1
|
Karin KN, Mustafa MA, Poklis JL, Buzzi B, Schlosburg JE, Parker L, Damaj MI, Lichtman AH. N-oleoyl alanine attenuates nicotine reward and spontaneous nicotine withdrawal in mice. Drug Alcohol Depend 2024; 259:111276. [PMID: 38676968 PMCID: PMC11325338 DOI: 10.1016/j.drugalcdep.2024.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND As nicotine dependence represents a longstanding major public health issue, new nicotine cessation pharmacotherapies are needed. Administration of N-oleoyl glycine (OlGly), an endogenous lipid signaling molecule, prevents nicotine-induced conditioned place preference (CPP) through a peroxisome proliferator-activated receptor-alpha (PPARα) dependent mechanism, and also ameliorated withdrawal signs in nicotine-dependent mice. Pharmacological evidence suggests that the methylated analog of OlGly, N-oleoyl alanine (OlAla), has an increased duration of action and may offer translational benefit. Accordingly, OlAla was assessed in nicotine CPP and dependence assays as well as its pharmacokinetics compared to OlGly. METHODS ICR female and male mice were tested in nicotine-induced CPP with and without the PPARα antagonist GW6471. OlAla was also assessed in nicotine-dependent mice following removal of nicotine minipumps: somatic withdrawal signs, thermal hyper-nociception and altered affective behavior (i.e., light/dark box). Finally, plasma and brain were collected after administration of OlGly or OlAla and analyzed by high-performance liquid chromatography tandem mass spectrometry. RESULTS OlAla prevented nicotine-induced CPP, but this effect was not blocked by GW6471. OlAla attenuated somatic and affective nicotine withdrawal signs, but not thermal hyper-nociception in nicotine-dependent mice undergoing withdrawal. OlAla and OlGly showed similar time-courses in plasma and brain. CONCLUSIONS The observation that both molecules showed similar pharmacokinetics argues against the notion that OlAla offers increased metabolic stability. Moreover, while these structurally similar lipids show efficacy in mouse models of reward and dependence, they reduce nicotine reward through distinct mechanisms.
Collapse
Affiliation(s)
- Kimberly N Karin
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed A Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joel E Schlosburg
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Linda Parker
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
2
|
Galambos AR, Papp ZT, Boldizsár I, Zádor F, Köles L, Harsing LG, Al-Khrasani M. Glycine Transporter 1 Inhibitors: Predictions on Their Possible Mechanisms in the Development of Opioid Analgesic Tolerance. Biomedicines 2024; 12:421. [PMID: 38398023 PMCID: PMC10886540 DOI: 10.3390/biomedicines12020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The development of opioid tolerance in patients on long-term opioid analgesic treatment is an unsolved matter in clinical practice thus far. Dose escalation is required to restore analgesic efficacy, but at the price of side effects. Intensive research is ongoing to elucidate the underlying mechanisms of opioid analgesic tolerance in the hope of maintaining opioid analgesic efficacy. N-Methyl-D-aspartate receptor (NMDAR) antagonists have shown promising effects regarding opioid analgesic tolerance; however, their use is limited by side effects (memory dysfunction). Nevertheless, the GluN2B receptor remains a future target for the discovery of drugs to restore opioid efficacy. Mechanistically, the long-term activation of µ-opioid receptors (MORs) initiates receptor phosphorylation, which triggers β-arrestin-MAPKs and NOS-GC-PKG pathway activation, which ultimately ends with GluN2B receptor overactivation and glutamate release. The presence of glutamate and glycine as co-agonists is a prerequisite for GluN2B receptor activation. The extrasynaptic localization of the GluN2B receptor means it is influenced by the glycine level, which is regulated by astrocytic glycine transporter 1 (GlyT1). Enhanced astrocytic glycine release by reverse transporter mechanisms as a consequence of high glutamate levels or unconventional MOR activation on astrocytes could further activate the GluN2B receptor. GlyT1 inhibitors might inhibit this condition, thereby reducing opioid tolerance.
Collapse
Affiliation(s)
- Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Imre Boldizsár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary;
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| |
Collapse
|
3
|
Gao H, Fang B, Sun Z, Du X, Guo H, Zhao L, Zhang M. Effect of Human Milk Oligosaccharides on Learning and Memory in Mice with Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1067-1081. [PMID: 38112024 DOI: 10.1021/acs.jafc.3c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Alzheimer's disease (AD) is distinguished by cognitive dysfunction and neuroinflammation in the brain. 2'-Fucosyllactose (2'-FL) is a major human milk oligosaccharide (HMO) that is abundantly present in breast milk and has been demonstrated to exhibit immunomodulatory effects. However, the role of 2'-FL and HMO in gut microbiota modulation in relation to AD remains insufficiently investigated. This study aimed to elucidate the preventive effect of the 2'-FL and HMO impact of AD and the relevant mechanism involved. Here, the behavioral results showed that 2'-FL and HMO intervention decreased the expression of Tau phosphorylation and amyloid-β (Aβ), inhibited neuroinflammation, and restored cognitive impairment in AD mice. The metagenomic analysis proved that 2'-FL and HMO intervention restored the dysbiosis of the gut microbiota in AD. Notably, 2'-FL and HMO intervention significantly enhanced the relative abundance of Clostridium and Akkermansia. The metabolomics results showed that 2'-FL and HMO enhanced the oleoyl-l-carnitine metabolism as potential drivers. More importantly, the levels of oleoyl-l-carnitine were positively correlated with the abundances of Clostridium and Akkermansia. These results indicated that 2'-FL and HMO had therapeutic potential to prevent AD-induced cognitive impairment, which is of great significance for the treatment of AD.
