1
|
Yakovlev IA, Golubeva JA, Klyushova LS, Kostin GA, Mikhailov AA. Photoinduced cytotoxic activity of a rare ruthenium nitrosyl phenanthroline complex showing NO generation in human cells. Dalton Trans 2024; 53:17642-17653. [PMID: 39415592 DOI: 10.1039/d4dt02653e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A new nitro-nitrosyl complex [RuNO(Phen)(NO2)2OH] (1) was synthesized and characterized by X-ray diffraction, where Phen = 1,10-phenanthroline. The complex was crystallized in two different modifications without (1) and with a solvent molecule of DMF (1a). The photolysis process together with the determination of the quantum yield of NO release was investigated in acetonitrile solution using a special flow-through system for the simultaneous registration of infrared (IR) and optical absorption (UV-vis) spectra under irradiation with 450 nm light. The quantum yield of photoinduced NO release was 4.0 ± 0.2%. DFT calculations showed that the main contribution to the absorption band at 450 nm is made by the HOMO/HOMO-1 → LUMO transitions, which are represented by the transfer of electron density from the -OH and -NO2 ligands to the orbitals located on the Ru-NO bond. The dark and photoinduced cytotoxicity of the complex was studied against the human breast adenocarcinoma (MCF-7) and lung carcinoma (A549) cell lines and human non-tumor lung fibroblasts (MRC5). The complex shows a low cytotoxicity on MCF-7 cells (ICdark50 = 90.6 ± 6.2 μM and ICirr.50 = 95.3 ± 11.4 μM) and a moderate dark cytotoxicity on A549 and MRC5 cells (ICdark50 = 33.4 ± 2.6 μM and ICdark50 = 62.6 ± 3.1 μM, respectively), which slightly increases after irradiation (ICirr.50 = 21.2 ± 3.3 μM and ICirr.50 = 47.2 ± 2.3 μM, respectively).
Collapse
Affiliation(s)
- Ivan A Yakovlev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Julia A Golubeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Lyubov S Klyushova
- Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia
| | - Gennadiy A Kostin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | | |
Collapse
|
2
|
Date T, Katari O, Kuche K, Chaudhari D, Jain S. Launching triple-hit chemo attack on TNBC through nanoparticle-mediated codelivery of cisplatin-chlorambucil conjugate and venetoclax. Int J Pharm 2024; 667:124890. [PMID: 39481816 DOI: 10.1016/j.ijpharm.2024.124890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
The BRCA1 dysfunction and HR deficiency in TNBC are responsible for high effectiveness of DNA-damaging agents in TNBC treatment. Preclinical and clinical studies confirmed the effectiveness of cisplatin in TNBC treatment. Nevertheless, the clinical utility of cisplatin is inadequate due to severe systemic side effects and resistance development. Dual-action cisplatin (IV) prodrugs provide an excellent opportunity to improve anticancer activity, reduce toxicities and minimize chance of resistance development. Therefore, in this investigation we have synthesized cisplatin-chlorambucil (CP-CBL) prodrug and loaded it with venetoclax (VTX) in phenylboronic acid conjugated TPGS-lactide nanoparticles (TNPs) to achieve tumor-targeted drug delivery thereby reducing the therapeutic dose as well as increasing the efficacy of free cisplatin, chlorambucil and venetoclax. The TNPs possessed particle size of 143 nm, PDI 0.186 and entrapment efficiency of 63.5 % and 56.4 % for VTX and CP-CBL. The TNPs followed Higuchi release kinetic model and represented biphasic release behaviour with early burst release of drug within 2 h succeeded by sustained drug release till 72 h. Further, the TNPs showed ∼ 42 folds and ∼ 19 folds reduction in the IC50 values compared to free CP. Also, higher cellular uptake and therefore greater apoptotic index was observed for the TNPs in comparison to the untargeted nanoparticles. The TNPs further showed higher ROS generating potential, enhanced mitochondrial membrane depolarization, higher intensity of nuclear condensation and highest level of caspase-3 expression. Moreover, a noteworthy decrease in the tumor volume was noticed in the mice treated with TNPs along with lower serum toxicity biomarker levels compared to the free drugs. Overall, the developed TNPs proved to be a promising and safer strategy for inducing triple-hit action in TNBC management.
Collapse
Affiliation(s)
- Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab, India 160062
| | - Oly Katari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab, India 160062
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab, India 160062
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab, India 160062
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, Mohali, Punjab, India 160062.
| |
Collapse
|
3
|
Jiang Y, Cao H, Deng H, Guan L, Langthasa J, Colburg DRC, Melemenidis S, Cotton RM, Aleman J, Wang XJ, Graves EE, Kalbasi A, Pu K, Rao J, Le QT. Gold-siRNA supraclusters enhance the anti-tumor immune response of stereotactic ablative radiotherapy at primary and metastatic tumors. Nat Biotechnol 2024:10.1038/s41587-024-02448-0. [PMID: 39448881 DOI: 10.1038/s41587-024-02448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Strategies to enhance the anti-tumor immune response of stereotactic ablative radiotherapy (SABR) at primary tumors and abscopal sites are under intensive investigation. Here we report a metabolizable binary supracluster (BSCgal) that combines gold nanoclusters as radiosensitizing adjuvants with small interfering RNA (siRNA) targeting the immunosuppressive mediator galectin-1 (Gal-1). BSCgal comprises reversibly crosslinked cationic gold nanoclusters and siRNA complexes in a polymer matrix that biodegrades over weeks, facilitating clearance (90.3% in vivo clearance at 4 weeks) to reduce toxicity. The particle size well above the renal filtration threshold facilitates passive delivery to tumors. Using mouse models of head and neck cancer, we show that BSCgal augments the radiodynamic and immunotherapeutic effects of SABR at the primary and metastatic tumors by promoting tumor-inhibitory leukocytes, upregulating cytotoxic granzyme B and reducing immunosuppressive cell populations. It outperforms SABR plus Gal-1 antagonists, chemoradiation drug cisplatin or PD-1 inhibitor. This work presents a translatable strategy to converge focal radiosensitization with targeted immune checkpoint silencing for personalized radioimmunotherapy.
