1
|
Hollenhorst MI, Husnik T, Zylka M, Duda N, Flockerzi V, Tschernig T, Maxeiner S, Krasteva-Christ G. Human airway tuft cells influence the mucociliary clearance through cholinergic signalling. Respir Res 2023; 24:267. [PMID: 37925434 PMCID: PMC10625704 DOI: 10.1186/s12931-023-02570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Airway tuft cells, formerly called brush cells have long been described only morphologically in human airways. More recent RNAseq studies described a chemosensory cell population, which includes tuft cells, by a distinct gene transcription signature. Yet, until which level in the tracheobronchial tree in native human airway epithelium tuft cells occur and if they function as regulators of innate immunity, e.g., by regulating mucociliary clearance, remained largely elusive. METHODS We performed immunohistochemistry, RT-PCR and immunoblotting analyses for various tuft cell markers to confirm the presence of this cell type in human tracheal samples. Immunohistochemistry was conducted to study the distribution of tuft cells along the intrapulmonary airways in humans. We assessed the influence of bitter substances and the taste transduction pathway on mucociliary clearance in mouse and human tracheal samples by measuring particle transport speed. RESULTS Tuft cells identified by the expression of their well-established marker POU class 2 homeobox 3 (POU2F3) were present from the trachea to the bronchioles. We identified choline acetyltransferase in POU2F3 expressing cells as well as the transient receptor potential melastatin 5 (TRPM5) channel in a small population of tracheal epithelial cells with morphological appearance of tuft cells. Application of bitter substances, such as denatonium, led to an increase in mucociliary clearance in human tracheal preparations. This was dependent on activation of the TRPM5 channel and involved cholinergic and nitric oxide signalling, indicating a functional role for human tuft cells in the regulation of mucociliary clearance. CONCLUSIONS We were able to detect tuft cells in the tracheobronchial tree down to the level of the bronchioles. Moreover, taste transduction and cholinergic signalling occur in the same cells and regulate mucociliary clearance. Thus, tuft cells are potentially involved in the regulation of innate immunity in human airways.
Collapse
Affiliation(s)
| | - Thomas Husnik
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Malin Zylka
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Nele Duda
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling, Saarland University, Homburg, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | | |
Collapse
|
2
|
Perniss A, Boonen B, Tonack S, Thiel M, Poharkar K, Alnouri MW, Keshavarz M, Papadakis T, Wiegand S, Pfeil U, Richter K, Althaus M, Oberwinkler J, Schütz B, Boehm U, Offermanns S, Leinders-Zufall T, Zufall F, Kummer W. A succinate/SUCNR1-brush cell defense program in the tracheal epithelium. SCIENCE ADVANCES 2023; 9:eadg8842. [PMID: 37531421 PMCID: PMC10396310 DOI: 10.1126/sciadv.adg8842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Host-derived succinate accumulates in the airways during bacterial infection. Here, we show that luminal succinate activates murine tracheal brush (tuft) cells through a signaling cascade involving the succinate receptor 1 (SUCNR1), phospholipase Cβ2, and the cation channel transient receptor potential channel subfamily M member 5 (TRPM5). Stimulated brush cells then trigger a long-range Ca2+ wave spreading radially over the tracheal epithelium through a sequential signaling process. First, brush cells release acetylcholine, which excites nearby cells via muscarinic acetylcholine receptors. From there, the Ca2+ wave propagates through gap junction signaling, reaching also distant ciliated and secretory cells. These effector cells translate activation into enhanced ciliary activity and Cl- secretion, which are synergistic in boosting mucociliary clearance, the major innate defense mechanism of the airways. Our data establish tracheal brush cells as a central hub in triggering a global epithelial defense program in response to a danger-associated metabolite.
