1
|
Simon Machado R, Mathias K, Joaquim L, de Quadros RW, Rezin GT, Petronilho F. Hyperoxia and brain: the link between necessity and injury from a molecular perspective. Neurotox Res 2024; 42:25. [PMID: 38619632 DOI: 10.1007/s12640-024-00702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Oxygen (O2) supplementation is commonly used to treat hypoxia in patients with respiratory failure. However, indiscriminate use can lead to hyperoxia, a condition detrimental to living tissues, particularly the brain. The brain is sensitive to reactive oxygen species (ROS) and inflammation caused by high concentrations of O2, which can result in brain damage and mitochondrial dysfunction, common features of neurodegenerative disorders. Hyperoxia leads to increased production of ROS, causing oxidative stress, an imbalance between oxidants and antioxidants, which can damage tissues. The brain is particularly vulnerable to oxidative stress due to its lipid composition, high O2 consumption rate, and low levels of antioxidant enzymes. Moreover, hyperoxia can cause vasoconstriction and decreased O2 supply to the brain, posing a challenge to redox balance and neurodegenerative processes. Studies have shown that the severity of hyperoxia-induced brain damage varies with inspired O2 concentration and duration of exposure. Therefore, careful evaluation of the balance between benefits and risks of O2 supplementation, especially in clinical settings, is crucial.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| |
Collapse
|
2
|
Vezzoli A, Mrakic-Sposta S, Brizzolari A, Balestra C, Camporesi EM, Bosco G. Oxy-Inflammation in Humans during Underwater Activities. Int J Mol Sci 2024; 25:3060. [PMID: 38474303 DOI: 10.3390/ijms25053060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Underwater activities are characterized by an imbalance between reactive oxygen/nitrogen species (RONS) and antioxidant mechanisms, which can be associated with an inflammatory response, depending on O2 availability. This review explores the oxidative stress mechanisms and related inflammation status (Oxy-Inflammation) in underwater activities such as breath-hold (BH) diving, Self-Contained Underwater Breathing Apparatus (SCUBA) and Closed-Circuit Rebreather (CCR) diving, and saturation diving. Divers are exposed to hypoxic and hyperoxic conditions, amplified by environmental conditions, hyperbaric pressure, cold water, different types of breathing gases, and air/non-air mixtures. The "diving response", including physiological adaptation, cardiovascular stress, increased arterial blood pressure, peripheral vasoconstriction, altered blood gas values, and risk of bubble formation during decompression, are reported.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | | | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
3
|
Tenfen L, Simon Machado R, Mathias K, Piacentini N, Joaquim L, Bonfante S, Danielski LG, Engel NA, da Silva MR, Rezin GT, de Quadros RW, Gava FF, Petronilho F. Short-term hyperoxia induced mitochondrial respiratory chain complexes dysfunction and oxidative stress in lung of rats. Inhal Toxicol 2024; 36:174-188. [PMID: 38449063 DOI: 10.1080/08958378.2024.2322497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Oxygen therapy is an alternative for many patients with hypoxemia. However, this practice can be dangerous as oxygen is closely associated with the development of oxidative stress. METHODS Male Wistar rats were exposed to hyperoxia with a 40% fraction of inspired oxygen (FIO2) and hyperoxia (FIO2 = 60%) for 120 min. Blood and lung tissue samples were collected for gas, oxidative stress, and inflammatory analyses. RESULTS Hyperoxia (FIO2 = 60%) increased PaCO2 and PaO2, decreased blood pH and caused thrombocytopenia and lymphocytosis. In lung tissue, neutrophil infiltration, nitric oxide concentration, carbonyl protein formation and the activity of complexes I and II of the mitochondrial respiratory chain increased. FIO2 = 60% decreased SOD activity and caused several histologic changes. CONCLUSION In conclusion, we have experimentally demonstrated that short-term exposure to high FIO2 can cause oxidative stress in the lung.
Collapse
Affiliation(s)
- Leonardo Tenfen
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Richard Simon Machado
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Khiany Mathias
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Natalia Piacentini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Larissa Joaquim
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Sandra Bonfante
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Nicole Alessandra Engel
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Mariella Reinol da Silva
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | - Gislaine Tezza Rezin
- Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Brazil
| | | | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
4
|
Machado RS, Tenfen L, Joaquim L, Lanzzarin EVR, Bernardes GC, Bonfante SR, Mathias K, Biehl E, Bagio É, Stork SDS, Denicol T, de Oliveira MP, da Silva MR, Danielski LG, de Quadros RW, Rezin GT, Terra SR, Balsini JN, Gava FF, Petronilho F. Hyperoxia by short-term promotes oxidative damage and mitochondrial dysfunction in rat brain. Respir Physiol Neurobiol 2022; 306:103963. [PMID: 36041716 DOI: 10.1016/j.resp.2022.103963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Oxygen (O2) therapy is used as a therapeutic protocol to prevent or treat hypoxia. However, a high inspired fraction of O2 (FIO2) promotes hyperoxia, a harmful condition for the central nervous system (CNS). The present study evaluated parameters of oxidative stress and mitochondrial dysfunction in the brain of rats exposed to different FIO2. Male Wistar rats were exposed to hyperoxia (FIO2 40 % and 60 %) compared to the control group (FIO2 21 %) for 2 h. Oxidative stress, neutrophilic infiltration, and mitochondrial respiratory chain enzymes were determined in the hippocampus, striatum, cerebellum, cortex, and prefrontal cortex after O2 exposure. The animals exposed to hyperoxia showed increased lipid peroxidation, formation of carbonyl proteins, N/N concentration, and neutrophilic infiltration in some brain regions, like hippocampus, striatum, and cerebellum being the most affected. Furthermore, CAT activity and activity of mitochondrial enzyme complexes were also altered after exposure to hyperoxia. Rats exposed to hyperoxia showed increase in oxidative stress parameters and mitochondrial dysfunction in brain structures.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leonardo Tenfen
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Everton Venicius Rosa Lanzzarin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Gabriela Costa Bernardes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Regina Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Erica Biehl
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Érick Bagio
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Solange de Souza Stork
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Tais Denicol
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Silvia Resende Terra
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jairo Nunes Balsini
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
5
|
