1
|
Nardini P, Zizi V, Molino M, Fazi C, Calvani M, Carrozzo F, Giuseppetti G, Calosi L, Guasti D, Biagini D, Di Francesco F, Filippi L, Pini A. Protective Effects of Beta-3 Adrenoceptor Agonism on Mucosal Integrity in Hyperoxia-Induced Ileal Alterations. Antioxidants (Basel) 2024; 13:863. [PMID: 39061931 PMCID: PMC11273805 DOI: 10.3390/antiox13070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Organogenesis occurs in the uterus under low oxygen levels (4%). Preterm birth exposes immature newborns to a hyperoxic environment, which can induce a massive production of reactive oxygen species and potentially affect organ development, leading to diseases such as necrotizing enterocolitis. The β3-adrenoreceptor (β3-AR) has an oxygen-dependent regulatory mechanism, and its activation exerts an antioxidant effect. To test the hypothesis that β3-AR could protect postnatal ileal development from the negative impact of high oxygen levels, Sprague-Dawley rat pups were raised under normoxia (21%) or hyperoxia (85%) for the first 2 weeks after birth and treated or not with BRL37344, a selective β3-AR agonist, at 1, 3, or 6 mg/kg. Hyperoxia alters ileal mucosal morphology, leading to increased cell lipid oxidation byproducts, reduced presence of β3-AR-positive resident cells, decreased junctional protein expression, disrupted brush border, mucin over-production, and impaired vascularization. Treatment with 3 mg/kg of BRL37344 prevented these alterations, although not completely, while the lower 1 mg/kg dose was ineffective, and the higher 6 mg/kg dose was toxic. Our findings indicate the potential of β3-AR agonism as a new therapeutic approach to counteract the hyperoxia-induced ileal alterations and, more generally, the disorders of prematurity related to supra-physiologic oxygen exposure.
Collapse
Affiliation(s)
- Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
- Imaging Platform, Department Experimental and Clinical Medicine & Joint Laboratory with Department Biology, University of Florence, 50139 Florence, Italy
| | - Virginia Zizi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
| | - Marta Molino
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
| | - Camilla Fazi
- Department of Pediatric, Meyer Children’s University Hospital, 50139 Florence, Italy;
| | - Maura Calvani
- Azienda Ospedaliera Universitaria Meyer, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 50139 Florence, Italy;
| | - Francesco Carrozzo
- Department of Health Science, University of Florence, 50139 Florence, Italy;
| | - Giorgia Giuseppetti
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
- Imaging Platform, Department Experimental and Clinical Medicine & Joint Laboratory with Department Biology, University of Florence, 50139 Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
- Imaging Platform, Department Experimental and Clinical Medicine & Joint Laboratory with Department Biology, University of Florence, 50139 Florence, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (D.B.); (F.D.F.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (D.B.); (F.D.F.)
| | - Luca Filippi
- Neonatology and Neonatal Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (V.Z.); (M.M.); (G.G.); (L.C.); (D.G.)
- Imaging Platform, Department Experimental and Clinical Medicine & Joint Laboratory with Department Biology, University of Florence, 50139 Florence, Italy
| |
Collapse
|
2
|
Saxena P, Myles RC, Smith GL, Workman AJ. Adrenoceptor sub-type involvement in Ca 2+ current stimulation by noradrenaline in human and rabbit atrial myocytes. Pflugers Arch 2022; 474:1311-1321. [PMID: 36131146 DOI: 10.1007/s00424-022-02746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Atrial fibrillation (AF) from elevated adrenergic activity may involve increased atrial L-type Ca2+ current (ICaL) by noradrenaline (NA). However, the contribution of the adrenoceptor (AR) sub-types to such ICaL-increase is poorly understood, particularly in human. We therefore investigated effects of various broad-action and sub-type-specific α- and β-AR antagonists on NA-stimulated atrial ICaL. ICaL was recorded by whole-cell-patch clamp at 37 °C in myocytes isolated enzymatically from atrial tissues from consenting patients undergoing elective cardiac surgery and from rabbits. NA markedly increased human atrial ICaL, maximally by ~ 2.5-fold, with EC75 310 nM. Propranolol (β1 + β2-AR antagonist, 0.2 microM) substantially decreased NA (310 nM)-stimulated ICaL, in human and rabbit. Phentolamine (α1 + α2-AR antagonist, 1 microM) also decreased NA-stimulated ICaL. CGP20712A (β1-AR antagonist, 0.3 microM) and prazosin (α1-AR antagonist, 0.5 microM) each decreased NA-stimulated ICaL in both species. ICI118551 (β2-AR antagonist, 0.1 microM), in the presence of NA + CGP20712A, had no significant effect on ICaL in human atrial myocytes, but increased it in rabbit. Yohimbine (α2-AR antagonist, 10 microM), with NA + prazosin, had no significant effect on human or rabbit ICaL. Stimulation of atrial ICaL by NA is mediated, based on AR sub-type antagonist responses, mainly by activating β1- and α1-ARs in both human and rabbit, with a β2-inhibitory contribution evident in rabbit, and negligible α2 involvement in either species. This improved understanding of AR sub-type contributions to noradrenergic activation of atrial ICaL could help inform future potential optimisation of pharmacological AR-antagonism strategies for inhibiting adrenergic AF.