Collapse
Affiliation(s)
- Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Zhe Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Du
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huiyuan Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Frangos ZJ, Wilson KA, Aitken HM, Cantwell Chater R, Vandenberg RJ, O'Mara ML. Membrane cholesterol regulates inhibition and substrate transport by the glycine transporter, GlyT2. Life Sci Alliance 2023; 6:e202201708. [PMID: 36690444 PMCID: PMC9873984 DOI: 10.26508/lsa.202201708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Membrane cholesterol binds to and modulates the function of various SLC6 neurotransmitter transporters, including stabilizing the outward-facing conformation of the dopamine and serotonin transporters. Here, we investigate how cholesterol binds to GlyT2 (SLC6A5), modulates glycine transport rate, and influences bioactive lipid inhibition of GlyT2. Bioactive lipid inhibitors are analgesics that bind to an allosteric site accessible from the extracellular solution when GlyT2 adopts an outward-facing conformation. Using molecular dynamics simulations, mutagenesis, and cholesterol depletion experiments, we show that bioactive lipid inhibition of glycine transport is modulated by the recruitment of membrane cholesterol to a binding site formed by transmembrane helices 1, 5, and 7. Recruitment involves cholesterol flipping from its membrane orientation, and insertion of the 3' hydroxyl group into the cholesterol binding cavity, close to the allosteric site. The synergy between cholesterol and allosteric inhibitors provides a novel mechanism of inhibition and a potential avenue for the development of potent GlyT2 inhibitors as alternative therapeutics for the treatment of neuropathic pain and therapeutics that target other SLC6 transporters.
Collapse
Affiliation(s)
- Zachary J Frangos
- Molecular Biomedicine Theme, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Katie A Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australia
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Heather M Aitken
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Ryan Cantwell Chater
- Molecular Biomedicine Theme, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Robert J Vandenberg
- Molecular Biomedicine Theme, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| |
Collapse
|
5
|
Analysis of Binding Determinants for Different Classes of Competitive and Noncompetitive Inhibitors of Glycine Transporters. Int J Mol Sci 2022; 23:ijms23148050. [PMID: 35887394 PMCID: PMC9317360 DOI: 10.3390/ijms23148050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glycine transporters are interesting therapeutic targets as they play significant roles in glycinergic and glutamatergic systems. The search for new selective inhibitors of particular types of glycine transporters (GlyT-1 and GlyT-2) with beneficial kinetics is hampered by limited knowledge about the spatial structure of these proteins. In this study, a pool of homology models of GlyT-1 and GlyT-2 in different conformational states was constructed using the crystal structures of related transporters from the SLC6 family and the recently revealed structure of GlyT-1 in the inward-open state, in order to investigate their binding sites. The binding mode of the known GlyT-1 and GlyT-2 inhibitors was determined using molecular docking studies, molecular dynamics simulations, and MM-GBSA free energy calculations. The results of this study indicate that two amino acids, Gly373 and Leu476 in GlyT-1 and the corresponding Ser479 and Thr582 in GlyT-2, are mainly responsible for the selective binding of ligands within the S1 site. Apart from these, one pocket of the S2 site, which lies between TM3 and TM10, may also be important. Moreover, selective binding of noncompetitive GlyT-1 inhibitors in the intracellular release pathway is affected by hydrophobic interactions with Ile399, Met382, and Leu158. These results can be useful in the rational design of new glycine transporter inhibitors with desired selectivity and properties in the future.
Collapse
|
6
|
Frangos ZJ, Cantwell Chater RP, Vandenberg RJ. Glycine Transporter 2: Mechanism and Allosteric Modulation. Front Mol Biosci 2021; 8:734427. [PMID: 34805268 PMCID: PMC8602798 DOI: 10.3389/fmolb.2021.734427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
Neurotransmitter sodium symporters (NSS) are a subfamily of SLC6 transporters responsible for regulating neurotransmitter signalling. They are a major target for psychoactive substances including antidepressants and drugs of abuse, prompting substantial research into their modulation and structure-function dynamics. Recently, a series of allosteric transport inhibitors have been identified, which may reduce side effect profiles, compared to orthosteric inhibitors. Allosteric inhibitors are also likely to provide different clearance kinetics compared to competitive inhibitors and potentially better clinical outcomes. Crystal structures and homology models have identified several allosteric modulatory sites on NSS including the vestibule allosteric site (VAS), lipid allosteric site (LAS) and cholesterol binding site (CHOL1). Whilst the architecture of eukaryotic NSS is generally well conserved there are differences in regions that form the VAS, LAS, and CHOL1. Here, we describe ligand-protein interactions that stabilize binding in each allosteric site and explore how differences between transporters could be exploited to generate NSS specific compounds with an emphasis on GlyT2 modulation.
Collapse
Affiliation(s)
- Zachary J Frangos
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ryan P Cantwell Chater
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Robert J Vandenberg
- Transporter Biology Group, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
8
|
Ackermann TM, Allmendinger L, Höfner G, Wanner KT. MS Binding Assays for Glycine Transporter 2 (GlyT2) Employing Org25543 as Reporter Ligand. ChemMedChem 2021; 16:199-215. [PMID: 32734692 PMCID: PMC7821181 DOI: 10.1002/cmdc.202000342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
This study describes the first binding assay for glycine transporter 2 (GlyT2) following the concept of MS Binding Assays. The selective GlyT2 inhibitor Org25543 was employed as a reporter ligand and it was quantified with a highly sensitive and rapid LC-ESI-MS/MS method. Binding of Org25543 at GlyT2 was characterized in kinetic and saturation experiments with an off-rate of 7.07×10-3 s-1 , an on-rate of 1.01×106 M-1 s-1 , and an equilibrium dissociation constant of 7.45 nM. Furthermore, the inhibitory constants of 19 GlyT ligands were determined in competition experiments. The validity of the GlyT2 affinities determined with the binding assay was examined by a comparison with published inhibitory potencies from various functional assays. With the capability for affinity determination towards GlyT2 the developed MS Binding Assays provide the first tool for affinity profiling of potential ligands and it represents a valuable new alternative to functional assays addressing GlyT2.