Collapse
Affiliation(s)
- Yuyan Jiang
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Hongbin Cao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Huaping Deng
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Li Guan
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Jimpi Langthasa
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | | | | | - Renee M Cotton
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Xiao-Jing Wang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Veterans Affairs Northern California Health Care System, Mather, CA, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jianghong Rao
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Chen YW, He AC, Huang TY, Lai DH, Wang YP, Liu WW, Kuo WT, Hou HH, Cheng SJ, Lee CY, Chuang WC, Chang CC, Lee BS. Iontophoresis-Enhanced Buccal Delivery of Cisplatin-Encapsulated Chitosan Nanoparticles for Treating Oral Cancer in a Mouse Model. Int J Nanomedicine 2024; 19:10435-10453. [PMID: 39430308 PMCID: PMC11491087 DOI: 10.2147/ijn.s475742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Cisplatin is one of the most effective chemotherapeutic drugs used in oral cancer treatment, but systemic administration has side effects. The purpose of this study was to evaluate the effect of iontophoresis on the enhancement of cisplatin release from cisplatin-encapsulated chitosan nanoparticles. Methods The effect of different mass ratios of chitosan to tripolyphosphate (TPP) (5:1, 10:1, 15:1, 20:1) on the encapsulation efficiency of cisplatin was investigated. Uptake of cisplatin-encapsulated chitosan by cells was observed using a confocal laser scanning microscope. The cell viability at different cisplatin concentrations was examined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Three iontophoresis methods, namely constant-current chronopotentiometry (CCCP), cyclic chronopotentiometry (CCP), and differential pulse voltammetry (DPV), were used to enhance cisplatin release from cisplatin-encapsulated chitosan nanoparticles. In addition, mouse oral squamous cell carcinoma cell lines were implanted into the mouse oral mucosa to induce oral cancer. The effects of enhanced cisplatin release by CCCP, CCP, and DPV on tumor suppression in mice were evaluated. Tumors and lymph nodes were isolated for hematoxylin-eosin staining and immunohistochemistry staining including Ki-67 and pan CK after sacrifice. Inductively coupled plasma mass spectrometry was conducted to quantify the platinum content within the tumors. Results The results showed that nanoparticles with a mass ratio of 15:1 exhibited the highest cisplatin encapsulation efficiency (approximately 15.6%) and longest continued release (up to 35 days) in phosphate buffered saline with a release rate of 100%. Cellular uptake results suggested that chitosan nanoparticles were delivered to the cytoplasm via endocytosis. The results of the MTT assay revealed that the survival rate of cells decreased as the cisplatin concentration increased. The CCP (1 mA, on:off = 1 s: 1 s) and DPV (0-0.06 V) groups were the most effective in inhibiting tumor growth, and both groups exhibited the lowest percentage of Ki-67 positive and pan CK positive. Conclusion This study is the first to investigate and determine the efficacy of DPV in enhancing in vivo drug release from nanoparticles for the treatment of cancer in animals. The results suggest that the CCP and DPV methods have the potential to be combined with surgery for oral cancer treatment.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Ai-Chia He
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Tzu-Yun Huang
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - De-Hao Lai
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Yi-Ping Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Wei-Wen Liu
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Wei-Ting Kuo
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Hsin-Han Hou
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Chen-Yi Lee
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Wei-Chun Chuang
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Che-Chen Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Bor-Shiunn Lee
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| |
Collapse
|
5
|
Dorairaj DP, Kumar P, Rajasekaran H, Bhuvanesh N, Hsu SCN, Karvembu R. Copper(II) complexes containing hydrazone and bipyridine/phenanthroline ligands for anticancer application against breast cancer cells. J Inorg Biochem 2024; 262:112759. [PMID: 39426333 DOI: 10.1016/j.jinorgbio.2024.112759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
In this work, mixed ligand Cu(II) complexes containing hydrazone and bipyridine ligands (CB1-CB5), or hydrazone and phenanthroline ligands (CP1-CP5) have been synthesized and characterized by spectroscopic and analytical techniques. Single crystal X-ray structure of complex CB1 revealed that two nitrogen atoms from bipyridine, one carbonyl oxygen, one azomethine nitrogen and one hydroxyl oxygen from the hydrazone ligand coordinated to Cu(II) ion, adopting a distorted square pyramidal geometry. Interaction of these complexes with calf thymus (CT) DNA and bovine serum albumin (BSA) was analyzed by absorption and emission studies. Further, the in vitro anticancer activity of the complexes was investigated exclusively against the breast cancer cells namely MCF7, T47D and MDA MB 231, and a normal breast MCF 10a cell line. The phenanthroline bearing complexes (CP1-CP5) displayed better activity than their bipyridine counterparts as seen from the IC50 values. In addition, the most active complex CP1 having an IC50 value of 5.8 ± 0.3 μM against T47D cancer cells was investigated for its mode of cell death through acridine orange/ethidium bromide(AO/EB), 4',6-diamidino-2-phenylindole (DAPI) and Annexin-V fluorescein isothiocyanate (FITC) staining assays which revealed apoptosis. Lastly, the cell cycle analysis revealed that complex CP1 induced cell death in T47D cancer cells at the G0/G1 phase.
Collapse
Affiliation(s)
| | - Prashant Kumar
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Haritha Rajasekaran
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
6
|
Fleihan T, Nader ME, Dickman JD. Cisplatin vestibulotoxicity: a current review. Front Surg 2024; 11:1437468. [PMID: 39421409 PMCID: PMC11484025 DOI: 10.3389/fsurg.2024.1437468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Cisplatin, a commonly used chemotherapy drug, is well-established for its ototoxic effects, primarily attributed to the damage it inflicts on cochlear hair cells. However, its impact on the vestibular system remains inadequately understood. Here, we provide a comprehensive review of existing literature concerning cisplatin-induced vestibulotoxicity. Animal studies have shown that cisplatin induces a vestibular hair cell loss that is dose-dependent, with the severity of damage also varying according to the route of administration. Notably, intratympanic and systemic injections in animal models have manifested significant damage primarily to utricular hair cells, with a lesser degree of damage observed for the other vestibular end organs. The underlying mechanisms of cisplatin induced vestibular hair cell loss include apoptosis, oxidative stress, and inflammatory cytokines. Several protective agents, such as Pifithrin-α, DAPT, Ginkgolide B, and heat shock proteins, have demonstrated efficacy in inhibiting cisplatin-induced vestibular damage in preclinical studies. Human clinical findings indicate that cisplatin treatment can cause vestibular dysfunction, characterized by symptoms ranging from transient dizziness to persistent vertigo. Challenges in diagnosis, including the limited utilization of comprehensive vestibular testing for many patients, contribute to the variability in reported outcomes. Cisplatin-induced vestibulotoxicity is a significant complication of chemotherapy, necessitating further research to understand its mechanisms and to improve diagnosis and management, ultimately aiming to enhance the quality of life for cancer patients undergoing cisplatin therapy.
Collapse
Affiliation(s)
- Tamara Fleihan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Marc Elie Nader
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - J. David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
7
|
Lukoseviciute M, Need E, Birgersson M, Dalianis T, Kostopoulou ON. Enhancing targeted therapy by combining PI3K and AKT inhibitors with or without cisplatin or vincristine in medulloblastoma cell lines in vitro. Biomed Pharmacother 2024; 180:117500. [PMID: 39326108 DOI: 10.1016/j.biopha.2024.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
AIM Despite current intensive therapy, survival rates of medulloblastoma (MB) greatly vary according to molecular subgroup, so new therapies are needed. Recently, we showed that combining phosphoinositide 3-kinase (PI3K), fibroblast growth factor receptor and cyclin-dependent-kinase-4/6 inhibitors (BYL719, JNJ-42756493 and PD-0332991, respectively) or poly (ADP-ribose) polymerase (PARP) and WEE-1 inhibitors (BMN673 and MK1775 respectively) had synergistic effects on MB. Here, in continuation, we investigated the effects of single and combined administrations of PI3K and AKT inhibitors, with/without cisplatin or vincristine on adherent or suspension cultures of different MB subgroups as well as in a spheroid culture of one MB line. MATERIAL AND METHODS MB cell lines DAOY, UW228-3, D425, Med8A, and D283 were treated with single and combined administrations of BYL719, AZD5363, cisplatin or vincristine and followed for viability, cell confluence, cytotoxicity, and cell migration. DAOY was also tested as a spheroid culture. KEY FINDINGS Single BYL719, AZD5363, cisplatin, or vincristine administrations gave dose-dependent responses with regard to inhibition of viability and cell confluence. Combining AZD5363 with BYL719, cisplatin or vincristine resulted in synergistic effects with regard to inhibition of viability in all cell lines, and confluence and migration in all tested cell lines. The administration of single and combined treatments to DAOY spheroids produced largely similar effects. SIGNIFICANCE This study provides pre-clinical evidence that AKT inhibitors combined with PI3K inhibitors, cisplatin, or vincristine exhibit additive/synergistic anti-MB activity, and lower doses could be used. The latter also applied to one MB line grown as spheroids, further supporting their future potential use.
