synthesis, and confers geroprotection even when initiated late in life, showcasing this intervention as an effective longevity and metabolic health treatment not limited by aging.
Collapse
Affiliation(s)
- Samim Sharifi
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Matter Bio, Inc., Brooklyn, NY, 11237, USA
| | - Prerana Chaudhari
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Asya Martirosyan
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alexander Otto Eberhardt
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lisa Lange
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Yvonne Woitzat
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | | | - Huahui Li
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | - Norman Rahnis
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany.
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
37
|
Ange JS, Weng Y, Stevenson ME, Kaletsky R, Moore RS, Zhou S, Murphy CT. Adult Single-nucleus Neuronal Transcriptomes of Insulin Signaling Mutants Reveal Regulators of Behavior and Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579364. [PMID: 38370779 PMCID: PMC10871314 DOI: 10.1101/2024.02.07.579364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The insulin/insulin-like signaling (IIS) pathway regulates many of C. elegans' adult functions, including learning and memory 1 . While whole-worm and tissue-specific transcriptomic analyses have identified IIS targets 2,3 , a higher-resolution single-cell approach is required to identify changes that confer neuron-specific improvements in the long-lived insulin receptor mutant, daf-2 . To understand how behaviors that are controlled by a small number of neurons change in daf-2 mutants, we used the deep resolution of single-nucleus RNA sequencing to define each neuron type's transcriptome in adult wild-type and daf-2 mutants. First, we found surprising differences between wild-type L4 larval neurons and young adult neurons in chemoreceptor expression, synaptic genes, and learning and memory genes. These Day 1 adult neuron transcriptomes allowed us to identify adult AWC-specific regulators of chemosensory function and to predict neuron-to-neuron peptide/receptor pairs. We then identified gene expression changes that correlate with daf-2's improved cognitive functions, particularly in the AWC sensory neuron that controls learning and associative memory 4 , and used behavioral assays to test their roles in cognitive function. Combining deep single-neuron transcriptomics, genetic manipulation, and behavioral analyses enabled us to identify genes that may function in a single adult neuron to control behavior, including conserved genes that function in learning and memory. One-Sentence Summary Single-nucleus sequencing of adult wild-type and daf-2 C. elegans neurons reveals functionally relevant transcriptional changes, including regulators of chemosensation, learning, and memory.
Collapse
|
38
|
Blank HM, Hammer SE, Boatright L, Roberts C, Heyden KE, Nagarajan A, Tsuchiya M, Brun M, Johnson CD, Stover PJ, Sitcheran R, Kennedy BK, Adams LG, Kaeberlein M, Field MS, Threadgill DW, Andrews-Polymenis HL, Polymenis M. Late-life dietary folate restriction reduces biosynthetic processes without compromising healthspan in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575290. [PMID: 38260683 PMCID: PMC10802571 DOI: 10.1101/2024.01.12.575290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.
Collapse
Affiliation(s)
- Heidi M. Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Staci E. Hammer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Laurel Boatright
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, United States
| | - Courtney Roberts
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Katarina E. Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, United States
| | - Aravindh Nagarajan
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, United States
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, United States
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
| | - Marcel Brun
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, United States
| | - Charles D. Johnson
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, United States
| | - Patrick J. Stover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
- Institute for Advancing Health through Agriculture, Texas A&M University, College Station, United States
- Department of Nutrition, Texas A&M University, College Station, United States
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, United States
| | - Brian K. Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Ageing, National University of Singapore, National University Health System, Singapore, Singapore
| | - L. Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M, College Station, Texas, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
- Optispan, Inc., Seattle, United States
| | - Martha S. Field
- Division of Nutritional Sciences, Cornell University, Ithaca, United States
| | - David W. Threadgill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, United States
- Department of Nutrition, Texas A&M University, College Station, United States
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, United States
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, United States
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, United States
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, United States
- Institute for Advancing Health through Agriculture, Texas A&M University, College Station, United States
| |
Collapse
|
39
|
Du N, Yang R, Jiang S, Niu Z, Zhou W, Liu C, Gao L, Sun Q. Anti-Aging Drugs and the Related Signal Pathways. Biomedicines 2024; 12:127. [PMID: 38255232 PMCID: PMC10813474 DOI: 10.3390/biomedicines12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a multifactorial biological process involving chronic diseases that manifest from the molecular level to the systemic level. From its inception to 31 May 2022, this study searched the PubMed, Web of Science, EBSCO, and Cochrane library databases to identify relevant research from 15,983 articles. Multiple approaches have been employed to combat aging, such as dietary restriction (DR), exercise, exchanging circulating factors, gene therapy, and anti-aging drugs. Among them, anti-aging drugs are advantageous in their ease of adherence and wide prevalence. Despite a shared functional output of aging alleviation, the current anti-aging drugs target different signal pathways that frequently cross-talk with each other. At present, six important signal pathways were identified as being critical in the aging process, including pathways for the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), nutrient signal pathway, silent information regulator factor 2-related enzyme 1 (SIRT1), regulation of telomere length and glycogen synthase kinase-3 (GSK-3), and energy metabolism. These signal pathways could be targeted by many anti-aging drugs, with the corresponding representatives of rapamycin, metformin, acarbose, nicotinamide adenine dinucleotide (NAD+), lithium, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. This review summarized these important aging-related signal pathways and their representative targeting drugs in attempts to obtain insights into and promote the development of mechanism-based anti-aging strategies.