Collapse
Affiliation(s)
- Thomas M. Ackermann
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Lars Allmendinger
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Georg Höfner
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| |
Collapse
|
9
|
Sheipouri D, Gallagher CI, Shimmon S, Rawling T, Vandenberg RJ. A System for Assessing Dual Action Modulators of Glycine Transporters and Glycine Receptors. Biomolecules 2020; 10:E1618. [PMID: 33266066 PMCID: PMC7760315 DOI: 10.3390/biom10121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced inhibitory glycinergic neurotransmission is implicated in a number of neurological conditions such as neuropathic pain, schizophrenia, epilepsy and hyperekplexia. Restoring glycinergic signalling may be an effective method of treating these pathologies. Glycine transporters (GlyTs) control synaptic and extra-synaptic glycine concentrations and slowing the reuptake of glycine using specific GlyT inhibitors will increase glycine extracellular concentrations and increase glycine receptor (GlyR) activation. Glycinergic neurotransmission can also be improved through positive allosteric modulation (PAM) of GlyRs. Despite efforts to manipulate this synapse, no therapeutics currently target it. We propose that dual action modulators of both GlyTs and GlyRs may show greater therapeutic potential than those targeting individual proteins. To show this, we have characterized a co-expression system in Xenopus laevis oocytes consisting of GlyT1 or GlyT2 co-expressed with GlyRα1. We use two electrode voltage clamp recording techniques to measure the impact of GlyTs on GlyRs and the effects of modulators of these proteins. We show that increases in GlyT density in close proximity to GlyRs diminish receptor currents. Reductions in GlyR mediated currents are not observed when non-transportable GlyR agonists are applied or when Na+ is not available. GlyTs reduce glycine concentrations across different concentration ranges, corresponding with their ion-coupling stoichiometry, and full receptor currents can be restored when GlyTs are blocked with selective inhibitors. We show that partial inhibition of GlyT2 and modest GlyRα1 potentiation using a dual action compound, is as useful in restoring GlyR currents as a full and potent single target GlyT2 inhibitor or single target GlyRα1 PAM. The co-expression system developed in this study will provide a robust means for assessing the likely impact of GlyR PAMs and GlyT inhibitors on glycine neurotransmission.
Collapse
Affiliation(s)
- Diba Sheipouri
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| | - Casey I. Gallagher
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| | - Susan Shimmon
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (T.R.)
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (T.R.)
| | - Robert J. Vandenberg
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| |
Collapse
|
10
|
Identification of N-acyl amino acids that are positive allosteric modulators of glycine receptors. Biochem Pharmacol 2020; 180:114117. [PMID: 32579961 DOI: 10.1016/j.bcp.2020.114117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/31/2023]
Abstract
Glycine receptors (GlyRs) mediate inhibitory neurotransmission within the spinal cord and play a crucial role in nociceptive signalling. This makes them primary targets for the development of novel chronic pain therapies. Endogenous lipids have previously been shown to modulate glycine receptors and produce analgesia in pain models, however little is known about what chemical features mediate these effects. In this study, we characterised lipid modulation of GlyRs by screening a library of N-acyl amino acids across all receptor subtypes and determined chemical features crucial for their activity. Acyl-glycine's with a C18 carbon tail were found to produce the greatest potentiation, and require a cis double bond within the central region of the carbon tail (ω6 - ω9) to be active. At 1 µM, C18 ω6,9 glycine potentiated glycine induced currents in α3 and α3β receptors by over 50%, and α1, α2, α1β and α2β receptors by over 100%. C18 ω9 glycine (N-oleoyl glycine) significantly enhance glycine induced peak currents and cause a dose-dependent shift in the glycine concentration response. In the presence of 3 µM C18 ω9 glycine, the EC5o of glycine at the α1 receptor was reduced from 17 µM to 10 µM. This study has identified several acyl-amino acids which are positive allosteric modulators of GlyRs and make promising lead compounds for the development of novel chronic pain therapies.
Collapse
|
11
|
Profiling of lipidomics before and after antipsychotic treatment in first-episode psychosis. Eur Arch Psychiatry Clin Neurosci 2020; 270:59-70. [PMID: 30604052 DOI: 10.1007/s00406-018-0971-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Alterations in complex lipids may be involved in pathophysiology of schizophrenia spectrum disorders. Previously, we demonstrated importance of detecting lipid metabolism dysregulation by acylcarnitine (ACs) profile analysis in patients with first-episode psychosis (FEP). The aim of this study was to adopt lipidomics to identify serum glycerophospholipids (GPLs) and sphingomyelins (SMs) for describing FEP status before and after 7-month antipsychotic treatment. Using mass spectrometry and liquid chromatography technique, we profiled 105 individual lipids [14 lysophosphatidylcholines (LysoPCs), 76 phosphatidylcholines (PCs) and 15 SMs] in serum samples from 53 antipsychotic-naïve FEP patients, 44 of them were studied longitudinally and from 37 control subjects (CSs). Among the identified and quantified metabolites one LysoPC was elevated, and contrary the levels of 16 PCs as well as the level of one SM were significantly (p ≤ 0.0005) reduced in antipsychotic-naïve FEP patients compared to CSs. Comparison of serum lipids profiles of FEP patients before and after 7-month antipsychotic treatment revealed that 11 GPLs (2 LysoPCs, 9 PCs), and 2 SMs were found to be significantly changed (p ≤ 0.0005) in which GPLs were up-regulated, and SMs were down-regulated. However, no significant differences were noted when treated patient's serum lipid profiles were compared with CSs. Our findings suggest that complex lipid profile abnormalities are specifically associated with FEP and these discrepancies reflect two different disease-related pathways. Our findings provide insight into lipidomic information that may be used for monitoring FEP status and impact of the treatment in the early stage of the schizophrenia spectrum disorder.