Collapse
Affiliation(s)
- Monika Lukoseviciute
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Emma Need
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Madeleine Birgersson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Ourania N Kostopoulou
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden.
| |
Collapse
|
8
|
Tafese AM, Adela AY, Kebede AG, Tegegn AS, Asare ET, Awol M. Acute brachial artery occlusion following cisplatin-based chemotherapy: case report. SAGE Open Med Case Rep 2024; 12:2050313X241269594. [PMID: 39157035 PMCID: PMC11329959 DOI: 10.1177/2050313x241269594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 08/20/2024] Open
Abstract
Thromboembolism is a significant cause of mortality and morbidity in cancer patients. While the link between cancer and venous thrombosis is well known, the recognition of arterial thrombosis as a serious complication of cancer and chemotherapeutic agents is a recent development. One of the chemotherapy agents frequently linked to acute vascular events is cisplatin. We discuss a rare case of cisplatin-related brachial arterial thrombosis in a 50-year-old man who was treated for cholangiocarcinoma with cisplatin and gemcitabine. Although rare, cisplatin-related arterial thrombosis demands careful monitoring, a high index of suspicion, and prompt management to prevent serious complications and mortality.
Collapse
Affiliation(s)
- Abenezer Melaku Tafese
- Department of Oncology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Internal Medicine, University of Gondar, Gondar, Ethiopia
- Jefferson College of Population Health, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amanuel Yegnanew Adela
- Radiology Department, Body Imaging Unit, Tikur Anbessa Comprehensive Specialized Referral and Teaching Hospital (TASH), Addis Ababa University, Addis Ababa, Ethiopia
- Radiology Department, Gondar University Comprehensive Specialized Referral and Teaching Hospital, College of Medical and Health Sciences, University of Gondar, Gondar, Ethiopia
- Radiology Department, Ethiopian Federal Police Commission Referral Hospital, Addis Ababa, Ethiopia
| | - Assefa Getachew Kebede
- Radiology Department, Body Imaging Unit, Tikur Anbessa Comprehensive Specialized Referral and Teaching Hospital (TASH), Addis Ababa University, Addis Ababa, Ethiopia
| | - Aklilu Sinte Tegegn
- Department of Oncology, Addis Ababa University, Addis Ababa, Ethiopia
- School of Medicine, Debre Tabor University, Debretabor, Ethiopia
| | | | - Munir Awol
- Department of Oncology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Michelon I, Nachtigal GC, Dacoregio MI, Moraes ACBK, Moraes M, Piva LS, da Costa CT, Lund RG, Michelon D. Treatment options for cisplatin-ineligible patients with locally advanced head and neck squamous cell carcinoma: a systematic review. J Cancer Res Clin Oncol 2024; 150:379. [PMID: 39093329 PMCID: PMC11297068 DOI: 10.1007/s00432-024-05887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE There is no agreed-upon standard option for patients with locally advanced head and neck squamous cell carcinoma (LA HNSCC) unfit for cisplatin-based regimens. Therefore, we performed a systematic review to explore alternative options for this population. METHODS We searched PubMed, Cochrane, and Embase databases for observational studies and clinical trials (CTs) assessing treatment options for LA HNSCC cisplatin-ineligible patients. This study was registered in PROSPERO under the number CRD42023483156. RESULTS This systematic review included 24 studies (18 observational studies and 6 CTs), comprising 4450 LA HNSCC cisplatin-ineligible patients. Most patients were treated with cetuximab-radiotherapy [RT] (50.3%), followed by carboplatin-RT (31.7%). In seven studies reporting median overall survival (OS) in patients treated with cetuximab-RT, it ranged from 12.8 to 46 months. The median OS was superior to 40 months in two studies assessing carboplatin-RT, and superior to 15 months in two studies assessing RT alone. For other regimens such as nimotuzumab-RT, docetaxel-RT, and carboplatin-RT plus paclitaxel the median OS was 21, 25.5, and 28 months, respectively. CONCLUSIONS Our systematic review supports the use of a variety of therapy combinations for LA HNSCC cisplatin-ineligible patients. We highlight the urgent need for clinical studies assessing treatment approaches in this population.
Collapse
Affiliation(s)
- Isabella Michelon
- Department of Medicine, Catholic University of Pelotas, Pelotas, Brazil
| | - Gilca Costa Nachtigal
- Department of Internal Medicine, Federal University of Pelotas Teaching Hospital (EBSERH), Pelotas, Brazil
| | | | - Ana Cristina Beitia Kraemer Moraes
- Department of Surgery, Faculty of Medicine, Catholic University of Pelotas, Pelotas, Brazil
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, 96015560, Brazil
| | - Mauricio Moraes
- Department of Medicine, Federal University of Pelotas, Pelotas, Brazil
| | - Lívia Silva Piva
- Department of Medicine, Federal University of Pelotas, Pelotas, Brazil
| | - Catiara Terra da Costa
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, 96015560, Brazil
| | - Rafael Guerra Lund
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, 96015560, Brazil
| | - Douver Michelon
- Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, 96015560, Brazil.
| |
Collapse
|
10
|
El-Shoura EAM, Hassanein EHM, Taha HH, Shalkami AGS, Hassanein MMH, Ali FEM, Bakr AG. Edaravone and obeticholic acid protect against cisplatin-induced heart toxicity by suppressing oxidative stress and inflammation and modulating Nrf2, TLR4/p38MAPK, and JAK1/STAT3/NF-κB signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5649-5662. [PMID: 38285279 PMCID: PMC11329704 DOI: 10.1007/s00210-024-02956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Cardiotoxicity is a significant adverse effect of cisplatin (CIS) that necessitates extensive medical care. The current study examines the cardioprotective effects of edaravone (EDV), obeticholic acid (OCA), and their combinations on CIS-induced cardiac damage. Rats were allocated into five groups: the normal control group, the remaining four groups received CIS (7.5 mg/kg, i.p.) as a single dose on the fifth day and were assigned to CIS, OCA (10 mg/kg/day) + CIS, EDV (20 mg/kg/day) + CIS, and the (EDV + OCA) + CIS group. Compared to the CIS-treated group, co-treating rats with EDV, OCA, or their combinations significantly decreased ALP, AST, LDH, CK-MB, and troponin-I serum levels and alleviated histopathological heart abnormalities. Biochemically, EDV, OCA, and EDV plus OCA administration mitigated cardiac oxidative stress as indicated by a marked decrease in heart MDA content with a rise in cardiac antioxidants SOD and GSH associated with upregulating Nrf2, PPARγ, and SIRT1 expression. Besides, it dampened inflammation by decreasing cardiac levels of TNF-α, IL-1β, and IL-6, mediated by suppressing NF-κB, JAK1/STAT3, and TLR4/p38MAPK signal activation. Notably, rats co-administered with EDV plus OCA showed noticeable protection that exceeded that of EDV and OCA alone. In conclusion, our study provided that EDV, OCA, and their combinations effectively attenuated CIS-induced cardiac intoxication by activating Nrf2, PPARγ, and SIRT1 signals and downregulating NF-κB, JAK1/STAT3, and TLR4/p38MAPK signals.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hesham H Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Clinical Pharmacy Program, Faculty of Health Science and Nursing, Al-Rayan Colleges, Medina, Kingdom of Saudi Arabia
| | | | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
11
|
Pandya C, Sivaramakrishna A. Exploring the binding properties of DNA/BSA and cytotoxicity studies with new terpyridine-ester-based metal complexes (M = Fe(III), Ni(II), Cu(II) and Ru(III)) - A comparative analysis. Int J Biol Macromol 2024; 274:132792. [PMID: 38834110 DOI: 10.1016/j.ijbiomac.2024.132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Many terpyridines and their metal complexes are known to exhibit remarkable potential for the interaction of biological targets. Notably, a subtle change in the structure of the ligand can influence these interactions significantly. In this regard, it would be very interesting to assess the binding affinity of functionalized molecules with DNA/BSA. In this work, a novel ester-based terpyridine (L) and the corresponding four metal complexes with Ni(II) (MC1), Cu(II) (MC2), Fe(III) (MC3) and Ru(III) (MC4) were prepared and structurally characterized using various spectroscopic and analytical techniques including the validation of molecular structures of ligand (L) and Ni(II)-Tpy complex (MC1). The EPR data demonstrate that MC1 is diamagnetic and other complexes (MC2-MC4) exhibit paramagnetic behavior. Additionally, the structures of ligands and metal complexes were determined using DFT studies and the same were utilized for the docking studies. Interestingly, MC3 and MC4 exhibit a predominant lowest binding energy of -9.62 Kcal/mol (with DNA) and -10.05 Kcal/mol (with BSA) respectively. The binding affinity of the ligand and its complexes with protein and DNA was evaluated by spectroscopic techniques. Notably, the cytotoxicity studies of L and MC1-MC4 were performed against the MCF-7 (human breast cancer) cell lines. The complex MC4 displayed great activity with an IC50 of 3.5 ± 1.75 μM among all synthesized compounds and comparable with cisplatin.
