1
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Anzibar Fialho M, Martínez Barreiro M, Vázquez Alberdi L, Damián JP, Di Tomaso MV, Baranger J, Tanter M, Calero M, Negreira C, Rubido N, Kun A, Brum J. Functional ultrasound and brain connectivity reveal central nervous system compromise in Trembler-J mice model of Charcot-Marie-Tooth disease. Sci Rep 2024; 14:30073. [PMID: 39627364 PMCID: PMC11615332 DOI: 10.1038/s41598-024-80022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
The Charcot-Marie-Tooth-1E (CMT1E) disease is typically described as a peripheral neuropathy in humans, causing decreased nerve conduction, spastic paralysis, and tremor. The Trembler-J (TrJ) mice serve as a high fidelity model of this disease. Here, we use functional ultrasound (fUS) and functional connectivity (FC) to analyze TrJ mice's brain activity during sensory stimulation and resting state experiments against wild type (WT) mice - the healthy counterpart. fUS is an imaging technique that measures cerebral blood volume (CBV) temporal changes. We study these changes in the primary somatosensory cortex barrel field (S1BF) of both mice populations during periodic vibrissae stimulation, measuring the number of pixels that correlate to the stimulation (i.e., the size of the activation area), the average correlation of these pixels (i.e., the response strength), and the CBV's rate of change for each stimulation (i.e., the hemodynamic response). Then, we construct a FC matrix for each genotype and experiment by correlating the CBV signals from the eight cortical regions defined by the Paxinos and Franklin atlas. Our results show that TrJ mice have significantly diminished neurovascular responses and altered brain connectivity with respect to WT mice, pointing to central nervous system effects that could shift our understanding of the CMT1E disease.
Collapse
Affiliation(s)
- Maximiliano Anzibar Fialho
- Laboratorio deAcústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
- Física No Lineal, Instituto de Física de Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Mariana Martínez Barreiro
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y ÁcidosNucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Lucia Vázquez Alberdi
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y ÁcidosNucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Juan Pablo Damián
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, 13000, Montevideo, Uruguay
- Núcleo de Bienestar Animal, Facultad de Veterinaria, Universidad de la República, 13000, Montevideo, Uruguay
| | - Maria Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Jérôme Baranger
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, 75015, Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, 75015, Paris, France
| | - Miguel Calero
- Chronic Disease Programme (UFIEC), and CIBERNED, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Carlos Negreira
- Laboratorio deAcústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, King's College, AB24 3UE, Aberdeen, UK
| | - Alejandra Kun
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y ÁcidosNucleicos, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay.
| | - Javier Brum
- Laboratorio deAcústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay.
| |
Collapse
|
3
|
Helbing DL, Kirkpatrick JM, Reuter M, Bischoff J, Stockdale A, Carlstedt A, Cirri E, Bauer R, Morrison H. Proteomic analysis of peripheral nerve myelin during murine aging. Front Cell Neurosci 2023; 17:1214003. [PMID: 37964793 PMCID: PMC10642449 DOI: 10.3389/fncel.2023.1214003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Aging of the peripheral nervous system (PNS) is associated with structural and functional changes that lead to a reduction in regenerative capacity and the development of age-related peripheral neuropathy. Myelin is central to maintaining physiological peripheral nerve function and differences in myelin maintenance, degradation, formation and clearance have been suggested to contribute to age-related PNS changes. Recent proteomic studies have elucidated the complex composition of the total myelin proteome in health and its changes in neuropathy models. However, changes in the myelin proteome of peripheral nerves during aging have not been investigated. Here we show that the proteomes of myelin fractions isolated from young and old nerves show only subtle changes. In particular, we found that the three most abundant peripheral myelin proteins (MPZ, MBP, and PRX) do not change in old myelin fractions. We also show a tendency for high-abundance myelin proteins other than these three to be downregulated, with only a small number of ribosome-related proteins significantly downregulated and extracellular matrix proteins such as collagens upregulated. In addition, we illustrate that the peripheral nerve myelin proteome reported in this study is suitable for assessing myelin degradation and renewal during peripheral nerve degeneration and regeneration. Our results suggest that the peripheral nerve myelin proteome is relatively stable and undergoes only subtle changes in composition during mouse aging. We proffer the resultant dataset as a resource and starting point for future studies aimed at investigating peripheral nerve myelin during aging. Said datasets are available in the PRIDE archive under the identifier PXD040719 (aging myelin proteome) and PXD041026 (sciatic nerve injury proteome).
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Michael Reuter
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Julia Bischoff
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Amy Stockdale
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Emilio Cirri
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
4
|
Martínez Barreiro M, Vázquez Alberdi L, De León L, Avellanal G, Duarte A, Anzibar Fialho M, Baranger J, Calero M, Rubido N, Tanter M, Negreira C, Brum J, Damián JP, Kun A. In Vivo Ultrafast Doppler Imaging Combined with Confocal Microscopy and Behavioral Approaches to Gain Insight into the Central Expression of Peripheral Neuropathy in Trembler-J Mice. BIOLOGY 2023; 12:1324. [PMID: 37887034 PMCID: PMC10604841 DOI: 10.3390/biology12101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/28/2023]
Abstract
The main human hereditary peripheral neuropathy (Charcot-Marie-Tooth, CMT), manifests in progressive sensory and motor deficits. Mutations in the compact myelin protein gene pmp22 cause more than 50% of all CMTs. CMT1E is a subtype of CMT1 myelinopathy carrying micro-mutations in pmp22. The Trembler-J mice have a spontaneous mutation in pmp22 identical to that present in CMT1E human patients. PMP22 is mainly (but not exclusively) expressed in Schwann cells. Some studies have found the presence of pmp22 together with some anomalies in the CNS of CMT patients. Recently, we identified the presence of higher hippocampal pmp22 expression and elevated levels of anxious behavior in TrJ/+ compared to those observed in wt. In the present paper, we delve deeper into the central expression of the neuropathy modeled in Trembler-J analyzing in vivo the cerebrovascular component by Ultrafast Doppler, exploring the vascular structure by scanning laser confocal microscopy, and analyzing the behavioral profile by anxiety and motor difficulty tests. We have found that TrJ/+ hippocampi have increased blood flow and a higher vessel volume compared with the wild type. Together with this, we found an anxiety-like profile in TrJ/+ and the motor difficulties described earlier. We demonstrate that there are specific cerebrovascular hemodynamics associated with a vascular structure and anxious behavior associated with the TrJ/+ clinical phenotype, a model of the human CMT1E disease.
Collapse
Affiliation(s)
- Mariana Martínez Barreiro
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (M.M.B.); (L.V.A.); (A.D.)
| | - Lucia Vázquez Alberdi
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (M.M.B.); (L.V.A.); (A.D.)
- Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (M.A.F.); (C.N.); (J.B.)
| | - Lucila De León
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo 13000, Uruguay; (L.D.L.); (G.A.); (J.P.D.)
| | - Guadalupe Avellanal
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo 13000, Uruguay; (L.D.L.); (G.A.); (J.P.D.)
| | - Andrea Duarte
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (M.M.B.); (L.V.A.); (A.D.)
| | - Maximiliano Anzibar Fialho
- Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (M.A.F.); (C.N.); (J.B.)
- Física No Lineal, Instituto de Física de Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
| | - Jérôme Baranger
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75012 Paris, France; (J.B.); (M.T.)
| | - Miguel Calero
- Unidad de Encefalopatías Espongiformes, UFIEC, CIBERNED, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Queen Sofia Foundation—Alzheimer Center, CIEN Foundation, 28031 Madrid, Spain
| | - Nicolás Rubido
- Física No Lineal, Instituto de Física de Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS UMR 8063, 75012 Paris, France; (J.B.); (M.T.)
| | - Carlos Negreira
- Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (M.A.F.); (C.N.); (J.B.)
| | - Javier Brum
- Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (M.A.F.); (C.N.); (J.B.)
| | - Juan Pablo Damián
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo 13000, Uruguay; (L.D.L.); (G.A.); (J.P.D.)
| | - Alejandra Kun
- Laboratorio de Biología Celular del Sistema Nervioso Periférico, Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (M.M.B.); (L.V.A.); (A.D.)
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| |
Collapse
|
5
|
Lepić S, Lepić M, Banjanin N, Mandić-Rajčević S, Rasulić L. A review of the diet, nutrients, and supplementation potential for the outcome augmentation in surgical treatment of peripheral nerve injuries. Front Surg 2022; 9:942739. [PMID: 36439529 PMCID: PMC9683533 DOI: 10.3389/fsurg.2022.942739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/13/2022] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVE Although the studies have shown the beneficial effects of diet, nutrition, and supplementation as an independent treatment modality, their roles are underestimated in the treatment of peripheral nerve injuries. This is in great part due to the development of efficient nerve repair techniques, combined with physical treatment and stimulation. To achieve the best possible functional recovery diet, nutrition, and supplementation should be implemented within a multidisciplinary approach. The aim of the study is to provide insight into the potentially beneficial effects of diet, nutrients, and supplementation, in the limitation of nerve damage and augmentation of the functional recovery after surgery in a review of human and animal studies. METHODS The data relating to the diet, nutrients, and supplementation effects on peripheral nerve injuries and their treatment was extracted from the previously published literature. RESULTS General balanced diet as well as obesity influence the initial nerve features prior to the injury. In the period following the injury, neuroprotective agents demonstrated beneficial effects prior to surgery, and immediately after the injury, while those potentiating nerve regeneration may be used after the surgical repair to complement the physical treatment and stimulation for improved functional recovery. CONCLUSIONS Standardized diet, nutrition, and supplementation recommendations and protocols may be of great importance for better nerve regeneration and functional recovery as a part of the multidisciplinary approach to achieve the best possible results in surgically treated patients with peripheral nerve injuries in the future.