Collapse
|
12
|
Battista N, Bari M, Bisogno T. N-Acyl Amino Acids: Metabolism, Molecular Targets, and Role in Biological Processes. Biomolecules 2019; 9:biom9120822. [PMID: 31817019 PMCID: PMC6995544 DOI: 10.3390/biom9120822] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
The lipid signal is becoming increasingly crowded as increasingly fatty acid amide derivatives are being identified and considered relevant therapeutic targets. The identification of N-arachidonoyl-ethanolamine as endogenous ligand of cannabinoid type-1 and type-2 receptors as well as the development of different–omics technologies have the merit to have led to the discovery of a huge number of naturally occurring N-acyl-amines. Among those mediators, N-acyl amino acids, chemically related to the endocannabinoids and belonging to the complex lipid signaling system now known as endocannabinoidome, have been rapidly growing for their therapeutic potential. Here, we review the current knowledge of the mechanisms for the biosynthesis and inactivation of the N-acyl amino acids, as well as the various molecular targets for some of the N-acyl amino acids described so far.
Collapse
Affiliation(s)
- Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence: (N.B.); (M.B.); (T.B.)
| | - Monica Bari
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (N.B.); (M.B.); (T.B.)
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
- Correspondence: (N.B.); (M.B.); (T.B.)
| |
Collapse
|
13
|
Mostyn SN, Wilson KA, Schumann-Gillett A, Frangos ZJ, Shimmon S, Rawling T, Ryan RM, O'Mara ML, Vandenberg RJ. Identification of an allosteric binding site on the human glycine transporter, GlyT2, for bioactive lipid analgesics. eLife 2019; 8:e47150. [PMID: 31621581 PMCID: PMC6797481 DOI: 10.7554/elife.47150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
The treatment of chronic pain is poorly managed by current analgesics, and there is a need for new classes of drugs. We recently developed a series of bioactive lipids that inhibit the human glycine transporter GlyT2 (SLC6A5) and provide analgesia in animal models of pain. Here, we have used functional analysis of mutant transporters combined with molecular dynamics simulations of lipid-transporter interactions to understand how these bioactive lipids interact with GlyT2. This study identifies a novel extracellular allosteric modulator site formed by a crevice between transmembrane domains 5, 7, and 8, and extracellular loop 4 of GlyT2. Knowledge of this site could be exploited further in the development of drugs to treat pain, and to identify other allosteric modulators of the SLC6 family of transporters.
Collapse
Affiliation(s)
- Shannon N Mostyn
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Katie A Wilson
- Research School of Chemistry, College of ScienceThe Australian National UniversityCanberraAustralia
| | | | - Zachary J Frangos
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Susan Shimmon
- School of Mathematical and Physical SciencesUniversity of Technology SydneySydneyAustralia
| | - Tristan Rawling
- School of Mathematical and Physical SciencesUniversity of Technology SydneySydneyAustralia
| | - Renae M Ryan
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Megan L O'Mara
- Research School of Chemistry, College of ScienceThe Australian National UniversityCanberraAustralia
| | - Robert J Vandenberg
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
| |
Collapse
|
14
|
Al-Khrasani M, Mohammadzadeh A, Balogh M, Király K, Barsi S, Hajnal B, Köles L, Zádori ZS, Harsing LG. Glycine transporter inhibitors: A new avenue for managing neuropathic pain. Brain Res Bull 2019; 152:143-158. [PMID: 31302238 DOI: 10.1016/j.brainresbull.2019.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Interneurons operating with glycine neurotransmitter are involved in the regulation of pain transmission in the dorsal horn of the spinal cord. In addition to interneurons, glycine release also occurs from glial cells neighboring glutamatergic synapses in the spinal cord. Neuronal and glial release of glycine is controlled by glycine transporters (GlyTs). Inhibitors of the two isoforms of GlyTs, the astrocytic type-1 (GlyT-1) and the neuronal type-2 (GlyT-2), decrease pain sensation evoked by injuries of peripheral sensory neurons or inflammation. The function of dorsal horn glycinergic interneurons has been suggested to be reduced in neuropathic pain, which can be reversed by GlyT-2 inhibitors (Org-25543, ALX1393). Several lines of evidence also support that peripheral nerve damage or inflammation may shift glutamatergic neurochemical transmission from N-methyl-D aspartate (NMDA) NR1/NR2A receptor- to NR1/NR2B receptor-mediated events (subunit switch). This pathological overactivation of NR1/NR2B receptors can be reduced by GlyT-1 inhibitors (NFPS, Org-25935), which decrease excessive glycine release from astroglial cells or by selective antagonists of NR2B subunits (ifenprodil, Ro 25-6981). Although several experiments suggest that GlyT inhibitors may represent a novel strategy in the control of neuropathic pain, proving this concept in human beings is hampered by lack of clinically applicable GlyT inhibitors. We also suggest that drugs inhibiting both GlyT-1 and GlyT-2 non-selectively and reversibly, may favorably target neuropathic pain. In this paper we overview inhibitors of the two isoforms of GlyTs as well as the effects of these drugs in experimental models of neuropathic pain. In addition, the possible mechanisms of action of the GlyT inhibitors, i.e. how they affect the neurochemical and pain transmission in the spinal cord, are also discussed. The growing evidence for the possible therapeutic intervention of neuropathic pain by GlyT inhibitors further urges development of drugable compounds, which may beneficially restore impaired pain transmission in various neuropathic conditions.