Carr JMJR, Caldwell HG, Ainslie PN. Cerebral blood flow, cerebrovascular reactivity and their influence on ventilatory sensitivity. Exp Physiol 2021; 106:1425-1448. [PMID: 33932955 DOI: 10.1113/ep089446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Cerebrovascular reactivity to CO2 , which is a principal factor in determining ventilatory responses to CO2 through the role reactivity plays in determining cerebral extra- and intracellular pH. What advances does it highlight? Recent animal evidence suggests central chemoreceptor vasculature may demonstrate regionally heterogeneous cerebrovascular reactivity to CO2 , potentially as a protective mechanism against excessive CO2 washout from the central chemoreceptors, thereby allowing ventilation to reflect the systemic acid-base balance needs (respiratory changes in P aC O 2 ) rather than solely the cerebral needs. Ventilation per se does not influence cerebrovascular reactivity independent of changes in P aC O 2 . ABSTRACT Alveolar ventilation and cerebral blood flow are both predominantly regulated by arterial blood gases, especially arterial P C O 2 , and so are intricately entwined. In this review, the fundamental mechanisms underlying cerebrovascular reactivity and central chemoreceptor control of breathing are covered. We discuss the interaction of cerebral blood flow and its reactivity with the control of ventilation and ventilatory responsiveness to changes in P C O 2 , as well as the lack of influence of ventilation itself on cerebrovascular reactivity. We briefly summarize the effects of arterial hypoxaemia on the relationship between ventilatory and cerebrovascular response to both P C O 2 and P O 2 . We then highlight key methodological considerations regarding the interaction of reactivity and ventilatory sensitivity, including the following: regional heterogeneity of cerebrovascular reactivity; a pharmacological approach for the reduction of cerebral blood flow; reactivity assessment techniques; the influence of mean arterial blood pressure; and sex-related differences. Finally, we discuss ventilatory and cerebrovascular control in the context of high altitude and congestive heart failure. Future research directions and pertinent questions of interest are highlighted throughout.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| |
Collapse
|
6
|
Nakane M. Biological effects of the oxygen molecule in critically ill patients. J Intensive Care 2020; 8:95. [PMID: 33317639 PMCID: PMC7734465 DOI: 10.1186/s40560-020-00505-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
The medical use of oxygen has been widely and frequently proposed for patients, especially those under critical care; however, its benefit and drawbacks remain controversial for certain conditions. The induction of oxygen therapy is commonly considered for either treating or preventing hypoxia. Therefore, the concept of different types of hypoxia should be understood, particularly in terms of their mechanism, as the effect of oxygen therapy principally varies by the physiological characteristics of hypoxia. Oxygen molecules must be constantly delivered to all cells throughout the human body and utilized effectively in the process of mitochondrial oxidative phosphorylation, which is necessary for generating energy through the formation of adenosine triphosphate. If the oxygen availability at the cellular level is inadequate for sustaining the metabolism, the condition of hypoxia which is characterized as heterogeneity in tissue oxygen tension may develop, which is called dysoxia, a more physiological concept that is related to hypoxia. In such hypoxic patients, repetitive measurements of the lactate level in blood are generally recommended in order to select the adequate therapeutic strategy targeting a reduction in lactate production. Excessive oxygen, however, may actually induce a hyperoxic condition which thus can lead to harmful oxidative stress by increasing the production of reactive oxygen species, possibly resulting in cellular dysfunction or death. In contrast, the human body has several oxygen-sensing mechanisms for preventing both hypoxia and hyperoxia that are employed to ensure a proper balance between the oxygen supply and demand and prevent organs and cells from suffering hyperoxia-induced oxidative stress. Thus, while the concept of hyperoxia is known to have possible adverse effects on the lung, the heart, the brain, or other organs in various pathological conditions of critically ill patients, and no obvious evidence has yet been proposed to totally support liberal oxygen supplementation in any subset of critically ill patients, relatively conservative oxygen therapy with cautious monitoring appears to be safe and may improve the outcome by preventing harmful oxidative stress resulting from excessive oxygen administration. Given the biological effects of oxygen molecules, although the optimal target levels remain controversial, unnecessary oxygen administration should be avoided, and exposure to hyperoxemia should be minimized in critically ill patients.
Collapse
Affiliation(s)
- Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan.
| |
Collapse
|
7
|
Craig A, Mels CMC, Schutte AE, Bollenbach A, Tsikas D, Schwedhelm E, Kruger R. Urinary albumin-to-creatinine ratio is inversely related to nitric oxide synthesis in young black adults: the African-PREDICT study. Hypertens Res 2020; 44:71-79. [PMID: 32681162 DOI: 10.1038/s41440-020-0514-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/21/2020] [Indexed: 01/30/2023]
Abstract
Hypertension is common in black populations and is known to be associated with low nitric oxide (NO) bioavailability. We compared plasma and urinary NO-related markers and plasma creatine kinase (CK) levels between young healthy black and white adults along with the associations of these markers with the urinary albumin-to-creatinine ratio (uACR), which is a surrogate marker of endothelial and kidney function. We included 1105 participants (20-30 years). We measured the uACR, plasma CK, plasma and urinary arginine, homoarginine, asymmetric (ADMA) and symmetric dimethylarginine (SDMA), urinary ornithine/citrulline, nitrate and nitrite, and malondialdehyde (MDA). In addition, the urinary nitrate-to-nitrite ratio (UNOxR) was calculated and used as a measure of circulating NO bioavailability. The uACR was comparable between the groups, yet the black group had lower urinary nitrate (by -15%) and UNOxR values (by -18%) (both p ≤ 0.001), higher plasma (by +9.6%) and urinary (by +5.9%) arginine (both p ≤ 0.004), higher plasma (by +13%) and urinary (by +3.7%) ADMA (both p ≤ 0.033), and higher CK (by +9.5%) and MDA (by +19%) (both p < 0.001) compared with white adults. Plasma and urinary homoarginine were similar between the groups. In the multiple regression analysis, we confirmed the inverse associations of the uACR with both plasma (adj. R2 = 0.066; β = -0.209; p = 0.005) and urinary (adj. R2 = 0.066; β = -0.149; p = 0.010) homoarginine and with the UNOxR (adj. R2 = 0.060; β = -0.122; p = 0.031) in the black group only. The overall less favorable NO profile and higher CK and MDA levels in the black cohort along with the adverse associations with the uACR may reflect the vulnerability of this cohort to the early development of hypertension.
