1
|
Chen Y, Su X, Qin Q, Yu Y, Jia M, Zhang H, Li H, Pei L. New insights into phenotypic switching of VSMCs induced by hyperhomocysteinemia: Role of endothelin-1 signaling. Biomed Pharmacother 2020; 123:109758. [DOI: 10.1016/j.biopha.2019.109758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
|
2
|
Röhl S, Rykaczewska U, Seime T, Suur BE, Diez MG, Gådin JR, Gainullina A, Sergushichev AA, Wirka R, Lengquist M, Kronqvist M, Bergman O, Odeberg J, Lindeman JHN, Quertermous T, Hamsten A, Eriksson P, Hedin U, Razuvaev A, Matic LP. Transcriptomic profiling of experimental arterial injury reveals new mechanisms and temporal dynamics in vascular healing response. JVS Vasc Sci 2020; 1:13-27. [PMID: 34617037 PMCID: PMC8489224 DOI: 10.1016/j.jvssci.2020.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
Objective Endovascular interventions cause arterial injury and induce a healing response to restore vessel wall homeostasis. Complications of defective or excessive healing are common and result in increased morbidity and repeated interventions. Experimental models of intimal hyperplasia are vital for understanding the vascular healing mechanisms and resolving the clinical problems of restenosis, vein graft stenosis, and dialysis access failure. Our aim was to systematically investigate the transcriptional, histologic, and systemic reaction to vascular injury during a prolonged time. Methods Balloon injury of the left common carotid artery was performed in male rats. Animals (n = 69) were euthanized before or after injury, either directly or after 2 hours, 20 hours, 2 days, 5 days, 2 weeks, 6 weeks, and 12 weeks. Both injured and contralateral arteries were subjected to microarray profiling, followed by bioinformatic exploration, histologic characterization of the biopsy specimens, and plasma lipid analyses. Results Immune activation and coagulation were key mechanisms in the early response, followed by cytokine release, tissue remodeling, and smooth muscle cell modulation several days after injury, with reacquisition of contractile features in later phases. Novel pathways related to clonal expansion, inflammatory transformation, and chondro-osteogenic differentiation were identified and immunolocalized to neointimal smooth muscle cells. Analysis of uninjured arteries revealed a systemic component of the reaction after local injury, underlined by altered endothelial signaling, changes in overall tissue bioenergy metabolism, and plasma high-density lipoprotein levels. Conclusions We demonstrate that vascular injury induces dynamic transcriptional landscape and metabolic changes identifiable as early, intermediate, and late response phases, reaching homeostasis after several weeks. This study provides a temporal “roadmap” of vascular healing as a publicly available resource for the research community. Endovascular intervention causes an injury to the arterial wall that subsequently induces a healing response to restore the vessel wall homeostasis. Complications after vascular interventions related to defective or excessive healing response, such as thrombosis or restenosis, are common and result in increased morbidity, suffering of the patient, need for repeated interventions, and possibly death. Thus, there is a need for better understanding of the underlying molecular mechanisms during vascular injury and healing response to identify and to assess the risk of complications in patients. Using an experimental model of vascular injury, this study demonstrates the full landscape of dynamic transcriptional changes in the resolution of vascular injury, accompanied also by systemic variations in plasma lipid levels and reaching homeostasis several weeks after injury. These results can guide the development of new strategies and molecular targets for modulation of the intimal response on endovascular interventions.
Collapse
Affiliation(s)
- Samuel Röhl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Urszula Rykaczewska
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Till Seime
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Bianca E Suur
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | | | - Jesper R Gådin
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | | | | | - Robert Wirka
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Otto Bergman
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Jacob Odeberg
- Department of Protein Science, School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Science for Life Laboratory, Sweden and the Department of Haematology, Coagulation Unit, Karolinska University Hospital, Stockholm, Sweden
| | | | - Thomas Quertermous
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Anders Hamsten
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Per Eriksson
- Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Anton Razuvaev
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | | |
Collapse
|
3
|
Krawczyk KK, Skovsted GF, Perisic L, Dreier R, Berg JO, Hedin U, Rippe C, Swärd K. Expression of endothelin type B receptors (EDNRB) on smooth muscle cells is controlled by MKL2, ternary complex factors, and actin dynamics. Am J Physiol Cell Physiol 2018; 315:C873-C884. [PMID: 30332284 DOI: 10.1152/ajpcell.00170.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endothelin type B receptor (ETB or EDNRB) is highly plastic and is upregulated in smooth muscle cells (SMCs) by arterial injury and following organ culture in vitro. We hypothesized that this transcriptional plasticity may arise, in part, because EDNRB is controlled by a balance of transcriptional inputs from myocardin-related transcription factors (MRTFs) and ternary complex factors (TCFs). We found significant positive correlations between the TCFs ELK3 and FLI1 versus EDNRB in human arteries. The MRTF MKL2 also correlated with EDNRB. Overexpression of ELK3, FLI1, and MKL2 in human coronary artery SMCs promoted expression of EDNRB, and the effect of MKL2 was antagonized by myocardin (MYOCD), which also correlated negatively with EDNRB at the tissue level. Silencing of MKL2 reduced basal EDNRB expression, but depolymerization of actin using latrunculin B (LatB) or overexpression of constitutively active cofilin, as well as treatment with the Rho-associated kinase (ROCK) inhibitor Y27632, increased EDNRB in a MEK/ERK-dependent fashion. Transcript-specific primers indicated that the second EDNRB transcript (EDNRB_2) was targeted, but this promoter was largely unresponsive to LatB and was inhibited rather than stimulated by MKL2 and FLI1, suggesting distant control elements or an indirect effect. LatB also reduced expression of endothelin-1, but supplementation experiments argued that this was not the cause of EDNRB induction. EDNRB finally changed in parallel with ELK3 and FLI1 in rat and human carotid artery lesions. These studies implicate the actin cytoskeleton and ELK3, FLI1, and MKL2 in the transcriptional control of EDNRB and increase our understanding of the plasticity of this receptor.
Collapse
Affiliation(s)
| | - Gry Freja Skovsted
- Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Ljubica Perisic
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Rasmus Dreier
- Department of Medicine and Department of Clinical Physiology, Nuclear Medicine, and PET, University of Copenhagen, Herlev, Denmark
| | - Jais Oliver Berg
- Department of Plastic and Reconstructive Surgery, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| |
Collapse
|
4
|
Blixt FW, Haanes KA, Ohlsson L, Tolstrup Christiansen A, Warfvinge K, Edvinsson L. Increased endothelin-1-mediated vasoconstriction after organ culture in rat and pig ocular arteries can be suppressed with MEK/ERK1/2 inhibitors. Acta Ophthalmol 2018; 96:e619-e625. [PMID: 29369532 DOI: 10.1111/aos.13651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/23/2017] [Indexed: 01/19/2023]
Abstract
PURPOSE Even though retinal vascular changes following ischaemia have been poorly understood, the upregulation of vasoconstrictive endothelin-1 (ET-1) receptors (ETA /ETB ) following global cerebral ischaemia has been described. The aim of this study was to investigate whether or not the MEK/ERK1/2 pathway is involved in the observed upregulation and whether specific MEK/ERK1/2 inhibitors U0126 and trametinib can prevent it. METHODS The aim was also to localize ETA and ETB receptors using immunohistochemistry in both fresh rat ophthalmic arteries and after 24-hr organ culture and study the receptors functionally using myography. Pig retinal arteries also underwent 24-hr organ culture to validate similar responses across species and the retinal vasculature. RESULTS Results showed that following organ culture there is a significant increase in ET-1-mediated vasoconstriction, in particular via the ETB receptor. Furthermore, immunohistochemistry revealed a clear increase in pERK in the smooth muscle cells of rat ophthalmic artery. U0126 and trametinib were successful in attenuating the functional vasoconstriction in both rat and pig, as well as restoring immunofluorescence of pERK to fresh levels and counteracting ETB expression in the smooth muscle cells of the rat ophthalmic artery. CONCLUSION This is the first study to show that the MEK/ERK1/2 pathway in responsible for the increase in functional vasoconstriction via ET-1 receptor in rat ophthalmic and pig retinal arteries. Furthermore, this study is the first to suggest a way of inhibiting and preventing such an increase. With these results, we suggest a novel approach in retinal ischaemia therapy.
Collapse
Affiliation(s)
- Frank W. Blixt
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - Lena Ohlsson
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
| | | | - Karin Warfvinge
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| | - Lars Edvinsson
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
- Department of Clinical Experimental Research; Glostrup Research Institute; Rigshospitalet; Glostrup Denmark
| |
Collapse
|
5
|
Ozis SE, Akhayeva T, Guner S, Kilicoglu SS, Pampal A. Etanercept restores vasocontractile sensitivity affected by mesenteric ischemia reperfusion. J Surg Res 2018; 226:8-14. [PMID: 29661292 DOI: 10.1016/j.jss.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/23/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of the study is to evaluate in vivo and in vitro effects of etanercept, a soluble tumor necrosis factor receptor, on the contractile responses of superior mesenteric artery in an experimental mesenteric ischemia and reperfusion model. MATERIAL AND METHODS After obtaining animal ethics committee approval, 24 Sprague-Dawley rats were allocated to three groups. Control group (Gr C, n = 6) underwent a sham operation, whereas ischemia/reperfusion and treatment groups underwent 90 min ischemia and 24-h reperfusion (Gr I/R, n = 12; Gr I/R+E, n = 6). The treatment group received 5 mg/kg etanercept intravenously at the beginning of reperfusion. At the end of reperfusion, all animals were sacrificed, and third branch of superior mesenteric artery was dissected for evaluation of contractile responses. In vitro effects of etanercept on vasocontractile responses were also evaluated. The excised ileums were analyzed under light microscope. Two-way analysis of variance following Bonferroni post hoc test was used for evaluation of contractile responses. RESULTS Endothelin-1 and phenylephrine-mediated vasocontractile sensitivity were found increased in Gr I/R when compared with Gr C. Both intravenous administration and organ bath incubation of etanercept decreased the sensitivity of contractile agents for Gr I/R. Mucosal injury, lamina propria disintegration, and denuded villous tips were observed in Gr I/R, whereas the epithelial injury and the subepithelial edema were found to be milder in Gr I/R+E. CONCLUSIONS Etanercept can be a promising agent in mesenteric ischemic reperfusion injury as it does not only inhibit inflammation by blocking tumor necrosis factor-α in circulation but also restores vascular contractility during reflow. These findings support an unexplained recuperative effect of drug beyond its anti-inflammatory effects.