Collapse
Affiliation(s)
- Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary.
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Szilvia Barsi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Benjamin Hajnal
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| | - Laszlo G Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvarad ter 4, P.O. Box 370, H-1445 Budapest, Hungary
| |
Collapse
|
15
|
Schumann-Gillett A, Blyth MT, O’Mara ML. Is protein structure enough? A review of the role of lipids in SLC6 transporter function. Neurosci Lett 2019; 700:64-69. [DOI: 10.1016/j.neulet.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
|
16
|
Abstract
The endogenous lipids N-arachidonylglycine and oleoyl-l-carnitine are potential therapeutic leads in the treatment of chronic pain through their inhibition of the glycine transporter GlyT2. However, their mechanism of action is unknown. It has been hypothesized that these "bioactive" lipids either inhibit GlyT2 indirectly, by significantly perturbing the biophysical properties of the membrane, or directly, by binding directly to the transporter (either from a membrane-exposed or solvent-exposed binding site). Here, we used molecular dynamics simulations to study the effects of the lipids anandamide, N-arachidonylglycine, and oleoyl-l-carnitine on (a) the biophysical properties of the bilayer and (b) direct binding interactions with GlyT2. During the simulations, the biophysical properties of the bilayer itself, for example, the area per lipid, bilayer thickness, and order parameters, were not significantly altered by the presence or type of bioactive lipid, regardless of the presence of GlyT2. Our work, together with previous computational and experimental data, suggests that these acyl-inhibitors of GlyT2 inhibit the transporter by directly binding to it. However, these bioactive lipids bound to various parts of GlyT2 and did not prefer a single binding site during 4.5 μs of simulation. We postulate that the binding site is located at the solvent-exposed regions of GlyT2. Understanding the mechanism of action of these and related bioactive lipids is essential in effectively developing high-affinity GlyT2 inhibitors for the treatment of pain.
Collapse
Affiliation(s)
| | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Cao B, Jin M, Brietzke E, McIntyre RS, Wang D, Rosenblat JD, Ragguett RM, Zhang C, Sun X, Rong C, Wang J. Serum metabolic profiling using small molecular water-soluble metabolites in individuals with schizophrenia: A longitudinal study using a pre-post-treatment design. Psychiatry Clin Neurosci 2019; 73:100-108. [PMID: 30156046 DOI: 10.1111/pcn.12779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/24/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
AIM We sought to compare alterations in serum bioenergetic markers within a well-characterized sample of adults with schizophrenia at baseline and after 8 weeks of pharmacological treatment with the hypothesis that treatment would be associated with significant changes in bioenergetic markers given the role of bioenergetic dysfunction in schizophrenia. METHODS We recruited adults with schizophrenia (n = 122) who had not received pharmacological treatment for at least 1 month prior to enrollment, including drug-naïve (i.e., first-episode) participants and treatment non-adherent participants. Pre- and post-treatment serum samples were analyzed using liquid chromatography-tandem mass spectrometry. RESULTS Metabolites with the greatest change, when comparing pre- and post-treatment levels, were identified revealing 14 water-soluble metabolites of interest. The composition of these metabolites was: amino acids (n = 6), carnitines (n = 4), polar lipids (n = 3), and organic acid (n = 1). All amino acids and lysophosphatidylcholines (LysoPC) were increased, while the four carnitines - oleoylcarnitine, L-palmitoylcarnitine, linoleyl carnitine, and L-acetylcarnitine - were decreased post-treatment. Of these metabolite biomarkers, six - oleoylcarnitine, linoleyl carnitine, L-acetylcarnitine, LysoPC(15:0), D-glutamic acid, and L-arginine - were identified as having most consistently and predictably changed after 8 weeks of treatment. CONCLUSION The current study identified several bioenergetic markers that consistently change with pharmacological treatment. These bioenergetic changes may provide further insights into the pathophysiology of schizophrenia along with furthering our understanding of the mechanisms subserving both the effects (e.g., antipsychotic effects) and side-effects (e.g., metabolic syndrome) of antipsychotics.
Collapse
Affiliation(s)
- Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Min Jin
- School of Public Health, Baotou Medical College, Baotou, China
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada.,The Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Dongfang Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Renee-Marie Ragguett
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | | | - Xiaoyu Sun
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Carola Rong
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| |
Collapse
|
18
|
Mostyn SN, Rawling T, Mohammadi S, Shimmon S, Frangos ZJ, Sarker S, Yousuf A, Vetter I, Ryan RM, Christie MJ, Vandenberg RJ. Development of an N-Acyl Amino Acid That Selectively Inhibits the Glycine Transporter 2 To Produce Analgesia in a Rat Model of Chronic Pain. J Med Chem 2019; 62:2466-2484. [PMID: 30714733 DOI: 10.1021/acs.jmedchem.8b01775] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inhibitors that target the glycine transporter 2, GlyT2, show promise as analgesics, but may be limited by their toxicity through complete or irreversible binding. Acyl-glycine inhibitors, however, are selective for GlyT2 and have been shown to provide analgesia in animal models of pain with minimal side effects, but are comparatively weak GlyT2 inhibitors. Here, we modify the simple acyl-glycine by synthesizing lipid analogues with a range of amino acid head groups in both l- and d-configurations, to produce nanomolar affinity, selective GlyT2 inhibitors. The potent inhibitor oleoyl-d-lysine (33) is also resistant to degradation in both human and rat plasma and liver microsomes, and is rapidly absorbed following an intraperitoneal injection to rats and readily crosses the blood-brain barrier. We demonstrate that 33 provides greater analgesia at lower doses, and does not possess the severe side effects of the very slowly reversible GlyT2 inhibitor, ORG25543 (2).