Collapse
Affiliation(s)
- Alexander Perniss
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Brett Boonen
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sarah Tonack
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Moritz Thiel
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Krupali Poharkar
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Maryam Keshavarz
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Tamara Papadakis
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Silke Wiegand
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Uwe Pfeil
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University, Giessen, Germany
| | - Mike Althaus
- Physiology Group, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Johannes Oberwinkler
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Stefan Offermanns
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus Liebig University Giessen; Giessen, Germany
- Excellence Cluster The Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Hollenhorst MI, Kumar P, Zimmer M, Salah A, Maxeiner S, Elhawy MI, Evers SB, Flockerzi V, Gudermann T, Chubanov V, Boehm U, Krasteva-Christ G. Taste Receptor Activation in Tracheal Brush Cells by Denatonium Modulates ENaC Channels via Ca2+, cAMP and ACh. Cells 2022; 11:cells11152411. [PMID: 35954259 PMCID: PMC9367940 DOI: 10.3390/cells11152411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
Mucociliary clearance is a primary defence mechanism of the airways consisting of two components, ciliary beating and transepithelial ion transport (ISC). Specialised chemosensory cholinergic epithelial cells, named brush cells (BC), are involved in regulating various physiological and immunological processes. However, it remains unclear if BC influence ISC. In murine tracheae, denatonium, a taste receptor agonist, reduced basal ISC in a concentration-dependent manner (EC50 397 µM). The inhibition of bitter taste signalling components with gallein (Gβγ subunits), U73122 (phospholipase C), 2-APB (IP3-receptors) or with TPPO (Trpm5, transient receptor potential-melastatin 5 channel) reduced the denatonium effect. Supportively, the ISC was also diminished in Trpm5−/− mice. Mecamylamine (nicotinic acetylcholine receptor, nAChR, inhibitor) and amiloride (epithelial sodium channel, ENaC, antagonist) decreased the denatonium effect. Additionally, the inhibition of Gα subunits (pertussis toxin) reduced the denatonium effect, while an inhibition of phosphodiesterase (IBMX) increased and of adenylate cyclase (forskolin) reversed the denatonium effect. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh172 and the KCNQ1 potassium channel antagonist chromanol 293B both reduced the denatonium effect. Thus, denatonium reduces ISC via the canonical bitter taste signalling cascade leading to the Trpm5-dependent nAChR-mediated inhibition of ENaC as well as Gα signalling leading to a reduction in cAMP-dependent ISC. Therefore, BC activation contributes to the regulation of fluid homeostasis.
Collapse
Affiliation(s)
| | - Praveen Kumar
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Maxim Zimmer
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Alaa Salah
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | | | - Saskia B. Evers
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Centre for Molecular Signalling, Saarland University, 66421 Homburg, Germany
| | - Thomas Gudermann
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University and German Centre for Lung Research (DZL), 80366 Munich, Germany
| | - Vladimir Chubanov
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University and German Centre for Lung Research (DZL), 80366 Munich, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Centre for Molecular Signalling, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-16-26101
| |
Collapse
|
4
|
Saitoh D, Kawaguchi K, Asano S, Inui T, Marunaka Y, Nakahari T. Enhancement of airway ciliary beating mediated via voltage-gated Ca 2+ channels/α7-nicotinic receptors in mice. Pflugers Arch 2022; 474:1091-1106. [PMID: 35819489 DOI: 10.1007/s00424-022-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Acetylcholine (ACh), which activates muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs), enhances airway ciliary beating by increasing the intracellular Ca2+ concentration ([Ca2+]i). The mechanisms enhancing airway ciliary beating by nAChRs have remained largely unknown, although those by mAChRs are well understood. In this study, we focused on the effects of α7-nAChRs and voltage-gated Ca2+ channels (CaVs) on the airway ciliary beating. The activities of ciliary beating were assessed by frequency (CBF, ciliary beat frequency) and amplitude (CBD, ciliary bend distance) measured by high-speed video microscopy. ACh enhanced CBF and CBD by 25% mediated by an [Ca2+]i increase stimulated by mAChRs and α7-nAChRs (a subunit of nAChR) in airway ciliary cells of mice. Experiments using PNU282987 (an agonist of α7-nAChR) and MLA (an inhibitor of α7-nAChR) revealed that CBF and CBD enhanced by α7-nAChR are approximately 50% of those enhanced by ACh. CBF, CBD, and [Ca2+]i enhanced by α7-nAChRs were inhibited by nifedipine, suggesting activation of CaVs by α7-nAChRs. Experiments using a high K+ solution with/without nifedipine (155.5 mM K+) showed that the activation of CaVs enhances CBF and CBD via an [Ca2+]i increase. Immunofluorescence and immunoblotting studies demonstrated that Cav1.2 and α7-nAChR are expressed in airway cilia. Moreover, IL-13 stimulated MLA-sensitive increases in CBF and CBD in airway ciliary cells, suggesting an autocrine regulation of ciliary beating by CaV1.2/α7-nAChR/ACh. In conclusion, a novel Ca2+ signalling pathway in airway cilia, CaV1.2/α7-nAChR, enhances CBF and CBD and activates mucociliary clearance maintaining healthy airways.