Collapse
Affiliation(s)
- Nannan Du
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ruigang Yang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Shengrong Jiang
- The Meta-Center, 29 Xierqi Middle Rd, Beijing 100193, China;
| | - Zubiao Niu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Wenzhao Zhou
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Chenyu Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| |
Collapse
|
40
|
Maiti S, Bhattacharya K, Wider D, Hany D, Panasenko O, Bernasconi L, Hulo N, Picard D. Hsf1 and the molecular chaperone Hsp90 support a 'rewiring stress response' leading to an adaptive cell size increase in chronic stress. eLife 2023; 12:RP88658. [PMID: 38059913 DOI: 10.7554/elife.88658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Cells are exposed to a wide variety of internal and external stresses. Although many studies have focused on cellular responses to acute and severe stresses, little is known about how cellular systems adapt to sublethal chronic stresses. Using mammalian cells in culture, we discovered that they adapt to chronic mild stresses of up to two weeks, notably proteotoxic stresses such as heat, by increasing their size and translation, thereby scaling the amount of total protein. These adaptations render them more resilient to persistent and subsequent stresses. We demonstrate that Hsf1, well known for its role in acute stress responses, is required for the cell size increase, and that the molecular chaperone Hsp90 is essential for coupling the cell size increase to augmented translation. We term this translational reprogramming the 'rewiring stress response', and propose that this protective process of chronic stress adaptation contributes to the increase in size as cells get older, and that its failure promotes aging.
Collapse
Affiliation(s)
- Samarpan Maiti
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Diana Wider
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Olesya Panasenko
- BioCode: RNA to Proteins Core Facility, Département de Microbiologie et Médecine Moléculaire, Faculté de Médecine, Université de Genève, Genève, Switzerland
| | - Lilia Bernasconi
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| |
Collapse
|
41
|
Huynh D, Wu CW. Identification of pararosaniline as a modifier of RNA splicing in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2023; 13:jkad241. [PMID: 37852248 PMCID: PMC10700105 DOI: 10.1093/g3journal/jkad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Posttranscriptional splicing of premessenger RNA (mRNA) is an evolutionarily conserved eukaryotic process for producing mature mRNA that is translated into proteins. Accurate splicing is necessary for normal growth and development, and aberrant splicing is increasingly evident in various human pathologies. To study environmental factors that influence RNA splicing, we employed a fluorescent Caenorhabditis elegans in vivo splicing reporter as a biomarker for splicing fidelity to screen against the US EPA ToxCast chemical library. We identified pararosaniline hydrochloride as a strong modifier of RNA splicing. Through gene expression analysis, we found that pararosaniline activates the oxidative stress response and alters the expression of key RNA splicing regulator genes. Physiological assays show that pararosaniline is deleterious to C. elegans development, reproduction, and aging. Through a targeted RNAi screen, we found that inhibiting protein translation can reverse pararosaniline's effect on the splicing reporter and provide significant protection against long-term pararosaniline toxicity. Together, this study reveals a new chemical modifier of RNA splicing and describes translation inhibition as a genetic mechanism to provide resistance.