Collapse
Affiliation(s)
- Shannon N Mostyn
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science , The University of Technology Sydney , Sydney , NSW 2007 , Australia
| | - Sarasa Mohammadi
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Susan Shimmon
- School of Mathematical and Physical Sciences, Faculty of Science , The University of Technology Sydney , Sydney , NSW 2007 , Australia
| | - Zachary J Frangos
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Subhodeep Sarker
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Arsalan Yousuf
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Irina Vetter
- Institute for Molecular Bioscience & School of Pharmacy , The University of Queensland , Brisbane , Qld 4072 , Australia
| | - Renae M Ryan
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| | - Robert J Vandenberg
- Discipline of Pharmacology, School of Medical Sciences , University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
19
|
Vanaveski T, Narvik J, Innos J, Philips MA, Ottas A, Plaas M, Haring L, Zilmer M, Vasar E. Repeated Administration of D-Amphetamine Induces Distinct Alterations in Behavior and Metabolite Levels in 129Sv and Bl6 Mouse Strains. Front Neurosci 2018; 12:399. [PMID: 29946233 PMCID: PMC6005828 DOI: 10.3389/fnins.2018.00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/24/2018] [Indexed: 01/30/2023] Open
Abstract
The main goal of the study was to characterize the behavioral and metabolomic profiles of repeated administration (for 11 days) of d-amphetamine (AMPH, 3 mg/kg i. p.), indirect agonist of dopamine (DA), in widely used 129S6/SvEvTac (129Sv) and C57BL/6NTac (Bl6) mouse strains. Acute administration of AMPH (acute AMPH) induced significantly stronger motor stimulation in Bl6. However, repeated administration of AMPH (repeated AMPH) caused stronger motor sensitization in 129Sv compared acute AMPH. Body weight of 129Sv was reduced after repeated saline and AMPH, whereas no change occurred in Bl6. In the metabolomic study, acute AMPH induced an elevation of isoleucine and leucine, branched chain amino acids (BCAA), whereas the level of hexoses was reduced in Bl6. Both BCAAs and hexoses remained on level of acute AMPH after repeated AMPH in Bl6. Three biogenic amines [asymmetric dimethylarginine (ADMA), alpha-aminoadipic acid (alpha-AAA), kynurenine] were significantly reduced after repeated AMPH. Acute AMPH caused in 129Sv a significant reduction of valine, lysophosphatidylcholines (lysoPC a C16:0, lysoPC a C18:2, lysoPC a C20:4), phosphatidylcholine (PC) diacyls (PC aa C34:2, PC aa C36:2, PC aa C36:3, PC aa C36:4) and alkyl-acyls (PC ae C38:4, PC ae C40:4). However, repeated AMPH increased the levels of valine and isoleucine, long-chain acylcarnitines (C14, C14:1-OH, C16, C18:1), PC diacyls (PC aa C38:4, PC aa C38:6, PC aa C42:6), PC acyl-alkyls (PC ae C38:4, PC ae C40:4, PC ae C40:5, PC ae C40:6, PC ae C42:1, PC ae C42:3) and sphingolipids [SM(OH)C22:1, SM C24:0] compared to acute AMPH in 129Sv. Hexoses and kynurenine were reduced after repeated AMPH compared to saline in 129Sv. The established changes probably reflect a shift in energy metabolism toward lipid molecules in 129Sv because of reduced level of hexoses. Pooled data from both strains showed that the elevation of isoleucine and leucine was a prominent biomarker of AMPH-induced behavioral sensitization. Simultaneously a significant decline of hexoses, citrulline, ADMA, and kynurenine occurred. The reduced levels of kynurenine, ADMA, and citrulline likely reflect altered function of N-methyl-D-aspartate (NMDA) and NO systems caused by repeated AMPH. Altogether, 129Sv strain displays stronger sensitization toward AMPH and larger variance in metabolite levels than Bl6.