Collapse
Affiliation(s)
- Daichi Saitoh
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kotoku Kawaguchi
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Shinji Asano
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Department of Molecular Physiology, Faculty of Pharmacy, BKC, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Inui
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Takashi Nakahari
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC Ritsumeikan University, Kusatsu, 525-8577, Japan.
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan.
| |
Collapse
|
5
|
Liu L, Yamamoto A, Yamaguchi M, Taniguchi I, Nomura N, Nakakuki M, Kozawa Y, Fukuyasu T, Higuchi M, Niwa E, Tamada T, Ishiguro H. Bicarbonate transport of airway surface epithelia in luminally perfused mice bronchioles. J Physiol Sci 2022; 72:4. [PMID: 35196991 PMCID: PMC10717372 DOI: 10.1186/s12576-022-00828-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/14/2022] [Indexed: 01/06/2023]
Abstract
HCO3- secretion in distal airways is critical for airway mucosal defense. HCO3-/H+ transport across the apical membrane of airway surface epithelial cells was studied by measuring intracellular pH in luminally microperfused freshly dissected mice bronchioles. Functional studies demonstrated that CFTR, ENaC, Cl--HCO3- exchange, Na+-H+ exchange, and Na+-HCO3- cotransport are involved in apical HCO3-/H+ transport. RT-PCR of isolated bronchioles detected fragments from Cftr, α, β, γ subunits of ENaC, Ae2, Ae3, NBCe1, NBCe2, NBCn1, NDCBE, NBCn2, Nhe1, Nhe2, Nhe4, Nhe5, Slc26a4, Slc26a6, and Slc26a9. We assume that continuous decline of intracellular pH following alkaline load demonstrates time course of HCO3- secretion into the lumen which is perfused with a HCO3--free solution. Forskolin-stimulated HCO3- secretion was substantially inhibited by luminal application of CFTRinh-172 (5 μM), H2DIDS (200 μM), and amiloride (1 μM). In bronchioles from a cystic fibrosis mouse model, basal and acetylcholine-stimulated HCO3- secretion was substantially impaired, but forskolin transiently accelerated HCO3- secretion of which the magnitude was comparable to wild-type bronchioles. In conclusion, we have characterized apical HCO3-/H+ transport in native bronchioles. We have demonstrated that cAMP-mediated and Ca2+-mediated pathways are involved in HCO3- secretion and that apical HCO3- secretion is largely mediated by CFTR and H2DIDS-sensitive Cl--HCO3- exchanger, most likely Slc26a9. The impairment of HCO3- secretion in bronchioles from a cystic fibrosis mouse model may be related to the pathogenesis of early lung disease in cystic fibrosis.
Collapse
Affiliation(s)
- Libin Liu
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiko Yamamoto
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Yamaguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itsuka Taniguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nao Nomura
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyuki Nakakuki
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Kozawa
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Fukuyasu
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Higuchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Erina Niwa
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Research Center of Health, Physical Fitness, and Sports, Nagoya University, Furo-cho E5-2 (130), Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
6
|
Hollenhorst MI, Krasteva-Christ G. Nicotinic Acetylcholine Receptors in the Respiratory Tract. Molecules 2021; 26:6097. [PMID: 34684676 PMCID: PMC8539672 DOI: 10.3390/molecules26206097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are widely distributed in neuronal and non-neuronal tissues, where they play diverse physiological roles. In this review, we highlight the recent findings regarding the role of nAChR in the respiratory tract with a special focus on the involvement of nAChR in the regulation of multiple processes in health and disease. We discuss the role of nAChR in mucociliary clearance, inflammation, and infection and in airway diseases such as asthma, chronic obstructive pulmonary disease, and cancer. The subtype diversity of nAChR enables differential regulation, making them a suitable pharmaceutical target in many diseases. The stimulation of the α3β4 nAChR could be beneficial in diseases accompanied by impaired mucociliary clearance, and the anti-inflammatory effect due to an α7 nAChR stimulation could alleviate symptoms in diseases with chronic inflammation such as chronic obstructive pulmonary disease and asthma, while the inhibition of the α5 nAChR could potentially be applied in non-small cell lung cancer treatment. However, while clinical studies targeting nAChR in the airways are still lacking, we suggest that more detailed research into this topic and possible pharmaceutical applications could represent a valuable tool to alleviate the symptoms of diverse airway diseases.
