1
|
Badial K, Lacayo P, Murakami S. Biology of Healthy Aging: Biological Hallmarks of Stress Resistance Related and Unrelated to Longevity in Humans. Int J Mol Sci 2024; 25:10493. [PMID: 39408822 PMCID: PMC11477412 DOI: 10.3390/ijms251910493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Stress resistance is highly associated with longer and healthier lifespans in various model organisms, including nematodes, fruit flies, and mice. However, we lack a complete understanding of stress resistance in humans; therefore, we investigated how stress resistance and longevity are interlinked in humans. Using more than 180 databases, we identified 541 human genes associated with stress resistance. The curated gene set is highly enriched with genes involved in the cellular response to stress. The Reactome analysis identified 398 biological pathways, narrowed down to 172 pathways using a medium threshold (p-value < 1 × 10-4). We further summarized these pathways into 14 pathway categories, e.g., cellular response to stimuli/stress, DNA repair, gene expression, and immune system. There were overlapping categories between stress resistance and longevity, including gene expression, signal transduction, immune system, and cellular responses to stimuli/stress. The categories include the PIP3-AKT-FOXO and mTOR pathways, known to specify lifespans in the model systems. They also include the accelerated aging syndrome genes (WRN and HGPS/LMNA), while the genes were also involved in non-overlapped categories. Notably, nuclear pore proteins are enriched among the stress-resistance pathways and overlap with diverse metabolic pathways. This study fills the knowledge gap in humans, suggesting that stress resistance is closely linked to longevity pathways but not entirely identical. While most longevity categories intersect with stress-resistance categories, some do not, particularly those related to cell proliferation and beta-cell development. We also note inconsistencies in pathway terminologies with aging hallmarks reported previously, and propose them to be more unified and integral.
Collapse
Affiliation(s)
| | | | - Shin Murakami
- Department of Foundational Biomedical Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
2
|
Ornelas IM, Carrilho BDS, Ventura MAVDC, Domith I, de V Silveira CM, Dos Santos VF, Delou JM, Moll F, Pereira HMG, Junqueira M, Aguilaniu H, Rehen S. Lysergic acid diethylamide induces behavioral changes in Caenorhabditis elegans. Neurosci Lett 2024; 837:137903. [PMID: 39025433 DOI: 10.1016/j.neulet.2024.137903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Lysergic acid diethylamide (LSD) is a synthetic psychedelic compound with potential therapeutic value for psychiatric disorders. This study aims to establish Caenorhabditis elegans as an in vivo model for examining LSD's effects on locomotor behavior. Our results demonstrate that LSD is absorbed by C. elegans and that the acute treatment reduces animal speed, similar to the role of endogenous serotonin. This response is mediated in part by the serotonergic receptors SER-1 and SER-4. Our findings highlight the potential of this nematode as a new experimental model in psychedelic research.
Collapse
Affiliation(s)
- Isis M Ornelas
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Beatriz de S Carrilho
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Matheus Antonio V de C Ventura
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ivan Domith
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil; IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ 22281-010, Brazil
| | | | - Vanessa F Dos Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - João M Delou
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Francisco Moll
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | | | - Magno Junqueira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Hugo Aguilaniu
- Instituto Serrapilheira, Rio de Janeiro, Rio de Janeiro, 22431-050, Brazil
| | - Stevens Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil; Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2141-902, Brazil.
| |
Collapse
|
3
|
Mysore K, Njoroge TM, Stewart ATM, Winter N, Hamid-Adiamoh M, Sun L, Feng RS, James LD, Mohammed A, Severson DW, Duman-Scheel M. Characterization of a novel RNAi yeast insecticide that silences mosquito 5-HT1 receptor genes. Sci Rep 2023; 13:22511. [PMID: 38110471 PMCID: PMC10728091 DOI: 10.1038/s41598-023-49799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs), which regulate numerous intracellular signaling cascades that mediate many essential physiological processes, are attractive yet underexploited insecticide targets. RNA interference (RNAi) technology could facilitate the custom design of environmentally safe pesticides that target GPCRs in select target pests yet are not toxic to non-target species. This study investigates the hypothesis that an RNAi yeast insecticide designed to silence mosquito serotonin receptor 1 (5-HTR1) genes can kill mosquitoes without harming non-target arthropods. 5-HTR.426, a Saccharomyces cerevisiae strain that expresses an shRNA targeting a site specifically conserved in mosquito 5-HTR1 genes, was generated. The yeast can be heat-inactivated and delivered to mosquito larvae as ready-to-use tablets or to adult mosquitoes using attractive targeted sugar baits (ATSBs). The results of laboratory and outdoor semi-field trials demonstrated that consumption of 5-HTR.426 yeast results in highly significant mortality rates in Aedes, Anopheles, and Culex mosquito larvae and adults. Yeast consumption resulted in significant 5-HTR1 silencing and severe neural defects in the mosquito brain but was not found to be toxic to non-target arthropods. These results indicate that RNAi insecticide technology can facilitate selective targeting of GPCRs in intended pests without impacting GPCR activity in non-targeted organisms. In future studies, scaled production of yeast expressing the 5-HTR.426 RNAi insecticide could facilitate field trials to further evaluate this promising new mosquito control intervention.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Teresia M Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Akilah T M Stewart
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Nikhella Winter
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Majidah Hamid-Adiamoh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Rachel Shui Feng
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Lester D James
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Azad Mohammed
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - David W Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA.
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
4
|
Liu Z, Cheng L, Yang B, Cao Z, Sun M, Feng Y, Xu A. Effects of moderate static magnetic fields on the lipogenesis and lipolysis in different genders of Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115005. [PMID: 37210995 DOI: 10.1016/j.ecoenv.2023.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
With the rapid development of magnetic technology, the biological effects of moderate static magnetic fields (SMFs) have attracted increasing research interest due to their potential medical diagnosis and treatment application. The present study explored the effects of moderate SMFs on the lipid metabolism of Caenorhabditis elegans (C. elegans) in different genders including male, female, and hermaphrodite. We found that the fat content was significantly decreased by moderate SMFs in wild-type N2 worms, which was associated with their development stages. The diameters of lipid droplets in N2 worms, him-5 worms, and fog-2 worms were greatly decreased by 19.23%, 15.38%, and 23.07% at young adult stage under 0.5 T SMF, respectively. The mRNA levels of lipolysis related genes atgl-1 and nhr-76 were significantly up-regulated by SMF exposure, while the mRNA levels of the lipogenesis related genes fat-6, fat-7, and sbp-1 were down-regulated by SMF, whereas the concentration of β-oxidase was increased. There was a slight effect of SMF on the mRNA levels of β-oxidation related genes. Moreover, the insulin and serotonin pathway were regulated by SMF, instead of the TOR pathway. In wild-type worms, we found that their lifespan was prolonged by exposure to 0.5 T SMF. Our data suggested that moderate SMFs could significantly modify the lipogenesis and lipolysis process in C. elegans in a gender and development stage-dependent manner, which could provide a novel insight into understanding the function of moderate SMFs in living organisms.
Collapse
Affiliation(s)
- Zicheng Liu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Meng Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Yu Feng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China.
| |
Collapse
|
5
|
Chen TC, Hsu WL, Wu CY, Lai YR, Chao HR, Chen CH, Tsai MH. Effect of omega-6 linoleic acid on neurobehavioral development in Caenorhabditis elegans. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102557. [PMID: 36889241 DOI: 10.1016/j.plefa.2023.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/30/2022] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Linoleic acid (LA, omega-6), an essential polyunsaturated fatty acid, is supplied by vegetable oils such as corn, sunflower and soybean. Supplementary LA in infants and children is required for normal growth and brain development, but has also been reported to induce brain inflammation and neurodegenerative diseases. This controversial role of LA development requires further investigation. Our study utilized Caenorhabditis elegans (C. elegans) as a model to clarify the role of LA in regulating neurobehavioral development. A mere supplementary quantity of LA in C. elegans larval stage affected the worm's locomotive ability, intracellular ROS accumulation and lifespan. We found that more serotonergic neurons were activated by supplementing LA above 10 μM thereby promoting locomotive ability with upregulation of serotonin-related genes. Supplementation with LA above 10 μM also inhibited the expression of mtl-1, mtl-2 and ctl-3 to accelerate oxidative stress and attenuate lifespan in nematodes; however, enhancement of stress-related genes such as sod-1, sod-3, mtl-1, mtl-2 and cyp-35A2 by supplementary LA under 1 μM decreased oxidative stress and increased the worm's lifespan. In conclusion, our study reveals that supplementary LA possesses both pros and cons in worm physiology and provides new suggestions for LA intake administration in childhood.