Collapse
Affiliation(s)
- Chayan Pandya
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Oliveira CA, Mercês ÉAB, Portela FS, Malheiro LFL, Silva HBL, De Benedictis LM, De Benedictis JM, Silva CCDE, Santos ACL, Rosa DP, Velozo HS, de Jesus Soares T, de Brito Amaral LS. An integrated view of cisplatin-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity: characteristics, common molecular mechanisms, and current clinical management. Clin Exp Nephrol 2024; 28:711-727. [PMID: 38678166 DOI: 10.1007/s10157-024-02490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Cisplatin (CP) is a chemotherapy drug widely prescribed to treat various neoplasms. Although fundamental for the therapeutic action of the drug, its cytotoxic mechanisms trigger adverse effects in several tissues, such as the kidney, liver, and heart, which limit its clinical use. In this sense, studies point to an essential role of damage to nuclear and mitochondrial DNA associated with oxidative stress, inflammation, and apoptosis in the pathophysiology of tissue injuries. Due to the limitation of effective preventive and therapeutic measures against CP-induced toxicity, new strategies with potential cytoprotective effects have been studied. Therefore, this article is timely in reviewing the characteristics and main molecular mechanisms common to renal, hepatic, and cardiac toxicity previously described, in addition to addressing the main validated strategies for the current management of these adverse events in clinical practice. We also handle the main promising antioxidant substances recently presented in the literature to encourage the development of new research that consolidates their potential preventive and therapeutic effects against CP-induced cytotoxicity.
Collapse
Affiliation(s)
- Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Érika Azenathe Barros Mercês
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Fernanda Santos Portela
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Lara Fabiana Luz Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | | | | | | | | | | | | | - Helloisa Souza Velozo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Liliany Souza de Brito Amaral
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
| |
Collapse
|
13
|
Diop N, Sayag D, Marques GB, Chamel G, Chavalle T, Eon JB, Floch F, Lajoinie M, Ponce F, Barrett LE. Comparison of Three Chemotherapy Protocols With Electrochemotherapy for the Treatment of Feline Cutaneous Squamous Cell Carcinoma. Vet Comp Oncol 2024. [PMID: 39007448 DOI: 10.1111/vco.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Electrochemotherapy (ECT) with intravenous (IV) and/or intratumoral (IT) bleomycin has shown considerable efficacy in the treatment of non-resectable feline cutaneous squamous cell carcinoma (cSCC), boasting response rates of up to 95%, but other chemotherapy protocols have not yet been investigated. The objective of this prospective multicentre study was to compare the overall response rate (ORR) and progression-free interval (PFI) between cats with cSCC treated with ECT using IT and IV carboplatin (IV + IT), IV carboplatin (IV) or IV bleomycin (IV). A total of 44 cats with unresectable cSCC across three centres were enrolled and treated with ECT using carboplatin IV + IT (n = 10), carboplatin IV (n = 11) or bleomycin IV (n = 23). Treatment response according to RECIST criteria was recorded at 2 and 4 weeks post-treatment, and patients were followed until disease progression and/or death. All three groups were comparable regarding age, sex, weight, and lesion size. Adverse events were generally mild, localised and similar between groups. ORRs were 90.0% (carboplatin IV + IT), 90.9% (carboplatin IV) and 95.6% (bleomycin IV) and were not significantly different (p = 0.79). Median PFI was not reached for carboplatin IV + IT or carboplatin IV and was 566 days for bleomycin IV, with no significant difference between the three groups (p = 0.81). This study suggests that ECT using IV or IV + IT carboplatin is a reasonable alternative therapeutic option for managing cSCC, and further studies are warranted to compare outcomes between treatment protocols.
Collapse
Affiliation(s)
- Nicolas Diop
- Université de Lyon, VetAgro Sup, Service de cancérologie, UR ICE, Marcy l'Etoile, France
| | - David Sayag
- ONCOnseil-Unité d'expertise en oncologie vétérinaire, Toulouse, France
| | | | - Gabriel Chamel
- Université de Lyon, VetAgro Sup, Service de cancérologie, UR ICE, Marcy l'Etoile, France
| | - Thomas Chavalle
- Université de Lyon, VetAgro Sup, Service de cancérologie, UR ICE, Marcy l'Etoile, France
| | - Jean-Bapiste Eon
- Université de Lyon, VetAgro Sup, Service de cancérologie, UR ICE, Marcy l'Etoile, France
| | | | - Mathilde Lajoinie
- Université de Lyon, VetAgro Sup, Service de cancérologie, UR ICE, Marcy l'Etoile, France
| | - Frédérique Ponce
- Université de Lyon, VetAgro Sup, Service de cancérologie, UR ICE, Marcy l'Etoile, France
| | - Laura E Barrett
- Université de Lyon, VetAgro Sup, Service de cancérologie, UR ICE, Marcy l'Etoile, France
| |
Collapse
|
14
|
Qutifan S, Saleh T, Abu Shahin N, ELBeltagy M, Obeidat F, Qattan D, Kalbouneh H, Barakat NA, Alsalem M. Melatonin mitigates cisplatin-induced cognitive impairment in rats and improves hippocampal dendritic spine density. Neuroreport 2024; 35:657-663. [PMID: 38813907 DOI: 10.1097/wnr.0000000000002049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cisplatin-induced cognitive impairment (chemobrain) affects a considerable percentage of cancer patients and has no established pharmacological treatment. Chemobrain can be associated with neuroinflammation and oxidative stress. Melatonin, a pineal hormone, is known to have antioxidant, anti-inflammatory and neuroprotective potential. In this study, we investigated cisplatin-induced cognitive impairment in rats and whether melatonin can improve or reverse this impairment. Behavioral testing involved measuring working memory using the novel location recognition test (NLRT) under conditions of cisplatin or cisplatin + melatonin treatment, followed by the collection of rats' brains. The brains were subsequently stained with Golgi-Cox stain and then the hippocampus area CA3 of each one was examined, and dendritic spine density was calculated. Treatment with cisplatin resulted in deficits in the rats' performance in the NLRT (P < 0.05). These deficits were prevented by the coadministration of melatonin (P < 0.05). Cisplatin also reduced the density of dendritic spines in the hippocampus (P < 0.0001), specifically CA3 area, while the coadministration of melatonin significantly reversed this reduction (P < 0.001). This study showed that melatonin can ameliorate cisplatin-induced spatial memory deficits and dendritic spines density abnormalities in rats. Given that melatonin is a safe and wildly used supplement, it is feasible to explore its use as a palliative intervention in cancer treatment.