Collapse
Affiliation(s)
- Ashleigh Craig
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.,School of Public Health and Community Medicine, University of New South Wales and The George Institute for Global Health, Sydney, Australia
| | - Alexander Bollenbach
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Deutsches Zentrum fuer Herz-Kreislauf-Forschung E.V. (DZHK), Partner Site Hamburg/Kiel/Lüebeck, Hamburg, Germany
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa. .,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
8
|
Caldwell HG, Hoiland RL, Barak OF, Mijacika T, Burma JS, Dujić Ž, Ainslie PN. Alterations in resting cerebrovascular regulation do not affect reactivity to hypoxia, hyperoxia or neurovascular coupling following a SCUBA dive. Exp Physiol 2020; 105:1540-1549. [PMID: 32618374 DOI: 10.1113/ep088746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the characteristics of cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. What is the main finding and its importance? Acute alterations in CBF regulation at rest, including extra-cranial vasodilatation, reductions in shear patterns and elevations in intra-cranial blood velocity were observed at rest following a single SCUBA dive. These subtle changes in CBF regulation did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or neurovascular coupling following a single SCUBA dive. ABSTRACT Reductions in vascular function during a SCUBA dive - due to hyperoxia-induced oxidative stress, arterial and venous gas emboli and altered endothelial integrity - may also extend to the cerebrovasculature following return to the surface. This study aimed to characterize cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. Prior to and following the dive, participants (n = 11) completed (1) resting CBF in the internal carotid (ICA) and vertebral (VA) arteries (duplex ultrasound) and intra-cranial blood velocity (v) of the middle and posterior cerebral arteries (MCAv and PCAv, respectively) (transcranial Doppler ultrasound); (2) cerebrovascular reactivity to acute poikilocapnic hypoxia (i.e. F I O 2 , 0.10) and hyperoxia (i.e. F I O 2 , 1.0); and (3) neurovascular coupling (NVC; regional CBF response to local increases in cerebral metabolism). Global CBF, cerebrovascular reactivity to hypoxia and hyperoxia, and NVC were unaltered following a SCUBA dive (all P > 0.05); however, there were subtle changes in other cerebrovascular metrics post-dive, including reductions in ICA (-13 ± 8%, P = 0.003) and VA (-11 ± 14%, P = 0.021) shear rate, lower ICAv (-10 ± 9%, P = 0.008) and VAv (-9 ± 14%, P = 0.028), increases in ICA diameter (+4 ± 5%, P = 0.017) and elevations in PCAv (+10 ± 19%, P = 0.047). Although we observed subtle alterations in CBF regulation at rest, these changes did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or NVC. Whether prolonged exposure to hyperoxia and hyperbaria during longer, deeper, colder and/or repetitive SCUBA dives would provoke changes to the cerebrovasculature requires further investigation.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Otto F Barak
- Department of Physiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Sports and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Tanja Mijacika
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Joel S Burma
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Željko Dujić
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| |
Collapse
|
9
|
Reiterer C, Kabon B, von Sonnenburg MF, Starlinger P, Taschner A, Zotti O, Goshin J, Drlicek G, Fleischmann E. The effect of supplemental oxygen on perioperative brain natriuretic peptide concentration in cardiac risk patients - a protocol for a prosprective randomized clinical trial. Trials 2020; 21:400. [PMID: 32398119 PMCID: PMC7218565 DOI: 10.1186/s13063-020-04336-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Elevated postoperative N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations are predictive for cardiac adverse events in noncardiac surgery. Studies indicate that supplemental oxygen decreases sympathetic nerve activity and might, therefore, improve cardiovascular function. Thus, we will test the effect of perioperative supplemental oxygen administration on NT-proBNP release after surgery. METHODS/DESIGN We will conduct a single-center, double-blinded, randomized trial at the Medical University of Vienna, including 260 patients with increased cardiac risk factors undergoing moderate- to high-risk noncardiac surgery. Patients will be randomly assigned to receive 80% versus 30% oxygen during surgery and for 2 h postoperatively. The primary outcome will be the difference in maximum NT-proBNP release after surgery. As secondary outcomes we will assess the effect of supplemental oxygen on postoperative maximum troponin T concentration, oxidation-reduction potential, von Willebrand factor concentration and perioperative fluid requirements. We will perform outcome measurements 2 h after surgery, on postoperative day 1 and on postoperative day 3. The NT-proBNP concentration and the oxidation-reduction potential will also be measured within 72 h before discharge. DISCUSSION Our trial should determine whether perioperative supplemental oxygen administration will reduce the postoperative release of NT-proBNP in patients with preoperative increased cardiovascular risk factors undergoing noncardiac surgery. TRIAL REGISTRATION ClinicalTrials.gov, ID: NCT03366857. Registered on 8th December 2017.
Collapse
Affiliation(s)
- Christian Reiterer
- Department of Anaesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Barbara Kabon
- Department of Anaesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Markus Falkner von Sonnenburg
- Department of Anaesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexander Taschner
- Department of Anaesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Oliver Zotti
- Department of Anaesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Julius Goshin
- Department of Anaesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Gregor Drlicek
- Franziskus Spital, Anaesthesia and Intensive Care, 1050, Vienna, Austria
| | - Edith Fleischmann
- Department of Anaesthesia, General Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| |
Collapse
|
10
|
Perioperative Hyperoxyphobia: Justified or Not? Benefits and Harms of Hyperoxia during Surgery. J Clin Med 2020; 9:jcm9030642. [PMID: 32121051 PMCID: PMC7141263 DOI: 10.3390/jcm9030642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
The use of an inspiratory oxygen fraction of 0.80 during surgery is a topic of ongoing debate. Opponents claim that increased oxidative stress, atelectasis, and impaired oxygen delivery due to hyperoxic vasoconstriction are detrimental. Proponents point to the beneficial effects on the incidence of surgical site infections and postoperative nausea and vomiting. Also, hyperoxygenation is thought to extend the safety margin in case of acute intraoperative emergencies. This review provides a comprehensive risk-benefit analysis for the use of perioperative hyperoxia in noncritically ill adults based on clinical evidence and supported by physiological deduction where needed. Data from the field of hyperbaric medicine, as a model of extreme hyperoxygenation, are extrapolated to the perioperative setting. We ultimately conclude that current evidence is in favour of hyperoxia in noncritically ill intubated adult surgical patients.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The topic of perioperative hyperoxia remains controversial, with valid arguments on both the 'pro' and 'con' side. On the 'pro' side, the prevention of surgical site infections was a strong argument, leading to the recommendation of the use of hyperoxia in the guidelines of the Center for Disease Control and the WHO. On the 'con' side, the pathophysiology of hyperoxia has increasingly been acknowledged, in particular the pulmonary side effects and aggravation of ischaemia/reperfusion injuries. RECENT FINDINGS Some 'pro' articles leading to the Center for Disease Control and WHO guidelines advocating perioperative hyperoxia have been retracted, and the recommendations were downgraded from 'strong' to 'conditional'. At the same time, evidence that supports a tailored, more restrictive use of oxygen, for example, in patients with myocardial infarction or following cardiac arrest, is accumulating. SUMMARY The change in recommendation exemplifies that despite much work performed on the field of hyperoxia recently, evidence on either side of the argument remains weak. Outcome-based research is needed for reaching a definite recommendation.