Collapse
Affiliation(s)
- Priyanka Saxena
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Rachel C Myles
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Godfrey L Smith
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Antony J Workman
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
3
|
Islas JF, Abbasgholizadeh R, Dacso C, Potaman VN, Navran S, Bond RA, Iyer D, Birla R, Schwartz RJ. β-Adrenergic stimuli and rotating suspension culture enhance conversion of human adipogenic mesenchymal stem cells into highly conductive cardiac progenitors. J Tissue Eng Regen Med 2020; 14:306-318. [PMID: 31821703 DOI: 10.1002/term.2994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Abstract
Clinical trials using human adipogenic mesenchymal stem cells (hAdMSCs) for the treatment of cardiac diseases have shown improvement in cardiac function and were proven safe. However, hAdMSCs do not convert efficiently into cardiomyocytes (CMs) or vasculature. Thus, reprogramming hAdMSCs into myocyte progenitors may fare better in future investigations. To reprogramme hAdMSCs into electrically conductive cardiac progenitor cells, we pioneered a three-step reprogramming strategy that uses proven MESP1/ETS2 transcription factors, β-adrenergic and hypoxic signalling induced in three-dimensional (3D) cardiospheres. In Stage 1, ETS2 and MESP1 activated NNKX2.5, TBX5, MEF2C, dHAND, and GATA4 during the conversion of hAdMSCs into cardiac progenitor cells. Next, in Stage 2, β2AR activation repositioned cardiac progenitors into de novo immature conductive cardiac cells, along with the appearance of RYR2, CAV2.1, CAV3.1, NAV1.5, SERCA2, and CX45 gene transcripts and displayed action potentials. In Stage 3, electrical conduction that was fostered by 3D cardiospheres formed in a Synthecon®, Inc. rotating bioreactor induced the appearance of hypoxic genes: HIF-1α/β, PCG 1α/β, and NOS2, which coincided with the robust activation of adult contractile genes including MLC2v, TNNT2, and TNNI3, ion channel genes, and the appearance of hyperpolarization-activated and cyclic nucleotide-gated channels (HCN1-4). Conduction velocities doubled to ~200 mm/s after hypoxia and doubled yet again after dissociation of the 3D cell clusters to ~400 mm/s. By comparison, normal conduction velocities within working ventricular myocytes in the whole heart range from 0.5 to 1 m/s. Epinephrine stimulation of stage 3 cardiac cells in patches resulted in an increase in amplitude of the electrical wave, indicative of conductive cardiac cells. Our efficient protocol that converted hAdMSCs into highly conductive cardiac progenitors demonstrated the potential utilization of stage 3 cells for tissue engineering applications for cardiac repair.
Collapse
Affiliation(s)
- Jose Francisco Islas
- Texas Heart Institute, Texas Medical Center, Houston, TX.,Departamento de Bioquímica y Medicina Molecular, Faculta de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | - Clifford Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Texas Medical Center, Houston, TX
| | | | | | - Richard A Bond
- College of Pharmacy, Science and Engineering Research Center, University of Houston, Houston, TX
| | - Dinakar Iyer
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Ravi Birla
- Department of Biomedical Engineering, University of Houston, Houston, TX
| | - Robert J Schwartz
- Texas Heart Institute, Texas Medical Center, Houston, TX.,Department of Biology and Biochemistry, University of Houston, Houston, TX
| |
Collapse
|
4
|
Igawa Y, Aizawa N, Michel MC. β 3 -Adrenoceptors in the normal and diseased urinary bladder-What are the open questions? Br J Pharmacol 2019; 176:2525-2538. [PMID: 30868554 DOI: 10.1111/bph.14658] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/31/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
β3 -Adrenoceptor agonists are used in the treatment of overactive bladder syndrome. Although the relaxant response to adrenergic stimulation in human detrusor smooth muscle cells is mediated mainly via β3 -adrenoceptors, the plasma concentrations of the therapeutic dose of mirabegron, the only clinically approved β3 -adrenoceptor agonist, are considerably lower than the EC50 for causing direct relaxation of human detrusor, suggesting a mechanism of action other than direct relaxation of detrusor smooth muscle. However, the site and mechanism of action of β3 -adrenoceptor agonists in the bladder have not been firmly established. Postulated mechanisms include prejunctional suppression of ACh release from the parasympathetic nerves during the storage phase and inhibition of micro-contractions through β3 -adrenoceptors on detrusor smooth muscle cells or suburothelial interstitial cells. Implications of possible desensitization of β3 -adrenoceptors in the bladder upon prolonged agonist exposure and possible causes of rarely observed cardiovascular effects of mirabegron are also discussed. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Yasuhiko Igawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Naoki Aizawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Arioglu-Inan E, Kayki-Mutlu G, Michel MC. Cardiac β 3 -adrenoceptors-A role in human pathophysiology? Br J Pharmacol 2019; 176:2482-2495. [PMID: 30801686 DOI: 10.1111/bph.14635] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