Collapse
Affiliation(s)
- Shahd Qutifan
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Maha ELBeltagy
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman
- Human Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Fatimah Obeidat
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Duaa Qattan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Heba Kalbouneh
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman
| | - Noor A Barakat
- Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman
| |
Collapse
|
15
|
Gamez ME, Blakaj DM, Bhateja P, Custer A, Klamer BG, Pan J, Gogineni E, Baliga S, Bonomi MR. Audiological Outcomes of Weekly vs. Triweekly Cisplatin in Head and Neck Cancer with Cochlear-Sparing Intensity-Modulated Radiation Therapy. Cancers (Basel) 2024; 16:2228. [PMID: 38927933 PMCID: PMC11201991 DOI: 10.3390/cancers16122228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cisplatin, one of the most ototoxic anti-neoplastic agents, causes permanent hearing loss in up to 90% of patients. We assessed ototoxicity rates and prospectively collected audiologic outcomes of patients receiving low-dose or high-dose cisplatin with concurrent cochlear-sparing intensity-modulated radiation therapy (IMRT). Patients with head and neck squamous cell carcinoma (HNSCC) receiving definitive or adjuvant cisplatin-based chemoradiotherapy (CRT) were analyzed. Cisplatin was administered either in low doses weekly (40 mg/m2) for up to seven doses or in high doses triweekly (100 mg/m2) for up to three doses. Cochlear-sparing IMRT was delivered in all cases. Audiologic data were prospectively collected before, during, and after treatment completion. The primary endpoint was a hearing change grade of ≥3 after CRT completion. Of the 96 HNSCC patients evaluated, 69 received weekly cisplatin and 58 received definitive CRT. Of patients receiving weekly cisplatin, 13% developed ≥G3 ototoxicity vs. 56% of patients who received triweekly cisplatin (p < 0.001). In multivariable modeling, the cisplatin dose schedule remained significant (OR: 8.4, 95%CI: 2.8-27.8, p < 0.001) for risk of severe irreversible ototoxicity. Triweekly cisplatin CRT significantly increased the ≥G3 severe irreversible ototoxicity risk compared to low-dose weekly cisplatin, irrespective of the cumulative cisplatin dose, even with the use of cochlear-sparing IMRT. No significant difference in oncologic outcomes was observed between the two schedules.
Collapse
Affiliation(s)
- Mauricio E. Gamez
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN 55905, USA;
| | - Dukagjin M. Blakaj
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (D.M.B.); (E.G.); (S.B.)
| | - Priyanka Bhateja
- Department of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Amy Custer
- Oncology Rehabilitation Team, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Brett G. Klamer
- Center for Biostatistics, Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.G.K.); (J.P.)
| | - Jeff Pan
- Center for Biostatistics, Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (B.G.K.); (J.P.)
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (D.M.B.); (E.G.); (S.B.)
| | - Sujith Baliga
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (D.M.B.); (E.G.); (S.B.)
| | - Marcelo R. Bonomi
- Department of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
16
|
Hemenway G, Anker JF, Riviere P, Rose BS, Galsky MD, Ghatalia P. Advancements in Urothelial Cancer Care: Optimizing Treatment for Your Patient. Am Soc Clin Oncol Educ Book 2024; 44:e432054. [PMID: 38771987 DOI: 10.1200/edbk_432054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The standard treatment paradigm for muscle invasive bladder cancer has been neoadjuvant cisplatin-based chemotherapy followed by radical cystectomy. However, efforts are ongoing to personalize treatment by incorporating biomarkers to better guide treatment selection. In addition, bladder preservation strategies are aimed at avoiding cystectomy in well-selected patients. Similarly, in the metastatic urothelial cancer space, the standard frontline treatment option of platinum-based chemotherapy has changed with the availability of data from EV-302 trial, making the combination of enfortumab vedotin (EV) and pembrolizumab the preferred first-line treatment option. Here, we examine the optimization of treatment intensity and sequencing, focusing on the challenges and opportunities associated with EV/pembrolizumab therapy, including managing toxicities and exploring alternative dosing approaches. Together, these articles provide a comprehensive overview of contemporary strategies in bladder cancer management, highlighting the importance of individualized treatment approaches, ongoing research, and multidisciplinary collaboration to improve patient outcomes in this complex disease landscape.
Collapse
Affiliation(s)
| | - Jonathan F Anker
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul Riviere
- UCSD Radiation Medicine and Applied Sciences, San Diego, CA
| | - Brent S Rose
- UCSD Radiation Medicine and Applied Sciences, San Diego, CA
| | - Matthew D Galsky
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
17
|
Patel S, Sathyanathan V, Salaman SD. Molecular mechanisms underlying cisplatin-induced nephrotoxicity and the potential ameliorative effects of essential oils: A comprehensive review. Tissue Cell 2024; 88:102377. [PMID: 38626527 DOI: 10.1016/j.tice.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Since the Middle Ages, essential oils (EO) have been widely used for bactericidal, virucidal, fungicidal, insecticidal, medicinal and cosmetic applications, nowadays in pharmaceutical, agricultural and food industries. Recently, EO have emerged as promising adjuvant therapies to mitigate the toxicities induced by anti - cancerous drugs; among them cisplatin induced renal damage amelioration remain remarkable. Cisplatin (cis-diaminedichloroplatinum II, CDDP) is renowned as one of the most effective anti-neoplastic agents, widely used as a broad-spectrum anti-tumor agent for various solid tumors. However, its clinical use is hampered by several side effects, notably nephrotoxicity and acute kidney injury, which arise from the accumulation of CDDP in the proximal tubular epithelial cells (PTECs). To better understand and analyze the molecular mechanisms of CDDP-induced renal damage, it is crucial to investigate potential interventions to protect against cisplatin-mediated nephrotoxicity. These EO have shown the ability to counteract oxidative stress, reduce inflammation, prevent apoptosis, and exert estrogenic effects, all contributing to renal protection. In this review, we have made an effort to summarize the molecular mechanisms and exploring new interventions by which we can pave the way for safer and more effective cancer management in the future.