Collapse
|
7
|
Di Maro M, Cataldi M, Santillo M, Chiurazzi M, Damiano S, De Conno B, Colantuoni A, Guida B. The Cholinergic and ACE-2-Dependent Anti-Inflammatory Systems in the Lung: New Scenarios Emerging From COVID-19. Front Physiol 2021; 12:653985. [PMID: 34054572 PMCID: PMC8155253 DOI: 10.3389/fphys.2021.653985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
The renin angiotensin system and the cholinergic anti-inflammatory pathway have been recently shown to modulate lung inflammation in patients with COVID-19. We will show how studies performed on this disease are starting to provide evidence that these two anti-inflammatory systems may functionally interact with each other, a mechanism that could have a more general physiological relevance than only COVID-19 infection.
Collapse
Affiliation(s)
- Martina Di Maro
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Mauro Cataldi
- Department of Neuroscience, Reproductive Sciences and Dentistry, Division of Pharmacology, University of Naples Federico II, Naples, Italy
| | - Mariarosaria Santillo
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Martina Chiurazzi
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Simona Damiano
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Barbara De Conno
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Kumar P, Scholze P, Fronius M, Krasteva-Christ G, Hollenhorst MI. Nicotine stimulates ion transport via metabotropic β4 subunit containing nicotinic ACh receptors. Br J Pharmacol 2020; 177:5595-5608. [PMID: 32959891 PMCID: PMC7707097 DOI: 10.1111/bph.15270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Mucociliary clearance is an innate immune process of the airways, essential for removal of respiratory pathogens. It depends on ciliary beat and ion and fluid homeostasis of the epithelium. We have shown that nicotinic ACh receptors (nAChRs) activate ion transport in mouse tracheal epithelium. Yet the receptor subtypes and signalling pathways involved remained unknown. Experimental Approach Transepithelial short circuit currents (ISC) of freshly isolated mouse tracheae were recorded using the Ussing chamber technique. Changes in [Ca2+]i were studied on freshly dissociated mouse tracheal epithelial cells. Key Results Apical application of the nAChR agonist nicotine transiently increased ISC. The nicotine effect was abolished by the nAChR antagonist mecamylamine. α‐Bungarotoxin (α7 antagonist) had no effect. The agonists epibatidine (α3β2, α4β2, α4β4 and α3β4) and A‐85380 (α4β2 and α3β4) increased ISC. The antagonists dihydro‐β‐erythroidine (α4β2, α3β2, α4β4 and α3β4), α‐conotoxin MII (α3β2) and α‐conotoxin PnIA (α3β2) reduced the nicotine effect. Nicotine‐ and epibatidine‐induced currents were unaltered in β2−/−mice, but in β4−/− mice no increase was observed. In the presence of thapsigargin (endoplasmatic reticulum Ca2+‐ATPase inhibitor) or the ryanodine receptor antagonists JTV‐519 and dantrolene there was a reduction in the nicotine‐effect, indicating involvement of Ca2+ release from intracellular stores. Additionally, the PKA inhibitor H‐89 and the TMEM16A (Ca2+‐activated chloride channel) inhibitor T16Ainh‐A01 significantly reduced the nicotine‐effect. Conclusion and Implications α3β4 nAChRs are responsible for the nicotine‐induced current changes via Ca2+ release from intracellular stores, PKA and ryanodine receptor activation. These nAChRs might be possible targets to stimulate chloride transport via TMEM16A.
Collapse
Affiliation(s)
- Praveen Kumar
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martin Fronius
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
9
|
Lü S, Jiang M, Tian X, Hong S, Zhang J, Zhang Y. Characterization of an A-Type Muscarinic Acetylcholine Receptor and Its Possible Non-neuronal Role in the Oriental Armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae). Front Physiol 2020; 11:400. [PMID: 32425811 PMCID: PMC7203735 DOI: 10.3389/fphys.2020.00400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Muscarinic acetylcholine receptor (mAChR) regulates many neurophysiological functions in insects. In this report, a full-length cDNA encoding an A-type mAChR was cloned from the oriental armyworm, Mythimna separata. Pharmacological properties studies revealed that nanomolar to micromolar concentrations of carbachol or muscarine induced an increase of intracellular Ca2+ concentration ([Ca2+] i ), with the EC50 values of 124.6 and 388.1 nM, respectively. The increases of [Ca2+] i can be greatly blocked by the antagonist atropine, with an IC50 value of 0.09 nM. The receptor mRNA is expressed in all developmental stages, with great differential expression between male and female adults. The tissue expression analysis identified novel target tissues for this receptor, including ovaries and Malpighian tubules. The distribution of Ms A-type mAChR protein in the male brain may suggest the neurophysiological roles that are mediated by this receptor. However, the receptor protein was found to be distributed on the membranes of oocytes that are not innervated by neurons at all. These results indicate that Ms A-type mAChR selectively mediates intracellular Ca2+ mobilization. And the high level of receptor protein in the membrane of oocytes may indicate a possible non-neuronal role of A-type mAChR in the reproductive system of M. separata.