Collapse
Affiliation(s)
- S Erpulat Ozis
- Department of General Surgery, Faculty of Medicine, TOBB-ETU University, Ankara, Turkey
| | - Tamila Akhayeva
- Department of Pharmacology, Astana Medical University, Astana, Kazakhstan
| | - Sahika Guner
- Department of Medical Pharmacology, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Sibel S Kilicoglu
- Department of Histology and Embryology, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Arzu Pampal
- Department of Pediatric Surgery, Faculty of Medicine, Ufuk University, Ankara, Turkey.
| |
Collapse
|
6
|
Skovsted GF, Kruse LS, Berchtold LA, Grell AS, Warfvinge K, Edvinsson L. Myocardial ischemia-reperfusion enhances transcriptional expression of endothelin-1 and vasoconstrictor ETB receptors via the protein kinase MEK-ERK1/2 signaling pathway in rat. PLoS One 2017; 12:e0174119. [PMID: 28323857 PMCID: PMC5360328 DOI: 10.1371/journal.pone.0174119] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Coronary artery remodelling and vasospasm is a complication of acute myocardial ischemia and reperfusion. The underlying mechanisms are complex, but the vasoconstrictor peptide endothelin-1 is suggested to have an important role. This study aimed to determine whether the expression of endothelin-1 and its receptors are regulated in the myocardium and in coronary arteries after experimental ischemia-reperfusion. Furthermore, we evaluated whether treatment with a specific MEK1/2 inhibitor, U0126, modified the expression and function of these proteins. METHODS AND FINDINGS Sprague-Dawley rats were randomly divided into three groups: sham-operated, ischemia-reperfusion with vehicle treatment and ischemia-reperfusion with U0126 treatment. Ischemia was induced by ligating the left anterior descending coronary artery for 30 minutes followed by reperfusion. U0126 was administered before ischemia and repeated 6 hours after start of reperfusion. The contractile properties of isolated coronary arteries to endothelin-1 and sarafotoxin 6c were evaluated using wire-myography. The gene expression of endothelin-1 and endothelin receptors were measured using qPCR. Distribution and localization of proteins (pERK1/2, prepro-endothelin-1, endothelin-1, and endothelin ETA and ETB receptors) were analysed by Western blot and immunohistochemistry. We found that pERK1/2 was significantly augmented in the ischemic area 3 hours after ischemia-reperfusion; this correlated with increased ETB receptor and ET-1 gene expressions in ischemic myocardium and in coronary arteries. ETB receptor-mediated vasoconstriction was observed to be increased in coronary arteries 24 hours after ischemia-reperfusion. Treatment with U0126 reduced pERK1/2, expression of ET-1 and ETB receptor, and ETB receptor-mediated vasoconstriction. CONCLUSIONS These findings suggest that the MEK-ERK1/2 signaling pathway is important for regulating endothelin-1 and ETB receptors in myocardium and coronary arteries after ischemia-reperfusion in the ischemic region. Inhibition of the MEK-ERK1/2 pathway may provide a novel target for reducing ischemia-reperfusion damage in the heart.
Collapse
Affiliation(s)
- Gry Freja Skovsted
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
- * E-mail:
| | - Lars Schack Kruse
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Lukas Adrian Berchtold
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
- Department of Medicine, Institute of Clinical Sciences in Lund, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Wang R, Xiao X, Cao L, Shen ZX, Lei Y, Cao YX. Airborne fine particulate matter induces an upregulation of endothelin receptors on rat bronchi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:11-20. [PMID: 26618262 DOI: 10.1016/j.envpol.2015.10.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
Airborne fine particulate matter (PM2.5) is a risk factor for respiratory diseases. However, little is known about the effects of PM2.5 on bronchi. The present study investigated the effect of airborne PM2.5 on rat bronchi and the underlying mechanisms. Isolated rat bronchial segments were cultured for 24 h. Endothelin (ET) receptor-mediated contractile responses were recorded using a wire myograph. The mRNA and protein expression levels of ET receptors were studied using quantitative real-time PCR, Western blotting, and immunohistochemistry. The results demonstrated that ETA and ETB receptor agonists induced remarkable contractile responses on fresh and cultured bronchial segments. PM2.5 (1.0 or 3.0 μg/ml) significantly enhanced ETA and ETB receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction compared to the DMSO or fresh groups. PM2.5 increased the mRNA and protein expression levels of ETA and ETB receptors. U0126 (a MEK1/2 inhibitor) and SB203580 (a p38 inhibitor) significantly suppressed PM2.5-induced increases in ETB receptor-mediated contractile responses, mRNA and protein levels. SP600125 (a JNK inhibitor) and SB203580 significantly abrogated the PM2.5-induced enhancement of ETA receptor-mediated contraction and receptor expression. In conclusion, PM2.5 upregulates ET receptors in bronchi. ETB receptor upregulation is associated with MEK1/2 and p38 pathways, and the upregulation of ETA receptor is involved in JNK and p38 pathways.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Zhen-xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Lei
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yong-xiao Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Xiao X, Wang R, Cao L, Shen ZX, Cao YX. The Role of MAPK Pathways in Airborne Fine Particulate Matter-Induced Upregulation of Endothelin Receptors in Rat Basilar Arteries. Toxicol Sci 2015; 149:213-26. [PMID: 26496744 DOI: 10.1093/toxsci/kfv229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Airborne fine particulate matter (PM(2.5)) increases the risk of cerebrovascular diseases. However, existing experimental data do not sufficiently explain how PM(2.5) affects cerebral vessels. This study sought to examine whether PM(2.5) alters endothelin (ET) receptor expression on rat cerebral arteries and the potential underlying mechanisms. Isolated rat basilar arteries were cultured with PM(2.5) aqueous suspension in the presence of mitogen-activated protein kinase (MAPK) pathway inhibitors. ET receptor-mediated vasomotor functions were recorded by a sensitive myograph. ET(A) and ET(B) receptor mRNA and protein expressions were assessed using quantitative real-time PCR, Western blotting, and immunohistochemistry, respectively. Compared with fresh and culture alone arteries, PM(2.5) significantly enhanced ET(A) and ET(B) receptor-mediated contractions and increased receptor mRNA and protein expressions in basilar arteries, indicating PM(2.5) upregulates ET(A) and ET(B) receptors. Culturing with SB386023 (MEK/ERK1/2 inhibitor), U0126 (ERK1/2 inhibitor), SP600125 [c-Jun N-terminal kinase (JNK) inhibitor], or SB203580 (p38 inhibitor) attenuated PM(2.5)-induced ETB receptor upregulation. PM(2.5)-induced enhancement of ET(A) receptor-mediated contraction and receptor expression was notably inhibited by SB386023 or U0126. However, neither SP600125 nor SB203580 had an effect on PM(2.5)-induced ET(A) receptor upregulation. In conclusion, PM(2.5) upregulates ET(A) and ET(B) receptors in rat basilar arteries. ET(B) receptor upregulation is involved in MEK/ERK1/2, JNK, and p38 MAPK pathways, and ET(A) receptors upregulation is associated with MEK/ERK1/2 pathway.
Collapse
Affiliation(s)
- Xue Xiao
- *Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Rong Wang
- *Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lei Cao
- *Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China;
| | - Zhen-xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yong-xiao Cao
- *Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
9
|
Zheng JP, Cheng Z, Jiang J, Ke Y, Liu Z. Cyclosporin A upregulates ETB receptor in vascular smooth muscle via activation of mitogen-activating protein kinases and NF-κB pathways. Toxicol Lett 2015; 235:1-7. [PMID: 25772258 DOI: 10.1016/j.toxlet.2015.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the most frequent complications of solid organ transplantation, and cyclosporin A (CsA) plays a predominant role in the pathophysiology of post-transplant hypertension. However, the exact molecular mechanisms of CsA-induced hypertension remain obscure. We previously showed that CsA increased the mRNA expression and contractile function of endothelin B (ETB) receptor in vascular smooth muscle cells. The present study was designed to investigate the underlying mechanisms of CsA-induced upregulation of ETB receptor in vasculature. Rat mesenteric arteries were incubated with CsA in an organ culture system, and results showed that CsA enhanced ETB receptor mRNA in the time- and dose-dependent manner, and increased protein expression levels of ETB receptor after treatment with CsA 10(-5)M for 6h. Furthermore, CsA induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), p38, and translocation of nuclear factor-kappaB (NF-κB) p65 in vasculature. Blocking ERK1/2, p38, or NF-κB activation with their specific inhibitors markedly attenuated CsA-induced upregulation of ETB receptor mRNA expression and protein levels, and ETB receptor-mediated contraction. In summary, this study showed that mitogen-activating protein kinases (ERK1/2 and p38) and the downstream transcriptional factor NF-κB pathways were involved in CsA-induced upregulation of ETB receptor in arterial smooth muscle cells.
Collapse
Affiliation(s)
- Jian-Pu Zheng
- Experimental Research Center, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuoan Cheng
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaye Jiang
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Ke
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Skovsted GF, Kruse LS, Larsen R, Pedersen AF, Trautner S, Sheykhzade M, Edvinsson L. Heart ischaemia-reperfusion induces local up-regulation of vasoconstrictor endothelin ETB receptors in rat coronary arteries downstream of occlusion. Br J Pharmacol 2014; 171:2726-38. [PMID: 24467585 DOI: 10.1111/bph.12606] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelins act via two receptor subtypes, ETA and ETB . Under physiological conditions in coronary arteries, ETA receptors expressed in smooth muscle cells mediate vasoconstriction whereas ETB receptors mainly found in endothelial cells mediate vasorelaxation. However, under pathophysiological conditions, ETB receptors may also be expressed in vascular smooth muscle cells mediating vasoconstriction. Here, we have investigated whether vasoconstrictor ETB receptors are up-regulated in coronary arteries after experimental myocardial ischaemia in rats. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were subjected to either heart ischaemia-reperfusion (15 min ischaemia and 22 h reperfusion), permanent ischaemia (22 h) by ligation of the left anterior descending coronary artery, or sham operation. Using wire myography, the endothelin receptor subtypes mediating vasoconstriction were examined in isolated segments of the left anterior descending and the non-ligated septal coronary arteries. Endothelin receptor-mediated vasoconstriction was examined with cumulative administration of sarafotoxin 6c (ETB receptor agonist) and endothelin-1 (with or without ETA or ETB receptor blockade). The distribution of ETB receptors was localized with immunohistochemistry and quantified by Western blot. KEY RESULTS Endothelin ETB receptor-mediated vasoconstriction and receptor protein levels were significantly augmented in coronary arteries situated downstream of the occlusion after ischaemia-reperfusion compared with non-ischaemic arteries. In contrast, the ETA receptor-mediated vasoconstriction was unaltered in all groups. CONCLUSIONS AND IMPLICATIONS Ischaemia-reperfusion induced local up-regulation of ETB receptors in the smooth muscle cells of coronary arteries in the post-ischaemic area. In contrast, in non-ischaemic areas, ETB receptor function was unaltered.