Collapse
Affiliation(s)
- Dylan Huynh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
42
|
Xing C, Hang Z, Guo W, Li Y, Shah R, Zhao Y, Zeng Z, Du H. Stem cells from human exfoliated deciduous teeth rejuvenate the liver in naturally aged mice by improving ribosomal and mitochondrial proteins. Cytotherapy 2023; 25:1285-1292. [PMID: 37815776 DOI: 10.1016/j.jcyt.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND AIMS Aging is accompanied by a decline in cellular proteome homeostasis, mitochondrial, and metabolic function. Mesenchymal stromal cell (MSC) therapies have been reported to extend lifespan and delay some age-related pathologies, yet the anti-aging rate and mechanisms remain unclear. Here, we investigated the effects and mechanism by transplantation of stem cells from human exfoliated deciduous teeth (SHED) into the naturally aged mice model. METHODS SHED were cultured in vitro and injected into mice by caudal vein. The in vivo imaging uncovered that SHED labeled by DiR dye mainly migrated to the liver, spleen, and lung organs of wild-type mice. As the main metabolic organ and SHED homing place, the liver was selected for proteomics and aging clock algorithm (LiverClock) analysis, which was constructed to estimate the proteomic pattern related to liver age state. RESULTS After 6 months of continuous SHED injections, the liver proteomic pattern was reversed from senescent (∼30 months) to a youthful state (∼3 months), accompanied with upregulation of hepatocytes marker genes, anti-aging protein Klotho, a global improvement of liver functional pathways proteins, and a dramatic regulation of ribosomal and mitochondrial proteins, including upregulation of translation elongation and ribosome-sparing proteins Rpsa and Rplp0; elongation factors Eif4a1, Eef1b2, Eif5a; protein-folding chaperones Hsp90aa and Hspe1; ATP synthesis proteins Atp5b, Atp5o, Atp5j; and downregulation of most ribosomal proteins, suggesting that the proteome homeostasis destruction and mitochondria dysfunction in the aged mice liver might be relieved after SHED treatment. CONCLUSIONS SHED treatment could dramatically relieve the senescent state of the aged liver, affect ribosome component proteins and upregulate the ribosomal biogenesis proteins in the aged mice liver. These results may help understand the improvements and mechanisms of SHED treatment in anti-aging.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Zhongci Hang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Wenhuan Guo
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Reproductive Center, Peking University Third Hospital, Beijing, China
| | - Yingxian Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Roshan Shah
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Yihan Zhao
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Zehua Zeng
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China.
| | - Hongwu Du
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China.
| |
Collapse
|
43
|
Cornwell A, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568222. [PMID: 38045350 PMCID: PMC10690244 DOI: 10.1101/2023.11.22.568222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to forkhead box transcription factor A) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress -such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have different roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biological Sciences, GITAM University, Andhra Pradesh, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd Batavia, NY 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
44
|
Mariner BL, Felker DP, Cantergiani RJ, Peterson J, McCormick MA. Multiomics of GCN4-Dependent Replicative Lifespan Extension Models Reveals Gcn4 as a Regulator of Protein Turnover in Yeast. Int J Mol Sci 2023; 24:16163. [PMID: 38003352 PMCID: PMC10671045 DOI: 10.3390/ijms242216163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
We have shown that multiple tRNA synthetase inhibitors can increase lifespan in both the nematode C. elegans and the budding yeast S. cerevisiae by acting through the conserved transcription factor Gcn4 (yeast)/ATF-4 (worms). To further understand the biology downstream from this conserved transcription factor in the yeast model system, we looked at two different yeast models known to have upregulated Gcn4 and GCN4-dependent increased replicative lifespan. These two models were rpl31aΔ yeast and yeast treated with the tRNA synthetase inhibitor borrelidin. We used both proteomic and RNAseq analysis of a block experimental design that included both of these models to identify GCN4-dependent changes in these two long-lived strains of yeast. Proteomic analysis of these yeast indicate that the long-lived yeast have increased abundances of proteins involved in amino acid biosynthesis. The RNAseq of these same yeast uncovered further regulation of protein degradation, identifying the differential expression of genes associated with autophagy and the ubiquitin-proteasome system (UPS). The data presented here further underscore the important role that GCN4 plays in the maintenance of protein homeostasis, which itself is an important hallmark of aging. In particular, the changes in autophagy and UPS-related gene expression that we have observed could also have wide-ranging implications for the understanding and treatment of diseases of aging that are associated with protein aggregation.