As β3 -adrenoceptors were first demonstrated to be expressed in adipose tissue they have received much attention for their metabolic effects in obesity and diabetes. After the existence of this subtype had been suggested to be present in the heart, studies focused on its role in cardiac function. While the presence and functional role of β3 -adrenoceptors in the heart has not uniformly been detected, there is a broad consensus that they become up-regulated in pathological conditions associated with increased sympathetic activity such as heart failure and diabetes. When detected, the β3 -adrenceptor has been demonstrated to mediate negative inotropic effects in an inhibitory G protein-dependent manner through the NO-cGMP-PKG signalling pathway. Whether these negative inotropic effects provide protection from the adverse effects induced by overstimulation of β1 /β2 -adrenoceptors or in themselves are potentially harmful is controversial, but ongoing clinical studies in patients with congestive heart failure are testing the hypothesis that β3 -adrenceptor agonism has a beneficial effect. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Peyronnet B, Brucker BM, Michel MC. Lower Urinary Tract Symptoms: What's New in Medical Treatment? Eur Urol Focus 2018; 4:17-24. [PMID: 29665997 DOI: 10.1016/j.euf.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/06/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
CONTEXT Pharmacological treatment is a cornerstone in the management of patients with lower urinary tract symptoms (LUTS). OBJECTIVE To review emerging evidence in the medical treatment of LUTS. EVIDENCE ACQUISITION An Embase/Pubmed-based literature search was conducted in December 2017, screening for randomized controlled trials (RCTs), prospective and retrospective series, animal model studies, and reviews on medical treatment of LUTS. EVIDENCE SYNTHESIS The main medical innovation in recent years in overactive bladder (OAB) has been the approval of the first β3-adrenoceptor agonists (mirabegron) and intradetrusor onabotulinum toxin A, while several other drugs such as antiepileptics, phosphodiesterase inhibitors, or other β3-agonists have brought promising results in phase 3 trials. Intraprostatic injections of various drugs for LUTS/benign prostatic hyperplasia have been investigated, but results of phase 3 trials are still pending, while combination therapies of phosphodiesterase type 5 inhibitors+α-blockers or finasteride have been proved as superior to single therapies in RCTs conducted in these patients. Two new formulations of desmopressin have been approved for nocturia in the USA (desmopressin nasal spray) and Europe/Canada/Australia (desmopressin orally disintegrated tablet). Fedovapagon, a vasopressin V2 receptor agonist, has recently completed a large phase 3 trial in male patients with nocturia. Other phase 3 trials are ongoing in bladder pain syndrome (AQX 11-25, a SHIP-1 activator) and in neurogenic detrusor overactivity (mirabegron and abobotulinum toxin A). CONCLUSIONS Medical treatment of LUTS is a very active research field with recently approved drugs for nocturia (desmopressin acetate nasal spray/orally disintegrated tablet) and numerous emerging drugs currently investigated in OAB, LUTS/benign prostatic hyperplasia, nocturia, bladder pain syndrome, and neurogenic detrusor overactivity. PATIENT SUMMARY Medical treatment of lower urinary tract symptoms is a very active research field with recently approved drugs for nocturia (desmopressin acetate nasal spray/orally disintegrated tablet) and numerous emerging drugs in overactive bladder, nocturia, neurogenic detrusor overactivity, bladder pain syndrome, or benign prostatic hyperplasia.
Collapse
Affiliation(s)
| | | | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
7
|
Coronado M, Fajardo G, Nguyen K, Zhao M, Kooiker K, Jung G, Hu DQ, Reddy S, Sandoval E, Stotland A, Gottlieb RA, Bernstein D. Physiological Mitochondrial Fragmentation Is a Normal Cardiac Adaptation to Increased Energy Demand. Circ Res 2018; 122:282-295. [PMID: 29233845 PMCID: PMC5775047 DOI: 10.1161/circresaha.117.310725] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/12/2023]
Abstract
RATIONALE Mitochondria play a dual role in the heart, responsible for meeting energetic demands and regulating cell death. Paradigms have held that mitochondrial fission and fragmentation are the result of pathological stresses, such as ischemia, are an indicator of poor mitochondrial health, and lead to mitophagy and cell death. However, recent studies demonstrate that inhibiting fission also results in decreased mitochondrial function and cardiac impairment, suggesting that fission is important for maintaining cardiac and mitochondrial bioenergetic homeostasis. OBJECTIVE The purpose of this study is to determine whether mitochondrial fission and fragmentation can be an adaptive mechanism used by the heart to augment mitochondrial and cardiac function during a normal physiological stress, such as exercise. METHODS AND RESULTS We demonstrate a novel role for cardiac mitochondrial fission as a normal adaptation to increased energetic demand. During submaximal exercise, physiological mitochondrial fragmentation results in enhanced, rather than impaired, mitochondrial function and is mediated, in part, by β1-adrenergic receptor signaling. Similar to pathological fragmentation, physiological fragmentation is induced by activation of dynamin-related protein 1; however, unlike pathological fragmentation, membrane potential is maintained and regulators of mitophagy are downregulated. Inhibition of fission with P110, Mdivi-1 (mitochondrial division inhibitor), or in mice with cardiac-specific dynamin-related protein 1 ablation significantly decreases exercise capacity. CONCLUSIONS These findings demonstrate the requirement for physiological mitochondrial fragmentation to meet the energetic demands of exercise, as well as providing additional support for the evolving conceptual framework, where mitochondrial fission and fragmentation play a role in the balance between mitochondrial maintenance of normal physiology and response to disease.