Collapse
Affiliation(s)
- G F Skovsted
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
11
|
Ortiz-Capisano MC. Endothelin inhibits renin release from juxtaglomerular cells via endothelin receptors A and B via a transient receptor potential canonical-mediated pathway. Physiol Rep 2014; 2:2/12/e12240. [PMID: 25524278 PMCID: PMC4332218 DOI: 10.14814/phy2.12240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renin is the rate-limiting step in the production of angiotensin II: a critical element in the regulation of blood pressure and in the pathogenesis of hypertension. Renin release from the juxtaglomerular (JG) cell is stimulated by the second messenger cAMP and inhibited by increases in calcium (Ca). Endothelins (ETs) inhibit renin release in a Ca-dependent manner. JG cells contain multiple isoforms of canonical transient receptor potential (TRPC) Ca-permeable channels. The proposed hypothesis is that endothelin inhibits renin release by activating TRPC store-operated Ca channels. RT-PCR and immunofluorescence revealed expression of both ETA and ETB receptors in mouse JG cells. Incubation of primary cultures of JG cells with ET-1 (10 nmol/L) decreased renin release by 28%. Addition of either an ETA or an ETB receptor blocker completely prevented the ET inhibition of renin release. Incubation with the TRPC blocker (SKF 96365, 50 μmol/L) completely reversed the Ca-mediated inhibition of renin release by ETs. These results suggest that endothelin inhibits renin release from JG cells via both ETA and ETB receptors, which leads to the activation of TRPC store-operated Ca channels.
Collapse
Affiliation(s)
- M Cecilia Ortiz-Capisano
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
12
|
Zhang Y, Zhang W, Edvinsson L, Xu CB. Apolipoprotein B of low-density lipoprotein impairs nitric oxide-mediated endothelium-dependent relaxation in rat mesenteric arteries. Eur J Pharmacol 2014; 725:10-7. [DOI: 10.1016/j.ejphar.2014.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
13
|
Myeloperoxidase upregulates endothelin receptor type B expression. J Mol Cell Cardiol 2014; 69:76-82. [PMID: 24417960 DOI: 10.1016/j.yjmcc.2013.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/29/2013] [Accepted: 12/10/2013] [Indexed: 11/23/2022]
Abstract
Neutrophil recruitment and activation are principal events in inflammation. Upon activation neutrophils release myeloperoxidase (MPO), a heme enzyme, which binds to and transcytoses endothelial cells. Whereas the significance of the subendothelial deposition of MPO has evolved as a critical prerequisite for the enzyme's suppression of nitric oxide (NO⋅) bioavailability, the functional consequences of MPO binding to and interaction with endothelial and smooth muscle cells remain poorly understood. Cultured human endothelial cells (HUVECs) were exposed to MPO. Gene expression of the endothelin receptor type B (ETRB), which is critically involved not only in endothelin-1 clearance, but also in endothelin-mediated vasoconstriction, was significantly increased. Real time PCR, Western blotting and immunofluorescence confirmed up-regulation of ETRB in MPO-treated endothelial cells. Inhibition of MPO's enzymatic activity blunted the increase in ETRB protein expression. Treatment of the cells with the MAP kinase inhibitors PD98059 or SB203580 indicates that MPO activates ETRB expression via MAP kinase pathways. On human smooth muscle cells (HAoSMCs), which not only express the endothelin receptor type B (ETRB) but also express the endothelin receptor type A (ETRA), MPO also stimulated ETRB expression as opposed to ETRA expression, which remained unchanged. Functional ex vivo organ bath chamber studies with MPO-incubated rat femoral artery sections revealed increased ETRB agonist dependent constriction. Binding of MPO to endothelial and vascular smooth muscle cells increases expression of the endothelin receptor type B (ETRB) via classical MAP kinase pathways. This suggests that MPO not only affects vasomotion by reducing the bioavailability of vasodilating molecules but also by increasing responsiveness to vasoconstrictors, further advocating for MPO as a central, leukocyte-derived regulator of vascular tone.
Collapse
|
14
|
Contractile responses to rat urotensin II in resting and depolarized basilar arteries. J Physiol Biochem 2013; 70:193-9. [DOI: 10.1007/s13105-013-0293-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
|
15
|
Zheng JP, Zhang X, Wang H, Wang Y, Cheng Z, Yin P, Peng W. Vasomotor Dysfunction in the Mesenteric Artery after Organ Culture with Cyclosporin A. Basic Clin Pharmacol Toxicol 2013; 113:370-6. [PMID: 23809336 DOI: 10.1111/bcpt.12105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Jian-Pu Zheng
- Experimental Research Center; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Xuemei Zhang
- Department of Pharmacology; School of Pharmacy; Fudan University; Shanghai China
| | - Hao Wang
- Department of Nephrology; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Yunman Wang
- Department of Nephrology; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Zhuoan Cheng
- Experimental Research Center; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Peihao Yin
- Department of General Surgery; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Wen Peng
- Department of Nephrology; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| |
Collapse
|
16
|
Huang LH, Zhang PA, He JY, Liu J, Cao YX. DMSO-soluble cigarette smoke particles alter the expression of endothelin B receptor in rat coronary artery. J Vasc Res 2013; 50:238-48. [PMID: 23712000 DOI: 10.1159/000350866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/17/2013] [Indexed: 11/19/2022] Open
Abstract
In coronary artery diseases, cigarette smoking is a risk factor and the endothelin system plays a key role in the pathogenesis. This study was to examine if dimethylsulfoxide-soluble smoke particles (DSP) upregulate endothelin type-B (ETB) receptors in the coronary artery and investigate the mechanism. The isolated rat coronary arteries were organ-cultured for 24 h. The contractile response of the coronary artery was recorded by myograph. The mRNA and protein expression of the ETB receptors was studied using quantitative real-time PCR and immunohistochemistry. Results showed that the ETB receptor agonist, sarafotoxin 6c, induced a weak contraction in the fresh coronary artery. After culture, the contraction curve mediated by ETB receptor was shifted towards the left with an increased Emax of 152 ± 12%. DSP of 0.2 and 0.4 μl/ml shifted the concentration-contractile curves towards the left with further increased Emax of 270 ± 26 and 280 ± 29%, respectively. The culture increased ETB receptor mRNA and protein levels from fresh arteries, which was further enhanced by DSP. PD98059 (ERK1/2 inhibitor), wedelolactone (NF-κB inhibitor), actinomycin D or cycloheximide significantly inhibited the DSP-enhanced contraction and expression of mRNA and protein of the ETB receptor. However, SB203580 (p38 inhibitor) further increased DSP-enhanced contraction and protein expression of the ETB receptor. The results indicate that DSP upregulates ETB receptors in rat coronary artery via ERK1/2 and the NF-κB pathway.
Collapse
Affiliation(s)
- Lin-Hong Huang
- Department of Pharmacology, Xi'an Jiaotong University College of Medicine, Xi'an, PR China
| | | | | | | | | |
Collapse
|
17
|
Ansar S, Eftekhari S, Waldsee R, Nilsson E, Nilsson O, Säveland H, Edvinsson L. MAPK signaling pathway regulates cerebrovascular receptor expression in human cerebral arteries. BMC Neurosci 2013; 14:12. [PMID: 23343134 PMCID: PMC3663811 DOI: 10.1186/1471-2202-14-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral ischemia results in enhanced expression of contractile cerebrovascular receptors, such as endothelin type B (ET(B)), 5-hydroxytryptamine type 1B (5-HT(1B)), angiotensin II type 1 (AT(1)) and thromboxane (TP) receptors in the cerebral arteries within the ischemic area. The receptor upregulation occurs via activation of the mitogen-activated protein kinases (MAPK) pathway. Previous studies have shown that inhibitors of the MAPK pathway diminished the ischemic area and contractile cerebrovascular receptors after experimental cerebral ischemia. The aim of this study was to examine if the upregulation of contractile cerebrovascular receptors after 48 h of organ culture of human cerebral arteries involves MAPK pathways and if it can be prevented by a MEK1/2 inhibitor. Human cerebral arteries were obtained from patients undergoing intracranial tumor surgery. The vessels were divided into ring segments and incubated for 48 h in the presence or absence of the specific MEK1/2 inhibitor U0126. The vessels were then examined by using in vitro pharmacological methods and protein immunohistochemistry. RESULTS After organ culture of the cerebral arteries the contractile responses to endothelin (ET)-1, angiotensin (Ang) II and thromboxane (TP) were enhanced in comparison with fresh human arteries. However, 5-carboxamidotryptamine (5-CT) induced decreased contractile responses after organ culture as compared to fresh arteries. Incubation with U0126 diminished the maximum contraction elicited by application of ET-1, Ang II and U46619 in human cerebral arteries. In addition, the MEK1/2 inhibitor decreased the contractile response to 5-CT. Immunohistochemistry revealed that organ culture resulted in increased expression of endothelin ET(A), endothelin ET(B) angiotensin AT(2), 5-hydroxytryptamine 5-HT(1B) and thromboxane A2 receptors, and elevated levels of activated pERK1/2, all localized to the smooth muscle cells of the cerebral arteries. Co-incubation with U0126 normalized these proteins. CONCLUSION The study demonstrated that there is a clear association between human cerebrovascular receptor upregulation via transcription involving activation of the MAPK pathway after organ culture. Inhibition of the MAPK pathways attenuated the vasoconstriction mediated by ET, AT and TP receptors in human cerebral arteries and the enhanced expression of their receptors. The results indicate that MAPK inhibition might be a novel target for treatment of cerebrovascular disorders.
Collapse
Affiliation(s)
- Saema Ansar
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhang LX, Chen XL, Yang PB, Zhang SQ, Cao YX. Vasorelaxant and antihypertensive effects of ZCM298, a dihydropyridine derivative, are through inhibiting extracellular calcium influx. Pharmacol Rep 2013; 65:69-79. [DOI: 10.1016/s1734-1140(13)70965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 09/04/2012] [Indexed: 10/25/2022]
|
19
|
Sun T, Wang J, Huang LH, Cao YX. Antihypertensive effect of formononetin through regulating the expressions of eNOS, 5-HT2A/1B receptors and α1-adrenoceptors in spontaneously rat arteries. Eur J Pharmacol 2012; 699:241-9. [PMID: 23123056 DOI: 10.1016/j.ejphar.2012.10.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 09/29/2012] [Accepted: 10/13/2012] [Indexed: 11/15/2022]
Abstract
One of the main pathological changes of hypertension is the dysfunction of blood vessels. We have found in our previous study that formononetin, one kind of phytoestrogens, has an acute antihypertensive effect. Therefore, we hypothesized that formononetin might produce a chronic antihypertensive effect through regulating the expressions of contractile receptors and endothelial nitric oxide synthase (eNOS) in artery. The present study was conducted to verify this effect. Male spontaneously hypertensive rats (SHRs) were divided into two groups, orally administrated formononetin (50mg/kg per day) and Tween 80 vehicle, respectively, for 8 weeks. The blood pressure was measured by tail-cuff method. Isometric tension of arterial rings was recorded by a myograph system. The mRNA and protein expression in arteries was determined with quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. Results showed that the systolic blood pressure of SHRs decreased significantly in formononetin group compared to Tween 80 group. The vasoconstriction induced by phenylephrine or 5-hydroxytryptamine (5-HT) in the mesenteric artery segments in formononetin group was decreased, and the relaxation induced by acetylcholine was increased compared with that in Tween 80 group. In the mesenteric arteries of the formononetin-treated SHRs, the expressions of α(1)-adrenoceptors and 5-HT(2A/1B) receptors at both mRNA and protein levels decreased, while the mRNA and protein expressions of eNOS increased. In conclusion, formononetin has a chronic antihypertensive effect in SHRs. The antihypertensive mechanism may be associated with the down-regulation of α(1)-adrenoceptors and 5-HT(2A/1B) receptors, and the up-regulation of eNOS expression in arteries.