Collapse
Affiliation(s)
- Sanja Lepić
- Institute of Hygiene, Military Medical Academy, Belgrade, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milan Lepić
- Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
- Clinic for Neurosurgery, Military Medical Academy, Belgrade, Serbia
| | - Nikolina Banjanin
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Stefan Mandić-Rajčević
- School of Public Health and Health Management and Institute of Social Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Lukas Rasulić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department for Peripheral Nerve Surgery, Functional Neurosurgery and Pain Management Surgery, Clinic for Neurosurgery, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
6
|
Vo TTT, Huynh TD, Wang CS, Lai KH, Lin ZC, Lin WN, Chen YL, Peng TY, Wu HC, Lee IT. The Potential Implications of Hydrogen Sulfide in Aging and Age-Related Diseases through the Lens of Mitohormesis. Antioxidants (Basel) 2022; 11:1619. [PMID: 36009338 PMCID: PMC9404924 DOI: 10.3390/antiox11081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The growing increases in the global life expectancy and the incidence of chronic diseases as a direct consequence have highlighted a demand to develop effective strategies for promoting the health of the aging population. Understanding conserved mechanisms of aging across species is believed helpful for the development of approaches to delay the progression of aging and the onset of age-related diseases. Mitochondrial hormesis (or mitohormesis), which can be defined as an evolutionary-based adaptive response to low-level stress, is emerging as a promising paradigm in the field of anti-aging. Depending on the severity of the perceived stress, there are varying levels of hormetic response existing in the mitochondria called mitochondrial stress response. Hydrogen sulfide (H2S) is a volatile, flammable, and toxic gas, with a characteristic odor of rotten eggs. However, H2S is now recognized an important gaseous signaling molecule to both physiology and pathophysiology in biological systems. Recent studies that elucidate the importance of H2S as a therapeutic molecule has suggested its protective effects beyond the traditional understanding of its antioxidant properties. H2S can also be crucial for the activation of mitochondrial stress response, postulating a potential mechanism for combating aging and age-related diseases. Therefore, this review focuses on highlighting the involvement of H2S and its sulfur-containing derivatives in the induction of mitochondrial stress response, suggesting a novel possibility of mitohormesis through which this gaseous signaling molecule may promote the healthspan and lifespan of an organism.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Thao Duy Huynh
- Lab of Biomaterial, Department of Histology, Embryology, and Genetics, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 72500, Vietnam
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ho-Cheng Wu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Du H, Zhou X, Shi L, Xia M, Wang Y, Guo N, Hu H, Zhang P, Yang H, Zhu F, Teng Z, Liu C, Zhao M. Shikonin Attenuates Cochlear Spiral Ganglion Neuron Degeneration by Activating Nrf2-ARE Signaling Pathway. Front Mol Neurosci 2022; 15:829642. [PMID: 35283722 PMCID: PMC8908960 DOI: 10.3389/fnmol.2022.829642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanisms that regulate the proliferation and differentiation of inner ear spiral ganglion cells (SGCs) remain largely unknown. Shikonin (a naphthoquinone pigment isolated from the traditional Chinese herbal medicine comfrey root) has anti-oxidation, anti-apoptosis and promoting proliferation and differentiation effects on neural progenitor cells. To study the protective effect of shikonin on auditory nerve damage, we isolated spiral ganglion neuron cells (SGNs) and spiral ganglion Schwann cells (SGSs) that provide nutrients in vitro and pretreated them with shikonin. We found that shikonin can reduce ouabain, a drug that can selectively destroy SGNs and induce auditory nerve damage, caused SGNs proliferation decreased, neurite outgrowth inhibition, cells apoptosis and mitochondrial depolarization. In addition, we found that shikonin can increase the expression of Nrf2 and its downstream molecules HO-1 and NQO1, thereby enhancing the antioxidant capacity of SGNs and SGSs, promoting cells proliferation, and inhibiting cells apoptosis by activating the Nrf2/antioxidant response elements (ARE) signal pathway. However, knockdown of Nrf2 rescued the protective effect of shikonin on SGNs and SGSs damage. In addition, we injected shikonin pretreatment into mouse that ouabain-induced hearing loss and found that shikonin pretreatment has a defensive effect on auditory nerve damage. In summary, the results of this study indicate that shikonin could attenuate the level of oxidative stress in SGNs and SGSs through the Nrf2-ARE signaling pathway activated, induce the proliferation and differentiation of SGNs, and thereby improve the neurological hearing damage in mice. Therefore, shikonin may be a candidate therapeutic drug for endogenous antioxidants that can be used to treat neurological deafness.
Collapse
Affiliation(s)
- Hongjie Du
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Qilu Pharmaceutical Co., Ltd., Jinan, China
| | - Xuanchen Zhou
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Shi
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yajie Wang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Na Guo
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Houyang Hu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pan Zhang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huiming Yang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fangyuan Zhu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenxiao Teng
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengcheng Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chengcheng Liu,
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Miaoqing Zhao,
| |
Collapse
|
8
|
The Role of Dietary Nutrients in Peripheral Nerve Regeneration. Int J Mol Sci 2021; 22:ijms22147417. [PMID: 34299037 PMCID: PMC8303934 DOI: 10.3390/ijms22147417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerves are highly susceptible to injuries induced from everyday activities such as falling or work and sport accidents as well as more severe incidents such as car and motorcycle accidents. Many efforts have been made to improve nerve regeneration, but a satisfactory outcome is still unachieved, highlighting the need for easy to apply supportive strategies for stimulating nerve growth and functional recovery. Recent focus has been made on the effect of the consumed diet and its relation to healthy and well-functioning body systems. Normally, a balanced, healthy daily diet should provide our body with all the needed nutritional elements for maintaining correct function. The health of the central and peripheral nervous system is largely dependent on balanced nutrients supply. While already addressed in many reviews with different focus, we comprehensively review here the possible role of different nutrients in maintaining a healthy peripheral nervous system and their possible role in supporting the process of peripheral nerve regeneration. In fact, many dietary supplements have already demonstrated an important role in peripheral nerve development and regeneration; thus, a tailored dietary plan supplied to a patient following nerve injury could play a non-negotiable role in accelerating and promoting the process of nerve regeneration.
Collapse
|
9
|
Allen MD, Dalton BH, Gilmore KJ, McNeil CJ, Doherty TJ, Rice CL, Power GA. Neuroprotective effects of exercise on the aging human neuromuscular system. Exp Gerontol 2021; 152:111465. [PMID: 34224847 DOI: 10.1016/j.exger.2021.111465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
Human biological aging from maturity to senescence is associated with a gradual loss of muscle mass and neuromuscular function. It is not until very old age (>80 years) however, that these changes often manifest into functional impairments. A driving factor underlying the age-related loss of muscle mass and function is the reduction in the number and quality of motor units (MUs). A MU consists of a single motoneuron, located either in the spinal cord or the brain stem, and all of the muscle fibres it innervates via its peripheral axon. Throughout the adult lifespan, MUs are slowly, but progressively lost. The compensatory process of collateral reinnervation attempts to recapture orphaned muscle fibres following the death of a motoneuron. Whereas this process helps mitigate loss of muscle mass during the latter decades of adult aging, the neuromuscular system has fewer and larger MUs, which have lower quality connections between the axon terminal and innervated muscle fibres. Whether this process of MU death and degradation can be attenuated with habitual physical activity has been a challenging question of great interest. This review focuses on age-related alterations of the human neuromuscular system, with an emphasis on the MU, and presents findings on the potential protective effects of lifelong physical activity. Although there is some discrepancy across studies of masters athletes, if one considers all experimental limitations as well as the available literature in animals, there is compelling evidence of a protective effect of chronic physical training on human MUs. Our tenet is that high-levels of physical activity can mitigate the natural trajectory of loss of quantity and quality of MUs in old age.
Collapse
Affiliation(s)
- Matti D Allen
- Department of Physical Medicine and Rehabilitation, School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON K7L 4X3, Canada; School of Kinesiology and Health Studies, Faculty of Arts and Sciences, Queen's University, Kingston, ON K7L 4X3, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Kevin J Gilmore
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Chris J McNeil
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Timothy J Doherty
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Charles L Rice
- School of Kinesiology, The University of Western Ontario, London, ON, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Manalo JM, Liu H, Ding D, Hicks J, Sun H, Salvi R, Kellems RE, Pereira FA, Xia Y. Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss. FASEB J 2020; 34:15771-15787. [PMID: 33131093 DOI: 10.1096/fj.202000939r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Over 466 million people worldwide are diagnosed with hearing loss (HL). About 90% of HL cases are sensorineural HL (SNHL) with treatments limited to hearing aids and cochlear implants with no FDA-approved drugs. Intriguingly, ADA-deficient patients have been reported to have bilateral SNHL, however, its underlying cellular and molecular basis remain unknown. We report that Ada-/- mice, phenocopying ADA-deficient humans, displayed SNHL. Ada-/- mice cochlea with elevated adenosine caused substantial nerve fiber demyelination and mild hair cell loss. ADA enzyme therapy in these mice normalized cochlear adenosine levels, attenuated SNHL, and prevented demyelination. Additionally, ADA enzyme therapy rescued SNHL by restoring nerve fiber structure in Ada-/- mice post two-week drug withdrawal. Moreover, elevated cochlear adenosine in untreated mice was associated with enhanced Adora2b gene expression. Preclinically, ADORA2B-specific antagonist treatment in Ada-/- mice significantly improved HL, nerve fiber density, and myelin compaction. We also provided genetic evidence that ADORA2B is detrimental for age-related SNHL by impairing cochlear myelination in WT aged mice. Overall, understanding purinergic molecular signaling in SNHL in Ada-/- mice allows us to further discover that ADORA2B is also a pathogenic factor underlying aged-related SNHL by impairing cochlear myelination and lowering cochlear adenosine levels or blocking ADORA2B signaling are effective therapies for SNHL.