Collapse
Affiliation(s)
- Taavi Vanaveski
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jane Narvik
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aigar Ottas
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mario Plaas
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic and Center of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liina Haring
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mihkel Zilmer
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Winters BL, Rawling T, Vandenberg RJ, Christie MJ, Bhola RF, Imlach WL. Activity of novel lipid glycine transporter inhibitors on synaptic signalling in the dorsal horn of the spinal cord. Br J Pharmacol 2018; 175:2337-2347. [PMID: 29500820 DOI: 10.1111/bph.14189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Inhibitory neurotransmission plays an important role in controlling excitability within nociceptive circuits of the spinal cord dorsal horn. Loss of inhibitory signalling is thought to contribute to the development of pathological pain. Preclinical studies suggest that increasing inhibitory glycinergic signalling is a good therapeutic strategy for treating pain. One approach to increase synaptic glycine is to inhibit the activity of the glycine transporter 2 (GlyT2) on inhibitory nerve terminals. These transporters are involved in regulating glycine concentrations and recycling glycine into presynaptic terminals. Inhibiting activity of GlyT2 increases synaptic glycine, which decreases excitability in nociceptive circuits and provides analgesia in neuropathic and inflammatory pain models. EXPERIMENTAL APPROACH We investigated the effects of reversible and irreversible GlyT2 inhibitors on inhibitory glycinergic and NMDA receptor-mediated excitatory neurotransmission in the rat dorsal horn. The effect of these drugs on synaptic signalling was determined using patch-clamp electrophysiology techniques to measure glycine- and NMDA-mediated postsynaptic currents in spinal cord slices in vitro. KEY RESULTS We compared activity of four compounds that increase glycinergic tone with a corresponding increase in evoked glycinergic postsynaptic currents. These compounds did not deplete synaptic glycine release over time. Interestingly, none of these compounds increased glycine-mediated excitatory signalling through NMDA receptors. The results suggest that these compounds preferentially inhibit GlyT2 over G1yT1 with no potentiation of the glycine receptor and without inducing spillover from inhibitory to excitatory synapses. CONCLUSIONS AND IMPLICATIONS GlyT2 inhibitors increase inhibitory neurotransmission in the dorsal horn and have potential as pain therapeutics. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Bryony L Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Robert J Vandenberg
- Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Rebecca F Bhola
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Wendy L Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Mostyn SN, Carland JE, Shimmon S, Ryan RM, Rawling T, Vandenberg RJ. Synthesis and Characterization of Novel Acyl-Glycine Inhibitors of GlyT2. ACS Chem Neurosci 2017; 8:1949-1959. [PMID: 28574249 DOI: 10.1021/acschemneuro.7b00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
It has been demonstrated previously that the endogenous compound N-arachidonyl-glycine inhibits the glycine transporter GlyT2, stimulates glycinergic neurotransmission, and provides analgesia in animal models of neuropathic and inflammatory pain. However, it is a relatively weak inhibitor with an IC50 of 9 μM and is subject to oxidation via cyclooxygenase, limiting its therapeutic value. In this paper we describe the synthesis and testing of a novel series of monounsaturated C18 and C16 acyl-glycine molecules as inhibitors of the glycine transporter GlyT2. We demonstrate that they are up to 28 fold more potent that N-arachidonyl-glycine with no activity at the closely related GlyT1 transporter at concentrations up to 30 μM. This novel class of compounds show considerable promise as a first generation of GlyT2 transport inhibitors.
Collapse
Affiliation(s)
- Shannon N. Mostyn
- Discipline
of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Jane E. Carland
- Discipline
of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Susan Shimmon
- School
of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Renae M. Ryan
- Discipline
of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School
of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Robert J. Vandenberg
- Discipline
of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Kriisa K, Leppik L, Balõtšev R, Ottas A, Soomets U, Koido K, Volke V, Innos J, Haring L, Vasar E, Zilmer M. Profiling of Acylcarnitines in First Episode Psychosis before and after Antipsychotic Treatment. J Proteome Res 2017; 16:3558-3566. [PMID: 28786289 DOI: 10.1021/acs.jproteome.7b00279] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acylcarnitines (ACs) have been shown to have a potential to activate pro-inflammatory signaling pathways and to foster the development of insulin resistance. The first task of the current study was to study the full list of ACs (from C2 to C18) in first episode psychosis (FEP) patients before and after antipsychotic treatment. The second task was to relate ACs to inflammatory and metabolic biomarkers established in the same patient cohort as in our previous studies. Serum levels of ACs were determined with the AbsoluteIDQ p180 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) using the flow injection analysis tandem mass spectrometry ([FIA]-MS/MS) as well as liquid chromatography ([LC]-MS/MS) technique. Identification and quantification of the metabolites was achieved using multiple reactions monitoring along with internal standards. The comparison of ACs in antipsychotic-naïve first-episode psychosis (FEP) patients (N = 38) and control subjects (CSs, N = 37) revealed significantly increased levels of long-chain ACs (LCACs) C14:1 (p = 0.0001), C16 (p = 0.00002), and C18:1 (p = 0.000001) in the patient group. These changes of LCACs were associated with augmented levels of CARN palmitoyltransferase 1 (CPT-1) (p = 0.006). By contrast, the level of short-chain AC (SCAC) C3 was significantly reduced (p = 0.00003) in FEP patients. Seven months of antipsychotic drug treatment ameliorated clinical symptoms in patients (N = 36) but increased significantly their body mass index (BMI, p = 0.001). These changes were accompanied by significantly reduced levels of C18:1 (p = 0.00003) and C18:2 (p = 0.0008) as well as increased level of C3 (p = 0.01). General linear model revealed the relation of LCACs (C16, C16:1, and C18:1) to the inflammatory markers (epidermal growth factor, IL-2, IL-4, IL-6), whereas SCAC C3 was linked to the metabolic markers (leptin, C-peptide) and BMI. FEP was associated with an imbalance of ACs in patients because the levels of several LCACs were significantly higher and the levels of several SCACs were significantly reduced compared with CSs. This imbalance was modified by 7 months of antipsychotic drug treatment, reversing the levels of both LCACs and SCACs to that established for CSs. This study supports the view that ACs have an impact on both inflammatory and metabolic alterations inherent for FEP.