Collapse
Affiliation(s)
- Tao Sun
- Department of Pharmacology, Xi'an Jiaotong University College of Medicine, 76 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | | | | | | |
Collapse
|
20
|
Cao L, Zhang Y, Cao YX, Edvinsson L, Xu CB. Secondhand smoke exposure causes bronchial hyperreactivity via transcriptionally upregulated endothelin and 5-hydroxytryptamine 2A receptors. PLoS One 2012; 7:e44170. [PMID: 22952915 PMCID: PMC3428315 DOI: 10.1371/journal.pone.0044170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 07/29/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cigarette smoke exposure is strongly associated with airway hyperreactivity (AHR) which is the main characteristic seen in asthma. The intracellular MAPK signaling pathways are suggested to be associated with the airway damage to the AHR. In the present study, we hypothesize that secondhand cigarette smoke (SHS) exposure upregulates the bronchial contractile receptors via activation of the Raf/ERK/MAPK pathway. METHODOLOGY/PRINCIPAL FINDINGS Rats were exposed to SHS for 3 h daily for up to 8 weeks. The receptor agonists-induced bronchial contractile reactivity was analyzed with a sensitive myograph system. The mRNA transcription and protein translation of the target receptors and the kinases in Raf/ERK/MAPK pathway were investigated by real-time PCR, Western blotting and immunofluorescence, respectively. Compared with exposure to fresh air, SHS induced enhanced bronchial contractile responses mediated by the 5-hydroxytryptamine 2A (5-HT(2A)) receptors as well as the endothelin type B (ET(B)) and type A (ET(A)) receptors. The response curves were shifted toward the left with an increased maximal contraction (E(max)) demonstrating that SHS induced AHR. Additionally, the mRNA and protein levels of the 5-HT(2A), ET(B) and ET(A) receptors were increased. Furthermore, SHS exposure increased the phosphorylation of Raf-1 and ERK1/2, but it did not alter p38 or JNK. A Raf-1 inhibitor (GW5074) suppressed the SHS-induced increase in the expression of 5-HT(2A) and ET(A) receptors and the receptor-mediated AHR. CONCLUSIONS/SIGNIFICANCE Our findings show that SHS exposure induces transcriptional upregulation of the 5-HT(2A), ET(B) and ET(A) receptors in rat bronchial smooth muscle cells, which mediates AHR. The Raf/ERK/MAPK pathway is involved in SHS-associated receptor upregulation and AHR.
Collapse
MESH Headings
- Animals
- Bronchial Hyperreactivity/enzymology
- Bronchial Hyperreactivity/genetics
- Bronchial Hyperreactivity/pathology
- Bronchial Hyperreactivity/physiopathology
- Environmental Exposure
- Enzyme Activation/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- In Vitro Techniques
- Indoles/pharmacology
- Male
- Muscle Contraction/drug effects
- Phenols/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Endothelin A/genetics
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/metabolism
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Tobacco Smoke Pollution
- Transcription, Genetic/drug effects
- Up-Regulation/drug effects
- Up-Regulation/genetics
- raf Kinases/metabolism
Collapse
Affiliation(s)
- Lei Cao
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Lund, Sweden
| | - Yaping Zhang
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Lund, Sweden
| | - Yong-Xiao Cao
- Department of Pharmacology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Lund, Sweden
| | - Cang-Bao Xu
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Ahnstedt H, Stenman E, Cao L, Henriksson M, Edvinsson L. Cytokines and growth factors modify the upregulation of contractile endothelin ET(A) and ET(B) receptors in rat cerebral arteries after organ culture. Acta Physiol (Oxf) 2012; 205:266-78. [PMID: 22145714 DOI: 10.1111/j.1748-1716.2011.02392.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/20/2011] [Accepted: 11/30/2011] [Indexed: 11/30/2022]
Abstract
AIM Experimental cerebral ischaemia and organ culture of cerebral arteries induce an increased endothelin ET(B) receptor-mediated contraction. The aim of this study was to examine whether cytokines and growth factors, known to be activated in ischaemia, can influence the expression and function of endothelin receptors after organ culture. METHODS Rat middle cerebral arteries were cultured for 24 h at 37 °C in humidified 5% CO(2) and air in culture medium alone, or with tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), platelet-derived growth factor (PDGF), epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF). Concentration-response curves were obtained for sarafotoxin 6c (ET(B) receptor agonist) and endothelin-1 (here ET(A) receptor agonist, because of ET(B) receptor desensitization). The receptor mRNA expression was examined by real-time PCR and the protein expression by immunohistochemistry and Western blot. RESULTS Tumour necrosis factor-α (100 ng mL(-1) ) and EGF (20 ng mL(-1) ) potentiated the ET(B) receptor-mediated contraction (increase in pEC(50) without change in E(max) ). bFGF (10 ng mL(-1) ) and IL-1β (10 ng mL(-1) ) induced an enhanced ET(A) receptor-mediated contraction. bFGF (10 ng mL(-1) ) significantly increased the ET(B) mRNA level, and EGF (20 ng mL(-1) ) increased the ET(A) receptor protein. Increased ET(B) receptor mRNA and protein level also were observed after treatment with IL-1β (10 ng mL(-1) ). CONCLUSION This study shows that TNF-α, IL-1β, EGF and bFGF can modify the expression and function of endothelin receptors during organ culture. Because there is similar receptor upregulation in experimental stroke, the effect of cytokines and growth factors on endothelin receptor upregulation is an interesting aspect to study in vivo.
Collapse
Affiliation(s)
- H. Ahnstedt
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund; Sweden
| | - E. Stenman
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund; Sweden
| | - L. Cao
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund; Sweden
| | - M. Henriksson
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund; Sweden
| | - L. Edvinsson
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund; Sweden
| |
Collapse
|
22
|
Minimally modified LDL upregulates endothelin type B receptors in rat coronary artery via ERK1/2 MAPK and NF-κB pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:582-9. [DOI: 10.1016/j.bbalip.2011.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/22/2011] [Accepted: 12/08/2011] [Indexed: 01/08/2023]
|
23
|
Cao L, Xu CB, Zhang Y, Cao YX, Edvinsson L. Secondhand smoke exposure induces Raf/ERK/MAPK-mediated upregulation of cerebrovascular endothelin ETA receptors. BMC Neurosci 2011; 12:109. [PMID: 22044770 PMCID: PMC3219602 DOI: 10.1186/1471-2202-12-109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 11/01/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cigarette smoking enhances the risk of stroke. However, the underlying molecular mechanisms are largely unknown. The present study established an in vivo rat secondhand cigarette smoking (SHS) model and examined the hypothesis that SHS upregulates endothelin receptors with increased cerebrovascular contraction via the Raf/extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinases (MAPK) pathway. RESULTS Rats were exposed to SHS for up to 8 weeks. The cerebral artery vasoconstriction was recorded by a sensitive myograph. The mRNA and protein expressions for endothelin receptors in cerebral arteries were studied by real-time PCR and Western blot. Compared to fresh air exposed rats, cerebral arteries from SHS rats exhibited stronger contractile responses (P < 0.05) mediated by endothelin type A (ETA) receptors. The expressions of mRNA and protein for ETA receptors in the cerebral arteries from SHS rats were higher (P < 0.05) than that in control. SHS did not affect endothelin type B (ETB) receptor-mediated contractions, mRNA or protein levels. The results suggest that SHS upregulates ETA, but not ETB receptors in vivo. After SHS exposure, the mRNA levels of Raf-1 and ERK1/2, the protein expression of phosphorylated (p)-Raf-1 and p-ERK1/2 were increased (P < 0.05). Raf-1 inhibitor, GW5074 suppressed the enhanced ETA receptor-mediated contraction, mRNA and protein levels induced by SHS. In addition, GW5074 inhibited the SHS-caused increased mRNA and phosphorylated protein levels of Raf-1 and ERK1/2, suggesting that SHS induces activation of the Raf/ERK/MAPK pathway. CONCLUSIONS SHS upregulates cerebrovascular ETA receptors via the Raf/ERK/MAPK pathway, which provides novel understanding of mechanisms involved in SHS-associated stroke.
Collapse
Affiliation(s)
- Lei Cao
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Sweden
| | | | | | | | | |
Collapse
|
24
|
Edvinsson L, Povlsen GK. Late cerebral ischaemia after subarachnoid haemorrhage: is cerebrovascular receptor upregulation the mechanism behind? Acta Physiol (Oxf) 2011; 203:209-24. [PMID: 21087418 DOI: 10.1111/j.1748-1716.2010.02227.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Late cerebral ischaemia after subarachnoid haemorrhage (SAH) carries high morbidity and mortality because of reduced cerebral blood flow (CBF) and subsequent cerebral ischaemia. This is associated with upregulation of contractile receptors in cerebral artery smooth muscles via the activation of intracellular signalling. In addition, delayed cerebral ischaemia after SAH is associated with inflammation and disruption of the blood-brain barrier (BBB). This article reviews recent evidence concerning the roles of vasoconstrictor receptor upregulation, inflammation and BBB breakdown in delayed cerebral ischaemia after SAH. In addition, recent studies investigating the role of various intracellular signalling pathways in these processes and the possibilities of targeting signalling components in SAH treatment are discussed. Studies using a rat SAH model have demonstrated that cerebral arteries increase their sensitivity to endogenous agonists such as ET-1 and 5-HT by increasing their smooth muscle expression of receptors for these after SAH. This is associated with reduced CBF and neurological deficits. A number of signal transduction components mediating this receptor upregulation have been identified, including the MEK-ERK1/2 pathway. Inhibition of MEK-ERK1/2 signalling has been shown to prevent cerebrovascular receptor upregulation and normalize CBF and neurological function after SAH in rats. At the same time, in rat SAH, certain cytokines and BBB-regulating proteins are upregulated in cerebral artery smooth muscles and treatment with MEK-ERK1/2 inhibitors prevents the induction of these proteins. Thus, inhibitors of MEK-ERK1/2 signalling exert multimodal beneficial effects in SAH.