Collapse
Affiliation(s)
- Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Yun-Ru Lai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas, 77030, United States of America; New York Heart Research Foundation, Mineola, New York, 11501, United States of America; Institute for Biomedical Sciences, Shinshu University, Nagano, 390-8621, Japan
| | - Ming-Hsien Tsai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
6
|
Lazaro-Pena MI, Cornwell AB, Diaz-Balzac CA, Das R, Macoretta N, Thakar J, Samuelson AV. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523661. [PMID: 36711523 PMCID: PMC9882034 DOI: 10.1101/2023.01.11.523661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 is co-expressed with key longevity transcription factors, including daf-16 (FOXO), hlh-30 (TFEB), skn-1 (Nrf2), and hif-1 , which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity. Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
Collapse
|
7
|
Fidalgo S, Yeoman MS. Age-Related Changes in Central Nervous System 5-Hydroxytryptamine Signalling and Its Potential Effects on the Regulation of Lifespan. Subcell Biochem 2023; 102:379-413. [PMID: 36600141 DOI: 10.1007/978-3-031-21410-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is an important neurotransmitter in the central nervous system and the periphery. Most 5-HT (~99%) is found in the periphery where it regulates the function of the gastrointestinal (GI) tract and is an important regulator of platelet aggregation. However, the remaining 1% that is found in the central nervous system (CNS) can regulate a range of physiological processes such as learning and memory formation, mood, food intake, sleep, temperature and pain perception. More recent work on the CNS of invertebrate model systems has shown that 5-HT can directly regulate lifespan.This chapter will focus on detailing how CNS 5-HT signalling is altered with increasing age and the potential consequences this has on its ability to regulate lifespan.
Collapse
Affiliation(s)
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Applied Sciences, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
8
|
Murakami S, Lacayo P. Biological and disease hallmarks of Alzheimer’s disease defined by Alzheimer’s disease genes. Front Aging Neurosci 2022; 14:996030. [PMID: 36437990 PMCID: PMC9682170 DOI: 10.3389/fnagi.2022.996030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
An increasing number of genes associated with Alzheimer’s disease (AD genes) have been reported. However, there is a lack of an overview of the genetic relationship between AD and age-related comorbidities, such as hypertension, myocardial infarction, and diabetes, among others. Previously, we used Reactome analysis in conjunction with the AD genes to identify both the biological pathways and the neurological diseases. Here we provide systematic updates on the genetic and disease hallmarks defined by AD genes. The analysis identified 50 pathways (defined as biological hallmarks). Of them, we have successfully compiled them into a total of 11 biological hallmarks, including 6 existing hallmarks and 5 newly updated hallmarks. The AD genes further identified 20 diverse diseases (defined as disease hallmarks), summarized into three major categories: (1) existing hallmarks, including neurological diseases; (2) newly identified hallmarks, including common age-related diseases such as diabetes, hypertension, other cardiovascular diseases, and cancers; (3) and other health conditions; note that cancers reportedly have an inverse relation with AD. We previously suggested that a single gene is associated with multiple neurological diseases, and we are further extending the finding that AD genes are associated with common age-related comorbidities and others. This study indicates that the heterogeneity of Alzheimer’s disease predicts complex clinical presentations in people living with AD. Taken together, the genes define AD as a part of age-related comorbidities with shared biological mechanisms and may raise awareness of a healthy lifestyle as potential prevention and treatment of the comorbidities.
Collapse
|
9
|
Dravecz N, Shaw T, Davies I, Brown C, Ormerod L, Vu G, Walker T, Taank T, Shirras AD, Broughton SJ. Reduced Insulin Signaling Targeted to Serotonergic Neurons but Not Other Neuronal Subtypes Extends Lifespan in Drosophila melanogaster. Front Aging Neurosci 2022; 14:893444. [PMID: 35865744 PMCID: PMC9294736 DOI: 10.3389/fnagi.2022.893444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Reduced Insulin/IGF-like signaling (IIS) plays an evolutionarily conserved role in improving longevity and some measures of health-span in model organisms. Recent studies, however, have found a disconnection between lifespan extension and behavioral health-span. We have previously shown that reduction of IIS in Drosophila neurons extends female lifespan but does not improve negative geotaxis senescence and has a detrimental effect on exploratory walking senescence in both sexes. We hypothesize that individual neuronal subtypes respond differently to IIS changes, thus the behavioral outcomes of pan-neuronal IIS reduction are the balance of positive, negative and neutral functional effects. In order to further understand how reduced IIS in neurons independently modulates lifespan and locomotor behavioral senescence we expressed a dominant negative Insulin receptor transgene selectively in individual neuronal subtypes and measured the effects on lifespan and two measures of locomotor senescence, negative geotaxis and exploratory walking. IIS reduction in cholinergic, GABAergic, dopaminergic, glutamatergic, and octopaminergic neurons was found to have either no affect or a detrimental effect on lifespan and locomotor senescence. However, reduction of IIS selectively in serotonergic neurons resulted in extension of lifespan in females with no effect on locomotor senescence. These data indicate that individual neuronal subtypes respond differently to IIS changes in the modulation of lifespan and locomotor senescence, and identify a specific role for the insulin receptor in serotonergic neurons in the modulation of lifespan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Susan J. Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
10
|
Serotonin and dopamine modulate aging in response to food odor and availability. Nat Commun 2022; 13:3271. [PMID: 35672307 PMCID: PMC9174215 DOI: 10.1038/s41467-022-30869-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
An organism's ability to perceive and respond to changes in its environment is crucial for its health and survival. Here we reveal how the most well-studied longevity intervention, dietary restriction, acts in-part through a cell non-autonomous signaling pathway that is inhibited by the presence of attractive smells. Using an intestinal reporter for a key gene induced by dietary restriction but suppressed by attractive smells, we identify three compounds that block food odor effects in C. elegans, thereby increasing longevity as dietary restriction mimetics. These compounds clearly implicate serotonin and dopamine in limiting lifespan in response to food odor. We further identify a chemosensory neuron that likely perceives food odor, an enteric neuron that signals through the serotonin receptor 5-HT1A/SER-4, and a dopaminergic neuron that signals through the dopamine receptor DRD2/DOP-3. Aspects of this pathway are conserved in D. melanogaster. Thus, blocking food odor signaling through antagonism of serotonin or dopamine receptors is a plausible approach to mimic the benefits of dietary restriction.