Collapse
Affiliation(s)
- Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - V Sathyanathan
- Department of Pharmacognosy, Apollo College of Pharmacy, Kanchipuram, Tamil Nadu, India
| | - Samsi D Salaman
- Department of Pharmacognosy, Apollo College of Pharmacy, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
18
|
Jiang B, Chen X, Wang S, Wang S, Ma S, Lu Y, Ma L, Liang Q, Xiao H, Zhang L, Yan X, Fan K. Structure-Guided Design of Ferritin-Platinum Prodrugs for Targeted Therapy of Esophageal Squamous Cell Carcinoma. ACS NANO 2024; 18:11217-11233. [PMID: 38627234 DOI: 10.1021/acsnano.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Due to its intrinsic tumor-targeting attribute, limited immunogenicity, and cage architecture, ferritin emerges as a highly promising nanocarrier for targeted drug delivery. In the effort to develop ferritin cage-encapsulated cisplatin (CDDP) as a therapeutic agent, we found unexpectedly that the encapsulation led to inactivation of the drug. Guided by the structural information, we deciphered the interactions between ferritin cages and CDDP, and we proposed a potential mechanism responsible for attenuating the antitumor efficacy of CDDP encapsulated within the cage. Six platinum prodrugs were then designed to avoid the inactivation. The antitumor activities of these ferritin-platinum prodrug complexes were then evaluated in cells of esophageal squamous cell carcinoma (ESCC). Compared with free CDDP, the complexes were more effective in delivering and retaining platinum in the cells, leading to increased DNA damage and enhanced cytotoxic action. They also exhibited improved pharmacokinetics and stronger antitumor activities in mice bearing ESCC cell-derived xenografts as well as patient-derived xenografts. The successful encapsulation also illustrates the critical significance of comprehending the interactions between small molecular drugs and ferritin cages for the development of precision-engineered nanocarriers.
Collapse
Affiliation(s)
- Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuehui Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shenghui Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuyu Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Saiyu Ma
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Lu
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Liang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Polymer Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan 450001, China
| | - Xiyun Yan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Zitzmann FD, Schmidt S, Frank R, Weigel W, Meier M, Jahnke HG. Microcavity well-plate for automated parallel bioelectronic analysis of 3D cell cultures. Biosens Bioelectron 2024; 250:116042. [PMID: 38266619 DOI: 10.1016/j.bios.2024.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Three-dimensional (3D) in vitro cell culture models serve as valuable tools for accurately replicating cellular microenvironments found in vivo. While cell culture technologies are rapidly advancing, the availability of non-invasive, real-time, and label-free analysis methods for 3D cultures remains limited. To meet the demand for higher-throughput drug screening, there is a demanding need for analytical methods that can operate in parallel. Microelectrode systems in combination with microcavity arrays (MCAs), offer the capability of spatially resolved electrochemical impedance analysis and field potential monitoring of 3D cultures. However, the fabrication and handling of small-scale MCAs have been labour-intensive, limiting their broader application. To overcome this challenge, we have established a process for creating MCAs in a standard 96-well plate format using high-precision selective laser etching. In addition, to automate and ensure the accurate placement of 3D cultures on the MCA, we have designed and characterized a plug-in tool using SLA-3D-printing. To characterize our new 96-well plate MCA-based platform, we conducted parallel analyses of human melanoma 3D cultures and monitored the effect of cisplatin in real-time by impedance spectroscopy. In the following we demonstrate the capabilities of the MCA approach by analysing contraction rates of human pluripotent stem cell-derived cardiomyocyte aggregates in response to cardioactive compounds. In summary, our MCA system significantly expands the possibilities for label-free analysis of 3D cell and tissue cultures, offering an order of magnitude higher parallelization capacity than previous devices. This advancement greatly enhances its applicability in real-world settings, such as drug development or clinical diagnostics.
Collapse
Affiliation(s)
- Franziska D Zitzmann
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany; b-ACT Matter, Research and Transfer Centre for bioactive Matter, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Sabine Schmidt
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Winnie Weigel
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Matthias Meier
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany.
| |
Collapse
|
20
|
Hill RJ, Bona N, Smink J, Webb HK, Crisp A, Garaycoechea JI, Crossan GP. p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice. Nat Commun 2024; 15:2518. [PMID: 38514641 PMCID: PMC10957910 DOI: 10.1038/s41467-024-46844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
DNA repair deficiency can lead to segmental phenotypes in humans and mice, in which certain tissues lose homeostasis while others remain seemingly unaffected. This may be due to different tissues facing varying levels of damage or having different reliance on specific DNA repair pathways. However, we find that the cellular response to DNA damage determines different tissue-specific outcomes. Here, we use a mouse model of the human XPF-ERCC1 progeroid syndrome (XFE) caused by loss of DNA repair. We find that p53, a central regulator of the cellular response to DNA damage, regulates tissue dysfunction in Ercc1-/- mice in different ways. We show that ablation of p53 rescues the loss of hematopoietic stem cells, and has no effect on kidney, germ cell or brain dysfunction, but exacerbates liver pathology and polyploidisation. Mechanistically, we find that p53 ablation led to the loss of cell-cycle regulation in the liver, with reduced p21 expression. Eventually, p16/Cdkn2a expression is induced, serving as a fail-safe brake to proliferation in the absence of the p53-p21 axis. Taken together, our data show that distinct and tissue-specific functions of p53, in response to DNA damage, play a crucial role in regulating tissue-specific phenotypes.
Collapse
Affiliation(s)
- Ross J Hill
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Nazareno Bona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Job Smink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Hannah K Webb
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Juan I Garaycoechea
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
21
|
Yang Y, Chen Y, Tang H, Zhang Z, Zhou X, Xu W. DTTZ suppresses ferroptosis and reverses mitochondrial dysfunction in normal tissues affected by chemotherapy. Biomed Pharmacother 2024; 172:116227. [PMID: 38335570 DOI: 10.1016/j.biopha.2024.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Conventional antineoplastic therapies cause severe normal tissue damage and existing cytoprotectants with acute toxicities or potential tumor protection limit their clinical application. We evaluated the selective cytoprotection of 2,2-dimethylthiazolidine hydrochloride in this study, which could protect normal tissue toxicity without interfering antineoplastic therapies. By using diverse cell lines and A549 xenograft model, we discovered a synthetic aminothiol 2,2-dimethylthiazolidine hydrochloride selectively diminished normal cellular ferroptosis via SystemXc-/Glutathione Peroxidase 4 pathway upon antineoplastic therapies without interfering the anticancer efficacy. We revealed the malignant and non-malignant tissues presenting different energy metabolism patterns. And cisplatin induces disparate replicative stress, contributing to the distinguishable cytoprotection of 2,2-dimethylthiazolidine in normal and tumor cells. The compound pre-application could mitigate cisplatin-induced normal cellular mitochondrial oxidative phosphorylation (OXPHOS) dysfunction. Pharmacologic ablation of mitochondria reversed 2,2-dimethylthiazolidine chemoprotection against cisplatin in the normal cell line. Combined, these results provide a potential therapeutic adjuvant to selectively diminish normal tissue damages retaining antineoplastic efficacy.