Collapse
Affiliation(s)
- L Edvinsson
- Department of Medicine, Institute of Clinical Sciences, University of Lund, Sweden.
| | | |
Collapse
|
25
|
Maddahi A, Kruse LS, Chen QW, Edvinsson L. The role of tumor necrosis factor-α and TNF-α receptors in cerebral arteries following cerebral ischemia in rat. J Neuroinflammation 2011; 8:107. [PMID: 21871121 PMCID: PMC3177895 DOI: 10.1186/1742-2094-8-107] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 08/28/2011] [Indexed: 12/21/2022] Open
Abstract
Background Tumour necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine, which is rapidly upregulated in the brain after injury. TNF-α acts by binding to its receptors, TNF-R1 (p55) and TNF-R2 (p75), on the cell surface. The aim of this study was first to investigate if there is altered expression of TNF-α and TNF-α receptors in cerebral artery walls following global or focal ischemia, and after organ culture. Secondly, we asked if the expression was regulated via activation of the MEK-ERK1/2 pathway. Methods The hypothesis was tested in vivo after subarachnoid hemorrhage (SAH) and middle cerebral artery occlusion (MCAO), and in vitro by organ culture of isolated cerebral arteries. The localization and amount of TNF-α, TNF-α receptor 1 and 2 proteins were analysed by immunohistochemistry and western blot after 24 and 48 h of organ culture and at 48 h following SAH or MCAO. In addition, cerebral arteries were incubated for 24 or 48 h in the absence or presence of a B-Raf inhibitor (SB386023-b), a MEK- inhibitor (U0126) or an NF-κB inhibitor (IMD-0354), and protein expression evaluated. Results Immunohistochemistry revealed enhanced expression of TNF-α, TNF-R1 and TNF-R2 in the walls of cerebral arteries at 48 h after MCAO and SAH compared with control. Co-localization studies showed that TNF-α, TNF-R1 and TNF-R2 were primarily localized to the cell membrane and the cytoplasm of the smooth muscle cells (SMC). There was, in addition, some expression of TNF-R2 in the endothelial cells. Immunohistochemistry and western blot analysis showed that these proteins were upregulated after 24 and 48 h in culture, and this upregulation reached an apparent maximum at 48 h of organ culture. Treatment with U0126 significantly reduced the enhanced SMC expression of TNF-α, TNF-R1 and TNF-R2 immunoreactivities after 24 and 48 h of organ culture. The Raf and NF-κB inhibitors significantly reduced organ culture induced TNF-α expression while they had minor effects on the TNF-α receptors. Conclusion The present study shows that cerebral ischemia and organ culture induce expression of TNF-α and its receptors in the walls of cerebral arteries and that upregulation is transcriptionally regulated via the MEK/ERK pathway.
Collapse
Affiliation(s)
- Aida Maddahi
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
26
|
SUN T, LIU R, CAO YX. Vasorelaxant and antihypertensive effects of formononetin through endothelium-dependent and -independent mechanisms. Acta Pharmacol Sin 2011; 32:1009-18. [PMID: 21818108 DOI: 10.1038/aps.2011.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM To investigate the mechanisms underlying the vasorelaxant effect of formononetin, an O-methylated isoflavone, in isolated arteries, and its antihypertensive activity in vivo. METHODS Arterial rings of superior mesenteric arteries, renal arteries, cerebral basilar arteries, coronary arteries and abdominal aortas were prepared from SD rats. Isometric tension of the arterial rings was recorded using a myograph system. Arterial pressure was measured using tail-cuff method in spontaneously hypertensive rats. RESULTS Formononetin (1-300 μmol/L) elicited relaxation in arteries of the five regions that were pre-contracted by KCl (60 mmol/L), U46619 (1 μmol/L) or phenylephrine (10 μmol/L). The formononetin-induced relaxation was reduced by removal of endothelium or by pretreatment with L-NAME (100 μmol/L). Under conditions of endothelium denudation, formononetin (10, 30, and 100 μmol/L) inhibited the contraction induced by KCl and that induced by CaCl(2) in Ca(2+)-free depolarized medium. In the absence of extracellular Ca(2+), formononetin (10, 30, and 100 μmol/L) depressed the constriction caused by phenylephrine (10 μmol/L), but did not inhibit the tonic contraction in response to the addition of CaCl(2) (2 mmol/L). The contraction caused by caffeine (30 mmol/L) was not inhibited by formononetin (100 μmol/L). Formononetin (10 and 100 μmol/L) reduced the change rate of Ca(2+)-fluorescence intensity in response to KCl (50 mmol/L). In spontaneously hypertensive rats, formononetin (5, 10, and 20 mg/kg) slowly lowered the systolic, diastolic and mean arterial pressure. CONCLUSION Formononetin causes vasodilatation via two pathways: (1) endothelium-independent pathway, probably due to inhibition of voltage-dependent Ca(2+) channels and intracellular Ca(2+) release; and (2) endothelium-dependent pathway by releasing NO. Both the pathways may contribute to its antihypertensive effect.
Collapse
|
27
|
Steelman SM, Humphrey JD. Differential remodeling responses of cerebral and skeletal muscle arterioles in a novel organ culture system. Med Biol Eng Comput 2011; 49:1015-23. [PMID: 21786016 DOI: 10.1007/s11517-011-0807-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/07/2011] [Indexed: 12/15/2022]
Abstract
Evidence suggests that maladaptive changes in the cerebral microcirculation may contribute to ischemia in numerous diseases. We sought, therefore, to develop an ex vivo organ culture system to study early changes in cerebral arteriolar structure and function, and to compare associated findings to those for non-cerebral arterioles. Pilot studies revealed that rabbit cerebral arterioles maintained contractility longer when cultured in media containing rabbit-specific plasma rather than fetal bovine serum. Cerebral and skeletal muscle arterioles were cultured in a pressure myograph for 5 days; maximum dilatory and contractile responses were measured at 0, 1, 3, and 5 days. Passive properties were preserved in cerebral arterioles over the entire culture period, although skeletal muscle arterioles underwent constrictive remodeling. Cerebral arterioles also maintained a myogenic capability over the entire culture period, albeit at progressively larger diameters, whereas the skeletal muscle arterioles did so only over 3 days. Culture in rabbit serum, which contains numerous growth factors and clotting factors, did not induce or increase inward remodeling in cerebral or skeletal arterioles. These results suggest inherent, organ-specific differences in arteriolar remodeling, and that extensive results in the literature on non-cerebral arterioles should not be extrapolated to predict responses in the cerebral microcirculation.
Collapse
Affiliation(s)
- Samantha M Steelman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, College Station, TX 77843-4458, USA.
| | | |
Collapse
|
28
|
Xie YH, Wang SW, Zhang Y, Edvinsson L, Xu CB. Up-regulation of G-protein-coupled receptors for endothelin and thromboxane by lipid-soluble smoke particles in renal artery of rat. Basic Clin Pharmacol Toxicol 2010; 107:803-12. [PMID: 20406207 DOI: 10.1111/j.1742-7843.2010.00585.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Up-regulation of G-protein-coupled receptors (GPCR) plays key roles in renal hypertension and cardiovascular disease pathogenesis. The present study was designed to examine if lipid-soluble cigarette smoking particles (DSP), nicotine and endotoxin (LPS), induce GPCR up-regulation for thromboxane A(2) (TP), endothelin type A (ET(A) ) and type B (ET(B) ) receptors in renal artery, and if intracellular signal mechanisms are involved. Renal artery segments of rats were exposed to DSP, nicotine or LPS, in organ culture for up to 24 hr. The GPCR-mediated contractions were recorded by using a myograph system. Expression of the GPCR was examined by real-time PCR and immunohistochemistry at mRNA and protein levels. Sarafatoxin 6c (S6c, selective ET(B) receptor agonist), endothelin-1 (ET-1, non-selective ET(A) and ET(B) receptor agonist) and 9,11-Dideoxy-9a,11a-methanoepoxy prostaglandin F(2a) (U46619, a TP receptor agonist) induced contractions were significantly increased after the arterial segments exposed to DSP in a concentration-dependent (0.1-0.4 μl/ml) manner, and S6c also induced a time-dependent contraction, compared to control (dimethyl sulfoxide). This was in parallel with enhanced mRNA expression for ET(B) receptor but not ET(A) and TP receptors, while increased protein expression for ET(A) , ET(B) and TP receptors was seen. The specific nuclear factor-kappa B (NF-κB) signal pathway inhibitor BMS345541 was applied to link DSP effects to the GPCR up-regulation. It totally abolished ET(B) receptor up-regulation, but not ET(A) and TP receptor up-regulations. Our results suggest that DSP transcriptionally up-regulated ET(B) receptor expression in rat renal artery via NF-κB signal pathways, whereas up-regulation of ET(A) and TP receptor-mediated contraction may involve post-transcriptional mechanisms.
Collapse
MESH Headings
- Animals
- In Vitro Techniques
- Lipids/chemistry
- Lipopolysaccharides/toxicity
- Male
- Muscle Contraction
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- NF-kappa B/physiology
- Nicotine/toxicity
- Particulate Matter/adverse effects
- Particulate Matter/chemistry
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Endothelin/agonists
- Receptors, Endothelin/biosynthesis
- Receptors, Endothelin/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptors, Thromboxane A2, Prostaglandin H2/biosynthesis
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Renal Artery/drug effects
- Renal Artery/physiology
- Smoke/adverse effects
- Solubility
- Nicotiana
- Up-Regulation
Collapse
Affiliation(s)
- Yan-hua Xie
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | |
Collapse
|
29
|
Ghorbani B, Holmstrup P, Edvinsson L, Kristiansen KA, Sheykhzade M. LPS from Porphyromonas gingivalis increases the sensitivity of contractile response mediated by endothelin-B (ET(B)) receptors in cultured endothelium-intact rat coronary arteries. Vascul Pharmacol 2010; 53:250-7. [PMID: 20888431 DOI: 10.1016/j.vph.2010.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/14/2010] [Accepted: 09/24/2010] [Indexed: 12/21/2022]
Abstract
The purpose of our study was to examine if lipopolysaccharide (LPS) from Porphyromonas gingivalis (P.g.) modifies the vasomotor responses to Endothelin-1 (ET-1) and Sarafotoxin 6c (S6c) in rat coronary arteries. The arteries were studied directly or following organ culture for 24 h in absence and presence of 2.5EU/ml LPS. The contractile responses of coronary arteries were investigated by using the selective ETB receptor agonist S6c (1 pM-0.3 μM) and ET-1 (1 pM-0.3 μM). The functional studies demonstrated an augmented contractile response only to S6c in isolated rat coronary arteries after organ culture (with or without LPS). These contractile responses by S6c were blocked by the selective ETB receptor antagonist BQ788 in both vessel groups. The augmented contractile response to S6c was supported by immunohistochemistry, where a significant increase in fluorescence intensity for ETB receptors in smooth muscle cells was observed after organ culture. The presence of LPS in the culture medium significantly increased the sensitivity of endothelium-intact coronary artery to S6c as compared to endothelium-denuded segments. Our results showed a significant increase in both ETB receptor protein levels and S6c-induced maximal contraction in coronary arteries upon 24 h of organ culture, which was further sensitized by LPS.