Collapse
Affiliation(s)
- Michael Coronado
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Giovanni Fajardo
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Kim Nguyen
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Mingming Zhao
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Kristina Kooiker
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Gwanghyun Jung
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Dong-Qing Hu
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Sushma Reddy
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Erik Sandoval
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Aleksandr Stotland
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Roberta A Gottlieb
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.)
| | - Daniel Bernstein
- From the Department of Pediatrics (Cardiology) (M.C., G.F., K.N., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.) and Cardiovascular Research Institute (M.C., G.F., M.Z., K.K., G.J., D.-Q.H., S.R., E.S., D.B.), Stanford University, CA; and Molecular Cardiology Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (A.S., R.A.G.).
| |
Collapse
|
8
|
Dehvari N, da Silva Junior ED, Bengtsson T, Hutchinson DS. Mirabegron: potential off target effects and uses beyond the bladder. Br J Pharmacol 2018; 175:4072-4082. [PMID: 29243229 DOI: 10.1111/bph.14121] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
The β3 -adrenoceptor was initially an attractive target for several pharmaceutical companies due to its high expression in rodent adipose tissue, where its activation resulted in decreased adiposity and improved metabolic outputs (such as glucose handling) in animal models of obesity and Type 2 diabetes. However, several drugs acting at the β3 -adrenoceptor failed in clinical trials. This was thought to be due to their lack of efficacy at the human receptor. Recently, mirabegron, a β3 -adrenoceptor agonist with human efficacy, was approved in North America, Europe, Japan and Australia for the treatment of overactive bladder syndrome. There are indications that mirabegron may act at other receptors/targets, but whether they have any clinical relevance is relatively unknown. Besides overactive bladder syndrome, mirabegron may have other uses such as in the treatment of heart failure or metabolic disease. This review gives an overview of the off-target effects of mirabegron and its potential use in the treatment of other diseases. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Nodi Dehvari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Edilson Dantas da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Dana Sabine Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Translational science approach for assessment of cardiovascular effects and proarrhythmogenic potential of the beta-3 adrenergic agonist mirabegron. J Pharmacol Toxicol Methods 2017; 87:74-81. [PMID: 28434969 DOI: 10.1016/j.vascn.2017.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/30/2017] [Accepted: 04/19/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Translational assessment of cardiac safety parameters is a challenge in clinical development of beta-3 adrenoceptor agonists. The preclinical tools are presented that were used for assessing human safety for mirabegron. METHODS Studies were performed on electrical conductance at ion channels responsible for cardiac repolarization (IKr, IKs, Ito, INa, and ICa,L), on QT-interval, subendocardial APD90, Tpeak-end interval, and arrhythmia's in ventricular dog wedge tissue in vitro and on cardiovascular function (BP, HR, and QTc) in conscious dogs. RESULTS In conscious dogs, mirabegron (0.01-10mg/kg, p.o.) dose-dependently increased HR, reduced SBP but DBP was unchanged. Propranolol blocked the decrease in SBP and attenuated HR increase at 100mg/kg mirabegron. Mirabegron, at 30, 60, or 100mg/kg, p.o., had no significant effect on the QTc interval. In paced dog ventricular wedge, neither mirabegron nor metabolites M5, M11, M12, M14, and M16 prolonged QT, altered transmural dispersion of repolarization, induced premature ventricular contractions, or induced ventricular tachycardia. Mirabegron nor its metabolites inhibited IKr, IKs, Ito INa, or ICa,L at clinically relevant concentrations. DISCUSSION Up to exposure levels well exceeding human clinical exposure no discernible effects on ion channel conductance or on arrhythmogenic parameters in ventricular wedge resulted for mirabegron, or its main metabolites, confirming human cardiac safety findings. In vivo, dose-related increases in HR with effects markedly higher than seen clinically, was mediated in part by cross-activation of beta-1 adrenoceptors. This non-clinical cardiac safety test program therefore proved predictive for human cardiac safety for mirabegron.