Collapse
Affiliation(s)
- Jeanne M Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dalian Ding
- Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - John Hicks
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Hong Sun
- Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Richard Salvi
- Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fred A Pereira
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
11
|
Scalia F, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Myelin Pathology: Involvement of Molecular Chaperones and the Promise of Chaperonotherapy. Brain Sci 2019; 9:brainsci9110297. [PMID: 31671529 PMCID: PMC6896170 DOI: 10.3390/brainsci9110297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 11/27/2022] Open
Abstract
The process of axon myelination involves various proteins including molecular chaperones. Myelin alteration is a common feature in neurological diseases due to structural and functional abnormalities of one or more myelin proteins. Genetic proteinopathies may occur either in the presence of a normal chaperoning system, which is unable to assist the defective myelin protein in its folding and migration, or due to mutations in chaperone genes, leading to functional defects in assisting myelin maturation/migration. The latter are a subgroup of genetic chaperonopathies causing demyelination. In this brief review, we describe some paradigmatic examples pertaining to the chaperonins Hsp60 (HSPD1, or HSP60, or Cpn60) and CCT (chaperonin-containing TCP-1). Our aim is to make scientists and physicians aware of the possibility and advantages of classifying patients depending on the presence or absence of a chaperonopathy. In turn, this subclassification will allow the development of novel therapeutic strategies (chaperonotherapy) by using molecular chaperones as agents or targets for treatment.
Collapse
Affiliation(s)
- Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
| |
Collapse
|
12
|
De Angelis F, Vacca V, Pavone F, Marinelli S. Impact of caloric restriction on peripheral nerve injury-induced neuropathic pain during ageing in mice. Eur J Pain 2019; 24:374-382. [PMID: 31610068 DOI: 10.1002/ejp.1493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
Abstract
The incidence of peripheral neuropathy development and chronic pain is strongly associated with the arrival of senescence. The gradual physiological decline that begins after the mature stage produces myelin dysregulation and pathological changes in peripheral nervous system, attributed to reduction in myelin proteins expression and thinner myelin sheath. Moreover in elder subjects, when nerve damage occurs, the regenerative processes are seriously compromised and neuropathic pain (NeP) is maintained. We previously demonstrated that caloric restriction (CR) in adult (4 months) nerve-lesioned mice was able to facilitate remyelination and axons regeneration, to have anti-inflammatory action and to prevent NeP chronification. Here, we show CR therapeutic potential on nerve injury-induced neuropathy in mice at the beginning of the senescence (12 months). Long lasting decrease in hypersensitvity induced by peripheral nerve lesion and powerful reduction in proinflammatory circulating agents have been observed. Moreover, our results evidence that CR is able to counteract the ageing-related delay in axonal regeneration, enhancing Schwann cells proliferation and accelerating recovery processes. Differently from adults, it does not affect fibres myelination. In light of a continuous growth in elderly population and correlated health problems, including metabolic disorders, the prevalence of neuropathy is enhancing, generating a significant public cost and social concern. In this context energy depletion by dietary restriction can be a therapeutic option in NeP.
Collapse
Affiliation(s)
- Federica De Angelis
- IRCCS - S. Lucia Foundation, Rome, Italy.,CNR - Institute of Cell Biology and Neurobiology, Monterotondo scalo, Italy
| | - Valentina Vacca
- IRCCS - S. Lucia Foundation, Rome, Italy.,CNR - Institute of Cell Biology and Neurobiology, Monterotondo scalo, Italy
| | - Flaminia Pavone
- CNR - Institute of Cell Biology and Neurobiology, Monterotondo scalo, Italy
| | - Sara Marinelli
- CNR - Institute of Cell Biology and Neurobiology, Monterotondo scalo, Italy
| |
Collapse
|
13
|
Yildiran H, Macit MS, Özata Uyar G. New approach to peripheral nerve injury: nutritional therapy. Nutr Neurosci 2018; 23:744-755. [PMID: 30526417 DOI: 10.1080/1028415x.2018.1554322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose of review: There is no review in the literature on the effect of nutrition-related factors on peripheral nerve injuries. Therefore, it is aimed to evaluate the effect of nutritional factors on nerve injuries in this compilation. Recent findings: Although there are several fundamental mechanisms by which nutrients and nutritional factors influence individuals, their exact impacts on neurogenesis have not been clearly identified. Recently, some studies showed that some nutrients have an important role in nerve injuries due to their neuroprotective properties. In addition to surgical treatment, in peripheral nerve injuries, these nutrients also may play a role in preserving nerve function and health, as well as in the recovery of an injured nerve tissue. Omega 3 and omega 6 fatty acids, group B vitamins, antioxidants, several minerals, phenolic compounds, and alpha lipoic acid are thought to have impacts on the nervous system. In addition to all of these, gut microbiota has effects on the nervous system, and some nutrient-related factors can also affect neurogenesis via gut microbiota. Summary: Peripheral nerve injury is a condition in which the nerves in the peripheral nervous system become damaged. After the trauma, the peripheral nerve is hardly repaired due to the following reasons; the disability of the regeneration of motor neurons, the lack of a survival environment for Schwann cells, and the poor ability of the nerves to regenerate. Nutrition-related factors, the effects of which were described in recent years, should be more taken into account more.
Collapse
Affiliation(s)
- Hilal Yildiran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Melahat Sedanur Macit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Gizem Özata Uyar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
14
|
Bagherniya M, Butler AE, Barreto GE, Sahebkar A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res Rev 2018; 47:183-197. [PMID: 30172870 DOI: 10.1016/j.arr.2018.08.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
Autophagy is a lysosomal degradation process and protective housekeeping mechanism to eliminate damaged organelles, long-lived misfolded proteins and invading pathogens. Autophagy functions to recycle building blocks and energy for cellular renovation and homeostasis, allowing cells to adapt to stress. Modulation of autophagy is a potential therapeutic target for a diverse range of diseases, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. Traditionally, food deprivation and calorie restriction (CR) have been considered to slow aging and increase longevity. Since autophagy inhibition attenuates the anti-aging effects of CR, it has been proposed that autophagy plays a substantive role in CR-mediated longevity. Among several stress stimuli inducers of autophagy, fasting and CR are the most potent non-genetic autophagy stimulators, and lack the undesirable side effects associated with alternative interventions. Despite the importance of autophagy, the evidence connecting fasting or CR with autophagy promotion has not previously been reviewed. Therefore, our objective was to weigh the evidence relating the effect of CR or fasting on autophagy promotion. We conclude that both fasting and CR have a role in the upregulation of autophagy, the evidence overwhelmingly suggesting that autophagy is induced in a wide variety of tissues and organs in response to food deprivation.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
15
|
Sasaki Y, Hackett AR, Kim S, Strickland A, Milbrandt J. Dysregulation of NAD + Metabolism Induces a Schwann Cell Dedifferentiation Program. J Neurosci 2018; 38:6546-6562. [PMID: 29921717 PMCID: PMC6052240 DOI: 10.1523/jneurosci.3304-17.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/21/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
The Schwann cell (SC) is the major component of the peripheral nervous system (PNS) that provides metabolic and functional support for peripheral axons. The emerging roles of SC mitochondrial function for PNS development and axonal stability indicate the importance of SC metabolism in nerve function and in peripheral neuropathies associated with metabolic disorders. Nicotinamide adenine dinucleotide (NAD+) is a crucial molecule in the regulation of cellular metabolism and redox homeostasis. Here, we investigated the roles of NAD+ metabolism in SC functions in vivo by mutating NAMPT, the rate-limiting enzyme of NAD+ biosynthesis, specifically in SCs. NAMPT SC knock-out male and female mice (NAMPT SCKO mice) had delayed SC maturation in development and developed hypomyelinating peripheral neuropathy without axon degeneration or decreased SC survival. JUN, a master regulator of SC dedifferentiation, is elevated in NAMPT SCKO SCs, suggesting that decreased NAD+ levels cause them to arrest at an immature stage. Nicotinic acid administration rescues the NAD+ decline and reverses the SC maturation defect and the development of peripheral neuropathy, indicating the central role of NAD+ in PNS development. Upon nicotinic acid withdrawal in adulthood, NAMPT SCKO mice showed rapid and severe peripheral neuropathy and activation of ERK/MEK/JUN signaling, which in turn promotes SC dedifferentiation. These data demonstrate the importance of NAD+ metabolism in SC maturation and nerve development and maintenance and suggest that altered SC NAD+ metabolism could underlie neuropathies associated with diabetes and aging.SIGNIFICANCE STATEMENT In this study, we showed that Schwann cell differentiation status is critically dependent on NAD+ homeostasis. Aberrant regulation of NAD+ biosynthesis via NAMPT deletion results in a blockade of Schwann cell maturation during development and severe peripheral neuropathy without significant axon loss. The phenotype can be rescued by supplementation with nicotinic acid; however, withdrawal of nicotinic acid leads to Schwann cell dedifferentiation, myelination defects, and death. These results provide new therapeutic possibilities for peripheral neuropathies associated with NAD+ decline during aging or diabetes.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Amber R Hackett
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sungsu Kim
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
16
|
Moreno-García A, Kun A, Calero O, Medina M, Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci 2018; 12:464. [PMID: 30026686 PMCID: PMC6041410 DOI: 10.3389/fnins.2018.00464] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Despite aging being by far the greatest risk factor for highly prevalent neurodegenerative disorders, the molecular underpinnings of age-related brain changes are still not well understood, particularly the transition from normal healthy brain aging to neuropathological aging. Aging is an extremely complex, multifactorial process involving the simultaneous interplay of several processes operating at many levels of the functional organization. The buildup of potentially toxic protein aggregates and their spreading through various brain regions has been identified as a major contributor to these pathologies. One of the most striking morphologic changes in neurons during normal aging is the accumulation of lipofuscin (LF) aggregates, as well as, neuromelanin pigments. LF is an autofluorescent lipopigment formed by lipids, metals and misfolded proteins, which is especially abundant in nerve cells, cardiac muscle cells and skin. Within the Central Nervous System (CNS), LF accumulates as aggregates, delineating a specific senescence pattern in both physiological and pathological states, altering neuronal cytoskeleton and cellular trafficking and metabolism, and being associated with neuronal loss, and glial proliferation and activation. Traditionally, the accumulation of LF in the CNS has been considered a secondary consequence of the aging process, being a mere bystander of the pathological buildup associated with different neurodegenerative disorders. Here, we discuss recent evidence suggesting the possibility that LF aggregates may have an active role in neurodegeneration. We argue that LF is a relevant effector of aging that represents a risk factor or driver for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Alejandra Kun