Collapse
Affiliation(s)
- Bahareh Ghorbani
- Department of Periodontology, School of Dentistry, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
30
|
Xu CB, Sun Y, Edvinsson L. Cardiovascular risk factors regulate the expression of vascular endothelin receptors. Pharmacol Ther 2010; 127:148-55. [DOI: 10.1016/j.pharmthera.2010.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
|
31
|
NF-kappaB signaling mediates vascular smooth muscle endothelin type B receptor expression in resistance arteries. Eur J Pharmacol 2010; 637:148-54. [DOI: 10.1016/j.ejphar.2010.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/09/2010] [Accepted: 04/04/2010] [Indexed: 12/15/2022]
|
32
|
Waldsee R, Ahnstedt H, Eftekhari S, Edvinsson L. Involvement of calcium-calmodulin-dependent protein kinase II in endothelin receptor expression in rat cerebral arteries. Am J Physiol Heart Circ Physiol 2009; 298:H823-32. [PMID: 20008273 DOI: 10.1152/ajpheart.00759.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental cerebral ischemia and organ culture of cerebral arteries result in the enhanced expression of endothelin ET(B) receptors in smooth muscle cells via increased transcription. The present study was designed to evaluate the involvement of calcium-calmodulin-dependent protein kinase (CAMK) in the transcriptional expression of endothelin receptors after organ culture. Rat basilar arteries were incubated for 24 h with or without the CAMK inhibitor KN93 or ERK1/2 inhibitor U0126. The contractile responses to endothelin-1 (ET-1; ET(A) and ET(B) receptor agonist) and sarafotoxin 6c (S6c; ET(B) receptor agonist) were studied using a sensitive myograph. The mRNA levels of the ET(A) and ET(B) receptors and CAMKII were determined by real-time PCR, and their protein levels were evaluated by immunohistochemistry and Western blot. The mRNA levels of CAMKII and the ET(B) receptor increased during organ culture, but there was no change in the expression of the ET(A) receptor. This effect was abolished by coincubation with KN93 or U0126. In functional studies, both inhibitors attenuated the S6c-induced contraction. Incubating the arteries with KN93, but not U0126, decreased the amount of phosphorylated CAMKII. The inhibitors had no effect on the levels of myosin light chain during organ culture, as measured by Western blot. CAMKII is involved in the upregulation of the endothelin ET(B) receptor and interacts with the ERK1/2 pathway to enhance receptor expression. CAMKII has no effect on the contractile apparatus in rat cerebral arteries.
Collapse
Affiliation(s)
- Roya Waldsee
- Department of Clinical Sciences, Lund University and Lund University Hospital, Sweden.
| | | | | | | |
Collapse
|
33
|
Chen QW, Edvinsson L, Xu CB. Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells. BMC Cell Biol 2009; 10:52. [PMID: 19575782 PMCID: PMC2715373 DOI: 10.1186/1471-2121-10-52] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 07/03/2009] [Indexed: 11/10/2022] Open
Abstract
Background Endothelin-1 (ET-1) is a potent vasoactive peptide, which induces vasoconstriction and proliferation in vascular smooth muscle cells (VSMCs) through activation of endothelin type A (ETA) and type B (ETB) receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein kinases (MAPK) are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate the ETA and ETB receptor intracellular signaling in human VSMCs and used phosphorylation (activation) of ERK1/2 as a functional signal molecule for endothelin receptor activity. Results Subconfluent human VSMCs were stimulated by ET-1 at different concentrations (1 nM-1 μM). The activation of ERK1/2 was examined by immunofluorescence, Western blot and phosphoELISA using specific antibody against phosphorylated ERK1/2 protein. ET-1 induced a concentration- and time- dependent activation of ERK1/2 with a maximal effect at 10 min. It declined to baseline level at 30 min. The ET-1-induced activation of ERK1/2 was completely abolished by MEK1/2 inhibitors U0126 and SL327, and partially inhibited by the MEK1 inhibitor PD98059. A dual endothelin receptor antagonist bosentan or the ETA antagonist BQ123 blocked the ET-1 effect, while the ETB antagonist BQ788 had no significant effect. However, a selective ETB receptor agonist, Sarafotoxin 6c (S6c) caused a time-dependent ERK1/2 activation with a maximal effect by less than 20% of the ET-1-induced activation of ERK1/2. Increase in bosentan concentration up to 10 μM further inhibited ET-1-induced activation of ERK1/2 and had a stronger inhibitory effect than BQ123 or the combined use of BQ123 and BQ788. To further explore ET-1 intracellular signaling, PKC inhibitors (staurosporin and GF109203X), PKC-delta inhibitor (rottlerin), PKA inhibitor (H-89), and phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin) were applied. The inhibitors showed significant inhibitory effects on ET-1-induced activation of ERK1/2. However, blockage of L-type Ca2+ channels or calcium/calmodulin-dependent protein kinase II, chelating extracellular Ca2+ or emptying internal Ca2+ stores, did not affect ET-1-induced activation of ERK1/2. Conclusion The ETA receptors predominate in the ET-1-induced activation of ERK1/2 in human VSMCs, which associates with increments in intracellular PKC, PKA and PI3K activities, but not Ca2+ signalling.
Collapse
Affiliation(s)
- Qing-wen Chen
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
34
|
Ferrero E, Labalde M, Fernández N, Monge L, Salcedo A, Narvaez-Sanchez R, Hidalgo M, Dieguez G, García-Villalon AL. Response to endothelin-1 in arteries from human colorectal tumours: role of endothelin receptors. Exp Biol Med (Maywood) 2008; 233:1602-7. [PMID: 18849535 DOI: 10.3181/0802-rm-69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To examine the reaction of tumour arteries to endothelin-1, we obtained arteries supplying blood flow to colorectal tumours from patients, as well as mesenteric arteries supplying the normal colon tissue from the same patients and mesenteric arteries from patients without a colorectal tumour pathology. The contraction in response to endothelin-1 and the relaxation produced by bradykinin was recorded in each of these arteries. Accordingly, the sensitivity to endothelin-1 but not the maximal response, was higher in the arteries supplying colorectal tumours than in mesenteric arteries supplying normal colon or in mesenteric arteries from patients with no tumour pathology. The contraction produced by endothelin-1 was not modified by exposure to L-NAME or meclofenamate in arteries supplying both the tumour and the normal colon. The endothelin ET(A) andET(B) receptors were expressed similarly in arteries supplying the tumour or normal colon. However, the antagonist of the endothelin ET(B) receptors BQ788 (10(-6) M) decreased the contractions in the arteries supplying the tumour but not in those supplying the normal colon. By contrast, the antagonist of endothelin ET(A) receptors BQ123 (10(-6) M) reduced the contraction equally in both these types of arteries. Likewise, in arteries precontracted with U46619, the relaxation in response to bradykinin was similar in all three types of arteries. Together, these results suggest that the arteries supplying human colorectal tumours are more sensitive to endothelin-1, which could be due to the enhanced activity of endothelin ET(B) receptors in the absence of any change in the modulatory effect of nitric oxide or prostanoids in the arterial response to this peptide.
Collapse
Affiliation(s)
- Eduardo Ferrero
- Departamento de Cirugía General y Digestiva (Section B), Hospital Universitario 12 de Octubre, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nilsson D, Gustafsson L, Wackenfors A, Gesslein B, Edvinsson L, Paulsson P, Ingemansson R, Malmsjö M. Up-regulation of endothelin type B receptors in the human internal mammary artery in culture is dependent on protein kinase C and mitogen-activated kinase signaling pathways. BMC Cardiovasc Disord 2008; 8:21. [PMID: 18778461 PMCID: PMC2553399 DOI: 10.1186/1471-2261-8-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 09/08/2008] [Indexed: 11/24/2022] Open
Abstract
Background Up-regulation of vascular endothelin type B (ETB) receptors is implicated in the pathogenesis of cardiovascular disease. Culture of intact arteries has been shown to induce similar receptor alterations and has therefore been suggested as a suitable method for, ex vivo, in detail delineation of the regulation of endothelin receptors. We hypothesize that mitogen-activated kinases (MAPK) and protein kinase C (PKC) are involved in the regulation of endothelin ETB receptors in human internal mammary arteries. Methods Human internal mammary arteries were obtained during coronary artery bypass graft surgery and were studied before and after 24 hours of organ culture, using in vitro pharmacology, real time PCR and Western blot techniques. Sarafotoxin 6c and endothelin-1 were used to examine the endothelin ETA and ETB receptor effects, respectively. The involvement of PKC and MAPK in the endothelin receptor regulation was examined by culture in the presence of antagonists. Results The endohtelin-1-induced contraction (after endothelin ETB receptor desensitization) and the endothelin ETA receptor mRNA expression levels were not altered by culture. The sarafotoxin 6c contraction, endothelin ETB receptor protein and mRNA expression levels were increased after organ culture. This increase was antagonized by; (1) PKC inhibitors (10 μM bisindolylmaleimide I and 10 μM Ro-32-0432), and (2) inhibitors of the p38, extracellular signal related kinases 1 and 2 (ERK1/2) and C-jun terminal kinase (JNK) MAPK pathways (10 μM SB203580, 10 μM PD98059 and 10 μM SP600125, respectively). Conclusion In conclusion, PKC and MAPK seem to be involved in the up-regulation of endothelin ETB receptor expression in human internal mammary arteries. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the development of vascular endothelin ETB receptor changes in cardiovascular disease.
Collapse
Affiliation(s)
- David Nilsson
- Department of Medicine, Lund University Hospital, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Xu CB, Zheng JP, Zhang W, Zhang Y, Edvinsson L. Lipid-soluble smoke particles upregulate vascular smooth muscle ETB receptors via activation of mitogen-activating protein kinases and NF-kappaB pathways. Toxicol Sci 2008; 106:546-55. [PMID: 18718921 DOI: 10.1093/toxsci/kfn173] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cigarette smoke is a strong risk factor for cardiovascular disease. However, the underlying molecular mechanisms that lead to cigarette smoke-associated cardiovascular disease remain elusive. With functional and molecular methods, we demonstrate for the first time that lipid-soluble cigarette smoke particles (dimethylsulfoxide-soluble cigarette smoke particles; DSP) increased the expression of endothelin type B (ET(B)) receptors in arterial smooth muscle cells. The increased ET(B) receptors in arterial smooth muscle cells was documented as enhanced contractility (sensitive myograph technique), elevated levels of ET(B) receptor mRNA (quantitative real-time PCR), and protein expressions (immunohistochemistry and Western blotting). Intracellular signaling was studied with Western blotting and phosphoELISA; this revealed that DSP induced extracellular-regulated protein kinases 1 and 2 (ERK1/2), p38, and nuclear factor-kappaB (NF-kappaB) phosphorylation within 3 h. Blocking ERK1/2, p38, or NF-kappaB activation by their specific inhibitors significantly attenuated the DSP-induced upregulation of ET(B) receptor-mediated contraction and both ET(B) receptor mRNA and protein expression. In addition, dexamethasone abolished the DSP-induced upregulation of ET(B) receptor-mediated contraction. In conclusion, upregulation of ET(B) receptors by DSP in arterial smooth muscle cells involves activation of mitogen-activating protein kinases (ERK1/2 and p38) and the downstream transcriptional factor NF-kappaB pathways.