Collapse
|
11
|
Briggs AM, Hambly MG, Simão-Gurge RM, Garrison SM, Khaku Z, Van Susteren G, Lewis EE, Riffell JA, Luckhart S. Anopheles stephensi Feeding, Flight Behavior, and Infection With Malaria Parasites are Altered by Ingestion of Serotonin. Front Physiol 2022; 13:911097. [PMID: 35747317 PMCID: PMC9209645 DOI: 10.3389/fphys.2022.911097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
Approximately 3.4 billion people are at risk of malaria, a disease caused by infection with Plasmodium spp. parasites, which are transmitted by Anopheles mosquitoes. Individuals with severe falciparum malaria often exhibit changes in circulating blood levels of biogenic amines, including reduced serotonin or 5-hydroxytryptamine (5-HT), and these changes are associated with disease pathology. In insects, 5-HT functions as an important neurotransmitter for many behaviors and biological functions. In Anopheles stephensi, we show that 5-HT is localized to innervation in the head, thorax, and midgut, suggesting a gut-to-brain signaling axis that could support the effects of ingested 5-HT on mosquito biology and behavioral responses. Given the changes in blood levels of 5-HT associated with severe malaria and the key roles that 5-HT plays in insect neurophysiology, we investigated the impact of ingesting blood with healthy levels of 5-HT (1.5 µM) or malaria-associated levels of 5-HT (0.15 µM) on various aspects of A. stephensi biology. In these studies, we provisioned 5-HT and monitored fecundity, lifespan, flight behavior, and blood feeding of A. stephensi. We also assessed the impact of 5-HT ingestion on infection of A. stephensi with the mouse malaria parasite Plasmodium yoelii yoelii 17XNL and the human malaria parasite Plasmodium falciparum. Our data show that ingestion of 5-HT associated with severe malaria increased mosquito flight velocity and investigation of visual objects in response to host odor (CO2). 5-HT ingestion in blood at levels associated with severe malaria also increased the tendency to take a second blood meal 4 days later in uninfected A. stephensi. In mosquitoes infected with P. y. yoelii 17XNL, feeding tendency was decreased when midgut oocysts were present but increased when sporozoites were present. In addition to these effects, treatment of A. stephensi with 5-HT associated with severe malaria increased infection success with P. y. yoelii 17XNL compared to control, while treatment with healthy levels of 5-HT decreased infection success with P. falciparum. These changes in mosquito behavior and infection success could be used as a basis to manipulate 5-HT signaling in vector mosquitoes for improved control of malaria parasite transmission.
Collapse
Affiliation(s)
- Anna M. Briggs
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Raquel M. Simão-Gurge
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Sarah M. Garrison
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Zainab Khaku
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Grace Van Susteren
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
12
|
Kirchweger B, Klein-Junior LC, Pretsch D, Chen Y, Cretton S, Gasper AL, Heyden YV, Christen P, Kirchmair J, Henriques AT, Rollinger JM. Azepine-Indole Alkaloids From Psychotria nemorosa Modulate 5-HT 2A Receptors and Prevent in vivo Protein Toxicity in Transgenic Caenorhabditis elegans. Front Neurosci 2022; 16:826289. [PMID: 35360162 PMCID: PMC8963987 DOI: 10.3389/fnins.2022.826289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
Nemorosine A (1) and fargesine (2), the main azepine-indole alkaloids of Psychotria nemorosa, were explored for their pharmacological profile on neurodegenerative disorders (NDs) applying a combined in silico–in vitro–in vivo approach. By using 1 and 2 as queries for similarity-based searches of the ChEMBL database, structurally related compounds were identified to modulate the 5-HT2A receptor; in vitro experiments confirmed an agonistic effect for 1 and 2 (24 and 36% at 10 μM, respectively), which might be linked to cognition-enhancing properties. This and the previously reported target profile of 1 and 2, which also includes BuChE and MAO-A inhibition, prompted the evaluation of these compounds in several Caenorhabditis elegans models linked to 5-HT modulation and proteotoxicity. On C. elegans transgenic strain CL4659, which expresses amyloid beta (Aβ) in muscle cells leading to a phenotypic paralysis, 1 and 2 reduced Aβ proteotoxicity by reducing the percentage of paralyzed worms to 51%. Treatment of the NL5901 strain, in which α-synuclein is yellow fluorescent protein (YFP)-tagged, with 1 and 2 (10 μM) significantly reduced the α-synuclein expression. Both alkaloids were further able to significantly extend the time of metallothionein induction, which is associated with reduced neurodegeneration of aged brain tissue. These results add to the multitarget profiles of 1 and 2 and corroborate their potential in the treatment of NDs.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Luiz C Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil.,Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Dagmar Pretsch
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ya Chen
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Sylvian Cretton
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - André L Gasper
- Herbarium Dr. Roberto Miguel Klein, Department of Natural Sciences, Universidade Regional de Blumenau (FURB), Blumenau, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Philippe Christen
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Johannes Kirchmair
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Amélia T Henriques
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Judith M Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Jiang Y, Gaur U, Cao Z, Hou ST, Zheng W. Dopamine D1- and D2-like receptors oppositely regulate lifespan via a dietary restriction mechanism in Caenorhabditis elegans. BMC Biol 2022; 20:71. [PMID: 35317792 PMCID: PMC8941781 DOI: 10.1186/s12915-022-01272-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/04/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite recent progress in understanding the molecular mechanisms regulating aging and lifespan, and the pathways involved being conserved in different species, a full understanding of the aging process has not been reached. In particular, increasing evidence suggests an active role for the nervous system in lifespan regulation, with sensory neurons, as well as serotonin and GABA signaling, having been shown to regulate lifespan in Caenorhabditis elegans (C. elegans). However, the contribution of additional neural factors, and a broad understanding of the role of the nervous system in regulating aging remains to be established. Here, we examine the impact of the dopamine system in regulating aging in C. elegans. RESULTS We report that mutations of DOP-4, a dopamine D1-like receptor (D1R), and DOP-2, a dopamine D2-like receptor (D2R) oppositely affected lifespan, fast body movement span, reproductive lifespan, and developmental rate in C. elegans. Activation of D2R using aripiprazole, an antipsychotic drug, robustly extended both lifespan and healthspan. Conversely, inhibition of D2R using quetiapine shortened worm lifespan, further supporting the role of dopamine receptors in lifespan regulation. Mechanistically, D2R signaling regulates lifespan through a dietary restriction mechanism mediated by the AAK-2-DAF-16 pathway. The DAG-PKC/PKD pathway links signaling between dopamine receptors and the downstream AAK-2-DAF-16 pathway to transmit longevity signals. CONCLUSIONS These data demonstrated a novel role of dopamine receptors in lifespan and dietary restriction regulation. The clinically approved antipsychotic aripiprazole holds potential as a novel anti-aging drug.
Collapse
Affiliation(s)
- Yizhou Jiang
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province, China
| | - Uma Gaur
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Zhibai Cao
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
14
|
Zhang H, Gao S, Chen W. Automated recognition and analysis of head thrashes behavior in C. elegans. BMC Bioinformatics 2022; 23:87. [PMID: 35255825 PMCID: PMC8903547 DOI: 10.1186/s12859-022-04622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Background Locomotive behaviors are a rapid evaluation indicator reflecting whether the nervous system of worms is damaged, and has been proved to be sensitive to chemical toxicity. In many toxicological studies, C. elegans head thrashes is a key indicator of locomotive behaviors to measure the vitality of worms. In previous studies, the number of head thrashes was manually counted, which is time-consuming and labor-intensive. Results This paper presents an automatic recognition and counting method for head thrashes behavior of worms from experimental videos. First, the image processing algorithm is designed for worm morphology features calculation, mean gray values of head and tail are used to locate the head of worm accurately. Next, the worm skeleton is extracted and divided into equal parts. The angle formulas are used to calculate the bending angle of the head of worm. Finally, the number of head thrashes is counted according to the bending angle of the head in each frame. The robustness of the proposed algorithm is evaluated by comparing the counting results of the manual counting. It is proved that the proposed algorithm can recognize the occurrence of head thrashes of C. elegans of different strains. In addition, the difference of the head thrashes behavior of different worm strains is analyzed, it is proved that the relationship between worm head thrashes behavior and lifespan. Conclusions A new method is proposed to automatically count the number of head thrashes of worms. This algorithm makes it possible to count the number of head thrashes from the worm videos collected by the automatic tracking system. The proposed algorithm will play an important role in toxicological research and worm vitality research. The code is freely available at https://github.com/hthana/HTC.
Collapse
Affiliation(s)
- Hui Zhang
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Shan Gao
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, 100013, China
| | - Weiyang Chen
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
15
|
Lagunas-Rangel FA. G protein-coupled receptors that influence lifespan of human and animal models. Biogerontology 2021; 23:1-19. [PMID: 34860303 PMCID: PMC8888397 DOI: 10.1007/s10522-021-09945-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Humanity has always sought to live longer and for this, multiple strategies have been tried with varying results. In this sense, G protein-coupled receptors (GPCRs) may be a good option to try to prolong our life while maintaining good health since they have a substantial participation in a wide variety of processes of human pathophysiology and are one of the main therapeutic targets. In this way, we present the analysis of a series of GPCRs whose activity has been shown to affect the lifespan of animal and human models, and in which we put a special interest in describing the molecular mechanisms involved. Our compilation of data revealed that the mechanisms most involved in the role of GPCRs in lifespan are those that mimic dietary restriction, those related to insulin signaling and the AMPK and TOR pathways, and those that alter oxidative homeostasis and severe and/or chronic inflammation. We also discuss the possibility of using agonist or antagonist drugs, depending on the beneficial or harmful effects of each GPCR, in order to prolong people's lifespan and healthspan.