Collapse
Affiliation(s)
- Blaise L. Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daniel P. Felker
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Ryla J. Cantergiani
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Jack Peterson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
45
|
Vérièpe-Salerno J, Podavini S, Long MJ, Kolotuev I, Cuendet M, Thome M. MALT-1 shortens lifespan by inhibiting autophagy in the intestine of C. elegans. AUTOPHAGY REPORTS 2023; 2:2277584. [PMID: 38510643 PMCID: PMC7615756 DOI: 10.1080/27694127.2023.2277584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 03/22/2024]
Abstract
The caspase-like protease MALT1 promotes immune responses and oncogenesis in mammals by activating the transcription factor NF-κB. MALT1 is remarkably conserved from mammals to simple metazoans devoid of NF-κB homologs, like the nematode C. elegans. To discover more ancient, NF-κB -independent MALT1 functions, we analysed the phenotype of C. elegans upon silencing of MALT-1 expression systemically or in a tissue-specific manner. MALT-1 silencing in the intestine caused a significant increase in life span, whereas intestinal overexpression of MALT-1 shortened life expectancy. Interestingly, MALT-1-deficient animals showed higher constitutive levels of autophagy in the intestine, which were particularly evident in aged or starved nematodes. Silencing of the autophagy regulators ATG-13, BEC-1 or LGG-2, but not the TOR homolog LET-363, reversed lifespan extension caused by MALT-1 deficiency. These findings suggest that MALT-1 limits the lifespan of C. elegans by acting as an inhibitor of an early step of autophagy in the intestine.
Collapse
Affiliation(s)
- Julie Vérièpe-Salerno
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Silvia Podavini
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Marcus J.C. Long
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, Quartier Sorge – Biophore, CH-1015 Lausanne, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Margot Thome
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| |
Collapse
|
46
|
Silva-García CG, Láscarez-Lagunas LI, Papsdorf K, Heintz C, Prabhakar A, Morrow CS, Pajuelo Torres L, Sharma A, Liu J, Colaiácovo MP, Brunet A, Mair WB. The CRTC-1 transcriptional domain is required for COMPASS complex-mediated longevity in C. elegans. NATURE AGING 2023; 3:1358-1371. [PMID: 37946042 PMCID: PMC10645585 DOI: 10.1038/s43587-023-00517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Loss of function during aging is accompanied by transcriptional drift, altering gene expression and contributing to a variety of age-related diseases. CREB-regulated transcriptional coactivators (CRTCs) have emerged as key regulators of gene expression that might be targeted to promote longevity. Here we define the role of the Caenorhabditis elegans CRTC-1 in the epigenetic regulation of longevity. Endogenous CRTC-1 binds chromatin factors, including components of the COMPASS complex, which trimethylates lysine 4 on histone H3 (H3K4me3). CRISPR editing of endogenous CRTC-1 reveals that the CREB-binding domain in neurons is specifically required for H3K4me3-dependent longevity. However, this effect is independent of CREB but instead acts via the transcription factor AP-1. Strikingly, CRTC-1 also mediates global histone acetylation levels, and this acetylation is essential for H3K4me3-dependent longevity. Indeed, overexpression of an acetyltransferase enzyme is sufficient to promote longevity in wild-type worms. CRTCs, therefore, link energetics to longevity by critically fine-tuning histone acetylation and methylation to promote healthy aging.
Collapse
Affiliation(s)
- Carlos G Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | | | | | - Caroline Heintz
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Aditi Prabhakar
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Christopher S Morrow
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Lourdes Pajuelo Torres
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Arpit Sharma
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jihe Liu
- Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
47
|
García-Garví A, Layana-Castro PE, Puchalt JC, Sánchez-Salmerón AJ. Automation of Caenorhabditis elegans lifespan assay using a simplified domain synthetic image-based neural network training strategy. Comput Struct Biotechnol J 2023; 21:5049-5065. [PMID: 37867965 PMCID: PMC10589381 DOI: 10.1016/j.csbj.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Performing lifespan assays with Caenorhabditis elegans (C. elegans) nematodes manually is a time consuming and laborious task. Therefore, automation is necessary to increase productivity. In this paper, we propose a method to automate the counting of live C. elegans using deep learning. The survival curves of the experiment are obtained using a sequence formed by an image taken on each day of the assay. Solving this problem would require a very large labeled dataset; thus, to facilitate its generation, we propose a simplified image-based strategy. This simplification consists of transforming the real images of the nematodes in the Petri dish to a synthetic image, in which circular blobs are drawn on a constant background to mark the position of the C. elegans. To apply this simplification method, it is divided into two steps. First, a Faster R-CNN network detects the C. elegans, allowing its transformation into a synthetic image. Second, using the simplified image sequence as input, a regression neural network is in charge of predicting the count of live nematodes on each day of the experiment. In this way, the counting network was trained using a simple simulator, avoiding labeling a very large real dataset or developing a realistic simulator. Results showed that the differences between the curves obtained by the proposed method and the manual curves are not statistically significant for either short-lived N2 (p-value log rank test 0.45) or long-lived daf-2 (p-value log rank test 0.83) strains.