Collapse
|
10
|
Chapple CR, Siddiqui E. Mirabegron for the treatment of overactive bladder: a review of efficacy, safety and tolerability with a focus on male, elderly and antimuscarinic poor-responder populations, and patients with OAB in Asia. Expert Rev Clin Pharmacol 2017; 10:131-151. [DOI: 10.1080/17512433.2017.1275570] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher R Chapple
- Department of Urology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, Sheffield, UK
| | - Emad Siddiqui
- Global Medical Affairs, Astellas Pharma Europe Ltd, Chertsey, Surrey, UK
| |
Collapse
|
11
|
Michel MC, Gravas S. Safety and tolerability of β3-adrenoceptor agonists in the treatment of overactive bladder syndrome - insight from transcriptosome and experimental studies. Expert Opin Drug Saf 2016; 15:647-57. [PMID: 26954275 DOI: 10.1517/14740338.2016.1160055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION We have reviewed the safety and tolerability of β3-adrenoceptor agonists, specifically mirabegron and solabegron, a newly emerging drug class for the treatment of the overactive bladder syndrome. We discuss them mechanistically in the context of expression and other preclinical data. AREAS COVERED Based on a systematic PubMed search, incidence of overall adverse events, hypertension, dry mouth, and constipation are comparable between mirabegron or solabegron and placebo. Hypertension is the most frequently observed adverse event, but has a similar incidence with mirabegron and placebo. Nevertheless, severe uncontrolled hypertension has become a contraindication for use of mirabegron based on observation of severe hypertension in association with mirabegron exposure. The overall incidence of adverse events is also similar between mirabegron and the muscarinic receptor antagonist tolterodine, but the incidence of dry mouth is much lower with mirabegron. EXPERT OPINION The high β3-adrenoceptor mRNA expression in the human ovaries is not associated with reproductive side effects. Generally, β3-adrenoceptors exhibit a rather restricted expression in human tissues, which may explain the overall good tolerability of agonists acting on this receptor. We propose that expression profiles and functional preclinical studies can be important tools in the prediction of adverse event profiles in first-in-class drugs.
Collapse
Affiliation(s)
- Martin C Michel
- a Department of Pharmacology , Johannes Gutenberg University , Mainz , Germany
| | - Stavros Gravas
- b Department of Urology, Faculty of Medicine , School of Health Sciences, University of Thessaly , Larissa , Greece
| |
Collapse
|
12
|
β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK. ACTA ACUST UNITED AC 2016; 36:1-7. [DOI: 10.1007/s11596-016-1533-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 11/29/2015] [Indexed: 12/25/2022]
|
13
|
Michel MC, Korstanje C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther 2016; 159:66-82. [PMID: 26808167 DOI: 10.1016/j.pharmthera.2016.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β3-Adrenoceptor agonists were originally considered as a promising drug class for the treatment of obesity and/or type 2 diabetes. When these development efforts failed, they were repositioned for the treatment of the overactive bladder syndrome. Based on the example of the β3-adrenoceptor agonist mirabegron, but also taking into consideration evidence obtained with ritobegron and solabegron, we discuss challenges facing a translational pharmacology program accompanying clinical drug development for a first-in-class molecule. Challenges included generic ones such as ligand selectivity, species differences and drug target gene polymorphisms. Challenges that are more specific included changing concepts of the underlying pathophysiology of the target condition while clinical development was under way; moreover, a paucity of public domain tools for the study of the drug target and aspects of receptor agonists as drugs had to be addressed. Nonetheless, a successful first-in-class launch was accomplished. Looking back at this translational pharmacology program, we conclude that a specifically tailored and highly flexible approach is required. However, several of the lessons learned may also be applicable to translational pharmacology programs in other indications.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| | - Cees Korstanje
- Department of Drug Discovery Science & Management-Europe, Astellas Pharma Europe R&D, Leiden, The Netherlands
| |
Collapse
|
14
|
Mukherjee J, Baranwal A, Schade KN. Classification of Therapeutic and Experimental Drugs for Brown Adipose Tissue Activation: Potential Treatment Strategies for Diabetes and Obesity. Curr Diabetes Rev 2016; 12:414-428. [PMID: 27183844 PMCID: PMC5425649 DOI: 10.2174/1573399812666160517115450] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Increasing efforts are being made towards pharmacologic activation of brown adipose tissue (BAT) in animals and humans for potential use in the treatment of obesity and diabetes. We and others have reported a number of animal studies using either experimental or therapeutic drugs. There are now efforts to translate these findings to human studies. The goal of this review is to evaluate the various drugs currently being used that have the potential for BAT activation. METHODS Drugs were classified into 4 classes based on their mechanism of action. Class 1 drugs include the use of β3 adrenoceptor agonists for BAT activation. Class 2 drugs include drugs that affect norepinephrine levels and activate BAT with the potential of reducing obesity. Class 3 includes activators of peroxisome proliferator-activated receptor-γ in pursuit of lowering blood sugar, weight loss and diabetes and finally Class 4 includes natural products and other emerging drugs with limited information on BAT activation and their effects on diabetes and weight loss. RESULTS Class 1 drugs are high BAT activators followed by Class 2 and 3. Some of these drugs have now been extended to diabetes and obesity animal models and human BAT studies. Drugs in Class 3 are used clinically for Type 2 diabetes, but the extent of BAT involvement is unclear. CONCLUSION Further studies on the efficacy of these drugs in diabetes and measuring their effects on BAT activation using noninvasive imaging will help in establishing a clinical role of BAT.