Collapse
Affiliation(s)
- Yuwei Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Yuanfang Chen
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Haikang Tang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Ziqi Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xiaoliang Zhou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Wenqing Xu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
22
|
Segatto NV, Simões LD, Bender CB, Sousa FS, Oliveira TL, Paschoal JDF, Pacheco BS, Lopes I, Seixas FK, Qazi A, Thomas FM, Chaki S, Robertson N, Newsom J, Patel S, Rund LA, Jordan LR, Bolt C, Schachtschneider KM, Schook LB, Collares TV. Oncopig bladder cancer cells recapitulate human bladder cancer treatment responses in vitro. Front Oncol 2024; 14:1323422. [PMID: 38469237 PMCID: PMC10926022 DOI: 10.3389/fonc.2024.1323422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/05/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Bladder cancer is a common neoplasia of the urinary tract that holds the highest cost of lifelong treatment per patient, highlighting the need for a continuous search for new therapies for the disease. Current bladder cancer models are either imperfect in their ability to translate results to clinical practice (mouse models), or rare and not inducible (canine models). Swine models are an attractive alternative to model the disease due to their similarities with humans on several levels. The Oncopig Cancer Model has been shown to develop tumors that closely resemble human tumors. However, urothelial carcinoma has not yet been studied in this platform. Methods We aimed to develop novel Oncopig bladder cancer cell line (BCCL) and investigate whether these urothelial swine cells mimic human bladder cancer cell line (5637 and T24) treatment-responses to cisplatin, doxorubicin, and gemcitabine in vitro. Results Results demonstrated consistent treatment responses between Oncopig and human cells in most concentrations tested (p>0.05). Overall, Oncopig cells were more predictive of T24 than 5637 cell therapeutic responses. Microarray analysis also demonstrated similar alterations in expression of apoptotic (GADD45B and TP53INP1) and cytoskeleton-related genes (ZMYM6 and RND1) following gemcitabine exposure between 5637 (human) and Oncopig BCCL cells, indicating apoptosis may be triggered through similar signaling pathways. Molecular docking results indicated that swine and humans had similar Dg values between the chemotherapeutics and their target proteins. Discussion Taken together, these results suggest the Oncopig could be an attractive animal to model urothelial carcinoma due to similarities in in vitro therapeutic responses compared to human cells.
Collapse
Affiliation(s)
- Natália V. Segatto
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Lucas D. Simões
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila B. Bender
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda S. Sousa
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thais L. Oliveira
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Júlia D. F. Paschoal
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bruna S. Pacheco
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Isadora Lopes
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana K. Seixas
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Aisha Qazi
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Faith M. Thomas
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Sulalita Chaki
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | | | | | - Shovik Patel
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Luke R. Jordan
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | - Courtni Bolt
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | | | - Lawrence B. Schook
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | - Tiago V. Collares
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
23
|
Aher S, Zhu J, Bhagat P, Borse L, Liu X. Pt(IV) Complexes in the Search for Novel Platinum Prodrugs with Promising Activity. Top Curr Chem (Cham) 2024; 382:6. [PMID: 38400859 DOI: 10.1007/s41061-023-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 02/26/2024]
Abstract
The kinetically inert, six coordinated, octahedral Pt(IV) complexes are termed dual-, triple-, or multi-action prodrugs based on the nature of the axially substituted ligands. These ligands are either inert or biologically active, where the nature of these axial ligands provides additional stability, synergistic biological activity or cell-targeting ability. There are many literature reports from each of these classes, mentioning the varied nature of these axial ligands. The ligands comprise drug molecules such as chlorambucil, doxorubicin, valproic acid, ethacrynic acid, biologically active chalcone, coumarin, combretastatin, non-steroidal anti-inflammatory drugs (NSAIDs) and many more, potentiating the anti-proliferative profile or reducing the side effects associated with cisplatin therapy. The targeting and non-targeting nature of these moieties exert additive or synergistic effects on the anti-cancer activity of Pt(II) moieties. Herein, we discuss the effects of these axially oriented ligands and the changes in the non-leaving am(m)ine groups and in the leaving groups on the biological activity. In this review, we have presented the latest developments in the field of Pt(IV) complexes that display promising activity with a reduced resistance profile. We have discussed the structure activity relationship (SAR) and the effects of the ligands on the biological activity of Pt(IV) complexes with cisplatin, oxaliplatin, carboplatin and the Pt core other than approved drugs. This literature work will help researchers to get an idea about Pt(IV) complexes that have been classified based on the aspects of their biological activity.
Collapse
Affiliation(s)
- Sainath Aher
- K. K. Wagh College of Pharmacy, Nashik, Maharashtra, 422003, India
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China
| | - Pundlik Bhagat
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, India
| | - Laxmikant Borse
- Sandip Institute of Pharmaceutical Sciences, Nashik, Maharashtra, 422213, India
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
24
|
Wang M, Li G, Jiang G, Cai J, Zhong W, Huang R, Liu Z, Huang X, Wang H. Dual-targeting tumor cells hybrids derived from Pt(IV) species and NF-κB inhibitors enables cancer therapy through mitochondrial dysfunction and ER stress and overcomes cisplatin resistance. Eur J Med Chem 2024; 266:116095. [PMID: 38215589 DOI: 10.1016/j.ejmech.2023.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Abstract
To ameliorate the defects including serious side effects and drug resistance of Pt(II) drugs (e.g., cisplatin and oxaliplatin), here a novel of "dual-prodrug" by containing Pt(II) drugs and NF-κB inhibitors were synthesized and characterized. Among them, Pt(IV) complex 11 exhibited better cytotoxic activity than other Pt(IV) complexes and the corresponding Pt(II) drugs, with IC50 values ranged from 0.31 to 0.91 μM, respectively, and also displayed low toxicity toward two normal cells HL-7702 and BEAS-2B. More importantly, complex 11 significantly reversed cisplatin resistance in A549/CDDP cells, indicating that complex 11 was able to overcome multidrug resistance. Following mechanism studies demonstrated that complex 11 significantly induced DNA damage and ROS generation, arrest the cell cycle at the G2/M stage, suppressed cell migration and intrusion, and induced cell apoptosis through activated ER stress and mitochondrial apoptosis pathway in A549 cells. Moreover, complex 11 effectively suppressed the IKKβ phosphorylation, IκBα phosphorylation and NF-κB p65 phosphorylation and nuclear translocation, leading to blocked the NF-κB signal pathway in A549 cells. In vivo tests showed that the inhibitory rate in the complex 11 reached 69.2 %, which was much higher than that of oxaliplatin (55.6 %), 1a (39.7 %) and the combination of oxaliplatin/1a (65.1 %), without causing loss in the body weight.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center For Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China; Institute of Green Chemistry and Process Enhancement Technology, Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Guimei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center For Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Guiyang Jiang
- Institute of Green Chemistry and Process Enhancement Technology, Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jingyuan Cai
- Institute of Green Chemistry and Process Enhancement Technology, Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Wentian Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center For Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Zhikun Liu
- Institute of Green Chemistry and Process Enhancement Technology, Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Xiaochao Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center For Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China; Institute of Green Chemistry and Process Enhancement Technology, Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center For Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
25
|
Jungbauer F, Affolter A, Brochhausen C, Lammert A, Ludwig S, Merx K, Rotter N, Huber L. Risk factors for immune-related adverse effects during CPI therapy in patients with head and neck malignancies - a single center study. Front Oncol 2024; 14:1287178. [PMID: 38420014 PMCID: PMC10899674 DOI: 10.3389/fonc.2024.1287178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Checkpoint inhibitors, such as PD1 inhibitors, represent an important pillar in the therapy of advanced malignancies of the head and neck region. The most relevant complications are immune-related adverse effects (irAEs), which represent an immense burden for patients. Currently, no sufficient stratification measures are available to identify patients at increased risk of irAEs. The aim of this retrospective study was to examine whether demographic, histopathological, clinical, or laboratory values at the start of CPI therapy represent a risk factor for the later occurrence of autoimmune complications. Material and methods Data from 35 patients between 2018 and 2021 who received therapy with nivolumab or pembrolizumab for head and neck malignancy were analyzed and assessed for any associations with the subsequent occurrence of irAEs. Results IrAE developed in 37% of patients, with pneumonitis being the most common form (14%). Pneumonitis was found in patients with an average significantly lower T-stage of primary tumors. An increase in basophilic leukocytes was found in patients with dermatitis later in the course. When thyroiditis developed later, the patients had a higher CPS score and lower monocyte levels. Discussion Even though individual laboratory values at the beginning of therapy might show a statistical association with the later occurrence of irAEs, neither demographic, histopathological, nor laboratory chemistry values seem to be able to generate a sound and reliable risk profile for this type of complication. Therefore, patients need to be educated and sensitized to irAEs, and regular screening for irAEs should be carried out.