Collapse
Affiliation(s)
- Shumin Lü
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Ming Jiang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Xing Tian
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Shanwang Hong
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Junwei Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, National Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
10
|
Perniss A, Latz A, Boseva I, Papadakis T, Dames C, Meisel C, Meisel A, Scholze P, Kummer W, Krasteva-Christ G. Acute nicotine administration stimulates ciliary activity via α3β4 nAChR in the mouse trachea. Int Immunopharmacol 2020; 84:106496. [PMID: 32304995 DOI: 10.1016/j.intimp.2020.106496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022]
Abstract
Mucociliary clearance, the continuous removal of mucus-trapped particles by cilia-driven directed transport of the airway lining fluid, is the primary innate defense mechanism of the airways. It is potently activated by acetylcholine (ACh) addressing muscarinic receptors with a currently less defined role of nicotinic ACh receptors (nAChR). We here set out to determine their contribution in driving ciliary activity in an explanted mouse trachea preparation utilizing selected agonists and antagonists and nAChR-subunit deficient mice. Nicotine (100 µM) induced an increase in ciliary beat frequency, accompanied by a sharp, but not long lasting increase in particle transport speed (PTS) on the mucosal surface showing marked desensitization within the next 30 min. Nicotine-induced PTS acceleration was sensitive to the general nAChR inhibitors mecamylamine and d-tubocurarine as well as to the α3β4-nAChR antagonist α-conotoxin AulB, but not to other antagonists primarily addressing α3β2-nAChR or α4-, α7- and α9-containing nAChR. Agonists at α3β*-nAChR (epibatidine, cytisine), but not cotinine mimicked the effect. Tracheas from mice with genetic deletion of nAChR subunits α5, α7, α9, α10, α9/10, and β2 retained full PTS response to nicotine, whereas this was entirely lost in tracheas from mice lacking the β4-subunit. Collectively, our data show that nicotinic stimulation of α3β4-nAChR acutely increases PTS to the same extent as the established strong activator ATP. In view of the marked desensitization observed in the present setting, the physiological relevance of these receptors in adapting mucociliary clearance to rapidly changing endogenous or environmental stimuli remains open.
Collapse
Affiliation(s)
- Alexander Perniss
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Ariane Latz
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivelina Boseva
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tamara Papadakis
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Claudia Dames
- Charité Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Christian Meisel
- Charité Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Andreas Meisel
- Charité Berlin, Departments of Neurology and Experimental Neurology, NeuroCure Clinical Research Center, Berlin, Germany
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany; Present address: Department of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
11
|
Perniss A, Liu S, Boonen B, Keshavarz M, Ruppert AL, Timm T, Pfeil U, Soultanova A, Kusumakshi S, Delventhal L, Aydin Ö, Pyrski M, Deckmann K, Hain T, Schmidt N, Ewers C, Günther A, Lochnit G, Chubanov V, Gudermann T, Oberwinkler J, Klein J, Mikoshiba K, Leinders-Zufall T, Offermanns S, Schütz B, Boehm U, Zufall F, Bufe B, Kummer W. Chemosensory Cell-Derived Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl Peptides. Immunity 2020; 52:683-699.e11. [DOI: 10.1016/j.immuni.2020.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/25/2019] [Accepted: 03/13/2020] [Indexed: 12/24/2022]
|
12
|
Hollenhorst MI, Jurastow I, Nandigama R, Appenzeller S, Li L, Vogel J, Wiederhold S, Althaus M, Empting M, Altmüller J, Hirsch AKH, Flockerzi V, Canning BJ, Saliba A, Krasteva‐Christ G. Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling. FASEB J 2019; 34:316-332. [DOI: 10.1096/fj.201901314rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Affiliation(s)
| | - Innokentij Jurastow
- Institute of Anatomy and Cell Biology Justus‐Liebig‐University of Giessen Giessen Germany
- Department of Anesthesiology and Intensive Care Medicine (CS) University Hospital Charité Humboldt University of Berlin Berlin Germany
| | - Rajender Nandigama
- Institute of Anatomy and Cell Biology University of Würzburg Würzburg Germany
| | - Silke Appenzeller
- Comprehensive Cancer Centre Mainfranken University of Würzburg Würzburg Germany
| | - Lei Li
- Core Unit SysMed University of Würzburg Würzburg Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA‐based Infection Research (HIRI) Helmholtz‐Centre for Infection Research (HZI) Würzburg Germany
| | - Stephanie Wiederhold
- Institute of Anatomy and Cell Biology Justus‐Liebig‐University of Giessen Giessen Germany
| | - Mike Althaus
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Martin Empting