Collapse
Affiliation(s)
- Antonio García-Garví
- Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, Valencia, 46022, Spain
| | - Pablo E. Layana-Castro
- Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, Valencia, 46022, Spain
| | - Joan Carles Puchalt
- Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, Valencia, 46022, Spain
| | - Antonio-José Sánchez-Salmerón
- Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera S/N, Valencia, 46022, Spain
| |
Collapse
|
48
|
Clay KJ, Yang Y, Clark C, Petrascheck M. Proteostasis is differentially modulated by inhibition of translation initiation or elongation. eLife 2023; 12:e76465. [PMID: 37795690 PMCID: PMC10581687 DOI: 10.7554/elife.76465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Recent work has revealed an increasingly important role for mRNA translation in maintaining proteostasis. Here, we use chemical inhibitors targeting discrete steps of translation to compare how lowering the concentration of all or only translation initiation-dependent proteins rescues Caenorhabditis elegans from proteotoxic stress. We systematically challenge proteostasis and show that pharmacologically inhibiting translation initiation or elongation elicits a distinct protective profile. Inhibiting elongation protects from heat and proteasome dysfunction independently from HSF-1 but does not protect from age-associated protein aggregation. Conversely, inhibition of initiation protects from heat and age-associated protein aggregation and increases lifespan, dependent on hsf-1, but does not protect from proteotoxicity caused by proteasome dysfunction. Surprisingly, we find that the ability of the translation initiation machinery to control the concentration of newly synthesized proteins depends on HSF-1. Inhibition of translation initiation in wild-type animals reduces the concentration of newly synthesized proteins but increases it in hsf-1 mutants. Our findings suggest that the HSF-1 pathway is not only a downstream target of translation but also directly cooperates with the translation initiation machinery to control the concentration of newly synthesized proteins to restore proteostasis.
Collapse
Affiliation(s)
- Khalyd J Clay
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Yongzhi Yang
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Christina Clark
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Michael Petrascheck
- Department of Molecular Medicine, Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
49
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
50
|
Valeeva LR, Abdulkina LR, Agabekian IA, Shakirov EV. Telomere biology and ribosome biogenesis: structural and functional interconnections. Biochem Cell Biol 2023; 101:394-409. [PMID: 36989538 DOI: 10.1139/bcb-2022-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Telomeres are nucleoprotein structures that play a pivotal role in the protection and maintenance of eukaryotic chromosomes. Telomeres and the enzyme telomerase, which replenishes telomeric DNA lost during replication, are important factors necessary to ensure continued cell proliferation. Cell proliferation is also dependent on proper and efficient protein synthesis, which is carried out by ribosomes. Mutations in genes involved in either ribosome biogenesis or telomere biology result in cellular abnormalities and can cause human genetic diseases, defined as ribosomopathies and telomeropathies, respectively. Interestingly, recent discoveries indicate that many of the ribosome assembly and rRNA maturation factors have additional noncanonical functions in telomere biology. Similarly, several key proteins and enzymes involved in telomere biology, including telomerase, have unexpected roles in rRNA transcription and maturation. These observations point to an intriguing cross-talk mechanism potentially explaining the multiple pleiotropic symptoms of mutations in many causal genes identified in various telomeropathy and ribosomopathy diseases. In this review, we provide a brief summary of eukaryotic telomere and rDNA loci structures, highlight several universal features of rRNA and telomerase biogenesis, evaluate intriguing interconnections between telomere biology and ribosome assembly, and conclude with an assessment of overlapping features of human diseases of telomeropathies and ribosomopathies.
Collapse
Affiliation(s)
- Liia R Valeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|