Collapse
Affiliation(s)
- Kärt Kriisa
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Liisa Leppik
- Psychiatry Clinic of Tartu University Hospital , 31 Raja Street, Tartu 50417, Estonia
| | - Roman Balõtšev
- Psychiatry Clinic of Tartu University Hospital , 31 Raja Street, Tartu 50417, Estonia
| | - Aigar Ottas
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Ursel Soomets
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Kati Koido
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Vallo Volke
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Jürgen Innos
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Liina Haring
- Psychiatry Clinic of Tartu University Hospital , 31 Raja Street, Tartu 50417, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| | - Mihkel Zilmer
- Institute of Biomedicine and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu , 19 Ravila Street, Tartu 50411, Estonia
| |
Collapse
|
23
|
Wellendorph P, Jacobsen J, Skovgaard-Petersen J, Jurik A, Vogensen SB, Ecker G, Schousboe A, Krogsgaard-Larsen P, Clausen RP. γ-Aminobutyric Acid and Glycine Neurotransmitter Transporters. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527679430.ch4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Petrine Wellendorph
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Julie Jacobsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Jonas Skovgaard-Petersen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Andreas Jurik
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Stine B. Vogensen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Gerhard Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Arne Schousboe
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Povl Krogsgaard-Larsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Rasmus P. Clausen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| |
Collapse
|
24
|
Imlach WL. New approaches to target glycinergic neurotransmission for the treatment of chronic pain. Pharmacol Res 2016; 116:93-99. [PMID: 27988386 DOI: 10.1016/j.phrs.2016.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023]
Abstract
Inhibitory glycinergic neurotransmission in the spinal cord dorsal horn plays an important role in regulating nociceptive signalling by inhibiting neuronal excitation. Blocking glycinergic transmission in the dorsal horn causes normally innocuous stimuli to become painful (allodynia) and increases sensitivity to noxious stimuli (hyperalgesia). Loss of inhibitory signalling is thought to contribute to the development of pathological pain. Management of neuropathic pain with current therapeutics is challenging and there is a great need for more effective treatments. Preclinical studies using drugs that increase glycinergic signalling by potentiating glycine receptor activity or inhibiting transporter activity suggest that targeting this system is a good therapeutic strategy. The spatially restricted expression of glycine receptors and transporters is an advantage for targeting specific pathologies such as pain. However, until recently there have been few pharmacological modulators identified and most of which do not specifically target glycinergic signalling. This mini-review provides an overview of recent advances in the development of therapeutics and novel approaches that aim to increase glycinergic neurotransmission for the treatment of persistent pain.
Collapse
Affiliation(s)
- Wendy L Imlach
- Discipline of Pharmacology, School of Medical Sciences, Rm. W300, Blackburn D06, The University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|
25
|
Glycine transporter2 inhibitors: Getting the balance right. Neurochem Int 2015; 98:89-93. [PMID: 26723543 DOI: 10.1016/j.neuint.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 12/18/2015] [Indexed: 12/28/2022]
Abstract
Neurotransmitter transporters are targets for a wide range of therapeutically useful drugs. This is because they have the capacity to selectively manipulate the dynamics of neurotransmitter concentrations and thereby enhance or diminish signalling through particular brain pathways. High affinity glycine transporters (GlyTs) regulate extracellular concentrations of glycine and provide novel therapeutic targets for neurological disorders.
Collapse
|
26
|
Vandenberg RJ, Ryan RM, Carland JE, Imlach WL, Christie MJ. Glycine transport inhibitors for the treatment of pain. Trends Pharmacol Sci 2014; 35:423-30. [PMID: 24962068 DOI: 10.1016/j.tips.2014.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Opioids, local anesthetics, anticonvulsant drugs, antidepressants, and non-steroidal anti-inflammatory drugs (NSAIDs) are used to provide pain relief but they do not provide adequate pain relief in a large proportion of chronic pain patients and are often associated with unacceptable side effects. Inhibitory glycinergic neurotransmission is impaired in chronic pain states, and this provides a novel target for drug development. Inhibitors of the glycine transporter 2 (GlyT2) enhance inhibitory neurotransmission and show particular promise for the treatment of neuropathic pain. N-arachidonyl-glycine (NAGly) is an endogenous lipid that inhibits glycine transport by GlyT2 and also shows potential as an analgesic, which may be further exploited in drug development. In this review we discuss the role of glycine neurotransmission in chronic pain and future prospects for the use of glycine transport inhibitors in the treatment of pain.
Collapse
Affiliation(s)
- Robert J Vandenberg
- Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | - Renae M Ryan
- Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Jane E Carland
- Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Wendy L Imlach
- Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: transporters. Br J Pharmacol 2013; 170:1706-96. [PMID: 24528242 PMCID: PMC3892292 DOI: 10.1111/bph.12450] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Transporters are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
28
|
Lipid inhibitors of high affinity glycine transporters: identification of a novel class of analgesics. Neurochem Int 2013; 73:211-6. [PMID: 24036283 DOI: 10.1016/j.neuint.2013.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/23/2022]
Abstract
Glycine plays a key role in regulating inhibitory neurotransmission in the spinal cord and concentrations of glycine in the CNS are regulated by two subtypes of high affinity glycine transporters, GlyT1 and GlyT2. In this mini review we will discuss a series of lipid inhibitors of GlyT2 that show promise as analgesics in the treatment of neuropathic and inflammatory pain. N-arachidonyl-glycine inhibits the rate of transport by GlyT2, but has very little or no activity on GlyT1. We will discuss structure-activity studies of the actions of related lipids on GlyT2 and also the characterization of a more potent lipid inhibitor of GlyT2, oleoyl-l-carnitine. Both N-arachidonyl-glycine and oleoyl-l-carnitine show specificity for GlyT2 over GlyT1, which has allowed the use of chimeric GlyT1/GlyT2 transporters to begin characterizing the molecular basis for specificity and mechanism of action of these lipid inhibitors. Although our understanding of the molecular basis for lipid inhibition is still in its infancy, it appears that extracellular loop 4 of GlyT2 plays an important role in the inhibitory mechanism.
Collapse
|