- Department of Drug Design and Optimization (DDOP) Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)‐Helmholtz Centre for Infection Research (HZI) Saarbrücken Germany
- Department of Pharmacy Saarland University Saarbrücken Germany
- German Centre for Infection Research (DZIF) Saarbrücken Germany
| | - Janine Altmüller
- Cologne Centre for Genomics University of Cologne Cologne Germany
| | - Anna K. H. Hirsch
- Department of Drug Design and Optimization (DDOP) Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)‐Helmholtz Centre for Infection Research (HZI) Saarbrücken Germany
- Department of Pharmacy Saarland University Saarbrücken Germany
- German Centre for Infection Research (DZIF) Saarbrücken Germany
| | - Veit Flockerzi
- Institute of Experimental and Clinical Pharmacology and Toxicology/PZMS Saarland University Homburg Germany
| | - Brendan J. Canning
- Department of Medicine Division of Allergy and Clinical Immunology School of Medicine Johns Hopkins University Baltimore MD USA
| | - Antoine‐Emmanuel Saliba
- Helmholtz Institute for RNA‐based Infection Research (HIRI) Helmholtz‐Centre for Infection Research (HZI) Würzburg Germany
| | | |
Collapse
|
13
|
Chen PX, Zhang YL, Xu JW, Yu MH, Huang JH, Zhao L, Zhou WL. Sodium tanshinone IIA sulfonate stimulated Cl- secretion in mouse trachea. PLoS One 2017; 12:e0178226. [PMID: 28542554 PMCID: PMC5440052 DOI: 10.1371/journal.pone.0178226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Sodium tanshinone IIA sulfonate (STS) is a derivate of tanshinone IIA, a lipophilic compound in Salvia miltiorrhiza. This study aimed to investigate the effect of STS on ion transport in mouse tracheal epithelium and the mechanisms underlying it. Short-circuit current (Isc) was measured to evaluate the effect of STS on transepithelial ion transport. Intracellular Ca2+ imaging was performed to observe intracellular Ca2+ concentration ([Ca2+]i) changes induced by STS in primary cultured mouse tracheal epithelial cells. Results showed that the apical application of STS at mouse trachea elicited an increase of Isc, which was abrogated by atropine, an antagonist of muscarinic acetylcholine receptor (mAChR). By removing ambient Cl− or applying blockers of Ca2+-activated Cl− channel (CaCC), the response of STS-induced Isc was suppressed. Moreover, STS elevated the [Ca2+]i in mouse tracheal epithelial cells. As a result, STS stimulated Cl− secretion in mouse tracheal epithelium via CaCC in an mAChR-dependent way. Due to the critical role of Cl− secretion in airway hydration, our findings suggested that STS may be used to ameliorate the airway dehydration symptom in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Peng-Xiao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ming-Hao Yu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jie-Hong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lei Zhao
- Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Bader S, Lottig L, Diener M. Stimulation of Na + -K + -pump currents by epithelial nicotinic receptors in rat colon. Br J Pharmacol 2017; 174:880-892. [PMID: 28239845 DOI: 10.1111/bph.13761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Acetylcholine-induced epithelial Cl- secretion is generally thought to be mediated by epithelial muscarinic receptors and nicotinic receptors on secretomotor neurons. However, recent data have shown expression of nicotinic receptors by intestinal epithelium and the stimulation of Cl- secretion by nicotine, in the presence of the neurotoxin, tetrodotoxin. Here, we aimed to identify the transporters activated by epithelial nicotinic receptors and to clarify their role in cholinergic regulation of intestinal ion transport. EXPERIMENTAL APPROACH Ussing chamber experiments were performed, using rat distal colon with intact epithelia. Epithelia were basolaterally depolarized to measure currents across the apical membrane. Apically permeabilized tissue was also used to measure currents across the basolateral membrane in the presence of tetrodotoxin. KEY RESULTS Nicotine had no effect on currents through Cl- channels in the apical membrane or on currents through K+ channels in the apical or the basolateral membrane. Instead, nicotine stimulated the Na+ -K+ -pump as indicated by Na+ -dependency and sensitivity of the nicotine-induced current across the basolateral membrane to cardiac steroids. Effects of nicotine were inhibited by nicotinic receptor antagonists such as hexamethonium and mimicked by dimethyl-4-phenylpiperazinium, a chemically different nicotinic agonist. Simultaneous stimulation of epithelial muscarinic and nicotinic receptors led to a strong potentiation of transepithelial Cl- secretion. CONCLUSIONS AND IMPLICATIONS These results suggest a novel concept for the cholinergic regulation of transepithelial ion transport by costimulation of muscarinic and nicotinic epithelial receptors and a unique role of nicotinic receptors controlling the activity of the Na+ -K+ -ATPase.