Collapse
|
16
|
Tian X. Enhancing mask activity in dopaminergic neurons extends lifespan in flies. Aging Cell 2021; 20:e13493. [PMID: 34626525 PMCID: PMC8590106 DOI: 10.1111/acel.13493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022] Open
Abstract
Dopaminergic neurons (DANs) are essential modulators for brain functions involving memory formation, reward processing, and decision‐making. Here I demonstrate a novel and important function of the DANs in regulating aging and longevity. Overexpressing the putative scaffolding protein Mask in two small groups of DANs in flies can significantly extend the lifespan in flies and sustain adult locomotor and fecundity at old ages. This Mask‐induced beneficial effect requires dopaminergic transmission but cannot be recapitulated by elevating dopamine production alone in the DANs. Independent activation of Gαs in the same two groups of DANs via the drug‐inducible DREADD system also extends fly lifespan, further indicating the connection of specific DANs to aging control. The Mask‐induced lifespan extension appears to depend on the function of Mask to regulate microtubule (MT) stability. A structure–function analysis demonstrated that the ankyrin repeats domain in the Mask protein is both necessary for regulating MT stability (when expressed in muscles and motor neurons) and sufficient to prolong longevity (when expressed in the two groups of DANs). Furthermore, DAN‐specific overexpression of Unc‐104 or knockdown of p150Glued, two independent interventions previously shown to impact MT dynamics, also extends lifespan in flies. Together, these data demonstrated a novel DANs‐dependent mechanism that, upon the tuning of their MT dynamics, modulates systemic aging and longevity in flies.
Collapse
Affiliation(s)
- Xiaolin Tian
- Neuroscience Center of Excellence Department of Cell Biology and Anatomy Louisiana State University Health Sciences Center New Orleans Louisiana USA
| |
Collapse
|
17
|
Naß J, Efferth T. Withanone Ameliorates Stress Symptoms in Caenorhabditis Elegans by Acting through Serotonin Receptors. PHARMACOPSYCHIATRY 2021; 54:215-223. [PMID: 33957677 DOI: 10.1055/a-1349-3870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Depression is responsible for 800 000 deaths worldwide, a number that will rise significantly due to the COVID-19 pandemic. Affordable novel drugs with less severe side effects are urgently required. We investigated the effect of withanone (WN) from Withania somnifera on the serotonin system of wild-type and knockout Caenorhabditis elegans strains using in silico, in vitro, and in vivo methods. METHODS WN or fluoxetine (as positive control drug) was administered to wild-type (N2) and knockout C. elegans strains (AQ866, DA1814, DA2100, DA2109, and MT9772) to determine their effect on oxidative stress (Trolox, H2DCFDA, and juglone assays) on osmotic stress and heat stress and lifespan. Quantitative real-time RT-PCR was applied to investigate the effect of WN or fluoxetine on the expression of serotonin receptors (ser-1, ser-4, ser-7) and serotonin transporter (mod-5). The binding affinity of WN to serotonin receptors and transporter was analyzed in silico using AutoDock 4.2.6. RESULTS WN scavenged ROS in wild-type and knockout C. elegans and prolonged their lifespan. WN upregulated the expression of serotonin receptor and transporter genes. In silico analyses revealed high binding affinities of WN to Ser-1, Ser-4, Ser-7, and Mod-5. LIMITATIONS Further studies are needed to prove whether the results from C. elegans are transferrable to mammals and human beings. CONCLUSION WN ameliorated depressive-associated stress symptoms by activating the serotonin system. WN may serve as potential candidate in developing new drugs to treat depression.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
18
|
Dixit A, Sandhu A, Modi S, Shashikanth M, Koushika SP, Watts JL, Singh V. Neuronal control of lipid metabolism by STR-2 G protein-coupled receptor promotes longevity in Caenorhabditis elegans. Aging Cell 2020; 19:e13160. [PMID: 32432390 PMCID: PMC7294788 DOI: 10.1111/acel.13160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
The G protein-coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR-2, expressed in AWC and ASI amphid sensory neurons. STR-2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR-2 regulates expression of delta-9 desaturases, fat-5, fat-6 and fat-7, and of diacylglycerol acyltransferase dgat-2. Rescue of the STR-2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat-5, dgat-2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild-type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR-2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
- Present address:
Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaIndia
| | - Anjali Sandhu
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Souvik Modi
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia
| | - Meghana Shashikanth
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Sandhya P. Koushika
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia
| | - Jennifer L. Watts
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Varsha Singh
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
19
|
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2018; 2018:1-52. [PMID: 26937633 PMCID: PMC5010795 DOI: 10.1895/wormbook.1.75.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.
Collapse
Affiliation(s)
- Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT 06520 USA
| |
Collapse
|
20
|
Isoamyl alcohol odor promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Biochem Biophys Res Commun 2017; 485:395-399. [PMID: 28209513 DOI: 10.1016/j.bbrc.2017.02.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 02/01/2023]
Abstract
The possibility that odor plays a role in lifespan regulation through effects on the nervous system is indicated by research on Caenorhabditis elegans. In fact, ablation of AWA and AWC, which are suggested as olfactory neurons, has been shown to extend lifespan via DAF-16, a homolog of FoxO. However, the effects of odor stimuli on the lifespan still remain unclear. Thus, we here aimed to clarify the effect of attractive and repulsive odors on longevity and stress tolerance in C. elegans and to analyze the pathways thereof. We used isoamyl alcohol as an attractive odor, and acetic acid as a repellent component, as identified by chemotaxis assay. We found that isoamyl alcohol stimulus promoted longevity in a DAF-16-dependent manner. On the other hand, acetic acid stimulus promoted thermotolerance through mechanisms independent of DAF-16. Above all, our results indicate that odor stimuli affect the lifespan and stress tolerance of C. elegans, with attractive and repulsive odors exerting their effects through different mechanisms, and that longevity is induced by both activation and inactivation of olfactory neurons.
Collapse
|
21
|
Park MR, Oh S, Son SJ, Park DJ, Oh S, Kim SH, Jeong DY, Oh NS, Lee Y, Song M, Kim Y. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10227-10233. [PMID: 26541069 DOI: 10.1021/acs.jafc.5b03730] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling.