Collapse
|
12
|
Ottolenghi S, Sabbatini G, Brizzolari A, Samaja M, Chiumello D. Hyperoxia and oxidative stress in anesthesia and critical care medicine. Minerva Anestesiol 2020; 86:64-75. [DOI: 10.23736/s0375-9393.19.13906-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Norouzirad R, Gholami H, Ghanbari M, Hedayati M, González-Muniesa P, Jeddi S, Ghasemi A. Dietary inorganic nitrate attenuates hyperoxia-induced oxidative stress in obese type 2 diabetic male rats. Life Sci 2019; 230:188-196. [PMID: 31150686 DOI: 10.1016/j.lfs.2019.05.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
AIMS Hyperoxia has beneficial metabolic effects in type 2 diabetes. However, hyperoxia exacerbates already existing oxidative stress in type 2 diabetes. Nitrate, a nitric oxide donor, is an effective new treatment in type 2 diabetes and also has antioxidant properties. The aim of this study was to determine whether nitrate administration can attenuate hyperoxia-induced oxidative stress in obese type 2 diabetic rats. MAIN METHODS Fifty-six male Wistar rats (190-210 g) were divided into 8 groups: Controls (non-treated, nitrate-treated, O2-treated, and nitrate + O2-treated) and diabetes (non-treated, nitrate-treated, O2-treated, and nitrate + O2-treated). Diabetes was induced using high-fat diet and low-dose of streptozotocin (30 mg/kg). Rats in intervention groups, were exposed to 95% oxygen and consumed sodium nitrate (100 mg/L) in drinking water. Serum fasting glucose, oxidized (GSSG) and reduced (GSH) glutathiones, total oxidant status (TOS), catalase and superoxide dismutase (SOD) activities, and total antioxidant capacity (TAC) were measured after intervention. Oxidative stress index (OSI) was calculated as TOS/TAC ratio. KEY FINDINGS Diabetic rats had increased oxidative stress and hyperoxia exacerbated it. In O2-diabetic rats, nitrate decreased GSSG (102.7 ± 2.1 vs. 236.0 ± 20.1 μM, P < 0.001), TOS (67.7 ± 7.3 vs. 104 ± 3.8 μM, P < 0.001), and OSI (0.44 ± 0.04 vs. 0.91 ± 0.07, P < 0.001) and increased catalase (2.8 ± 0.13 vs. 1.8 ± 0.21 KU/L, P = 0.014), SOD (53.4 ± 1.5 vs. 38.4 ± 1.2 U/mL, P < 0.001), GSH (43.7 ± 1.4 vs. 17.8 ± 0.5 mM, P = 0.003), TAC (152.5 ± 1.9 vs. 116.7 ± 5.0 mM, P < 0.001), and GSH/GSSG ratio (0.43 ± 0.01 vs. 0.08 ± 0.01, P = 0.005). Nitrate also potentiated effects of hyperoxia on decreasing fasting glucose. SIGNIFICANCE Our results showed that dietary nitrate attenuates hyperoxia-induced oxidative stress in type 2 diabetic rats.
Collapse
Affiliation(s)
- Reza Norouzirad
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dezful University of Medical Sciences, Dezful, Iran.
| | - Hanieh Gholami
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Ghanbari
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pedro González-Muniesa
- University of Navarra, Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Centre for Nutrition Research, School of Pharmacy and Nutrition, Pamplona, Spain; IdiSNA Navarra's Health Research Institute, Pamplona, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Barak OF, Caljkusic K, Hoiland RL, Ainslie PN, Thom SR, Yang M, Jovanov P, Dujic Z. Differential influence of vitamin C on the peripheral and cerebral circulation after diving and exposure to hyperoxia. Am J Physiol Regul Integr Comp Physiol 2018; 315:R759-R767. [PMID: 29995458 DOI: 10.1152/ajpregu.00412.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We examined if the diving-induced vascular changes in the peripheral and cerebral circulation could be prevented by oral antioxidant supplementation. Fourteen divers performed a single scuba dive to eighteen meter sea water for 47 min. Twelve of the divers participated in a follow-up study involving breathing 60% of oxygen at ambient pressure for 47 min. Before both studies, participants ingested vitamin C (2 g/day) or a placebo capsule for 6 days. After a 2-wk washout, the study was repeated with the different condition. Endothelium-dependent vasodilator function of the brachial artery was assessed pre- and postintervention using the flow-mediated dilation (FMD) technique. Transcranial Doppler ultrasound was used to measure intracranial blood velocities pre- and 90 min postintervention. FMD was reduced by ∼32.8% and ∼21.2% postdive in the placebo and vitamin C trial and posthyperoxic condition in the placebo trial by ∼28.2% ( P < 0.05). This reduction in FMD was attenuated by ∼10% following vitamin C supplementation in the hyperoxic study ( P > 0.05). Elevations in intracranial blood velocities 30 min after surfacing from diving were reduced in the vitamin C study compared with the placebo trial ( P < 0.05). O2 breathing had no postintervention effects on intracranial velocities ( P > 0.05). Prophylactic ingestion of vitamin C effectively abrogated peripheral vascular dysfunction following exposure to 60% O2 but did not abolish the postdive decrease in FMD. Transient elevations of intracranial velocities postdive were reduced by vitamin C. These findings highlight the differential influence of vitamin C on peripheral and cerebral circulations following scuba diving, which are only partly mediated via hyperoxia.
Collapse
Affiliation(s)
- Otto F Barak
- Department of Physiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Sports and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Kresimir Caljkusic
- Department of Neurology, University Hospital Centre Split , Split , Croatia
| | - Ryan L Hoiland
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Okanagan Campus, Kelowna, BC , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Okanagan Campus, Kelowna, BC , Canada
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Pavle Jovanov
- Institute of Food Technology in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine , Split , Croatia
| |
Collapse
|
15
|
|
16
|
Zhong Y, Catheline D, Houeijeh A, Sharma D, Du L, Besengez C, Deruelle P, Legrand P, Storme L. Maternal omega-3 PUFA supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring. Am J Physiol Lung Cell Mol Physiol 2018; 315:L116-L132. [PMID: 29597832 DOI: 10.1152/ajplung.00527.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 16-25% of premature infants with bronchopulmonary dysplasia (BPD), contributing significantly to perinatal morbidity and mortality. Omega-3 polyunsaturated fatty acids (PUFA ω-3) can improve vascular remodeling, angiogenesis, and inflammation under pathophysiological conditions. However, the effects of PUFA ω-3 supplementation in BPD-associated PH are unknown. The present study aimed to evaluate the effects of PUFA ω-3 on pulmonary vascular remodeling, angiogenesis, and inflammatory response in a hyperoxia-induced rat model of PH. From embryonic day 15, pregnant Sprague-Dawley rats were supplemented daily with PUFA ω-3, PUFA ω-6, or normal saline (0.2 ml/day). After birth, pups were pooled, assigned as 12 per litter, randomly assigned to either air or continuous oxygen exposure (fraction of inspired oxygen = 85%) for 20 days, and then euthanized for pulmonary hemodynamic and morphometric analysis. We found that PUFA ω-3 supplementation improved survival, decreased right ventricular systolic pressure and RVH caused by hyperoxia, and significantly improved alveolarization, vascular remodeling, and vascular density. PUFA ω-3 supplementation produced a higher level of total ω-3 in lung tissue and breast milk and was found to reverse the reduced levels of VEGFA, VEGF receptor 2, angiopoietin-1 (ANGPT1), endothelial TEK tyrosine kinase, endothelial nitric oxide synthase, and nitric oxide concentrations in lung tissue and the increased ANGPT2 levels in hyperoxia-exposed rats. The beneficial effects of PUFA ω-3 in improving lung injuries were also associated with an inhibition of leukocyte infiltration and reduced expression of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. These data indicate that maternal PUFA ω-3 supplementation strategies could effectively protect against infant PH induced by hyperoxia.