Collapse
Affiliation(s)
- Sandra Bader
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Gießen, Germany
| | - Lena Lottig
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Gießen, Germany
| | - Martin Diener
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Gießen, Germany
| |
Collapse
|
15
|
Sasamoto K, Niisato N, Taruno A, Marunaka Y. Simulation of Cl(-) Secretion in Epithelial Tissues: New Methodology Estimating Activity of Electro-Neutral Cl(-) Transporter. Front Physiol 2015; 6:370. [PMID: 26779025 PMCID: PMC4688368 DOI: 10.3389/fphys.2015.00370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022] Open
Abstract
Transcellular Cl− secretion is, in general, mediated by two steps; (1) the entry step of Cl− into the cytosolic space from the basolateral space across the basolateral membrane by Cl− transporters, such as Na+-K+-2Cl− cotransporter (NKCC1, an isoform of NKCC), and (2) the releasing step of Cl− from the cytosolic space into the luminal (air) space across the apical membrane via Cl− channels, such as cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. Transcellular Cl− secretion has been characterized by using various experimental techniques. For example, measurements of short-circuit currents in the Ussing chamber and patch clamp techniques provide us information on transepithelial ion movements via transcellular pathway, transepithelial conductance, activity (open probability) of single channel, and whole cell currents. Although many investigators have tried to clarify roles of Cl− channels and transporters located at the apical and basolateral membranes in transcellular Cl− secretion, it is still unclear how Cl− channels/transporters contribute to transcellular Cl− secretion and are regulated by various stimuli such as Ca2+ and cAMP. In the present study, we simulate transcellular Cl− secretion using mathematical models combined with electrophysiological measurements, providing information on contribution of Cl− channels/transporters to transcellular Cl− secretion, activity of electro-neutral ion transporters and how Cl− channels/transporters are regulated.
Collapse
Affiliation(s)
- Kouhei Sasamoto
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto, Japan
| | - Naomi Niisato
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of MedicineKyoto, Japan; Department of Health and Sports Sciences, Faculty of Health and Medical Sciences, Kyoto Gakuen UniversityKameoka, Japan; Japan Institute for Food Education and Health, St. Agnes' UniversityKyoto, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of MedicineKyoto, Japan; Japan Institute for Food Education and Health, St. Agnes' UniversityKyoto, Japan; Department of Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of MedicineKyoto, Japan
| |
Collapse
|
16
|
Dittrich NP, Kummer W, Clauss WG, Fronius M. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs. Int Immunopharmacol 2015; 29:166-72. [DOI: 10.1016/j.intimp.2015.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/29/2022]
|
17
|
Grando SA, Kawashima K, Kirkpatrick CJ, Kummer W, Wessler I. Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system. Int Immunopharmacol 2015; 29:1-7. [PMID: 26362206 DOI: 10.1016/j.intimp.2015.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
This special issue of International Immunopharmacology is the proceedings of the Fourth International Symposium on Non-neuronal Acetylcholine that was held on August 28-30, 2014 at the Justus Liebig University of Giessen in Germany. It contains original contributions of meeting participants covering the significant progress in understanding of the biological and medical significance of the non-neuronal cholinergic system extending from exciting insights into molecular mechanisms regulating this system via miRNAs over the discovery of novel cholinergic cellular signaling circuitries to clinical implications in cancer, wound healing, immunity and inflammation, cardiovascular, respiratory and other diseases.