Collapse
Affiliation(s)
- Jogeshwar Mukherjee
- B140 Medical Sciences, Department of Radiological Sciences, University of California - Irvine, Irvine, CA 92697-5000, USA.
| | | | | |
Collapse
|
15
|
Synthesis and biological evaluation of 99mTc-labetalol for β1-adrenoceptor-mediated cardiac imaging. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4622-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Alleman RJ, Stewart LM, Tsang AM, Brown DA. Why Does Exercise "Trigger" Adaptive Protective Responses in the Heart? Dose Response 2015; 13:10.2203_dose-response.14-023.Alleman. [PMID: 26674259 PMCID: PMC4674163 DOI: 10.2203/dose-response.14-023.alleman] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Numerous epidemiological studies suggest that individuals who exercise have decreased cardiac morbidity and mortality. Pre-clinical studies in animal models also find clear cardioprotective phenotypes in animals that exercise, specifically characterized by lower myocardial infarction and arrhythmia. Despite the clear benefits, the underlying cellular and molecular mechanisms that are responsible for exercise preconditioning are not fully understood. In particular, the adaptive signaling events that occur during exercise to "trigger" cardioprotection represent emerging paradigms. In this review, we discuss recent studies that have identified several different factors that appear to initiate exercise preconditioning. We summarize the evidence for and against specific cellular factors in triggering exercise adaptations and identify areas for future study.
Collapse
Affiliation(s)
- Rick J Alleman
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| | - Luke M Stewart
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| | - Alvin M Tsang
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| | - David A Brown
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville NC USA
| |
Collapse
|
17
|
Ellsworth P, Fantasia J. Solabegron: a potential future addition to the β-3 adrenoceptor agonist armamentarium for the management of overactive bladder. Expert Opin Investig Drugs 2015; 24:413-9. [DOI: 10.1517/13543784.2015.1001836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Cox SS, Speaker KJ, Beninson LA, Craig WC, Paton MM, Fleshner M. Adrenergic and glucocorticoid modulation of the sterile inflammatory response. Brain Behav Immun 2014; 36:183-92. [PMID: 24321216 DOI: 10.1016/j.bbi.2013.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 12/25/2022] Open
Abstract
Exposure to an intense, acute stressor, in the absence of a pathogen, alters immune function. Exposure to a single bout of inescapable tail shock increases plasma and tissue concentrations of cytokines, chemokines, and the danger associated molecular pattern (DAMP) Hsp72. Although previous studies have demonstrated that adrenergic receptor (ADR) and glucocorticoid receptor (GCR)-mediated pathways alter pathogen or microbial associated molecular pattern (MAMP)-evoked levels of cytokines, chemokines, and Hsp72, far fewer studies have tested the role of these receptors across multiple inflammatory proteins or tissues to elucidate the differences in magnitude of stress-evoked sterile inflammatory responses. The goals of the current study were to (1) compare the sterile inflammatory response in the circulation, liver, spleen, and subcutaneous (SQ) adipose tissue by measuring cytokine, chemokine, and DAMP (Hsp72) responses; and (2) to test the role of alpha-1 (α1), beta-1 (β1), beta-2 (β2), and beta-3 (β3) ADRs, as well as GCRs in signaling the sterile inflammatory response. The data presented indicate plasma and SQ adipose are significantly more stress responsive than the liver and spleen. Further, administration of ADR and GCR-specific antagonists revealed both similarities and differences in the signaling mechanisms of the sterile inflammatory response in the tissues studied. Finally, given the selective increase in the chemokine monocyte chemotactic protein-1 (MCP-1) in SQ tissue, it may be that SQ adipose is an important site of leukocyte migration, possibly in preparation for infection as a consequence of wounding. The current study helps further our understanding of the tissue-specific differences of the stress-induced sterile inflammatory response.
Collapse
Affiliation(s)
- Stewart S Cox
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Kristin J Speaker
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Lida A Beninson
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Wendy C Craig
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Madeline M Paton
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado, Boulder, United States; Center for Neuroscience, University of Colorado, Boulder, United States.
| |
Collapse
|
19
|
Mirbolooki MR, Upadhyay SK, Constantinescu CC, Pan ML, Mukherjee J. Adrenergic pathway activation enhances brown adipose tissue metabolism: a [¹⁸F]FDG PET/CT study in mice. Nucl Med Biol 2013; 41:10-6. [PMID: 24090673 DOI: 10.1016/j.nucmedbio.2013.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Pharmacologic approaches to study brown adipocyte activation in vivo with a potential of being translational to humans are desired. The aim of this study was to examine pre- and postsynaptic targeting of adrenergic system for enhancing brown adipose tissue (BAT) metabolism quantifiable by [(18)F]fluoro-2-deoxyglucose ([(18)F]FDG) positron emission tomography (PET)/computed tomography (CT) in mice. METHODS A β₃-adrenoreceptor selective agonist (CL 316243), an adenylyl cyclase enzyme activator (forskolin) and a potent blocker of presynaptic norepinephrine transporter (atomoxetine), were injected through the tail vein of Swiss Webster mice 30 minutes before intravenous (iv) administration of [(18)F]FDG. The mice were placed on the PET/CT bed for 30 min PET acquisition followed by 10 min CT acquisition for attenuation correction and anatomical delineation of PET images. RESULTS Activated interscapular (IBAT), cervical, periaortic and intercostal BAT were observed in 3-dimentional analysis of [(18)F]FDG PET images. CL 316243 increased the total [(18)F]FDG standard uptake value (SUV) of IBAT 5-fold greater compared to that in placebo-treated mice. It also increased the [(18)F]FDG SUV of white adipose tissue (2.4-fold), and muscle (2.7-fold), as compared to the control. There was no significant difference in heart, brain, spleen and liver uptakes between groups. Forskolin increased [(18)F]FDG SUV of IBAT 1.9-fold greater than that in placebo-treated mice. It also increased the [(18)F]FDG SUV of white adipose tissue (2.2-fold) and heart (5.4-fold) compared to control. There was no significant difference in muscle, brain, spleen, and liver uptakes between groups. Atomoxetine increased [(18)F]FDG SUV of IBAT 1.7-fold greater than that in placebo-treated mice. There were no significant differences in all other organs compared to placebo-treated mice except liver (1.6 fold increase). A positive correlation between SUV levels of IBAT and CT Hounsfield unit (HU) (R(2)=0.55, p<0.001) and between CT HU levels of IBAT and liver (R(2)=0.69, p<0.006) was observed. CONCLUSIONS The three pharmacologic approaches reported here enhanced BAT metabolism by targeting different sites in adrenergic system as measured by [(18)F]FDG PET/CT.