Collapse
Affiliation(s)
- Mi Ri Park
- BK21 Plus Graduate Program, Department of Animal Science and Institute Agricultural Science & Technology, Chonbuk National University , Jeonju 561-756, Korea
| | - Sangnam Oh
- BK21 Plus Graduate Program, Department of Animal Science and Institute Agricultural Science & Technology, Chonbuk National University , Jeonju 561-756, Korea
| | - Seok Jun Son
- BK21 Plus Graduate Program, Department of Animal Science and Institute Agricultural Science & Technology, Chonbuk National University , Jeonju 561-756, Korea
| | - Dong-June Park
- Korea Food Research Institute , Seongnam-si, Gyeonggi-do 463-746, Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University , Gwangju 500-757, Korea
| | - Sae Hun Kim
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University , 136-701 Seoul, Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry , Sunchang, Jeonbuk 595-804, Republic of Korea
| | - Nam Su Oh
- R&D Center, Seoul Dairy Cooperative , Ansan, Gyeonggi-do 425-839, South Korea
| | - Youngbok Lee
- Department of Applied Chemistry, Hanyang University , ERICA Campus, Ansan, Gyeonggi-do 426-791, Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University , Daejeon 305-764, Korea
| | - Younghoon Kim
- BK21 Plus Graduate Program, Department of Animal Science and Institute Agricultural Science & Technology, Chonbuk National University , Jeonju 561-756, Korea
| |
Collapse
|
22
|
Entchev EV, Patel DS, Zhan M, Steele AJ, Lu H, Ch'ng Q. A gene-expression-based neural code for food abundance that modulates lifespan. eLife 2015; 4:e06259. [PMID: 25962853 PMCID: PMC4417936 DOI: 10.7554/elife.06259] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/03/2015] [Indexed: 12/18/2022] Open
Abstract
How the nervous system internally represents environmental food availability is poorly understood. Here, we show that quantitative information about food abundance is encoded by combinatorial neuron-specific gene-expression of conserved TGFβ and serotonin pathway components in Caenorhabditis elegans. Crosstalk and auto-regulation between these pathways alters the shape, dynamic range, and population variance of the gene-expression responses of daf-7 (TGFβ) and tph-1 (tryptophan hydroxylase) to food availability. These intricate regulatory features provide distinct mechanisms for TGFβ and serotonin signaling to tune the accuracy of this multi-neuron code: daf-7 primarily regulates gene-expression variability, while tph-1 primarily regulates the dynamic range of gene-expression responses. This code is functional because daf-7 and tph-1 mutations bidirectionally attenuate food level-dependent changes in lifespan. Our results reveal a neural code for food abundance and demonstrate that gene expression serves as an additional layer of information processing in the nervous system to control long-term physiology. DOI:http://dx.doi.org/10.7554/eLife.06259.001 To maximize their chances of survival, animals need to be able to sense changes in the abundance of food in their environment and respond in an appropriate manner. The nervous system is able to sense cues from the environment and coordinate responses in the whole organism, but it is not clear how this leads to long-term changes in the organism's biology. In nematode worms, two genes called daf-7 and tph-1 appear to be involved in connecting the sensing of food availability with changes in the biology of the organism. The daf-7 gene encodes a hormone, while tph-1 encodes an enzyme that makes a neurochemical called serotonin. Here, Entchev, Patel, Zhan et al. found that daf-7 and tph-1 genes are active in three pairs of neurons in nematode worms. The experiments show that these neurons collectively form a circuit that carries information about the abundance of food, which leads to changes in how long the worms live. When this circuit was disrupted by removing these genes, the worms' ability to adjust their lifespan in response to changes in the availability of food was weakened, likely because they were unable to sense food. The experiments also show that the circuit regulates itself, largely because daf-7 and tph-1 are able to control each-other's activity. Together, these results suggest that changing the activity of certain genes in neurons enables nematode worms to alter their biology in response to changes in the availability of food. Neurons in the brain use electrical activity to communicate and process information and Entchev, Patel, Zhan et al.'s findings imply that gene activity can also perform a similar role. DOI:http://dx.doi.org/10.7554/eLife.06259.002
Collapse
Affiliation(s)
- Eugeni V Entchev
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Dhaval S Patel
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Mei Zhan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - Andrew J Steele
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Hang Lu
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - QueeLim Ch'ng
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
23
|
Gendron CM, Chung BY, Pletcher SD. The sensory system: More than just a window to the external world. Commun Integr Biol 2015; 8:e1017159. [PMID: 26480026 PMCID: PMC4594513 DOI: 10.1080/19420889.2015.1017159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022] Open
Abstract
While the traditional importance of the sensory system lies in its ability to perceive external information about the world, emerging discoveries suggest that sensory perception has a greater impact on health and longevity than was previously appreciated. These effects are conserved across species. In this mini-review, we discuss the specific sensory cues that have been identified to significantly impact organismal physiology and lifespan. Ongoing work in the aging field has begun to identify the downstream molecules that mediate the broad effects of sensory signals. Candidates include FOXO, neuropeptide F (NPF), adipokinetic hormone (AKH), dopamine, serotonin, and octopamine. We then discuss the many implications that arise from our current understanding of the effects of sensory perception on health and longevity.
Collapse
Affiliation(s)
- Christi M Gendron
- Department of Molecular and Integrative Physiology and Geriatrics Center; A. Alfred Taubman Biomedical Sciences and Research Building; University of Michigan ; Ann Arbor, MI USA
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology and Geriatrics Center; A. Alfred Taubman Biomedical Sciences and Research Building; University of Michigan ; Ann Arbor, MI USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center; A. Alfred Taubman Biomedical Sciences and Research Building; University of Michigan ; Ann Arbor, MI USA
| |
Collapse
|
24
|
Ye X, Linton JM, Schork NJ, Buck LB, Petrascheck M. A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell 2014; 13:206-15. [PMID: 24134630 PMCID: PMC3955372 DOI: 10.1111/acel.12163] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
Abstract
One goal of aging research is to find drugs that delay the onset of age-associated disease. Studies in invertebrates, particularly Caenorhabditis elegans, have uncovered numerous genes involved in aging, many conserved in mammals. However, which of these encode proteins suitable for drug targeting is unknown. To investigate this question, we screened a library of compounds with known mammalian pharmacology for compounds that increase C. elegans lifespan. We identified 60 compounds that increase longevity in C. elegans, 33 of which also increased resistance to oxidative stress. Many of these compounds are drugs approved for human use. Enhanced resistance to oxidative stress was associated primarily with compounds that target receptors for biogenic amines, such as dopamine or serotonin. A pharmacological network constructed with these data reveal that lifespan extension and increased stress resistance cluster together in a few pharmacological classes, most involved in intercellular signaling. These studies identify compounds that can now be explored for beneficial effects on aging in mammals, as well as tools that can be used to further investigate the mechanisms underlying aging in C. elegans.
Collapse
Affiliation(s)
- Xiaolan Ye
- Division of Basic Sciences Fred Hutchison Cancer Research Center Howard Hughes Medical Institute Seattle WA USA
| | - James M. Linton
- Division of Basic Sciences Fred Hutchison Cancer Research Center Howard Hughes Medical Institute Seattle WA USA
| | - Nicholas J. Schork
- Department of Molecular and Experimental Medicine The Scripps Research Institute La Jolla California USA
- The Scripps Translational Science Institute Scripps Health La Jolla California USA
| | - Linda B. Buck
- Division of Basic Sciences Fred Hutchison Cancer Research Center Howard Hughes Medical Institute Seattle WA USA
| | - Michael Petrascheck
- Department of Molecular and Experimental Medicine The Scripps Research Institute La Jolla California USA
- Department of Chemical Physiology The Scripps Research Institute La Jolla California USA
- Molecular and Cellular Neuroscience The Scripps Research Institute La Jolla California USA
| |
Collapse
|
25
|
Affiliation(s)
- Dennis H. Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| |
Collapse
|
26
|
Kalinnikova TB, Kolsanova RR, Shagidullin RR, Osipova EB, Gaynutdinov MK. On the role of gene of SER-4 serotonin receptor in thermotolerance of Caenorhabditis elegans behavior. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413030083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Panossian A, Hamm R, Kadioglu O, Wikman G, Efferth T. Synergy and Antagonism of Active Constituents of ADAPT-232 on Transcriptional Level of Metabolic Regulation of Isolated Neuroglial Cells. Front Neurosci 2013; 7:16. [PMID: 23430930 PMCID: PMC3576868 DOI: 10.3389/fnins.2013.00016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/01/2013] [Indexed: 12/16/2022] Open
Abstract
Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents – extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely, eleutheroside E, schizandrin B, salidroside, triandrin, and tyrosol. A common feature for all tested adaptogens was their effect on G-protein-coupled receptor signaling pathways, i.e., cAMP, phospholipase C (PLC), and phosphatidylinositol signal transduction pathways. Adaptogens may reduce the cAMP level in brain cells by down-regulation of adenylate cyclase gene ADC2Y and up-regulation of phosphodiesterase gene PDE4D that is essential for energy homeostasis as well as for switching from catabolic to anabolic states and vice versa. Down-regulation of cAMP by adaptogens may decrease cAMP-dependent protein kinase A activity in various cells resulting in inhibition stress-induced catabolic transformations and saving of ATP for many ATP-dependant metabolic transformations. All tested adaptogens up-regulated the PLCB1 gene, which encodes phosphoinositide-specific PLC and phosphatidylinositol 3-kinases (PI3Ks), key players for the regulation of NF-κB-mediated defense responses. Other common targets of adaptogens included genes encoding ERα estrogen receptor (2.9–22.6 fold down-regulation), cholesterol ester transfer protein (5.1–10.6 fold down-regulation), heat shock protein Hsp70 (3.0–45.0 fold up-regulation), serpin peptidase inhibitor (neuroserpin), and 5-HT3 receptor of serotonin (2.2–6.6 fold down-regulation). These findings can be reconciled with the observed beneficial effects of adaptogens in behavioral, mental, and aging-associated disorders. Combining two or more active substances in one mixture significantly changes deregulated genes profiles: synergetic interactions result in activation of genes that none of the individual substances affected, while antagonistic interactions result in suppression some genes activated by individual substances. These interactions can have an influence on transcriptional control of metabolic regulation both on the cellular level and the level of the whole organism. Merging of deregulated genes array profiles and intracellular networks is specific to the new substance with unique pharmacological characteristics. Presumably, this phenomenon could be used to eliminate undesirable effects (e.g., toxic effects) and increase the selectivity of pharmacological intervention.