Collapse
Affiliation(s)
- Ying Zhong
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France.,Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Daniel Catheline
- Laboratoire de Biochimie et Nutrition Humaine, Institut National de la Recherche Agronomique USC 2012, Institut Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Rennes , France
| | - Ali Houeijeh
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France.,Department of Neonatology, Centre Hospitalier Régional Universitaire de Lille , Lille , France
| | - Dyuti Sharma
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France.,Department of Pediatric Surgery, Centre Hospitalier Régional Universitaire de Lille , Lille , France
| | - Lizhong Du
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Capucine Besengez
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France
| | - Philippe Deruelle
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France.,Department of Obstetrics and Gynecology, Centre Hospitalier Régional Universitaire de Lille , Lille , France
| | - Philippe Legrand
- Laboratoire de Biochimie et Nutrition Humaine, Institut National de la Recherche Agronomique USC 2012, Institut Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Rennes , France
| | - Laurent Storme
- Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille , Lille , France.,Department of Neonatology, Centre Hospitalier Régional Universitaire de Lille , Lille , France
| |
Collapse
|
17
|
Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1-R27. [PMID: 29488785 DOI: 10.1152/ajpregu.00165.2017] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular oxygen (O2) is a vital element in human survival and plays a major role in a diverse range of biological and physiological processes. Although normobaric hyperoxia can increase arterial oxygen content ([Formula: see text]), it also causes vasoconstriction and hence reduces O2 delivery in various vascular beds, including the heart, skeletal muscle, and brain. Thus, a seemingly paradoxical situation exists in which the administration of oxygen may place tissues at increased risk of hypoxic stress. Nevertheless, with various degrees of effectiveness, and not without consequences, supplemental oxygen is used clinically in an attempt to correct tissue hypoxia (e.g., brain ischemia, traumatic brain injury, carbon monoxide poisoning, etc.) and chronic hypoxemia (e.g., severe COPD, etc.) and to help with wound healing, necrosis, or reperfusion injuries (e.g., compromised grafts). Hyperoxia has also been used liberally by athletes in a belief that it offers performance-enhancing benefits; such benefits also extend to hypoxemic patients both at rest and during rehabilitation. This review aims to provide a comprehensive overview of the effects of hyperoxia in humans from the "bench to bedside." The first section will focus on the basic physiological principles of partial pressure of arterial O2, [Formula: see text], and barometric pressure and how these changes lead to variation in regional O2 delivery. This review provides an overview of the evidence for and against the use of hyperoxia as an aid to enhance physical performance. The final section addresses pathophysiological concepts, clinical studies, and implications for therapy. The potential of O2 toxicity and future research directions are also considered.
Collapse
Affiliation(s)
| | - Geoff B Coombs
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Otto F Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split , Split , Croatia
| | - Mypinder S Sekhon
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada.,Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia , Vancouver, British Columbia , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| |
Collapse
|
18
|
Susilovic-Grabovac Z, Obad A, Duplančić D, Banić I, Brusoni D, Agostoni P, Vuković I, Dujic Z, Bakovic D. 2D speckle tracking echocardiography of the right ventricle free wall in SCUBA divers after single open sea dive. Clin Exp Pharmacol Physiol 2017; 45:234-240. [PMID: 29214659 DOI: 10.1111/1440-1681.12883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/03/2017] [Accepted: 10/16/2017] [Indexed: 11/30/2022]
Abstract
The presence of circulating gas bubbles and their influence on pulmonary and right heart hemodynamics was reported after uncomplicated self-contained underwater breathing apparatus (SCUBA) dive(s). Improvements in cardiac imaging have recently focused great attention on the right ventricle (RV). The aim of our study was to evaluate possible effects of a single air SCUBA dive on RV function using 2D speckle tracking echocardiography in healthy divers after single open sea dive to 18 meters of seawater, followed by bottom stay of 47 minutes with a direct ascent to the surface. Twelve experienced male divers (age 39.5 ± 10.5 years) participated in the study. Echocardiographic assessment of the right ventricular function (free wall 2 D strain, tricuspid annular planes systolic excursion [TAPSE], lateral tricuspid annular peak systolic velocity [RV s`] and fractional area change [FAC]) was performed directly prior to and 30, 60, 90 and 120 minutes after surfacing. Two-dimensional strain of all three segments of free right ventricular wall showed a significant increase in longitudinal shortening in post-dive period for maximally 26% (basal), 15.4% (mid) and 16.3% (apical) as well as TAPSE (11.6%), RV FAC (19.2%), RV S` (12.7%) suggesting a rise in systolic function of right heart. Mean pulmonary arterial pressure (mean PAP) increased post-dive from 13.3 mmHg to maximally 23.5 mmHg (P = .002), indicating increased RV afterload. Our results demonstrated that single dive with significant bubble load lead to increase in systolic function and longitudinal strain of the right heart in parallel with increase in mean PAP.