- Biochemistry Section, Science School, Universidad de la República, Montevideo, Uruguay
- Protein and Nucleic Acids Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Olga Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Miguel Medina
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
17
|
Yin Z, Raj DD, Schaafsma W, van der Heijden RA, Kooistra SM, Reijne AC, Zhang X, Moser J, Brouwer N, Heeringa P, Yi CX, van Dijk G, Laman JD, Boddeke EWGM, Eggen BJL. Low-Fat Diet With Caloric Restriction Reduces White Matter Microglia Activation During Aging. Front Mol Neurosci 2018; 11:65. [PMID: 29593493 PMCID: PMC5857900 DOI: 10.3389/fnmol.2018.00065] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/15/2018] [Indexed: 12/31/2022] Open
Abstract
Rodent models of both aging and obesity are characterized by inflammation in specific brain regions, notably the corpus callosum, fornix, and hypothalamus. Microglia, the resident macrophages of the central nervous system, are important for brain development, neural support, and homeostasis. However, the effects of diet and lifestyle on microglia during aging are only partly understood. Here, we report alterations in microglia phenotype and functions in different brain regions of mice on a high-fat diet (HFD) or low-fat diet (LFD) during aging and in response to voluntary running wheel exercise. We compared the expression levels of genes involved in immune response, phagocytosis, and metabolism in the hypothalamus of 6-month-old HFD and LFD mice. We also compared the immune response of microglia from HFD or LFD mice to peripheral inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS). Finally, we investigated the effect of diet, physical exercise, and caloric restriction (40% reduction compared to ad libitum intake) on microglia in 24-month-old HFD and LFD mice. Changes in diet caused morphological changes in microglia, but did not change the microglia response to LPS-induced systemic inflammation. Expression of phagocytic markers (i.e., Mac-2/Lgals3, Dectin-1/Clec7a, and CD16/CD32) in the white matter microglia of 24-month-old brain was markedly decreased in calorically restricted LFD mice. In conclusion, LFD resulted in reduced activation of microglia, which might be an underlying mechanism for the protective role of caloric restriction during aging-associated decline.
Collapse
Affiliation(s)
- Zhuoran Yin
- Department of Neurology, Tongji Hospital, Tongji Medical College of HUST, Huazhong University of Science and Technology, Wuhan, China
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Divya D. Raj
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wandert Schaafsma
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Roel A. van der Heijden
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Susanne M. Kooistra
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aaffien C. Reijne
- Laboratory of Pediatrics, Systems Medicine of Metabolism and Signaling Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, Groningen, Netherlands
- Groningen Institute for Evolutionary Life Sciences, Department of Behavioral Neuroscience, University of Groningen, Groningen, Netherlands
| | - Xiaoming Zhang
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jill Moser
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nieske Brouwer
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gertjan van Dijk
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, Groningen, Netherlands
- Groningen Institute for Evolutionary Life Sciences, Department of Behavioral Neuroscience, University of Groningen, Groningen, Netherlands
- ESRIG Centre for Isotope Research, University of Groningen, Groningen, Netherlands
| | - Jon D. Laman
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erik W. G. M. Boddeke
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J. L. Eggen
- Department of Neuroscience, Medical Physiology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Hamilton R, Walsh M, Singh R, Rodriguez K, Gao X, Rahman MM, Chaudhuri A, Bhattacharya A. Oxidative damage to myelin proteins accompanies peripheral nerve motor dysfunction in aging C57BL/6 male mice. J Neurol Sci 2016; 370:47-52. [PMID: 27772785 DOI: 10.1016/j.jns.2016.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023]
Abstract
Aging is associated with a decline in peripheral nerve function of both motor and sensory nerves. The decline in function of peripheral sensorimotor nerves with aging has been linked to sarcopenia, the age-related decline in muscle mass and function that significantly compromises the quality of life in older humans. In this study, we report a significant increase in oxidized fatty acids and insoluble protein carbonyls in sciatic nerves of aged C57BL/6 male mice (28-30mo) that exhibit a profound decline in motor nerve function and degenerative changes in both axon and myelin structure, compared to young mice (6-8mo). Our data further suggests that this age-related loss of function of peripheral motor nerves is likely precipitated by changes in mechanisms that protect and/or repair oxidative damage. We predict that interventions that target these mechanisms may protect against age-related decline in peripheral sensorimotor nerve function and likely improve the debilitating outcome of sarcopenia in older humans.
Collapse
Affiliation(s)
- Ryan Hamilton
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Michael Walsh
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Rashmi Singh
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Karl Rodriguez
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Xiaoli Gao
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Md Mizanur Rahman
- Department of Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Asish Chaudhuri
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Arunabh Bhattacharya
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA.
| |
Collapse
|
19
|
Panthi S, Chung HJ, Jung J, Jeong NY. Physiological Importance of Hydrogen Sulfide: Emerging Potent Neuroprotector and Neuromodulator. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9049782. [PMID: 27413423 PMCID: PMC4931096 DOI: 10.1155/2016/9049782] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022]
Abstract
Hydrogen sulfide (H2S) is an emerging neuromodulator that is considered to be a gasotransmitter similar to nitrogen oxide (NO) and carbon monoxide (CO). H2S exerts universal cytoprotective effects and acts as a defense mechanism in organisms ranging from bacteria to mammals. It is produced by the enzymes cystathionine β-synthase (CBS), cystathionine ϒ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (MST), and D-amino acid oxidase (DAO), which are also involved in tissue-specific biochemical pathways for H2S production in the human body. H2S exerts a wide range of pathological and physiological functions in the human body, from endocrine system and cellular longevity to hepatic protection and kidney function. Previous studies have shown that H2S plays important roles in peripheral nerve regeneration and degeneration and has significant value during Schwann cell dedifferentiation and proliferation but it is also associated with axonal degradation and the remyelination of Schwann cells. To date, physiological and toxic levels of H2S in the human body remain unclear and most of the mechanisms of action underlying the effects of H2S have yet to be fully elucidated. The primary purpose of this review was to provide an overview of the role of H2S in the human body and to describe its beneficial effects.
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Biomedical Science, Graduate School, Kyung Hee University, No. 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Joo Chung
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kosin University, No. 262, Gamcheon-ro, Seo-gu, Busan 49267, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, No. 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, No. 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, No. 32, Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| |
Collapse
|
20
|
Zhou Y, Notterpek L. Promoting peripheral myelin repair. Exp Neurol 2016; 283:573-80. [PMID: 27079997 DOI: 10.1016/j.expneurol.2016.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023]
Abstract
Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves.
Collapse
Affiliation(s)
- Ye Zhou
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States
| | - Lucia Notterpek
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
21
|
Montgomery KS, Edwards G, Levites Y, Kumar A, Myers CE, Gluck MA, Setlow B, Bizon JL. Deficits in hippocampal-dependent transfer generalization learning accompany synaptic dysfunction in a mouse model of amyloidosis. Hippocampus 2016; 26:455-71. [PMID: 26418152 PMCID: PMC4803574 DOI: 10.1002/hipo.22535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 11/08/2022]
Abstract
Elevated β-amyloid and impaired synaptic function in hippocampus are among the earliest manifestations of Alzheimer's disease (AD). Most cognitive assessments employed in both humans and animal models, however, are insensitive to this early disease pathology. One critical aspect of hippocampal function is its role in episodic memory, which involves the binding of temporally coincident sensory information (e.g., sights, smells, and sounds) to create a representation of a specific learning epoch. Flexible associations can be formed among these distinct sensory stimuli that enable the "transfer" of new learning across a wide variety of contexts. The current studies employed a mouse analog of an associative "transfer learning" task that has previously been used to identify risk for prodromal AD in humans. The rodent version of the task assesses the transfer of learning about stimulus features relevant to a food reward across a series of compound discrimination problems. The relevant feature that predicts the food reward is unchanged across problems, but an irrelevant feature (i.e., the context) is altered. Experiment 1 demonstrated that C57BL6/J mice with bilateral ibotenic acid lesions of hippocampus were able to discriminate between two stimuli on par with control mice; however, lesioned mice were unable to transfer or apply this learning to new problem configurations. Experiment 2 used the APPswe PS1 mouse model of amyloidosis to show that robust impairments in transfer learning are evident in mice with subtle β-amyloid-induced synaptic deficits in the hippocampus. Finally, Experiment 3 confirmed that the same transfer learning impairments observed in APPswePS1 mice were also evident in the Tg-SwDI mouse, a second model of amyloidosis. Together, these data show that the ability to generalize learned associations to new contexts is disrupted even in the presence of subtle hippocampal dysfunction and suggest that, across species, this aspect of hippocampal-dependent learning may be useful for early identification of AD-like pathology.