Collapse
|
28
|
Lucanic M, Lithgow GJ, Alavez S. Pharmacological lifespan extension of invertebrates. Ageing Res Rev 2013; 12:445-58. [PMID: 22771382 DOI: 10.1016/j.arr.2012.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/11/2023]
Abstract
There is considerable interest in identifying small, drug-like compounds that slow aging in multiple species, particularly in mammals. Such compounds may prove to be useful in treating and retarding age-related disease in humans. Just as invertebrate models have been essential in helping us understand the genetic pathways that control aging, these model organisms are also proving valuable in discovering chemical compounds that influence longevity. The nematode Caenorhabditis elegans has numerous advantages for such studies including its short lifespan and has been exploited by a number of investigators to find compounds that impact aging. Here, we summarize the progress being made in identifying compounds that extend the lifespan of invertebrates, and introduce the challenges we face in translating this research into human therapies.
Collapse
|
29
|
Reserpine modulates neurotransmitter release to extend lifespan and alleviate age-dependent Aβ proteotoxicity in Caenorhabditis elegans. Exp Gerontol 2011; 47:188-97. [PMID: 22212533 DOI: 10.1016/j.exger.2011.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 11/20/2022]
Abstract
Aging is a debilitating process often associated with chronic diseases such as diabetes, cardiovascular and neurodegenerative diseases like Alzheimer's disease (AD). AD occurs at a very high incidence posing a huge burden to the society. Model organisms such as C. elegans become essential to understand aging or lifespan extension - the etiology, molecular mechanism and identification of new drugs against age associated diseases. The AD model, manifesting Aβ proteotoxicity, in C. elegans is well established and has provided valuable insights. Earlier, we have reported that Reserpine, an FDA-approved antihypertensive drug, increases C. elegans lifespan with a high quality of life and ameliorates Aβ toxicity in C. elegans. But reserpine does not seem to act through the known lifespan extension pathways or inhibition of its known target, vesicular monoamine transporter, VMAT. Reserpine's mode of action and the pathways it activates are not known. Here, we have evaluated the presynaptic neurotransmitter(s) release pathway and identified acetylcholine (ACh) as the crucial player for reserpine's action. The corroborating evidences are: i) lack of lifespan extension in the ACh loss of function (hypomorphic) - synthesis (cha-1) and transport (unc-17) mutants; ii) mitigation of chronic aldicarb effect; iii) lifespan extension in dopamine (cat-2) and dopamine and serotonin (bas-1) biosynthetic mutants; iv) no rescue from exogenous serotonin induced paralysis in the AD model worms; upon reserpine treatment. Thus, modulation of acetylcholine is essential for reserpine's action.
Collapse
|
30
|
Ohta Y, Kosaka Y, Kishimoto N, Wang J, Smith SB, Honig G, Kim H, Gasa RM, Neubauer N, Liou A, Tecott LH, Deneris ES, German MS. Convergence of the insulin and serotonin programs in the pancreatic β-cell. Diabetes 2011; 60:3208-16. [PMID: 22013016 PMCID: PMC3219954 DOI: 10.2337/db10-1192] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. RESEARCH DESIGN AND METHODS We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. RESULTS We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. CONCLUSIONS These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes.
Collapse
Affiliation(s)
- Yasuharu Ohta
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Yasuhiro Kosaka
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Nina Kishimoto
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Juehu Wang
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Stuart B. Smith
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Gerard Honig
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
- Center for Neurobiology and Psychiatry, University of California, San Francisco, San Francisco, California
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, California
| | - Hail Kim
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Rosa M. Gasa
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Nicole Neubauer
- Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Angela Liou
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
- Center for Neurobiology and Psychiatry, University of California, San Francisco, San Francisco, California
| | - Laurence H. Tecott
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
- Center for Neurobiology and Psychiatry, University of California, San Francisco, San Francisco, California
| | - Evan S. Deneris
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Michael S. German
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Corresponding author: Michael S. German,
| |
Collapse
|
31
|
Allard JB, Duan C. Comparative endocrinology of aging and longevity regulation. Front Endocrinol (Lausanne) 2011; 2:75. [PMID: 22654825 PMCID: PMC3356063 DOI: 10.3389/fendo.2011.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/28/2011] [Indexed: 01/06/2023] Open
Abstract
Hormones regulate growth, development, metabolism, and other complex processes in multicellular animals. For many years it has been suggested that hormones may also influence the rate of the aging process. Aging is a multifactorial process that causes biological systems to break down and cease to function in adult organisms as time passes, eventually leading to death. The exact underlying causes of the aging process remain a topic for debate, and clues that may shed light on these causes are eagerly sought after. In the last two decades, gene mutations that result in delayed aging and extended longevity have been discovered, and many of the affected genes have been components of endocrine signaling pathways. In this review we summarize the current knowledge on the roles of endocrine signaling in the regulation of aging and longevity in various animals. We begin by discussing the notion that conserved systems, including endocrine signaling pathways, "regulate" the aging process. Findings from the major model organisms: worms, flies, and rodents, are then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in humans, including changes in hormone levels with age, and the involvement of hormones in aging-related diseases. The most well studied and widely conserved endocrine pathway that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also suggests this pathway's involvement in human aging. Other hormones including steroids have been linked to aging only in a subset of the models studied. Because of the value of comparative studies, it is suggested that the aging field could benefit from adoption of additional model organisms.
Collapse
Affiliation(s)
- John B. Allard
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
- *Correspondence: Cunming Duan, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor, MI 48109, USA. e-mail:
| |
Collapse
|
32
|
Kullyev A, Dempsey CM, Miller S, Kuan CJ, Hapiak VM, Komuniecki RW, Griffin CT, Sze JY. A genetic survey of fluoxetine action on synaptic transmission in Caenorhabditis elegans. Genetics 2010; 186:929-41. [PMID: 20739712 PMCID: PMC2975281 DOI: 10.1534/genetics.110.118877] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/13/2010] [Indexed: 11/18/2022] Open
Abstract
Fluoxetine is one of the most commonly prescribed medications for many behavioral and neurological disorders. Fluoxetine acts primarily as an inhibitor of the serotonin reuptake transporter (SERT) to block the removal of serotonin from the synaptic cleft, thereby enhancing serotonin signals. While the effects of fluoxetine on behavior are firmly established, debate is ongoing whether inhibition of serotonin reuptake is a sufficient explanation for its therapeutic action. Here, we provide evidence of two additional aspects of fluoxetine action through genetic analyses in Caenorhabditis elegans. We show that fluoxetine treatment and null mutation in the sole SERT gene mod-5 eliminate serotonin in specific neurons. These neurons do not synthesize serotonin but import extracellular serotonin via MOD-5/SERT. Furthermore, we show that fluoxetine acts independently of MOD-5/SERT to regulate discrete properties of acetylcholine (Ach), gamma-aminobutyric acid (GABA), and glutamate neurotransmission in the locomotory circuit. We identified that two G-protein-coupled 5-HT receptors, SER-7 and SER-5, antagonistically regulate the effects of fluoxetine and that fluoxetine binds to SER-7. Epistatic analyses suggest that SER-7 and SER-5 act upstream of AMPA receptor GLR-1 signaling. Our work provides genetic evidence that fluoxetine may influence neuronal functions and behavior by directly targeting serotonin receptors.