Collapse
Affiliation(s)
| | - Ante Obad
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Darko Duplančić
- Department of Cardiology, Clinical Hospital Split, Split, Croatia
| | - Ivana Banić
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milano, Italy.,Department of Clinical sciences and Community health, Cardiovascular Section, University of Milano, Milano, Italy
| | - Ivica Vuković
- Department of Cardiology, Clinical Hospital Split, Split, Croatia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Darija Bakovic
- Department of Cardiology, Clinical Hospital Split, Split, Croatia.,Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
19
|
Barak OF, Mladinov S, Hoiland RL, Tremblay JC, Thom SR, Yang M, Mijacika T, Dujic Z. Disturbed blood flow worsens endothelial dysfunction in moderate-severe chronic obstructive pulmonary disease. Sci Rep 2017; 7:16929. [PMID: 29209035 PMCID: PMC5717042 DOI: 10.1038/s41598-017-17249-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022] Open
Abstract
The aims of this study were: (1) to test whether oscillatory shear stress further exacerbates endothelial dysfunction in patients with moderate-severe COPD, and (2) to test whether low flow oxygen administration improves endothelial function and is protective against oscillatory shear stress-induced endothelial dysfunction in patients with moderate-severe COPD. In 17 patients and 10 age-matched non-smoking control subjects we examined brachial artery flow-mediated dilation (FMD) and circulating microparticles before and after 20 minutes of experimentally-induced oscillatory shear stress. COPD patients performed this intervention a second time following a 20-minute wash in period of low flow supplemental oxygen to normalize arterial oxygen saturation. COPD patients had ~six-fold greater baseline retrograde shear rate (P < 0.05) and lower FMD (P < 0.05). The oscillatory shear stress intervention induced significant decreases in brachial artery FMD of all groups (P < 0.05). Oscillatory shear stress elevated circulating markers of endothelial cell apoptosis (CD31+/CD41b- microparticles) in COPD patients, but not age-matched controls. Supplemental oxygen administration abrogated the oscillatory shear stress-induced increase in CD31+/CD41b- microparticles, and improved FMD after accounting for the shear stress stimulus. We have demonstrated that acutely disturbed blood flow with increased retrograde shear stress further deteriorates the already impaired endothelial function with attendant endothelial apoptosis in patients with moderate-severe COPD.
Collapse
Affiliation(s)
- Otto F Barak
- Department of Physiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Suzana Mladinov
- Clinic for Pulmonary Diseases, University Hospital Centre Split, Split, Croatia
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tanja Mijacika
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia.
| |
Collapse
|
20
|
Should Hyperoxia Be Avoided During Sepsis? An Experimental Study in Ovine Peritonitis*. Crit Care Med 2017; 45:e1060-e1067. [DOI: 10.1097/ccm.0000000000002524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Susilovic-Grabovac Z, Banfi C, Brusoni D, Mapelli M, Ghilardi S, Obad A, Bakovic-Kramaric D, Dujic Z, Agostoni P. Diving and pulmonary physiology: Surfactant binding protein, lung fluid and cardiopulmonary test changes in professional divers. Respir Physiol Neurobiol 2017; 243:27-31. [PMID: 28467885 DOI: 10.1016/j.resp.2017.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/27/2017] [Indexed: 11/30/2022]
Abstract
Alteration of breathing pattern ranging from an increase of respiratory rate to overt hyperventilation during and after SCUBA diving is frequently reported and is associated with intrathoracic fluid overload. This study was undertaken to assess breathing efficiency after diving and the association with damage of alveolar cells. Ventilation efficiency (VE/VCO2) during maximal cardiopulmonary exercise test (CPET) before and 2h after a standard protocol dive has been analyzed in twelve professional males divers (39.5±10.5years). Furthermore, within 30min from surfacing, subjects underwent blood sample for surfactant derived proteins (SPs) determination, while thoracic ultrasound was performed at 30, 60, 90 and 120min. Dive consisted in a single quick descend to 18m of sea water, a 47min bottom stay and a direct ascent to the surface. CPET showed a preserved exercise performance with an increase of VE/VCO2 after diving (21.4±2.9 vs. 22.9±3.3, p<0.05). Mature SP-B increased while other SPs were unchanged. Ultrasound lung comets (ULC) were high in the first post-dive evaluation with a significant, but not complete, progressive reduction at 120min after surfacing. In conclusion we showed that, after a single dive, lung fluid increased with an increase of ventilation inefficiency and of the mature form of SP-B.
Collapse
Affiliation(s)
| | | | | | | | | | - Ante Obad
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Darija Bakovic-Kramaric
- Department of Cardiology, Clinical Hospital Split, Split, Croatia; Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milano, Italy; Department of Clinical sciences and Community health, Cardiovascular Section, University of Milano, Milano Italy.
| |
Collapse
|
22
|
Donati A, Damiani E, Zuccari S, Domizi R, Scorcella C, Girardis M, Giulietti A, Vignini A, Adrario E, Romano R, Mazzanti L, Pelaia P, Singer M. Effects of short-term hyperoxia on erythropoietin levels and microcirculation in critically Ill patients: a prospective observational pilot study. BMC Anesthesiol 2017; 17:49. [PMID: 28335733 PMCID: PMC5364633 DOI: 10.1186/s12871-017-0342-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/16/2017] [Indexed: 01/24/2023] Open
Abstract
Background The normobaric oxygen paradox states that a short exposure to normobaric hyperoxia followed by rapid return to normoxia creates a condition of ‘relative hypoxia’ which stimulates erythropoietin (EPO) production. Alterations in glutathione and reactive oxygen species (ROS) may be involved in this process. We tested the effects of short-term hyperoxia on EPO levels and the microcirculation in critically ill patients. Methods In this prospective, observational study, 20 hemodynamically stable, mechanically ventilated patients with inspired oxygen concentration (FiO2) ≤0.5 and PaO2/FiO2 ≥ 200 mmHg underwent a 2-hour exposure to hyperoxia (FiO2 1.0). A further 20 patients acted as controls. Serum EPO was measured at baseline, 24 h and 48 h. Serum glutathione (antioxidant) and ROS levels were assessed at baseline (t0), after 2 h of hyperoxia (t1) and 2 h after returning to their baseline FiO2 (t2). The microvascular response to hyperoxia was assessed using sublingual sidestream dark field videomicroscopy and thenar near-infrared spectroscopy with a vascular occlusion test. Results EPO increased within 48 h in patients exposed to hyperoxia from 16.1 [7.4–20.2] to 22.9 [14.1–37.2] IU/L (p = 0.022). Serum ROS transiently increased at t1, and glutathione increased at t2. Early reductions in microvascular density and perfusion were seen during hyperoxia (perfused small vessel density: 85% [95% confidence interval 79–90] of baseline). The response after 2 h of hyperoxia exposure was heterogeneous. Microvascular perfusion/density normalized upon returning to baseline FiO2. Conclusions A two-hour exposure to hyperoxia in critically ill patients was associated with a slight increase in EPO levels within 48 h. Adequately controlled studies are needed to confirm the effect of short-term hyperoxia on erythropoiesis. Trial registration ClinicalTrials.gov (www.clinicaltrials.gov), NCT02481843, registered 15th June 2015, retrospectively registered
Collapse
Affiliation(s)
- Abele Donati
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy.