Collapse
Affiliation(s)
- Karienn S. Montgomery
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX
| | - George Edwards
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Health Science Center in Houston, Houston, TX
| | - Yona Levites
- Department of Neuroscience, University of Florida, Gainesville, FL
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, Gainesville, FL
| | - Catherine E. Myers
- VA New Jersey Health Care System, East Orange, NJ 07018
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Mark A. Gluck
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL
| | | |
Collapse
|
22
|
Tomlinson L, Leiton CV, Colognato H. Behavioral experiences as drivers of oligodendrocyte lineage dynamics and myelin plasticity. Neuropharmacology 2015; 110:548-562. [PMID: 26415537 DOI: 10.1016/j.neuropharm.2015.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/28/2022]
Abstract
Many behavioral experiences are known to promote hippocampal neurogenesis. In contrast, the ability of behavioral experiences to influence the production of oligodendrocytes and myelin sheath formation remains relatively unknown. However, several recent studies indicate that voluntary exercise and environmental enrichment can positively influence both oligodendrogenesis and myelination, and that, in contrast, social isolation can negatively influence myelination. In this review we summarize studies addressing the influence of behavioral experiences on oligodendrocyte lineage cells and myelin, and highlight potential mechanisms including experience-dependent neuronal activity, metabolites, and stress effectors, as well as both local and systemic secreted factors. Although more study is required to better understand the underlying mechanisms by which behavioral experiences regulate oligodendrocyte lineage cells, this exciting and newly emerging field has already revealed that oligodendrocytes and their progenitors are highly responsive to behavioral experiences and suggest the existence of a complex network of reciprocal interactions among oligodendrocyte lineage development, behavioral experiences, and brain function. Achieving a better understanding of these relationships may have profound implications for human health, and in particular, for our understanding of changes in brain function that occur in response to experiences. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
|
23
|
Walsh ME, Sloane LB, Fischer KE, Austad SN, Richardson A, Van Remmen H. Use of Nerve Conduction Velocity to Assess Peripheral Nerve Health in Aging Mice. J Gerontol A Biol Sci Med Sci 2014; 70:1312-9. [PMID: 25477428 DOI: 10.1093/gerona/glu208] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022] Open
Abstract
Nerve conduction velocity (NCV), the speed at which electrical signals propagate along peripheral nerves, is used in the clinic to evaluate nerve function in humans. A decline in peripheral nerve function is associated with a number of age-related pathologies. While several studies have shown that NCV declines with age in humans, there is little information on the effect of age on NCV in peripheral nerves in mice. In this study, we evaluated NCV in male and female C57Bl/6 mice ranging from 4 to 32 months of age. We observed a decline in NCV in both male and female mice after 20 months of age. Sex differences were detected in sensory NCV as well as the rate of decline during aging in motor nerves; female mice had slower sensory NCV and a slower age-related decline in motor nerves compared with male mice. We also tested the effect of dietary restriction on NCV in 30-month-old female mice. Dietary restriction prevented the age-related decline in sciatic NCV but not other nerves. Because NCV is clinically relevant to the assessment of nerve function, we recommend that NCV be used to evaluate healthspan in assessing genetic and pharmacological interventions that increase the life span of mice.
Collapse
Affiliation(s)
- Michael E Walsh
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lauren B Sloane
- Department of Biology, State University of New York at Delhi, Delhi, New York
| | - Kathleen E Fischer
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arlan Richardson
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma. University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Holly Van Remmen
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma. Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.
| |
Collapse
|
24
|
Amer MG, Mazen NF, Mohamed NM. Role of calorie restriction in alleviation of age-related morphological and biochemical changes in sciatic nerve. Tissue Cell 2014; 46:497-504. [DOI: 10.1016/j.tice.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
25
|
Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle. Front Aging Neurosci 2014; 6:208. [PMID: 25157231 PMCID: PMC4127816 DOI: 10.3389/fnagi.2014.00208] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/25/2014] [Indexed: 01/19/2023] Open
Abstract
Aging is associated with a progressive loss of muscle mass and strength and a decline in neurophysiological functions. Age-related neuromuscular junction (NMJ) plays a key role in musculoskeletal impairment that occurs with aging. However, whether changes in the NMJ precede or follow the decline of muscle mass and strength remains unresolved. Many factors such as mitochondrial dysfunction, oxidative stress, inflammation, changes in the innervation of muscle fibers, and mechanical properties of the motor units probably perform an important role in NMJ degeneration and muscle mass and strength decline in late life. This review addresses the primary events that might lead to NMJ dysfunction with aging, including studies on biomarkers, signaling pathways, and animal models. Interventions such as caloric restriction and exercise may positively affect the NMJ through this mechanism and attenuate the age-related progressive impairment in motor function.
Collapse
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA
| | - Stephanie A Studenski
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| |
Collapse
|
26
|
Xie F, Fu H, Zhang JC, Chen XF, Wang XL, Chen J. Gene profiling in the dynamic regulation of the lifespan of the myelin sheath structure in the optic nerve of rats. Mol Med Rep 2014; 10:217-22. [PMID: 24818667 DOI: 10.3892/mmr.2014.2227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 04/01/2014] [Indexed: 11/06/2022] Open
Abstract
Aging of the nervous system leads to impairments in cognition and motor skills, and is a major risk factor for several neurological disorders. Recently, numerous nerve function deficits that appear with aging have been found to be a consequence of myelin abnormalities; however, the genetic mechanism of the age‑related alterations in the myelin sheath has not yet been fully elucidated. In the present study, the morphology of the myelin sheath in the optic nerve of rats was analyzed at 10 time‑points throughout life. Marked alterations in the myelin sheath were observed in aging and aged optic nerves, and these became progressively more severe with time. To determine the biological processes affected by aging in the myelin sheath, the age‑related profiling of the myelin sheath in rat optic nerves was established using microarray hybridization at 10 time‑points throughout life, between birth and senescence. From the results, 3,826 transcripts associated with the age‑related alterations in the myelin sheath of the optic nerve were identified. It was found that the biological processes most significantly altered by aging were lipid metabolism, the immune response and transmitter transport. This suggests that the downregulation of lipid synthesis genes and the upregulation of immune and neurotransmitter transport genes in aging may be the genetic basis for the age‑related alterations observed in the myelin sheath.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jiu-Cong Zhang
- Department of Gastroenterology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Xue-Feng Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
27
|
Ye X, Linton JM, Schork NJ, Buck LB, Petrascheck M. A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell 2014; 13:206-15. [PMID: 24134630 PMCID: PMC3955372 DOI: 10.1111/acel.12163] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
Abstract
One goal of aging research is to find drugs that delay the onset of age-associated disease. Studies in invertebrates, particularly Caenorhabditis elegans, have uncovered numerous genes involved in aging, many conserved in mammals. However, which of these encode proteins suitable for drug targeting is unknown. To investigate this question, we screened a library of compounds with known mammalian pharmacology for compounds that increase C. elegans lifespan. We identified 60 compounds that increase longevity in C. elegans, 33 of which also increased resistance to oxidative stress. Many of these compounds are drugs approved for human use. Enhanced resistance to oxidative stress was associated primarily with compounds that target receptors for biogenic amines, such as dopamine or serotonin. A pharmacological network constructed with these data reveal that lifespan extension and increased stress resistance cluster together in a few pharmacological classes, most involved in intercellular signaling. These studies identify compounds that can now be explored for beneficial effects on aging in mammals, as well as tools that can be used to further investigate the mechanisms underlying aging in C. elegans.
Collapse
Affiliation(s)
- Xiaolan Ye
- Division of Basic Sciences Fred Hutchison Cancer Research Center Howard Hughes Medical Institute Seattle WA USA
| | - James M. Linton
- Division of Basic Sciences Fred Hutchison Cancer Research Center Howard Hughes Medical Institute Seattle WA USA
| | - Nicholas J. Schork
- Department of Molecular and Experimental Medicine The Scripps Research Institute La Jolla California USA
- The Scripps Translational Science Institute Scripps Health La Jolla California USA
| | - Linda B. Buck
- Division of Basic Sciences Fred Hutchison Cancer Research Center Howard Hughes Medical Institute Seattle WA USA
| | - Michael Petrascheck
- Department of Molecular and Experimental Medicine The Scripps Research Institute La Jolla California USA
- Department of Chemical Physiology The Scripps Research Institute La Jolla California USA
- Molecular and Cellular Neuroscience The Scripps Research Institute La Jolla California USA
| |
Collapse
|
28
|
The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol 2014; 71:62-70. [PMID: 24650874 DOI: 10.1016/j.yjmcc.2014.03.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 12/19/2022]
Abstract
Aging is accompanied by a progressive increase in the incidence and prevalence of cardiovascular disease (CVD). Prolonged exposure to cardiovascular risk factors, together with intrinsic age-dependent declines in cardiac functionality, increases the vulnerability of the heart to both endogenous and exogenous stressors, ultimately enhancing the susceptibility to developing CVD in late life. Both increased levels of oxidative damage and the accumulation of dysfunctional mitochondria have been observed in a wide range of cardiac diseases, which may therefore represent a common ground upon which many aspects of CVD develop. In this review, we summarize the current knowledge on the mechanisms whereby oxidative stress arising from mitochondrial dysfunction is involved in the process of cardiac aging and in the pathogenesis of CVD highly prevalent in late life (e.g., heart failure and ischemic heart disease). Special emphasis is placed on recent evidence about the role played by alterations in cellular quality control systems, in particular autophagy/mitophagy and mitochondrial dynamics (fusion and fission), and their interconnections in the context of age-related CVD. Cardioprotective interventions acting through the modulation of mitochondrial autophagy (calorie restriction, calorie restriction mimetics, and the gasotransmitter hydrogen sulfide) are also presented. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
|
29
|
Walsh ME, Shi Y, Van Remmen H. The effects of dietary restriction on oxidative stress in rodents. Free Radic Biol Med 2014; 66:88-99. [PMID: 23743291 PMCID: PMC4017324 DOI: 10.1016/j.freeradbiomed.2013.05.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.