Collapse
Affiliation(s)
- Andrey Kullyev
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Catherine M. Dempsey
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Sarah Miller
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Chih-Jen Kuan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Vera M. Hapiak
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Richard W. Komuniecki
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Christine T. Griffin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 Department of Biology, National University of Ireland, Maynooth, County Kilare, Ireland Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
33
|
Keowkase R, Aboukhatwa M, Luo Y. Fluoxetine protects against amyloid-beta toxicity, in part via daf-16 mediated cell signaling pathway, in Caenorhabditis elegans. Neuropharmacology 2010; 59:358-65. [PMID: 20420844 DOI: 10.1016/j.neuropharm.2010.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/26/2010] [Accepted: 04/07/2010] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia in elderly people. The accumulation of amyloid beta (Abeta) is one of the histopathological hallmarks of AD. Abeta is aggregated to form oligomers which are toxic to neurons and are critical to the onset and progression of AD. In a Caenorhabditis elegans (C. elegans) model of AD, human Abeta is expressed intracellularly in the body wall muscle. The expression and subsequent aggregation of Abeta in the muscle lead to progressive paralysis. Although the mechanism of action is unknown, antidepressants have been used with FDA approved drugs for dementia in AD and have been shown to enhance cognitive function in human and in animal models of AD. We found that the antidepressant fluoxetine, a selective serotonin reuptake inhibitor, significantly delayed Abeta-induced paralysis in the C. elegans model of Abeta toxicity by reducing Abeta oligomers. Our results showed that insulin signaling and DAF-16/FOXO transcription factors were required for fluoxetine-mediated delayed paralysis. We also found that fluoxetine increased thermal stress resistance and extended life span. These findings suggests that fluoxetine may have benefit for the treatment of AD by the reduction of proteotoxicity.
Collapse
Affiliation(s)
- Roongpetch Keowkase
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
34
|
Suo S, Culotti JG, Van Tol HHM. Dopamine suppresses octopamine signaling in C. elegans: possible involvement of dopamine in the regulation of lifespan. Aging (Albany NY) 2009; 1:870-4. [PMID: 20157560 PMCID: PMC2815730 DOI: 10.18632/aging.100097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/19/2009] [Indexed: 02/01/2023]
Abstract
Amine neurotransmitters, such as dopamine, serotonin, and noradrenaline, play important roles in the modulation of behaviors and metabolism of animals. InC. elegans, it has been shown that serotonin and octopamine, an invertebrate equivalent of noradrenaline, also regulate lifespan through a mechanism related to food deprivation-mediated lifespan extension. We have shown recently that dopamine signaling, activated by the tactile perception of food, suppresses octopamine signaling and that the cessation of dopamine signaling in the absence of food leads to activation of octopamine signaling. Here, we discuss the apparent conservation of neural and molecular mechanisms for dopamine regulation of octopamine/noradrenaline signaling and a possible role for dopamine in lifespan regulation.
Collapse
Affiliation(s)
- Satoshi Suo
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.
| | | | | |
Collapse
|
35
|
Lans H, Dekkers MPJ, Hukema RK, Bialas NJ, Leroux MR, Jansen G. Signaling proteins that regulate NaCl [corrected] chemotaxis responses modulate longevity in C. elegans. Ann N Y Acad Sci 2009; 1170:682-7. [PMID: 19686212 DOI: 10.1111/j.1749-6632.2009.04362.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The lifespan of the nematode Caenorhabditis elegans is regulated by sensory signals detected by the amphid neurons. In these neurons, C. elegans expresses at least 14 Galpha subunits and a Ggamma subunit. We have identified seven sensory Galpha subunits that modulate lifespan. Genetic experiments suggest that multiple sensory signaling pathways exist that modulate lifespan and that some G proteins function in multiple pathways, most of which, but probably not all, involve insulin/IGF-1 like signaling. Interestingly, of the sensory G proteins involved in regulating lifespan, only one Galpha probably functions directly in the detection of sensory cues. The other G proteins seem to function in modulating the sensitivity of the sensory neurons. We hypothesize that in addition to the mere detection of sensory cues, regulation of the sensitivity of sensory neurons also plays a role in the regulation of lifespan.
Collapse
Affiliation(s)
- Hannes Lans
- MGC Department of Cell Biology and Genetics, and Center for Biomedical Genetics, Erasmus MC, CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Petrascheck M, Ye X, Buck LB. A High-Throughput Screen for Chemicals that Increase the Lifespan of Caenorhabditis elegans. Ann N Y Acad Sci 2009; 1170:698-701. [DOI: 10.1111/j.1749-6632.2009.04377.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Augustin H, Partridge L. Invertebrate models of age-related muscle degeneration. Biochim Biophys Acta Gen Subj 2009; 1790:1084-94. [PMID: 19563864 DOI: 10.1016/j.bbagen.2009.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/12/2009] [Accepted: 06/20/2009] [Indexed: 12/26/2022]
Abstract
Functional and structural deterioration of muscles is an inevitable consequence of ageing in a wide variety of animal species. What underlies these changes is a complex network of interactions between the muscle-intrinsic and muscle-extrinsic factors, making it very difficult to distinguish between the cause and the consequence. Many of the genes, structures, and processes implicated in mammalian skeletal muscle ageing are preserved in invertebrate species Drosophila melanogaster and Caenorhabditis elegans. The absence in these organisms of mechanisms that promote muscle regeneration, and substantially different hormonal environment, warrant caution when extrapolating experimental data from studies conducted in invertebrates to mammalian species. The simplicity and accessibility of these models, however, offer ample opportunities for studying age-related myopathologies as well as investigating drugs and therapies to alleviate them.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Institute of Healthy Ageing and GEE, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
38
|
Brown MK, Luo Y. Bilobalide modulates serotonin-controlled behaviors in the nematode Caenorhabditis elegans. BMC Neurosci 2009; 10:62. [PMID: 19545409 PMCID: PMC2714043 DOI: 10.1186/1471-2202-10-62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/22/2009] [Indexed: 11/16/2022] Open
Abstract
Background Dysfunctions in the serotonergic system have been implicated in several neurological disorders such as depression. Elderly individuals who have been diagnosed with clinical depression show elevated cases of neurodegenerative diseases. This has led to suggestions that modulating the serotonin (5-HT) system could provide an alternative method to current therapies for alleviating these pathologies. The neuroprotective effects of bilobalide in vitro have been documented. We aim to determine whether bilobalide affects the 5-HT system in the nematode C. elegans. The wild type worms, as well as well-characterized 5-HT mutants, were fed with bilobalide in a range of concentrations, and several 5-HT controlled behaviors were tested. Results We observed that bilobalide significantly inhibited 5-HT-controlled egg-laying behavior in a dose-dependent manner, which was blocked in the 5-HT receptor mutants (ser-4, mod-1), but not in the 5-HT transporter (mod-5) or synthesis (tph-1) mutants. Bilobalide also potentiated a 5-HT-controlled, experience-dependent locomotory behavior, termed the enhanced slowing response in the wild type animals. However, this effect was fully blocked in 5-HT receptor mod-1 and dopamine defective cat-2 mutants, but only partially blocked in ser-4 mutants. We also demonstrated that acetylcholine transmission was inhibited in a transgenic C. elegans strain that constitutively expresses Aβ, and bilobalide did not significantly affect this inhibition. Conclusion These results suggest that bilobalide may modulate specific 5-HT receptor subtypes, which involves interplay with dopamine transmission. Additional studies for the function of bilobalide in neurotransmitter systems could aid in our understanding of its neuroprotective properties.