| | - Elisa Damiani
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Samuele Zuccari
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Roberta Domizi
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Claudia Scorcella
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Massimo Girardis
- Department of Anesthesiology and Intensive Care, Modena University Hospital, L.go del Pozzo 71, 41100, Modena, Italy
| | - Alessia Giulietti
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy
| | - Erica Adrario
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Rocco Romano
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Laura Mazzanti
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy
| | - Paolo Pelaia
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
23
|
Tsikas D, Rothmann S, Schneider JY, Suchy MT, Trettin A, Modun D, Stuke N, Maassen N, Frölich JC. Development, validation and biomedical applications of stable-isotope dilution GC–MS and GC–MS/MS techniques for circulating malondialdehyde (MDA) after pentafluorobenzyl bromide derivatization: MDA as a biomarker of oxidative stress and its relation to 15( S )-8- iso -prostaglandin F 2α and nitric oxide ( NO). J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1019:95-111. [DOI: 10.1016/j.jchromb.2015.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/15/2015] [Accepted: 10/10/2015] [Indexed: 12/22/2022]
|
24
|
Temporal changes in tumor oxygenation and perfusion upon normo- and hyperbaric inspiratory hyperoxia. Strahlenther Onkol 2015; 192:174-81. [PMID: 26501141 DOI: 10.1007/s00066-015-0916-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Inspiratory hyperoxia under hyperbaric conditions has been shown to effectively reduce tumor hypoxia and to improve radiosensitivity. However, applying irradiation (RT) under hyperbaric conditions is technically difficult in the clinical setting since RT after decompression may be effective only if tumor pO2 remains elevated for a certain period of time. The aim of the present study was to analyze the time course of tumor oxygenation and perfusion during and after hyperbaric hyperoxia. MATERIALS AND METHODS Tumor oxygenation, red blood cell (RBC) flux for perfusion monitoring, and vascular resistance were assessed continuously in experimental rat DS-sarcomas by polarographic catheter electrodes and laser Doppler flowmetry at 1 and 2 atm (bar) of environmental pressure during breathing of pure O2 or carbogen (95 % O2 + 5 % CO2). RESULTS During room air breathing, the tumor pO2 followed very rapidly within a few minutes the change of the ambient pressure during compression or decompression. With O2 breathing under hyperbaric conditions, the tumor pO2 increased more than expected based on the rise of the environmental pressure, although the time course was comparably rapid. Breathing carbogen, the tumor pO2 followed with a slight delay of the pressure change, and within 10 min after decompression the baseline values were reached again. RBC flux increased during carbogen breathing but remained almost constant with pure O2, indicating a vasodilation (decrease in vascular resistance) with carbogen but a vasoconstriction (increase in vascular resistance) with O2 during hyperbaric conditions. CONCLUSION Since the tumor pO2 directly followed the environmental pressure, teletherapy after hyperbaric conditions does not seem to be promising as the pO2 reaches baseline values again within 5-10 min after decompression.
Collapse
|
25
|
Wang Q, Mazur A, Guerrero F, Lambrechts K, Buzzacott P, Belhomme M, Theron M. Antioxidants, endothelial dysfunction, and DCS: in vitro and in vivo study. J Appl Physiol (1985) 2015; 119:1355-62. [PMID: 26472863 DOI: 10.1152/japplphysiol.00167.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Aleksandra Mazur
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - François Guerrero
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Kate Lambrechts
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Peter Buzzacott
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Marc Belhomme
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| | - Michaël Theron
- Laboratory ORPHY, Department of UFR Sciences and Technologies, European University of Bretagne, University of Brest, Brest, France
| |
Collapse
|
26
|
The l-arginine/NO pathway, homoarginine, and nitrite-dependent renal carbonic anhydrase activity in young people with type 1 diabetes mellitus. Amino Acids 2015; 47:1865-74. [DOI: 10.1007/s00726-015-2027-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/10/2015] [Indexed: 02/05/2023]
|
27
|
Vucinovic Z, Duplancic D, Seselja-Perisin A, Kukoc-Modun L, Gunjaca G, Radman M, Vukovic J, Tsikas D, Poljak K, Modun D. Acute application of antioxidants protects against hyperoxia-induced reduction of plasma nitrite concentration. Clin Physiol Funct Imaging 2014; 35:76-80. [PMID: 24863414 DOI: 10.1111/cpf.12169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022]
Abstract
We investigated the effects of acute intake of antioxidants on hyperoxia-induced oxidative stress, reduction of plasma nitrite and change in arterial stiffness. Twelve healthy males randomly consumed either placebo or an oral antioxidant cocktail (vitamin C, 1000 mg; vitamin E, 600 IU; alpha-lipoic acid, 600 mg). Every therapy was consumed once, a week apart, in a cross-over design, 30 min before the experiment. The volunteers breathed 100% normobaric oxygen between 30th and 60th min of 1-h study protocol. Plasma levels of nitrite, lipid peroxides (LOOH) and vitamin C, arterial stiffness (indicated by augmentation index, AIx) and arterial oxygen (Ptc O2 ) pressure were measured before and after hyperoxia. Exposure to oxygen caused a similar increase of Ptc O2 in both placebo and antioxidants groups, confirming comparable exposure to hyperoxia (438 ± 100 versus 455 ± 83 mm Hg). Vitamin C was increased in the antioxidants group confirming successful application of antioxidants (69 ± 14 versus 57 ± 15 μm). Hyperoxia resulted in increased AIx and LOOH and decreased nitrite in placebo (-32 ± 11 versus -47 ± 13%, 72 ± 7 versus 62 ± 6 μm H2 O2 and 758 ± 184 versus 920 ± 191 nm, respectively), but not in the antioxidants group (-42 ± 13 versus -50 ± 13%, 64 ± 9 versus 61 ± 8 μm H2 O2 and 847 ± 156 versus 936 ± 201 nm, respectively). The acute intake of selected antioxidants was effective in preserving bioavailabity of ˙NO and vascular function, against hyperoxia-induced oxidative stress.