Collapse
Affiliation(s)
- Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | - Yun Shi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245; South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
30
|
Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A. ASN Neuro 2013; 5:e00128. [PMID: 24175617 PMCID: PMC3848555 DOI: 10.1042/an20130024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Charcot–Marie–Tooth disease type 1A (CMT1A) is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells. The subcellular response to abnormally localized PMP22 includes the recruitment of the ubiquitin–proteasome system (UPS), autophagosomes and heat-shock proteins (HSPs). Here we assessed biochemical markers of these protein homoeostatic pathways in nerves from PMP22-overexpressing neuropathic mice between the ages of 2 and 12 months to ascertain their potential contribution to disease progression. In nerves of 3-week-old mice, using endoglycosidases and Western blotting, we found altered processing of the exogenous human PMP22, an abnormality that becomes more prevalent with age. Along with the ongoing accrual of misfolded PMP22, the activity of the proteasome becomes compromised and proteins required for autophagy induction and lysosome biogenesis are up-regulated. Moreover, cytosolic chaperones are consistently elevated in nerves from neuropathic mice, with the most prominent change in HSP70. The gradual alterations in protein homoeostatic response are accompanied by Schwann cell de-differentiation and macrophage infiltration. Together, these results show that while subcellular protein quality control mechanisms respond appropriately to the presence of the overproduced PMP22, with aging they are unable to prevent the accrual of misfolded proteins. In peripheral nerves of neuropathic C22 mice the frequency of cytosolic PMP22 aggregates increases with age, which elicits a response from protein quality control mechanisms. The combined effects of aging and neuropathic genotype exacerbate disease progression leading to nerve defects.
Collapse
|
31
|
Long-term analyses of innervation and neuromuscular integrity in the Trembler-J mouse model of Charcot-Marie-Tooth disease. J Neuropathol Exp Neurol 2013; 72:942-54. [PMID: 24042197 DOI: 10.1097/nen.0b013e3182a5f96e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A large fraction of hereditary demyelinating neuropathies, classified as Charcot-Marie-Tooth disease type 1A, is associated with misexpression of peripheral myelin protein 22. In this study, we characterized morphologic and biochemical changes that occur with diseaseprogression in neuromuscular tissue of Trembler-J mice, a spontaneous rodent model of Charcot-Marie-Tooth disease type 1A. Using age-matched, 2- and 10-month-old, wild-type and Trembler-J mice, we observed neuromuscular deficits that progress from distal to proximal regions. The impairments in motor performance are underlined by degenerative events at distal nerve segments and structural alterations at nerve-muscle synapses. Furthermore, skeletal muscle of affected mice showed reduced myofiber diameter, increased expression of the muscle atrophy marker muscle ring-finger protein 1, and fiber type switching. A dietary intervention of intermittent fasting attenuated these progressive changes and supported distal nerve myelination and neuromuscular junction integrity. In addition to the well-characterized demyelination aspects of this model, our investigations identified distinct degenerative events in distal nerves and muscle of affected neuropathic mice. Therefore, therapeutic studies aimed at slowing or reversing the neuropathic features of these disorders should include the examination of muscle tissue, as well as neuromuscular contact sites.
Collapse
|
32
|
Picca A, Fracasso F, Pesce V, Cantatore P, Joseph AM, Leeuwenburgh C, Gadaleta MN, Lezza AMS. Age- and calorie restriction-related changes in rat brain mitochondrial DNA and TFAM binding. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1607-20. [PMID: 22945739 PMCID: PMC3776104 DOI: 10.1007/s11357-012-9465-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
Aging markedly affects mitochondrial biogenesis and functions particularly in tissues highly dependent on the organelle's bioenergetics capability such as the brain's frontal cortex. Calorie restriction (CR) diet is, so far, the only intervention able to delay or prevent the onset of several age-related alterations in different organisms. We determined the contents of mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), and the 4.8-kb mtDNA deletion in the frontal cortex from young (6-month-old) and aged (26-month-old), ad libitum-fed (AL) and calorie-restricted (CR), rats. We found a 70 % increase in TFAM amount, a 25 % loss in mtDNA content, and a 35 % increase in the 4.8-kb deletion content in the aged AL animals with respect to the young rats. TFAM-specific binding to six mtDNA regions was analyzed by mtDNA immunoprecipitation and semiquantitative polymerase chain reaction (PCR), showing a marked age-related decrease. Quantitative real-time PCR at two subregions involved in mtDNA replication demonstrated, in aged AL rats, a remarkable decrease (60-70 %) of TFAM-bound mtDNA. The decreased TFAM binding is a novel finding that may explain the mtDNA loss in spite of the compensatory TFAM increased amount. In aged CR rats, TFAM amount increased and mtDNA content decreased with respect to young rats' values, but the extent of the changes was smaller than in aged AL rats. Attenuation of the age-related effects due to the diet in the CR animals was further evidenced by the unchanged content of the 4.8-kb deletion with respect to that of young animals and by the partial prevention of the age-related decrease in TFAM binding to mtDNA.
Collapse
Affiliation(s)
- Anna Picca
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Flavio Fracasso
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Vito Pesce
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Palmiro Cantatore
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
- />Institute of Biomembranes and Bioenergetics, CNR-National Research Council of Italy, Via Amendola, 165/A, 70126 Bari, Italy
| | - Anna-Maria Joseph
- />Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL USA
| | - Christiaan Leeuwenburgh
- />Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL USA
| | - Maria Nicola Gadaleta
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
- />Institute of Biomembranes and Bioenergetics, CNR-National Research Council of Italy, Via Amendola, 165/A, 70126 Bari, Italy
| | - Angela Maria Serena Lezza
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
33
|
Park D, Lee EK, Jang EJ, Jeong HO, Kim BC, Ha YM, Hong SE, Yu BP, Chung HY. Identification of the dichotomous role of age-related LCK in calorie restriction revealed by integrative analysis of cDNA microarray and interactome. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1045-60. [PMID: 22828953 PMCID: PMC3705109 DOI: 10.1007/s11357-012-9426-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/02/2012] [Indexed: 05/15/2023]
Abstract
Among the many experimental paradigms used for the investigation of aging, the calorie restriction (CR) model has been proven to be the most useful in gerontological research. Exploration of the mechanisms underlying CR has produced a wealth of data. To identify key molecules controlled by aging and CR, we integrated data from 84 mouse and rat cDNA microarrays with a protein-protein interaction network. On the basis of this integrative analysis, we selected three genes that are upregulated in aging but downregulated by CR and two genes that are downregulated in aging but upregulated by CR. One of these key molecules is lymphocyte-specific protein tyrosine kinase (LCK). To further confirm this result on LCK, we performed a series of experiments in vitro and in vivo using kidneys obtained from aged ad libitum-fed and CR rats. Our major significant findings are as follows: (1) identification of LCK as a key molecule using integrative analysis; (2) confirmation that the age-related increase in LCK was modulated by CR and that protein tyrosine kinase activity was decreased using a LCK-specific inhibitor; and (3) upregulation of LCK leads to NF-κB activation in a ONOO(-) generation-dependent manner, which is modulated by CR. These results indicate that LCK could be considered a target attenuated by the anti-aging effects of CR. Integrative analysis of cDNA microarray and interactome data are powerful tools for identifying target molecules that are involved in the aging process and modulated by CR.
Collapse
Affiliation(s)
- Daeui Park
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
- />Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, 609-735 Republic of Korea
| | - Eun Kyeong Lee
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
- />Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 619-953 Republic of Korea
| | - Eun Jee Jang
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
| | - Hyoung Oh Jeong
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
- />Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, 609-735 Republic of Korea
| | - Byoung-Chul Kim
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
- />Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, 609-735 Republic of Korea
| | - Young Mi Ha
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
| | - Seong Eui Hong
- />System Biology Research Center, Gwangju Institute of Science and Technology, Gwangju, 500-712 Republic of Korea
| | - Byung Pal Yu
- />Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900 USA
| | - Hae Young Chung
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
- />Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, Jangjun-dong, Gumjung-gu, Busan, 609-735 South Korea
| |
Collapse
|
34
|
Abstract
Aging is associated with a host of biological changes that contribute to a progressive decline in cognitive and physical function, ultimately leading to a loss of independence, and increased risk of mortality. To date, prolonged caloric restriction (i.e., a reduction in caloric intake without malnutrition) is the only non-genetic intervention that has consistently been found to extend both mean and maximal life span across a variety of species. Most individuals have difficulty sustaining prolonged caloric restriction, which has led to a search for alternative approaches that can produce similar to benefits as caloric restriction. A growing body of evidence indicates that fasting periods and intermittent fasting regimens in particular can trigger similar biological pathways as caloric restriction. For this reason, there is increasing scientific interest in further exploring the biological and metabolic effects of intermittent fasting periods, as well as whether long-term compliance may be improved by this type of dietary approach. This special will highlight the latest scientific findings related to the effects of both caloric restriction and intermittent fasting across various species including yeast, fruit flies, worms, rodents, primates, and humans. A specific emphasis is placed on translational research with findings from basic bench to bedside reviewed and practical clinical implications discussed.