Collapse
Affiliation(s)
- M Reza Mirbolooki
- Preclinical Imaging, Department of Radiological Sciences, Medical Sciences B-138, University of California, Irvine, CA 92697-5000, USA
| | | | | | | | | |
Collapse
|
20
|
Andersson KE, Martin N, Nitti V. Selective β3-Adrenoceptor Agonists for the Treatment of Overactive Bladder. J Urol 2013; 190:1173-80. [DOI: 10.1016/j.juro.2013.02.104] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Nancy Martin
- Astellas Scientific and Medical Affairs, Northbrook, Illinois
| | - Victor Nitti
- New York University Urology Associates, New York, New York
| |
Collapse
|
21
|
Agonist-induced desensitization of human β3-adrenoceptors expressed in human embryonic kidney cells. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:843-51. [PMID: 23756578 DOI: 10.1007/s00210-013-0891-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/31/2013] [Indexed: 01/08/2023]
Abstract
β3-Adrenoceptors are resistant to agonist-induced desensitization in some cell types but susceptible in others including transfected human embryonic kidney (HEK) cells. Therefore, we have studied cellular and molecular changes involved in agonist-induced β3-adrenoceptor desensitization in HEK cells. Cells were treated with isoprenaline or forskolin, and following wash-out, cyclic adenosine monophosphate (cAMP) accumulation in response to freshly added agonist was quantified. Receptor and G protein expression were quantified by radioligand binding and immunoblot experiments, respectively. Treatment with isoprenaline induced a concentration- and time-dependent desensitization of cAMP accumulation in response to freshly added isoprenaline. This functional desensitization primarily consisted of reduced maximum responses with little change of agonist potency. Maximum desensitization was achieved by pre-treatment with 10 μM isoprenaline for 24 h. It was not accompanied by changes in β3-adrenoceptor density as assessed in saturation radioligand-binding studies. The desensitization was associated with a small reduction in immunoreactivity for α-subunits for Gs and Gi1, whereas that for Gi2, Gi3, and Gq/11 was not significantly altered. In cells treated with pertussis toxin, isoprenaline-induced cAMP accumulation as well as desensitization by isoprenaline pre-treatment remained unchanged. Isoprenaline pre-treatment also reduced forskolin-induced cAMP accumulation; conversely, pre-treatment with forskolin caused a similar desensitization of isoprenaline-induced cAMP accumulation. We conclude that agonist-induced β3-adrenoceptor desensitization in HEK cells does not involve reduced receptor numbers and small, if any, reduction of Gs expression; changes at the level of adenylyl cyclase function can fully explain this desensitization.
Collapse
|
22
|
Ladage D, Schwinger RHG, Brixius K. Cardio-selective beta-blocker: pharmacological evidence and their influence on exercise capacity. Cardiovasc Ther 2012; 31:76-83. [PMID: 22279967 DOI: 10.1111/j.1755-5922.2011.00306.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
For the past 40 years, beta-blockers have been widely used in cardiovascular medicine, reducing morbidity as well as mortality. Beta-blockers are currently used in a number of cardiovascular conditions such as systolic heart failure, postmyocardial infarction, and in prevention and treatment of arrhythmias. They are not recommended as the first line antihypertensive therapy, particularly in the elderly, unless there are specific indications. Despite the benefits of beta-blockers, tolerability concerns in patients with co-morbidities have limited their use. Some of these problems were overcome with the discovery of cardioselective beta-blockers. The third generation beta-blockers have additional properties of vasodilatation and advantages in terms of minimizing the adverse effects of beta-blockers. Some of the advantages include improvement of insulin resistance, decrease in cholesterol as well as alleviation of erectile dysfunction. Acute treatment with beta-blockers modifies local muscular metabolic properties and impairs endurance exercise capacity whereas the influence of chronic is debated controversially.