Collapse
Affiliation(s)
- Cang-Bao Xu
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, 221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
37
|
Johnsson E, Maddahi A, Wackenfors A, Edvinsson L. Enhanced expression of contractile endothelin ETB receptors in rat coronary artery after organ culture. Eur J Pharmacol 2008; 582:94-101. [DOI: 10.1016/j.ejphar.2007.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 10/28/2007] [Accepted: 12/16/2007] [Indexed: 10/24/2022]
|
38
|
Nilsson D, Wackenfors A, Gustafsson L, Ugander M, Ingemansson R, Edvinsson L, Malmsjö M. PKC and MAPK signalling pathways regulate vascular endothelin receptor expression. Eur J Pharmacol 2008; 580:190-200. [DOI: 10.1016/j.ejphar.2007.10.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 01/24/2023]
|
39
|
Zhang W, Zhang Y, Edvinsson L, Xu CB. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms. Atherosclerosis 2008; 196:608-16. [PMID: 17706224 DOI: 10.1016/j.atherosclerosis.2007.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 06/23/2007] [Accepted: 06/25/2007] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a key factor in vascular disease, and cigarette smoking is a well-known risk factor that may induce an inflammatory response and enhance plaque formation in arteries. Thromboxane (Tx) is one key inflammatory mediator involved in the pathogenesis of cardiovascular disease. The present study was designed to test if lipid soluble smoking particles (DSP) enhance TxA(2) receptor (TP) expression in rat mesenteric arteries, and if intracellular mitogen-activated protein kinase (MAPK) pathways play a role. Organ culture of rat mesenteric arteries in the presence of DSP (0.2 microl/ml for 24h) resulted in markedly elevated contractile responses to the Tx analog U46619, compared with the control DMSO. There was no increase in TP receptor mRNA expression, while the protein expression was significantly enhanced. This up-regulation was not affected by a general transcriptional inhibitor actinomycin D, but was almost completely abolished by cycloheximide, a general translational inhibitor. Dexamethasone, a glucocorticoid, manifested a potent inhibitory effect as well. These results suggest that the up-regulation of TP receptor occurs via post-transcriptional events, and mainly translation. This is supported by experiments with specific inhibitors for c-Jun-NH(2)-terminal kinase (SP600125), extracellular signal-regulated kinase 1 and 2 (PD98059 and U0126) and p38 (SB203580) that had no inhibitory effect on the up-regulation of TP receptors. Collectively, the results show that MAPK pathways are not involved in TP receptor up-regulation. Study on TP receptor mRNA stability showed that during organ culture, the TP receptor mRNA was stable in both DMSO and DSP group, but the latter elicited a tendency to stabilize the TP receptor mRNA at higher level. Thus, post-transcriptional mechanisms are responsible for the up-regulation of TP receptor by DSP, in which enhanced translation is the major cause of the elevated protein expression and the enhanced contraction.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
40
|
Endothelin receptor-mediated vasodilatation: Effects of organ culture. Eur J Pharmacol 2008; 579:233-40. [DOI: 10.1016/j.ejphar.2007.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/08/2007] [Accepted: 09/25/2007] [Indexed: 11/18/2022]
|
41
|
Zhang W, Cao YX, He JY, Xu CB. Down-Regulation of α1-Adrenoceptor Expression by Lipid-Soluble Smoke Particles through Transcriptional Factor Nuclear Factor-κB Pathway. Basic Clin Pharmacol Toxicol 2007; 101:401-6. [DOI: 10.1111/j.1742-7843.2007.00163.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Wang SP, Zang WJ, Kong SS, Yu XJ, Sun L, Zhao XF, Wang SX, Zheng XH. Vasorelaxant effect of isopropyl 3-(3, 4-dihydroxyphenyl)-2-hydroxypropanoate, a novel metabolite from Salvia miltiorrhiza, on isolated rat mesenteric artery. Eur J Pharmacol 2007; 579:283-8. [PMID: 17976578 DOI: 10.1016/j.ejphar.2007.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/30/2007] [Accepted: 10/04/2007] [Indexed: 12/27/2022]
Abstract
The present study was designed to investigate the relaxant effect of isopropyl 3-(3, 4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP), a new metabolite from Salvia miltiorrhiza, on rat mesenteric artery. Isolated mesenteric arterial rings were mounted in organ baths and the isometric tension changes were measured continuously by a sensitive myograph system. The results showed that IDHP at concentrations greater than 0.1 nM produced a concentration-dependent relaxation of artery contracted by norepinephrine with pEC(50) of 7.41+/-0.08. Removal of the endothelium did not affect this relaxation, suggesting that IDHP exerted a direct effect on vascular smooth muscle cells. Meanwhile, the vasorelaxant effect of IDHP was unaffected by pre-treatment with ATP-sensitive K(+) channel inhibitor glibenclamide, delayed rectifier K(+) channel inhibitor 4-aminopyridine, inwardly rectifying K(+) channel inhibitor barium chloride and beta-adrenoceptor antagonist propranolol. However, the non-specific K(+) channel inhibitor tetraethylammonium (TEA, 3 mM) produced a rightward shift of 1.8 fold on the concentration-response curve of IDHP. Moreover, IDHP shifted the concentration-response curve of CaCl(2) as well as two receptor-mediated constrictors, phenylephrine and 5-hydroxytryptamine, to the right in a non-parallel manner. In the absence of extracellular Ca(2+), IDHP depressed the contractions induced by norepinephrine and CaCl(2), and the maximal inhibitions were 48.3+/-18.9% and 58.4+/-10.9%, respectively. These results suggest that IDHP exerts a vasorelaxant effect by inhibiting both Ca(2+) release from intracellular stores and Ca(2+) influx through voltage-dependent calcium channels, and receptor-operated calcium channels in vascular smooth muscle cells. In addition, activation of vascular TEA-sensitive K(+) channels may be partially involved in the relaxant effect of IDHP.
Collapse
Affiliation(s)
- Sheng-Peng Wang
- Department of Pharmacology, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
He JY, Zhang W, He LC, Cao YX. Imperatorin induces vasodilatation possibly via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Eur J Pharmacol 2007; 573:170-5. [PMID: 17662269 DOI: 10.1016/j.ejphar.2007.06.043] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/19/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
The purpose of the present study was to investigate the effect of imperatorin on vasodilatation and its possible mechanisms. Isometric tension of rat mesenteric arterial rings was recorded by a myograph system in vitro. The results showed that imperatorin at more than 10 muM concentration-dependently relaxed rat mesenteric arteries pre-contracted by potassium chloride (KCl) and endothelin-1, and human omental arteries pre-contracted by noradrenaline and U46619. Removal of the endothelium did not affect imperatorin-induced relaxant responses, suggesting that the vasodilatation effect is independent of the endothelium. Co-incubation with imperatorin resulted in rightward shift of concentration-response curves of KCl, calcium chloride (CaCl(2)) and noradrenaline in a non-parallel manner; 5-hydroxytryptamine (5-HT) concentration-response curves were shifted towards right in a parallel manner by imperatorin 10 and 30 muM, but markedly suppressed by imperatorin 100 muM. These results suggest that the inhibitory effect of imperatorin is mainly via voltage dependent calcium channel and possibly receptor operated calcium channel. beta-adrenoceptor, ATP-sensitive potassium channel and inwardly rectifying potassium channel were not involved in the vasodilatation, whereas blockage of calcium-activated potassium channel with tetraethylammonium had effect. Furthermore, in Ca(2+)-free medium, imperatorin concentration-dependently depressed the vasoconstrictions derived from noradrenaline and CaCl(2), and resulted in a decreased contractile response induced by caffeine, indicating a role of inhibiting extracellular Ca(2+) influx and intracellular Ca(2+) release from Ca(2+) store. Taken together, our results suggest that imperatorin induces vasodilatation by possible mechanisms inhibiting voltage dependent calcium channel and receptor-mediated Ca(2+)influx and Ca(2+)release. Opening calcium-activated potassium channel and competitive antagonism of 5-HT receptors may also contribute to this vasodilatation effect.
Collapse
Affiliation(s)
- Jian-Yu He
- Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, 710061, PR China
| | | | | | | |
Collapse
|
44
|
Li J, Cao YX, Liu H, Xu CB. Enhanced G-protein coupled receptors-mediated contraction and reduced endothelium-dependent relaxation in hypertension. Eur J Pharmacol 2006; 557:186-94. [PMID: 17204265 DOI: 10.1016/j.ejphar.2006.11.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 11/20/2006] [Accepted: 11/24/2006] [Indexed: 11/18/2022]
Abstract
The present study was designed to demonstrate a hypothesis that some G-protein coupled receptors are up-regulated and a dysfunction of endothelium occurs in hypertension. The arteries from hypertensive patients and spontaneously hypertensive rats (SHR) were tested. An in vitro myograph system was used to obtain concentration-contraction curves mediated by endothelin ET(A), endothelin ET(B), 5-hydroxytryptamine 2A (5-HT2A)-receptors and alpha1-adrenoceptors in the arterial segments. In hypertensive patients, the maximum contractions (Emax) induced by endothelin ET(B), endothelin ET(A) and 5-HT receptors were significantly increased with elevated pEC50 values, while a significantly leftward shift of alpha1-adrenoceptor-mediated contraction was seen. Similar results were obtained in SHR. Specific antagonists for 5-HT2A receptors or alpha1-adrenoceptors rightward shifted the concentration-contractile curves induced by 5-HT or noradrenaline, while the Emax were not significantly altered, suggesting that the contractions were mediated by 5-HT2A receptors and alpha1-adrenoceptors, respectively. Endothelium-dependent maximum relaxation (Rmax) in the arterial segments induced by acetylcholine was significantly decreased in both hypertensive patients and SHR. In addition, nitric oxide- and endothelium-derived hyperpolarizing factor-mediated dilatations were decreased significantly and the arterial endothelial cells were in part lost in SHR. In conclusion, endothelin ET(B), endothelin ET(A), 5-HT2A receptor- and alpha-adrenoceptor-mediated contractions were increased in hypertension, while the endothelium and its functions were damaged.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Aged
- Animals
- Arteries/drug effects
- Case-Control Studies
- Colon/blood supply
- Dose-Response Relationship, Drug
- Endothelin-1/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Female
- Humans
- Hypertension/physiopathology
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/ultrastructure
- Middle Aged
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Relaxation/drug effects
- Muscle Relaxation/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiopathology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Endothelin A/genetics
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Serotonin Antagonists/pharmacology
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | | | | | | |
Collapse
|
45
|
Cao YX, Yang XJ, Liu J, Li KX. Effects of Daidzein Sulfates on Blood Pressure and Artery of Rats. Basic Clin Pharmacol Toxicol 2006; 99:425-30. [PMID: 17169123 DOI: 10.1111/j.1742-7843.2006.pto_565.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study is to investigate the hypotensive and vasodilator effects of daidzein sulfates, a water-solubility derivative of daidzein. Tail cuff blood pressure of spontaneously hypertensive rat (SHR) was measured with non-invasive Electro-Sphygmomanometer. An isometric tension of rat mesenteric artery ring segments was recoded in vitro on a myograph. The results showed that daidzein sulfates (20 and 40 mg/kg) could decrease blood pressure of SHR in single dose and multi-doses. Daidzein sulfates (1-100 microM) inhibited the contraction of rat mesenteric arterial ring segments induced by norepinephrine (NA) and 5-hydroxytryptamine (5-HT). Daidzein sulfates (100-1000 microM) inhibited arterial segment's contraction induced by KCl and CaCl(2). The concentration- contractive curves were shifted toward right in a non-parallel manner with decreased E(max.) Daidzein sulfaltes inhibited the extracellular Ca(2+)-dependent contraction. Daidzein sulfates of 100 and 300 microM significantly inhibited the contraction induced by CaCl(2) in Ca(2+)-free solution, which is an extracellular Ca(2+)-dependent contraction; but daidzein sulfates did not inhibit the intracellular Ca(2+)-dependent NA-induced contraction, in Ca(2+)-free solution. The results suggest that daidzein sulfates possess significant hypotensive and vasodilator effects which mainly derive from artery smooth muscle cells by inhibiting the receptor-mediated Ca(2+)-influx.