Collapse
Affiliation(s)
- Stephen Anton
- University of Florida, Department of Aging and Geriatric Research, Institute on Aging, Gainesville, FL 32610, United States.
| | | |
Collapse
|
35
|
Dietary restriction supports peripheral nerve health by enhancing endogenous protein quality control mechanisms. Exp Gerontol 2012; 48:1085-90. [PMID: 23267845 DOI: 10.1016/j.exger.2012.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/07/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023]
Abstract
The peripheral nervous system (PNS) comprises of an extensive network of connections that convey information between the central nervous system (CNS) and peripheral organs. Long myelinated nerve fibers are particularly susceptible to age-related changes, as maintenance of the insulating glial membrane requires extensive synthesis and processing of many proteins. In rodent models, peripheral demyelination caused by genetic risk factors or by normal aging are attenuated by intermittent fasting (IF) or calorie restriction (CR) supporting a role for dietary intervention in preserving neural function. This review will summarize recent studies examining mechanisms by which life-long CR or extended IF supports peripheral nerve health.
Collapse
|
36
|
Willette AA, Coe CL, Colman RJ, Bendlin BB, Kastman EK, Field AS, Alexander AL, Allison DB, Weindruch RH, Johnson SC. Calorie restriction reduces psychological stress reactivity and its association with brain volume and microstructure in aged rhesus monkeys. Psychoneuroendocrinology 2012; 37:903-16. [PMID: 22119476 PMCID: PMC3311744 DOI: 10.1016/j.psyneuen.2011.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Heightened stress reactivity is associated with hippocampal atrophy, age-related cognitive deficits, and increased risk for Alzheimer's disease. This temperament predisposition may aggravate age-associated brain pathology or be reflective of it. This association may be mediated through repeated activation of the stress hormone axis over time. Dietary interventions, such as calorie restriction (CR), affect stress biology and may moderate the pathogenic relationship between stress reactivity and brain in limbic and prefrontal regions. METHODS Rhesus monkeys (Macaca mulatta) aged 19-31 years consumed either a standard diet (N=18) or were maintained on 30% CR relative to baseline intake (N=26) for 13-19 years. Behavior was rated in both normative and aversive contexts. Urinary cortisol was collected. Animals underwent magnetic resonance imaging and diffusion tensor imaging (DTI) to acquire volumetric and tissue microstructure data respectively. Voxel-wise statistics regressed a global stress reactivity factor, cortisol, and their interaction on brain indices across and between dietary groups. RESULTS CR significantly reduced stress reactivity during aversive contexts without affecting activity, orientation, or attention behavior. Stress reactivity was associated with less volume and tissue density in areas important for emotional regulation and the endocrine axis including prefrontal cortices, hippocampus, amygdala, and hypothalamus. CR reduced these relationships. A Cortisol by Stress Reactivity voxel-wise interaction indicated that only monkeys with high stress reactivity and high basal cortisol demonstrated lower brain volume and tissue density in prefrontal cortices, hippocampus, and amygdala. CONCLUSIONS High stress reactivity predicted lower volume and microstructural tissue density in regions involved in emotional processing and modulation. A CR diet reduced stress reactivity and regional associations with neural modalities. High levels of cortisol appear to mediate some of these relationships.
Collapse
Affiliation(s)
- Auriel A. Willette
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA,Wisconsin Alheimer s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA,Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, 53705 USA
| | - Christopher L. Coe
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, 53705 USA,Harlow Primate Laboratory, Department of Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, Madison, WI, 53715 USA
| | - Barbara B Bendlin
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA,Wisconsin Alheimer s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA
| | - Erik K Kastman
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA,Wisconsin Alheimer s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA
| | - Aaron S. Field
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, 53792 USA
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, 53705 USA
| | - David B. Allison
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294 USA
| | - Richard H. Weindruch
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA,Wisconsin National Primate Research Center, Madison, WI, 53715 USA
| | - Sterling C. Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA,Wisconsin National Primate Research Center, Madison, WI, 53715 USA,Wisconsin Alheimer s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705 USA,Send Correspondence to: Sterling C. Johnson, Geriatric Research Education and Clinical Center, D-4225 Veterans Administration Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA, Telephone Number: (608) 256-1901, Facsimile Number: (608) 265-3091
| |
Collapse
|
37
|
Scheibye-Knudsen M, Ramamoorthy M, Sykora P, Maynard S, Lin PC, Minor RK, Wilson DM, Cooper M, Spencer R, de Cabo R, Croteau DL, Bohr VA. Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy. ACTA ACUST UNITED AC 2012; 209:855-69. [PMID: 22473955 PMCID: PMC3328359 DOI: 10.1084/jem.20111721] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cells from Cockayne syndrome patients and a mouse model of the disease show increased metabolism as a result of impaired autophagy-mediated removal of damaged mitochondria. Cockayne syndrome (CS) is a devastating autosomal recessive disease characterized by neurodegeneration, cachexia, and accelerated aging. 80% of the cases are caused by mutations in the CS complementation group B (CSB) gene known to be involved in DNA repair and transcription. Recent evidence indicates that CSB is present in mitochondria, where it associates with mitochondrial DNA (mtDNA). We report an increase in metabolism in the CSBm/m mouse model and CSB-deficient cells. Mitochondrial content is increased in CSB-deficient cells, whereas autophagy is down-regulated, presumably as a result of defects in the recruitment of P62 and mitochondrial ubiquitination. CSB-deficient cells show increased free radical production and an accumulation of damaged mitochondria. Accordingly, treatment with the autophagic stimulators lithium chloride or rapamycin reverses the bioenergetic phenotype of CSB-deficient cells. Our data imply that CSB acts as an mtDNA damage sensor, inducing mitochondrial autophagy in response to stress, and that pharmacological modulators of autophagy are potential treatment options for this accelerated aging phenotype.
Collapse
Affiliation(s)
- Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Skeletal muscle innervation is a multi-step process leading to the neuromuscular junction (NMJ) apparatus formation. The transmission of the signal from nerve to muscle occurs at the NMJ level. The molecular mechanism that orchestrates the organization and functioning of synapses is highly complex, and it has not been completely elucidated so far. Neuromuscular junctions are assembled on the muscle fibers at very precise locations called end plates (EP). Acetylcholine receptor (AChR) clusterization at the end plates is required for an accurate synaptic transmission. This review will focus on some mechanisms responsible for accomplishing the correct distribution of AChRs at the synapses. Recent evidences support the concept that a dual transcriptional control of AChR genes in subsynaptic and extrasynaptic nuclei is crucial for AChR clusterization. Moreover, new players have been discovered in the agrin-MuSK pathway, the master organizer of postsynaptical differentiation. Mutations in this pathway cause neuromuscular congenital disorders. Alterations of the postynaptic apparatus are also present in physiological conditions characterized by skeletal muscle wasting. Indeed, recent evidences demonstrate how NMJ misfunctioning has a crucial role at the onset of age-associated sarcopenia.
Collapse
|
39
|
Verdier V, Csárdi G, de Preux-Charles AS, Médard JJ, Smit AB, Verheijen MHG, Bergmann S, Chrast R. Aging of myelinating glial cells predominantly affects lipid metabolism and immune response pathways. Glia 2012; 60:751-60. [PMID: 22337502 DOI: 10.1002/glia.22305] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/19/2012] [Indexed: 01/17/2023]
Abstract
Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.
Collapse
Affiliation(s)
- Valérie Verdier
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Beirowski B, Gustin J, Armour SM, Yamamoto H, Viader A, North BJ, Michán S, Baloh RH, Golden JP, Schmidt RE, Sinclair DA, Auwerx J, Milbrandt J. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci U S A 2011; 108:E952-61. [PMID: 21949390 PMCID: PMC3203793 DOI: 10.1073/pnas.1104969108] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The formation of myelin by Schwann cells (SCs) occurs via a series of orchestrated molecular events. We previously used global expression profiling to examine peripheral nerve myelination and identified the NAD(+)-dependent deacetylase Sir-two-homolog 2 (Sirt2) as a protein likely to be involved in myelination. Here, we show that Sirt2 expression in SCs is correlated with that of structural myelin components during both developmental myelination and remyelination after nerve injury. Transgenic mice lacking or overexpressing Sirt2 specifically in SCs show delays in myelin formation. In SCs, we found that Sirt2 deacetylates Par-3, a master regulator of cell polarity. The deacetylation of Par-3 by Sirt2 decreases the activity of the polarity complex signaling component aPKC, thereby regulating myelin formation. These results demonstrate that Sirt2 controls an essential polarity pathway in SCs during myelin assembly and provide insights into the association between intracellular metabolism and SC plasticity.