Collapse
Affiliation(s)
- Zoran Vucinovic
- Department of Internal Medicine, University Hospital Split, Split, Croatia
| | - Darko Duplancic
- Department of Internal Medicine, University Hospital Split, Split, Croatia
| | - Ana Seselja-Perisin
- Department of Pharmacology, University of Split School of Medicine, Split, Croatia
| | - Lea Kukoc-Modun
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Grgo Gunjaca
- Department of Pharmacology, University of Split School of Medicine, Split, Croatia
| | - Maja Radman
- Department of Internal Medicine, University Hospital Split, Split, Croatia
| | - Jonatan Vukovic
- Department of Internal Medicine, University Hospital Split, Split, Croatia
| | - Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Kolja Poljak
- Department of Otorhinolaryngology, University Hospital Split, Split, Croatia
| | - Darko Modun
- Department of Pharmacology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
28
|
Edgell H, Stickland MK. Activation of the carotid chemoreflex secondary to muscle metaboreflex stimulation in men. Am J Physiol Regul Integr Comp Physiol 2014; 306:R693-700. [PMID: 24573180 DOI: 10.1152/ajpregu.00472.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent work has shown that the carotid chemoreceptor (CC) contributes to sympathetic control of cardiovascular function during exercise, despite no evidence of increased circulating CC stimuli, suggesting enhanced CC activity/sensitivity. As interactions between metaboreceptors and chemoreceptors have been previously observed, the purpose of this study was to isolate the metaboreflex while acutely stimulating or inhibiting the CC to determine whether the metaboreflex increased CC activity/sensitivity. Fourteen young healthy men (height: 177.0 ± 2.1 cm, weight: 85.8 ± 5.5 kg, age: 24.6 ± 1.1 yr) performed three trials of 40% maximal voluntary contraction handgrip for 2 min, followed by 3 min of postexercise circulatory occlusion (PECO) to stimulate the metaboreflex. In random order, subjects either breathed room air, hypoxia (target SPo2 = 85%), or hyperoxia (FiO2 = 1.0) during the PECO to modulate the chemoreflex. After these trials, a resting hypoxia trial was conducted without handgrip or PECO. Ventilation (Ve), heart rate (HR), blood pressure, and muscle sympathetic nervous activity (MSNA) data were continuously obtained. Relative to normoxic PECO, inhibition of the CC during hyperoxic PECO resulted in lower MSNA (P = 0.038) and HR (P = 0.021). Relative to normoxic PECO, stimulation of the CC during hypoxic PECO resulted in higher HR (P < 0.001) and Ve (P < 0.001). The ventilatory and MSNA responses to hypoxic PECO were not greater than the sum of the responses to hypoxia and PECO individually, indicating that the CC are not sensitized during metaboreflex activation. These results demonstrate that stimulation of the metaboreflex activates, but does not sensitize the CC, and help explain the enhanced CC activity with exercise.
Collapse
Affiliation(s)
- H Edgell
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
29
|
Plasma levels of aminothiols, nitrite, nitrate, and malondialdehyde in myelodysplastic syndromes in the context of clinical outcomes and as a consequence of iron overload. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:416028. [PMID: 24669287 PMCID: PMC3942103 DOI: 10.1155/2014/416028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/15/2013] [Accepted: 12/18/2013] [Indexed: 01/21/2023]
Abstract
The role of oxidative stress in the initiation and progression of myelodysplastic syndromes (MDS) as a consequence of iron overload remains unclear. In this study we have simultaneously quantified plasma low-molecular-weight aminothiols, malondialdehyde, nitrite, and nitrate and have studied their correlation with serum iron/ferritin levels, patient treatment (chelation therapy), and clinical outcomes. We found significantly elevated plasma levels of total, oxidized, and reduced forms of cysteine (P < 0.001)
, homocysteine (P < 0.001),
and cysteinylglycine (P < 0.006)
and significantly depressed levels of total and oxidized forms of glutathione (P < 0.03)
and nitrite (P < 0.001)
in MDS patients compared to healthy donors. Moreover, total (P < 0.032)
and oxidized cysteinylglycine (P = 0.029)
and nitrite (P = 0.021)
differed significantly between the analyzed MDS subgroups with different clinical classifications. Malondialdehyde levels in plasma correlated moderately with both serum ferritin levels (r = 0.78, P = 0.001)
and serum free iron levels (r = 0.60, P = 0.001)
and were significantly higher in patients with iron overload. The other analyzed compounds lacked correlation with iron overload (represented by serum iron/ferritin levels). For the first time our results have revealed significant differences in the concentrations of plasma aminothiols in MDS patients, when compared to healthy donors. We found no correlation of these parameters with iron overload and suggest the role of oxidative stress in the development of MDS disease.
Collapse
|
30
|
Suvachananonda T, Wankham A, Srihirun S, Tanratana P, Unchern S, Fucharoen S, Chuansumrit A, Sirachainan N, Sibmooh N. Decreased nitrite levels in erythrocytes of children with β-thalassemia/hemoglobin E. Nitric Oxide 2013; 33:1-5. [DOI: 10.1016/j.niox.2013.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/10/2013] [Accepted: 04/28/2013] [Indexed: 01/19/2023]
|
31
|
NF-κB involvement in hyperoxia-induced myocardial damage in newborn rat hearts. Histochem Cell Biol 2013; 140:575-83. [DOI: 10.1007/s00418-013-1092-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 12/30/2022]
|
32
|
Fernandez R, Gili G, Villagra A, Lopez-Aguilar J, Artigas A. Assessment of the inflammatory effect of low-dose oxygen in mechanically ventilated patients. Intensive Care Med 2013; 39:711-6. [PMID: 23296630 DOI: 10.1007/s00134-012-2801-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/05/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE Although low doses of oxygen (FiO2 <0.50) are considered nontoxic, recent studies have shown that even lower doses increase pulmonary inflammatory mediators. We aimed to evaluate the acute effects of reducing FiO2 on pulmonary inflammation in mechanically ventilated patients without respiratory failure. METHODS This study was a prospective, single-center crossover study in a medical/surgical intensive care unit at a university hospital. Hemodynamically stable patients under mechanical ventilation for >24 h without severe respiratory failure (PaO2/FiO2 >250). A basal FiO2 of 0.40 was reduced to 0.21 provided SpO2 remained higher than 90 %. Patients who could not tolerate the reduction in FiO2 to 0.21 were excluded. RESULTS We screened 40 patients, but only 28 (70 %) tolerated FiO2 0.21. We measured common clinical variables and inflammatory mediators in plasma and in exhaled breath condensate (EBC) at the end of three 4-h periods: (1) basal (FiO2 0.40), (2) after FiO2 reduction to 0.21, and (3) after returning FiO2 0.40. We used one-way ANOVA for repeated measurements with FiO2 as the grouping variable. Median values of inflammatory mediators in EBC showed nonsignificant changes among the three periods: NO2 + NO3 17.1, 14.1 and 11.0 μmol/L (p = 0.2), and 8-isoprostane 4.4, 8.2 and 5.3 pg/ml (p = 0.6) for the three periods, respectively. Plasma levels also showed nonsignificant changes during the period of the study: NO2 + NO3 12.6, 16.3 and 15.0 μmol/L (p = 0.9), TNFα 13.5, 18.0 and 14.5 pg/ml (p = 0.8), IL-4 12.9, 18.7 and 23.9 pg/ml (p = 0.1), IL-6 50.9, 35.1 and 28.3 pg/ml (p = 0.6), and IL-10 15.2, 22.2 and 22.2 pg/ml (p = 0.7) for the three periods, respectively. CONCLUSION FiO2 0.40 in mechanically ventilated patients without severe respiratory failure did not increase systemic or pulmonary inflammation.
Collapse
Affiliation(s)
- Rafael Fernandez
- Intensive Care Unit, Hospital S. Joan de Deu - Fundacio Althaia, CIBERES, Universitat Internacional de Catalunya, c/ Dr Joan Soler 1, 08242, Manresa, Spain.
| | | | | | | | | |
Collapse
|