Collapse
Affiliation(s)
- Yong-Xiao Cao
- Department of Pharmacology, Xi'an Jiaotong University, School of Medicine, and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, P.R. China.
| | | | | | | |
Collapse
|
46
|
Cao YX, Zhang W, He JY, He LC, Xu CB. Ligustilide induces vasodilatation via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Vascul Pharmacol 2006; 45:171-6. [PMID: 16807126 DOI: 10.1016/j.vph.2006.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 05/09/2006] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to investigate the effect of ligustilide on vasodilatation in rat mesenteric artery and the mechanisms responsible for it. Isometric tension of rat mesenteric artery rings was recorded by a sensitive myograph system in vitro. The results showed that ligustilide at concentrations more than 10 microM relaxed potassium chloride (KCl)-preconstricted rat mesenteric artery in a concentration-dependent manner. The vasodilatation effect of ligustilide was not dependent on endothelium. Ligustilide rightwards shifted concentration-response curves induced by KCl, calcium chloride (CaCl(2)), noradrenaline (NA) or 5-hydroxytryptamine (5-HT) in a non-parallel manner. This suggests that the vasodilatation effects were most likely via voltage-dependent calcium channel (VDCC) and receptor-operated calcium channel (ROCC). Propranolol, glibenclamide, tetraethylammonium and barium chloride did not affect the vasodilation induced by ligustilide, showing that beta-adrenoceptor, ATP sensitive potassium channel, calcium-activated potassium channel and inwardly rectifying potassium channel were not involved in the vasodilatation. Ligustilide concentration-dependently inhibited the vasoconstriction induced by NA or CaCl(2) in Ca(2+)-free medium, indicating that the vasodilatation relates to inhibition of extracellular Ca(2+) influx through VDCC and ROCC, and intracellular Ca(2+) release from Ca(2+) store. Since caffeine-induced contraction was inhibited by ligustilide, inhibition of intracellular Ca(2+) released by ligustilide occurred via the ryanodine receptors. Our results suggest that ligustilide induces vasodilatation in rat mesenteric artery by inhibiting the VDCC and ROCC, and receptor-mediated Ca(2+) influx and release.
Collapse
Affiliation(s)
- Yong-Xiao Cao
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, and Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, PR China.
| | | | | | | | | |
Collapse
|
47
|
Eskesen K, Edvinsson L. Upregulation of endothelin ETB receptor-mediated vasoconstriction in rat coronary artery after organ culture. Eur J Pharmacol 2006; 539:192-4. [PMID: 16725137 DOI: 10.1016/j.ejphar.2006.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/20/2006] [Accepted: 04/25/2006] [Indexed: 11/20/2022]
Abstract
The aim of this study was to examine if endothelin ET(B) receptor-mediated contraction occurred in isolated segments of rat coronary arteries during organ culture. Presence of contractile endothelin ET(B) receptors was studied by measuring the change in isometric tension in rings of left anterior descending coronary arteries isolated from hearts of rats as response to application of the selective endothelin ET(B) receptor agonist, Sarafotoxin 6c and endothelin-1. In segments cultured 1 day in serum free Dulbecco's Modified Eagle's Medium, Sarafotoxin 6c induced a concentration dependent contraction with a pEC(50) value of 10.4+/-0.21 and a maximal response of 3.9+/-0.25 mN/mm (n=15). The maximal contraction was significantly larger than the responses measured in fresh tissue, where the mean value of the maximal contractions was 0.22+/-0.03 mN/mm (n=17). The increased contraction to Sarafotoxin 6c after culturing could be eliminated with addition of the transcriptional blocker, actinomycin D, to the culture medium or be significantly attenuated by application of the translational inhibitor, cycloheximide. The vasoconstrictor effect of endothelin-1 or to depolarisation by high K(+)-solution was not modified after 1 day in culture medium. The experiments indicate that organ culture of rat coronary arteries upregulate endothelin ET(B) receptor-mediated contraction by inducing synthesis of new protein.
Collapse
Affiliation(s)
- Karen Eskesen
- Department of Clinical Experimental Research, University Hospital of Glostrup, Glostrup 2600, Denmark.
| | | |
Collapse
|
48
|
Jamali R, Edvinsson L. Involvement of protein kinases on the upregulation of endothelin receptors in rat basilar and mesenteric arteries. Exp Biol Med (Maywood) 2006; 231:403-11. [PMID: 16565436 DOI: 10.1177/153537020623100406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Endothelin(B) (ET(B)) receptors are upregulated in experimental stroke or after 24 hrs of organ culture. This upregulation is manifested both as stronger contraction and as an increase in ET(B) receptor messenger RNA (mRNA) levels. The present study was designed to evaluate the importance of protein kinases (c-Jun N-terminal kinase [JNK], protein kinase C [PKC], and extracellular signal-regulated kinase [ERK1/2]) in ET(B) receptor upregulation after organ culture. Rat basilar and mesenteric arteries were incubated for 24 hrs in Dulbecco's modified Eagle's medium (DMEM) with or without the PKC inhibitor, RO-31-7549; the ERK1/2 inhibitor, SB386023; or the JNK inhibitor, SP600125, added 3, 6, or 12 hrs after initiation of incubation. Subsequently, vessel segments were mounted in myographs and the contractile responses to ET-1 and sarafotoxin 6c were studied. The ET(B) and ET(A) receptor mRNA levels were determined with a real-time polymerase chain reaction (PCR). The cellular localization and protein level of ET(B) receptors were evaluated by immunohistochemistry. The PKC and ERK1/2 inhibitors attenuated the contraction induced by S6c in the basilar arteries more than in the mesenteric arteries. The efficiency of the inhibitors was proportional to the incubation time. Real-time PCR showed a decrease in the ET(B) receptor mRNA levels in arteries treated with PKC or ERK inhibitors. The JNK inhibitor had a significant inhibitory effect on ET(B) receptor upregulation in the basilar arteries. Immunohistochemistry revealed that the ET(B) receptor upregulation occured in the smooth-muscle cells and that it had the same pattern as in the quantitative PCR. Our results show that the PKC, ERK1/2, and JNK are more important for the upregulation of contractile ET(B) receptors in cerebral arteries compared with mesenteric arteries. ERK1/2 seems to be more important for the ET(B) receptor upregulation, as compared with PKC and JNK. The evaluation of the time dependency suggests that the phenomenon can be reversed even after its initiation.
Collapse
Affiliation(s)
- Roya Jamali
- Division of Experimental Vascular Research, Wallenberg Neurocentrum, BMC A13, Lund University, SE-221 85 Lund, Sweden.
| | | |
Collapse
|
49
|
Cao YX, Xu CB, Luo GG, Edvinsson L. Up-Regulation of alpha1A-Adrenoceptors in Rat Mesenteric Artery Involves Intracellular Signal Pathways. Basic Clin Pharmacol Toxicol 2006; 98:61-7. [PMID: 16433893 DOI: 10.1111/j.1742-7843.2006.pto_240.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to investigate if there is an altered expression of alpha-adrenoceptors during organ culture of rat mesenteric artery segments by using a sensitive pharmacological method and molecular biological techniques. Noradrenalin (NA) induced contraction via alpha1-adrenoceptors. The contraction and alpha1A-adrenoceptor mRNA levels were elevated during organ culture. Transcriptional inhibitor actinomycin D, translational inhibitor cycloheximide, protein kinase C inhibitors (staurosporine and RO31-8220) and mitogen-activated protein kinase (MAPK) pathway inhibitors (SB386023, U0126 and SB239063) prevented the increase in NA-induced contractions. The amount of alpha1A-adrenoceptor mRNA was significantly lower in the artery segments cultured for 1 day in the presence of specific MAPK extracellular signal-regulated protein kinase1/2 pathway inhibitor SB386023 than that of the cultured controls. SB386023 did not affect alpha2-adrenoceptor mRNA level. Our results suggest that the up-regulation of alpha1A-adrenoceptors involves transcription and intracellular signal transduction via the protein kinase C and the ERK 1/2 pathways.
Collapse
Affiliation(s)
- Yong-Xiao Cao
- Division of Experimental Vascular Research, Institution of Medicine, Lund University, Sweden
| | | | | | | |
Collapse
|
50
|
Wackenfors A, Emilson M, Ingemansson R, Edvinsson L, Malmsjö M. Ischemic heart disease down-regulates angiotensin type 1 receptor mRNA in human coronary arteries. Eur J Pharmacol 2005; 503:147-53. [PMID: 15496309 DOI: 10.1016/j.ejphar.2004.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/08/2004] [Accepted: 09/10/2004] [Indexed: 11/15/2022]
Abstract
Angiotensin II is important in the development of cardiovascular disease. In the present study, angiotensin II receptor mRNA levels were quantified by real-time polymerase chain reaction (real-time PCR) in human coronary arteries from patients with ischemic heart disease and controls. Furthermore, the suitability of artery culture for studying angiotensin receptor changes was evaluated by in vitro pharmacology and real-time PCR. The angiotensin type 1 (AT1) receptor mRNA levels were down-regulated in human coronary arteries from patients with ischemic heart disease as compared to controls (P<0.05). Culture of coronary arteries for 48 h induced down-regulation of the angiotensin AT1 and AT2 receptor mRNA levels and also a less efficacious angiotensin II-induced vasoconstriction (Emax=103+/-2% before and 23+/-7% after artery culture, P<0.001). Artery culture may thus be a suitable method for studying angiotensin receptor regulation.
Collapse
MESH Headings
- Cells, Cultured
- Coronary Vessels/metabolism
- Down-Regulation/drug effects
- Endothelium, Vascular/physiology
- Humans
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Myocardial Ischemia/metabolism
- Organ Culture Techniques
- Potassium/pharmacology
- RNA, Messenger/biosynthesis
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Angelica Wackenfors
- Department of Internal Medicine, Division of Experimental Vascular Research, Lund University Hospital, BMC A13, SE-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|