Collapse
Affiliation(s)
- Sergei A Grando
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmacy, Tokyo 108-8641, Japan
| | - Charles J Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University, Mainz D-55101, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University, Giessen D-35385, Germany
| | - Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University, Mainz D-55101, Germany
| |
Collapse
|
18
|
Krasteva-Christ G, Soultanova A, Schütz B, Papadakis T, Weiss C, Deckmann K, Chubanov V, Gudermann T, Voigt A, Meyerhof W, Boehm U, Weihe E, Kummer W. Identification of cholinergic chemosensory cells in mouse tracheal and laryngeal glandular ducts. Int Immunopharmacol 2015; 29:158-65. [PMID: 26033492 DOI: 10.1016/j.intimp.2015.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022]
Abstract
Specialized epithelial cells in the respiratory tract such as solitary chemosensory cells and brush cells sense the luminal content and initiate protective reflexes in response to the detection of potentially harmful substances. The majority of these cells are cholinergic and utilize the canonical taste signal transduction cascade to detect "bitter" substances such as bacterial quorum sensing molecules. Utilizing two different mouse strains reporting expression of choline acetyltransferase (ChAT), the synthesizing enzyme of acetylcholine (ACh), we detected cholinergic cells in the submucosal glands of the murine larynx and trachea. These cells were localized in the ciliated glandular ducts and were neither found in the collecting ducts nor in alveolar or tubular segments of the glands. ChAT expression in tracheal gland ducts was confirmed by in situ hybridization. The cholinergic duct cells expressed the brush cell marker proteins, villin and cytokeratin-18, and were immunoreactive for components of the taste signal transduction cascade (Gα-gustducin, transient receptor potential melastatin-like subtype 5 channel = TRPM5, phospholipase C(β2)), but not for carbonic anhydrase IV. Furthermore, these cells expressed the bitter taste receptor Tas2r131, as demonstrated utilizing an appropriate reporter mouse strain. Our study identified a previously unrecognized presumptive chemosensory cell type in the duct of the airway submucosal glands that likely utilizes ACh for paracrine signaling. We propose that these cells participate in infection-sensing mechanisms and initiate responses assisting bacterial clearance from the lower airways.
Collapse
Affiliation(s)
- G Krasteva-Christ
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany; Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany.
| | - A Soultanova
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - B Schütz
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - T Papadakis
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - C Weiss
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - K Deckmann
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - V Chubanov
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Munich, Germany
| | - T Gudermann
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Munich, Germany
| | - A Voigt
- Dept. Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - W Meyerhof
- Dept. Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - U Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - E Weihe
- Institute for Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - W Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
19
|
Kummer W, Krasteva-Christ G. Non-neuronal cholinergic airway epithelium biology. Curr Opin Pharmacol 2014; 16:43-9. [DOI: 10.1016/j.coph.2014.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/26/2014] [Accepted: 03/03/2014] [Indexed: 01/06/2023]
|
20
|
Song P, Rekow SS, Singleton CA, Sekhon HS, Dissen GA, Zhou M, Campling B, Lindstrom J, Spindel ER. Choline transporter-like protein 4 (CTL4) links to non-neuronal acetylcholine synthesis. J Neurochem 2013; 126:451-61. [PMID: 23651124 DOI: 10.1111/jnc.12298] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/26/2023]
Abstract
Synthesis of acetylcholine (ACh) by non-neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na(+) -dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non-neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non-neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter-like proteins, a five gene family choline-transporter like protein (CTL)1-5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na(+) -independent and CTL1-5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non-neuronal cell lines and presents a mechanism to target non-neuronal ACh synthesis without affecting neuronal ACh synthesis.
Collapse
Affiliation(s)
- Pingfang Song
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vanhoutte PM. Airway epithelium-derived relaxing factor: myth, reality, or naivety? Am J Physiol Cell Physiol 2013; 304:C813-20. [PMID: 23325407 DOI: 10.1152/ajpcell.00013.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence of a healthy epithelium can moderate the contraction of the underlying airway smooth muscle. This is, in part, because epithelial cells generate inhibitory messages, whether diffusible substances, electrophysiological signals, or both. The epithelium-dependent inhibitory effect can be tonic (basal), synergistic, or evoked. Rather than a unique epithelium-derived relaxing factor (EpDRF), several known endogenous bronchoactive mediators, including nitric oxide and prostaglandin E2, contribute. The early concept that EpDRF diffuses all the way through the subepithelial layers to directly relax the airway smooth muscle appears unlikely. It is more plausible that the epithelial cells release true messenger molecules, which alter the production of endogenous substances (nitric oxide and/or metabolites of arachidonic acid) by the subepithelial layers. These substances then diffuse to the airway smooth muscle cells, conveying epithelium dependency.
Collapse
Affiliation(s)
- Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.
| |
Collapse
|