Collapse
Affiliation(s)
| | - Jason Gustin
- Sigma–Aldrich Biotechnology, St. Louis, MO 63103
| | - Sean M. Armour
- Department of Pathology, Harvard University School of Medicine, Cambridge, MA 02115
| | - Hiroyasu Yamamoto
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Brian J. North
- Department of Pathology, Harvard University School of Medicine, Cambridge, MA 02115
| | - Shaday Michán
- Instituto de Geriatria, Institutos Nacionales de Salud, Mexico D.F., 04510, Mexico
| | - Robert H. Baloh
- Neurology, and
- Hope Center for Neurological Diseases, St. Louis, MO 63110; and
| | - Judy P. Golden
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO 63110
| | - Robert E. Schmidt
- Pathology, Washington University School of Medicine, St. Louis, MO 63110
- Hope Center for Neurological Diseases, St. Louis, MO 63110; and
| | - David A. Sinclair
- Department of Pathology, Harvard University School of Medicine, Cambridge, MA 02115
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jeffrey Milbrandt
- Departments of Genetics
- Hope Center for Neurological Diseases, St. Louis, MO 63110; and
| |
Collapse
|
41
|
Zeier Z, Madorsky I, Xu Y, Ogle WO, Notterpek L, Foster TC. Gene expression in the hippocampus: regionally specific effects of aging and caloric restriction. Mech Ageing Dev 2010; 132:8-19. [PMID: 21055414 DOI: 10.1016/j.mad.2010.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
We measured changes in gene expression, induced by aging and caloric restriction (CR), in three hippocampal subregions. When analysis included all regions, aging was associated with expression of genes linked to mitochondrial dysfunction, inflammation, and stress responses, and in some cases, expression was reversed by CR. An age-related increase in ubiquintination was observed, including increased expression of ubiquitin conjugating enzyme genes and cytosolic ubiquitin immunoreactivity. CR decreased cytosolic ubiquitin and upregulated deubiquitinating genes. Region specific analyses indicated that CA1 was more susceptible to aging stress, exhibiting a greater number of altered genes relative to CA3 and the dentate gyrus (DG), and an enrichment of genes related to the immune response and apoptosis. CA3 and the DG were more responsive to CR, exhibiting marked changes in the total number of genes across diet conditions, reversal of age-related changes in p53 signaling, glucocorticoid receptor signaling, and enrichment of genes related to cell survival and neurotrophic signaling. Finally, CR differentially influenced genes for synaptic plasticity in CA1 and CA3. It is concluded that regional disparity in response to aging and CR relates to differences in vulnerability to stressors, the availability of neurotrophic, and cell survival mechanisms, and differences in cell function.
Collapse
Affiliation(s)
- Zane Zeier
- Department of Neuroscience, McKnight Brain Institute, University of Florida, P.O. Box 100244, Gainesville, FL 32610-0244, USA
| | | | | | | | | | | |
Collapse
|
42
|
Age-associated alterations of the neuromuscular junction. Exp Gerontol 2010; 46:193-8. [PMID: 20854887 DOI: 10.1016/j.exger.2010.08.029] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 08/19/2010] [Accepted: 08/27/2010] [Indexed: 01/09/2023]
Abstract
Age-related loss of muscle mass and function greatly affects quality of life in the elderly population. Several hypotheses have been proposed but accumulating evidence point to alterations in neuromuscular system during aging as a key event that leads to functional denervation, muscle wasting, and weakness. Over the past few decades, age-associated degeneration of the neuromuscular junction (NMJ) and its components have been well documented. With advancing age, pre-terminal portions of motor axons exhibit regions of abnormal thinning, distension, and sprouting whereas postsynaptic endplates decrease in size and reduce in number, length, and density of postsynaptic folds. Although the exact underlying mechanisms are still lacking, recent studies provided direct evidence that age-associated increase in oxidative stress plays a crucial role in NMJ degeneration and progression of sarcopenia. Homozygous deletion of an important antioxidant enzyme, Cu,Zn superoxide dismutase (CuZnSOD, SOD1) leads to acceleration of age-dependent muscle atrophy, with a significant NMJ degeneration similar to that seen in old wild-type sarcopenic animals. In this short review, we briefly summarize the current understanding of some of the cellular and molecular changes in the NMJ during aging and suggest a role for oxidative stress and mitochondrial dysfunction in age-related changes in the maintenance of neuromuscular innervation.
Collapse
|
43
|
Rapamycin activates autophagy and improves myelination in explant cultures from neuropathic mice. J Neurosci 2010; 30:11388-97. [PMID: 20739560 DOI: 10.1523/jneurosci.1356-10.2010] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Misexpression and cytosolic retention of peripheral myelin protein 22 (PMP22) within Schwann cells (SCs) is associated with a genetically heterogeneous group of demyelinating peripheral neuropathies. PMP22 overproducer C22 and spontaneous mutant Trembler J (TrJ) mice display neuropathic phenotypes and affected nerves contain abnormally localized PMP22. Nutrient deprivation-induced autophagy is able to suppress the formation of PMP22 aggregates in a toxin-induced cellular model, and improve locomotor performance and myelination in TrJ mice. As a step toward therapies, we assessed whether pharmacological activation of autophagy by rapamycin (RM) could facilitate the processing of PMP22 within neuropathic SCs and enhance their capacity to myelinate peripheral axons. Exposure of mouse SCs to RM induced autophagy in a dose- and time-dependent manner and decreased the accumulation of poly-ubiquitinated substrates. The treatment of myelinating dorsal root ganglion (DRG) explant cultures from neuropathic mice with RM (25 nm) improved the processing of PMP22 and increased the abundance and length of myelin internodes, as well as the expression of myelin proteins. Notably, RM is similarly effective in both the C22 and TrJ model, signifying that the benefit overlaps among distinct genetic models of PMP22 neuropathies. Furthermore, lentivirus-mediated shRNA knockdown of the autophagy-related gene 12 (Atg12) abolished the activation of autophagy and the increase in myelin proteins, demonstrating that autophagy is critical for the observed improvement. Together, these results support the potential use of RM and other autophagy-enhancing compounds as therapeutic agents for PMP22-associated demyelinating neuropathies.
Collapse
|
44
|
Opalach K, Rangaraju S, Madorsky I, Leeuwenburgh C, Notterpek L. Lifelong calorie restriction alleviates age-related oxidative damage in peripheral nerves. Rejuvenation Res 2010; 13:65-74. [PMID: 20230280 DOI: 10.1089/rej.2009.0892] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with protein damage and imbalance in redox status in a variety of cells and tissues, yet little is known about the extent of age-related oxidative stress in the peripheral nervous system. Previously, we showed a drastic decline in the expression of glial and neuronal proteins in myelinated peripheral nerves with age, which is significantly ameliorated by lifelong calorie restriction. The age-related decline in functional molecules is associated with alterations in cellular protein homeostatic mechanisms, which could lead to a buildup of damaged, aggregated proteins. To determine the extent of oxidative damage within myelinated peripheral nerves, we studied sciatic nerves from rats of four different ages (8, 18, 29, and 38 months) maintained on an ad libitum or a 40% calorie-restricted diet. We found a prominent accumulation of polyubiquitinated substrates with age, which are associated with the conglomeration of distended lysosomes and lipofuscin adducts. The occurrence of these structures is notably less frequent within nerves of age-matched rodents kept on a lifelong reduced calorie diet. Markers for lipid peroxidation, inflammation, and immune cell infiltration are all elevated in nerves of ad libitum-fed rats, whereas food restriction is able to attenuate such deleterious processes with age. Together these results show that dietary restriction is an efficient means of defying age-related oxidative damage and maintaining a younger state in peripheral nerves.
Collapse
Affiliation(s)
- Katherine Opalach
- Department of Neuroscience, McKnight Brain Institute, and The Institute on Aging, University of Florida, Gainesville, Florida 2610-0244, USA
| | | | | | | | | |
Collapse
|
45
|
Kemp SWP, Alant J, Walsh SK, Webb AA, Midha R. Behavioural and anatomical analysis of selective tibial nerve branch transfer to the deep peroneal nerve in the rat. Eur J Neurosci 2010; 31:1074-90. [PMID: 20377620 DOI: 10.1111/j.1460-9568.2010.07130.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Stephen W P Kemp
- Department of Clinical Neuroscience, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| | | | | | | | | |
Collapse
|
46
|
Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 2009; 45:138-48. [PMID: 19903516 DOI: 10.1016/j.exger.2009.11.002] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 09/29/2009] [Accepted: 11/03/2009] [Indexed: 12/12/2022]
Abstract
Sarcopenia, loss of muscle mass and function, is a common feature of aging. Oxidative damage and apoptosis are likely underlying factors. Autophagy, a process for the degradation of cellular constituents, may be a mechanism to combat cell damage and death. We investigated the effect of age on autophagy and apoptosis in plantaris muscle of male Fischer 344 rats that were either fed ad libitum, or mild, life-long calorie restricted (CR) alone or combined with life-long voluntary exercise. Upstream autophagy-regulatory proteins were either upregulated with age (Beclin-1) or unchanged (Atg7 and 9). LC3 gene and protein expression pattern as well as LAMP-2 gene expression, both downstream regulators of autophagy, however, suggested an age-related decline in autophagic degradation. Atg protein expression and LC3 and LAMP-2 gene expression were improved in CR rats with or without exercise. The age-related increase in oxidative damage and apoptosis were attenuated by the treatments. Both, oxidative damage and apoptosis correlated negatively with autophagy. We conclude that mild CR attenuates the age-related impairment of autophagy in rodent skeletal muscle, which might be one of the mechanisms by which CR attenuates age-related cellular damage and cell death in skeletal muscle in vivo.
Collapse
Affiliation(s)
- Stephanie Eva Wohlgemuth
- Department of Aging and Geriatric Research, College of Medicine, Institute On Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|