Collapse
Affiliation(s)
- Dennis Ladage
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiology and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | | | | |
Collapse
|
23
|
Giltrow E, Eccles PD, Hutchinson TH, Sumpter JP, Rand-Weaver M. Characterisation and expression of β1-, β2- and β3-adrenergic receptors in the fathead minnow (Pimephales promelas). Gen Comp Endocrinol 2011; 173:483-90. [PMID: 21827763 DOI: 10.1016/j.ygcen.2011.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 01/18/2023]
Abstract
Complimentary DNAs for three beta-adrenergic receptors (βARs) were isolated and characterised in the fathead minnow. The encoded proteins of 402 (β(1)AR), 397 (β(2)AR) and 434 (β(3)AR) amino acids were homologous to other vertebrate βARs, and displayed the characteristic seven transmembrane helices of G Protein-coupled receptors. Motifs and amino acids shown to be important for ligand binding were conserved in the fathead minnow receptors. Quantitative RT-PCR revealed the expression of all receptors to be highest in the heart and lowest in the ovary. However, the β(1)AR was the predominant subtype in the heart (70%), and β(3)AR the predominant subtype in the ovary (53%). In the brain, β(1)AR expression was about 200-fold higher than that of β(2)- and β(3)AR, whereas in the liver, β(2)AR expression was about 20-fold and 100-fold higher than β(3)- and β(1)AR expression, respectively. Receptor gene expression was modulated by exposure to propranolol (0.001-1mg/L) for 21 days, but not in a consistent, concentration-related manner. These results show that the fathead minnow has a beta-adrenergic receptor repertoire similar to that of mammals, with the molecular signatures required for ligand binding. An exogenous ligand, the beta-blocker propranolol, is able to alter the expression profile of these receptors, although the functional relevance of such changes remains to be determined. Characterisation of the molecular targets for beta-blockers in fish will aid informed environmental risk assessments of these drugs, which are known to be present in the aquatic environment.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Binding Sites
- Cyprinidae/metabolism
- DNA, Complementary/chemistry
- Female
- Phylogeny
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Adrenergic, beta-3/chemistry
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/physiology
- Sequence Alignment
- Sequence Analysis, Protein
Collapse
Affiliation(s)
- Emma Giltrow
- Institute for the Environment, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Yu J, Li W, Li Y, Zhao J, Wang L, Dong D, Pan Z, Yang B. Activation of β(3)-adrenoceptor promotes rapid pacing-induced atrial electrical remodeling in rabbits. Cell Physiol Biochem 2011; 28:87-96. [PMID: 21865851 DOI: 10.1159/000331717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2011] [Indexed: 01/24/2023] Open
Abstract
Cardiac electrophysiological function is under the regulatory control of the sympathetic nervous system. In addition to classical β-adrenoceptors (β-AR, including β(1)- and β(2)- subtypes), β(3)-AR is also expressed in human heart and shows its distinctive functions. This study is aimed to elucidate the role of β(3)-AR in the regulation of atrial fibrillation (AF), especially its role in rapid pacing-induced atrial electrical remodeling in rabbits. The rapid atrial pacing model was established by embedding electrodes in the right atrium pacing at a speed of 600 beats per minute. The protein level of β(3)-AR in the atria was found significantly upregulated by western blot. The atrial effective refractory period (AERP) and its rate adaptation were decreased after pacing which were further shortened by BRL37344, a selective β(3)-AR agonist, leading to the increase of AF inducibility and duration. Similarly, β(3)-AR activation induced time-dependent shortening of action potential duration (APD), together with decrease of L-type calcium current (I(Ca,L)) and increase of inward rectifier potassium current (I(K1)) and transient outward potassium current (I(to)) in rapid pacing atrial myocytes. Meanwhile, all the effects were abolished by specific β(3)-AR antagonist, SR59230A. In summary, our study represents that activation of β(3)-AR promotes the atrial electrical remodeling process by altering the balance of ion channels in atrial myocytes, which provides new insights into the pharmacological role of β(3)-AR in heart diseases.
Collapse
Affiliation(s)
- Jiahui Yu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, RP China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Baker JG, Hill SJ, Summers RJ. Evolution of β-blockers: from anti-anginal drugs to ligand-directed signalling. Trends Pharmacol Sci 2011; 32:227-34. [PMID: 21429598 PMCID: PMC3081074 DOI: 10.1016/j.tips.2011.02.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 01/14/2023]
Abstract
Sir James Black developed β-blockers, one of the most useful groups of drugs in use today. Not only are they being used for their original purpose to treat angina and cardiac arrhythmias, but they are also effective therapeutics for hypertension, cardiac failure, glaucoma, migraine and anxiety. Recent studies suggest that they might also prove useful in diseases as diverse as osteoporosis, cancer and malaria. They have also provided some of the most useful tools for pharmacological research that have underpinned the development of concepts such as receptor subtype selectivity, agonism and inverse agonism, and ligand-directed signalling bias. This article examines how β-blockers have evolved and indicates how they might be used in the future.
Collapse
Affiliation(s)
- Jillian G. Baker
- Institute of Cell Signalling, School of Biomedical Sciences, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J. Hill
- Institute of Cell Signalling, School of Biomedical Sciences, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Roger J. Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 399, Royal Parade, Parkville, Vic 3052, Australia
| |
Collapse
|