Collapse
Affiliation(s)
- Marishka K Brown
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA.
| | | |
Collapse
|
39
|
HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000486. [PMID: 19461873 PMCID: PMC2676694 DOI: 10.1371/journal.pgen.1000486] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 04/20/2009] [Indexed: 01/15/2023] Open
Abstract
Dietary restriction (DR) extends lifespan in various species and also slows the onset of age-related diseases. Previous studies from flies and yeast have demonstrated that the target of rapamycin (TOR) pathway is essential for longevity phenotypes resulting from DR. TOR is a conserved protein kinase that regulates growth and metabolism in response to nutrients and growth factors. While some of the downstream targets of TOR have been implicated in regulating lifespan, it is still unclear whether additional targets of this pathway also modulate lifespan. It has been shown that the hypoxia inducible factor-1 (HIF-1) is one of the targets of the TOR pathway in mammalian cells. HIF-1 is a transcription factor complex that plays key roles in oxygen homeostasis, tumor formation, glucose metabolism, cell survival, and inflammatory response. Here, we describe a novel role for HIF-1 in modulating lifespan extension by DR in Caenorhabditis elegans. We find that HIF-1 deficiency results in extended lifespan, which overlaps with that by inhibition of the RSKS-1/S6 kinase, a key component of the TOR pathway. Using a modified DR method based on variation of bacterial food concentrations on solid agar plates, we find that HIF-1 modulates longevity in a nutrient-dependent manner. The hif-1 loss-of-function mutant extends lifespan under rich nutrient conditions but fails to show lifespan extension under DR. Conversely, a mutation in egl-9, which increases HIF-1 activity, diminishes the lifespan extension under DR. This deficiency is rescued by tissue-specific expression of egl-9 in specific neurons and muscles. Increased lifespan by hif-1 or DR is dependent on the endoplasmic reticulum (ER) stress regulator inositol-requiring protein-1 (IRE-1) and is associated with lower levels of ER stress. Therefore, our results demonstrate a tissue-specific role for HIF-1 in the lifespan extension by DR involving the IRE-1 ER stress pathway. Dietary restriction (DR) is one of the most robust environmental manipulations that extend lifespan in various species. DR has also been shown to slow the onset of a number of age-related diseases. Studies in model organisms like C. elegans can be used to uncover biological mechanisms that determine the beneficial effects of DR. Previous studies suggest that the nutrient-sensing target of rapamycin (TOR) pathway is required for DR-mediated lifespan extension. However, the downstream mechanisms by which TOR modulates lifespan remain unclear. In mammalian cells, TOR and the downstream S6 kinase (S6K) activate expression of the hypoxia-inducible factor-1 (HIF-1), which is frequently up-regulated in various tumors. Using C. elegans as a model system, we characterized novel functions of HIF-1 in aging. We find that inhibition of HIF-1 extends lifespan under rich nutrient conditions, whereas enhanced levels of HIF-1 only allow partial lifespan extension by DR. We also demonstrated that increased lifespan by hif-1 or DR depends on the endoplasmic reticulum (ER) stress regulator inositol-requiring protein-1 (IRE-1) and is associated with lower levels of ER stress, which is caused by overloading of misfolded/unfolded proteins to ER. Thus, our results support the idea that HIF-1–mediated changes in protein homeostasis play a key role in the lifespan extension by DR.
Collapse
|
40
|
Kleemann GA, Murphy CT. The endocrine regulation of aging in Caenorhabditis elegans. Mol Cell Endocrinol 2009; 299:51-7. [PMID: 19059305 DOI: 10.1016/j.mce.2008.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 10/13/2008] [Accepted: 10/30/2008] [Indexed: 01/29/2023]
Abstract
In recent years, there has been significant growth in our understanding of the regulation of longevity. The most notable change is the identification and detailed description of a number of molecular pathways modulating the rate of aging. A good portion of this new data has come from studies using the genetic model organism Caenorhabditis elegans. In this review, we provide an overview of physiological systems that are involved in the modulation of aging in C. elegans, then discuss the known endocrine signaling systems that are likely to couple these systems together. Finally, we present a working model describing how aging may be regulated as a coordinated system, communicating through endocrine signals.
Collapse
Affiliation(s)
- G A Kleemann
- Lewis-Sigler Institute for Integrative Genomics and Dept. of Molecular Biology, Princeton University, 148 Carl Icahn Lab, Washington Road, Princeton, NJ 08544, United States
| | | |
Collapse
|
41
|
Toivonen JM, Partridge L. Endocrine regulation of aging and reproduction in Drosophila. Mol Cell Endocrinol 2009; 299:39-50. [PMID: 18682271 DOI: 10.1016/j.mce.2008.07.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/10/2008] [Accepted: 07/03/2008] [Indexed: 12/19/2022]
Abstract
Hormonal signals can modulate lifespan and reproductive capacity across the animal kingdom. The use of model organisms such as worms, flies and mice has been fundamentally important for aging research in the discovery of genetic alterations that can extend healthy lifespan. The effects of mutations in the insulin and insulin-like growth factor-like signaling (IIS) pathways are evolutionarily conserved in that they can increase lifespan in all three animal models. Additionally, steroids and other lipophilic signaling molecules modulate lifespan in diverse organisms. Here we shall review how major hormonal pathways in the fruit fly Drosophila melanogaster interact to influence reproductive capacity and aging.
Collapse
Affiliation(s)
- Janne M Toivonen
- Institute of Healthy Aging, UCL Research Department of Genetics, Environment and Evolution, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
42
|
Murphy DL, Fox MA, Timpano KR, Moya PR, Ren-Patterson R, Andrews AM, Holmes A, Lesch KP, Wendland JR. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 2008; 55:932-60. [PMID: 18824000 PMCID: PMC2730952 DOI: 10.1016/j.neuropharm.2008.08.034] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 12/19/2022]
Abstract
Discovered and crystallized over sixty years ago, serotonin's important functions in the brain and body were identified over the ensuing years by neurochemical, physiological and pharmacological investigations. This 2008 M. Rapport Memorial Serotonin Review focuses on some of the most recent discoveries involving serotonin that are based on genetic methodologies. These include examples of the consequences that result from direct serotonergic gene manipulation (gene deletion or overexpression) in mice and other species; an evaluation of some phenotypes related to functional human serotonergic gene variants, particularly in SLC6A4, the serotonin transporter gene; and finally, a consideration of the pharmacogenomics of serotonergic drugs with respect to both their therapeutic actions and side effects. The serotonin transporter (SERT) has been the most comprehensively studied of the serotonin system molecular components, and will be the primary focus of this review. We provide in-depth examples of gene-based discoveries primarily related to SLC6A4 that have clarified serotonin's many important homeostatic functions in humans, non-human primates, mice and other species.
Collapse
Affiliation(s)
- Dennis L Murphy
- Laboratory of Clinical Science, NIMH Intramural Research Program, NIH, Building 10, Room 3D41, 10 Center Drive, MSC 1264, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
44
|
An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 2007; 450:553-6. [PMID: 18033297 DOI: 10.1038/nature05991] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/11/2007] [Indexed: 12/27/2022]
Abstract
The mechanisms that determine the lifespan of an organism are still largely a mystery. One goal of ageing research is to find drugs that would increase lifespan and vitality when given to an adult animal. To this end, we tested 88,000 chemicals for the ability to extend the lifespan of adult Caenorhabditis elegans nematodes. Here we report that a drug used as an antidepressant in humans increases C. elegans lifespan. In humans, this drug blocks neural signalling by the neurotransmitter serotonin. In C. elegans, the effect of the drug on lifespan is reduced or eradicated by mutations that affect serotonin synthesis, serotonin re-uptake at synapses, or either of two G-protein-coupled receptors: one that recognizes serotonin and the other that detects another neurotransmitter, octopamine. In vitro studies show that the drug acts as an antagonist at both receptors. Testing of the drug on dietary-restricted animals or animals with mutations that affect lifespan indicates that its effect on lifespan involves mechanisms associated with lifespan extension by dietary restriction. These studies indicate that lifespan can be extended by blocking certain types of neurotransmission implicated in food sensing in the adult animal, possibly leading to a state of perceived, although not real, starvation.
Collapse
|
45
|
|
46
|
Abstract
A dissection of longevity in Caenorhabditis elegans reveals that animal life span is influenced by genes, environment, and stochastic factors. From molecules to physiology, a remarkable degree of evolutionary conservation is seen.
Collapse
Affiliation(s)
- Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|