Collapse
Affiliation(s)
- Frederic Jungbauer
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Annette Affolter
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Brochhausen
- Department of Pathology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Lammert
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Ludwig
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Kirsten Merx
- Department of Hematology and Oncology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Huber
- Department of Otorhinolaryngology, Head- and Neck-Surgery, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
26
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
27
|
Klyushova LS, Vavilin VA, Grishanova AY. The cytotoxic and antiproliferative properties of ruthenium nitrosyl complexes and their modulation effect on cytochrome P450 in the HepG2 cell line. BIOMEDITSINSKAIA KHIMIIA 2024; 70:33-40. [PMID: 38450679 DOI: 10.18097/pbmc20247001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Ruthenium nitrosyl complexes are actively investigated as antitumor agents. Evaluation of potential interactions between cytochromes P450 (CYPs) with new compounds is carried out regularly during early drug development. In this study we have investigated the cytotoxic and antiproliferative activities of ruthenium nitrosyl complexes with methyl/ethyl esters of nicotinic and isonicotinic acids and γ-picoline against 2D and 3D cultures of human hepatocellular carcinoma HepG2 and non-cancer human lung fibroblasts MRC-5, assessed their photoinduced activity at λrad = 445 nm, and also evaluated their modulating effect on CYP3A4, CYP2C9, and CYP2C19. The study of cytotoxic and antiproliferative activities against 2D and 3D cell models was performed using phenotypic-based high content screening (HCS). The expression of CYP3A4, CYP2C9, and CYP2C19 mRNAs and CYP3A4 protein was examined using target-based HCS. The results of CYP3A4 mRNA expression were confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). The ruthenium nitrosyl complexes exhibited a dose-dependent cytotoxic effect against HepG2 and MRC-5 cells. The cytotoxic activity of complexes with ethyl isonicotinate (1) and nicotinate (3, 4) was significantly lower for MRC-5 than for HepG2, for a complex with methyl isonicotinate (2) it was higher for MRC-5 than for HepG2, for a complex with γ-picoline (5) it was comparable for both lines. The antiproliferative effect of complexes 2 and 5 was one order of magnitude higher for MRC-5; for complexes 1, 3, and 4 it was comparable for both lines. The cytotoxic activity of all compounds for 3D HepG2 was lower than for 2D HepG2, with the exception of 4. Photoactivation affected the activity of complex 1 only. Its cytotoxic activity decreased, while the antiproliferative activity increased. The ruthenium nitrosyl complexes 1-4 acted as inducers of CYP3A4 and CYP2C19, while the complex with γ-picoline (5) induced of CYP3A4. Among the studied ruthenium nitrosyl complexes, the most promising potential antitumor compound is the ruthenium compound with methyl nicotinate (4).
Collapse
Affiliation(s)
- L S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - V A Vavilin
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - A Yu Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
28
|
Liu Y, Dai S, Xu Y, Xiang Y, Zhang Y, Xu Z, Sun L, Zhang GCX, Shu Q. Integration of Network Pharmacology and Experimental Validation to Explore Jixueteng - Yinyanghuo Herb Pair Alleviate Cisplatin-Induced Myelosuppression. Integr Cancer Ther 2024; 23:15347354241237969. [PMID: 38462913 DOI: 10.1177/15347354241237969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Jixueteng, the vine of the bush Spatholobus suberectus Dunn., is widely used to treat irregular menstruation and arthralgia. Yinyanghuo, the aboveground part of the plant Epimedium brevicornum Maxim., has the function of warming the kidney to invigorate yang. This research aimed to investigate the effects and mechanisms of the Jixueteng and Yinyanghuo herbal pair (JYHP) on cisplatin-induced myelosuppression in a mice model. Firstly, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) screened 15 effective compounds of JYHP decoction. Network pharmacology enriched 10 genes which may play a role by inhibiting the apoptosis of bone marrow (BM) cells. Then, a myelosuppression C57BL/6 mice model was induced by intraperitoneal (i.p.) injection of cis-Diaminodichloroplatinum (cisplatin, CDDP) and followed by the intragastric (i.g.) administration of JYHP decoction. The efficacy was evaluated by blood cell count, reticulocyte count, and histopathological analysis of bone marrow and spleen. Through the vivo experiments, we found the timing of JYHP administration affected the effect of drug administration, JYHP had a better therapeutical effect rather than a preventive effect. JYHP obviously recovered the hematopoietic function of bone marrow from the peripheral blood cell test and pathological staining. Flow cytometry data showed JYHP decreased the apoptosis rate of BM cells and the western blotting showed JYHP downregulated the cleaved Caspase-3/Caspase-3 ratios through RAS/MEK/ERK pathway. In conclusion, JYHP alleviated CDDP-induced myelosuppression by inhibiting the apoptosis of BM cells through RAS/MEK/ERK pathway and the optimal timing of JYHP administration was after CDDP administration.
Collapse
Affiliation(s)
- Yi Liu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuying Dai
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yixiao Xu
- School of Pharmaceutical Sciences of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuying Xiang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yao Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zeting Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lin Sun
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | | | - Qijin Shu
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| |
Collapse
|
29
|
Hayashi D, Shirai T, Terauchi R, Tsuchida S, Mizoshiri N, Mori Y, Shimomura S, Mazda O, Takahashi K. A Natural Organic Compound "Decursin" Has Both Antitumor and Renal Protective Effects: Treatment for Osteosarcoma. JOURNAL OF ONCOLOGY 2023; 2023:5445802. [PMID: 38130464 PMCID: PMC10735716 DOI: 10.1155/2023/5445802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/24/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Osteosarcoma is a rare malignant tumor that commonly occurs in children. Anticancer drugs, for example, cisplatin, aid in postsurgery recovery but induce side effects such as renal damage, affecting the life prognosis of patients. Decursin which is one of the bioactive components has been reported for its anti-inflammatory, antioxidant, and antitumor effects, but the effect on osteosarcoma is unexplained. In this study, the research theme was to examine the sensitizing effect of decursin and its influence on cisplatin-induced nephrotoxicity. The cell viability and half maximal inhibitory concentration (IC50), apoptosis induction, and effect on cell cycle and Akt pathways were examined. In vivo, we examine the effects of decursin on tumors and mice bodies. Additionally, the effects of the cisplatin-decursin combination were evaluated in vitro and in vivo. Decursin suppressed cell viability and induced apoptosis via the cell cycle. Decursin also inhibited the Akt pathway by suppressing the phosphorylation of Akt. It enhanced apoptosis induction and lowered cell viability in combination with cisplatin. The increasing tumor volume was suppressed in the decursin-administrated group with further suppression in combination with cisplatin compared to sole cisplatin administration. The decrease in renal function and renal epithelial cell damage caused by cisplatin was improved by the combinatorial treatment with decursin. Therefore, decursin demonstrated an antitumor effect on the osteosarcoma cells and a renal protective effect in combination with cisplatin. Therefore, decursin is a prospective therapeutic agent against osteosarcoma.
Collapse
Affiliation(s)
- Daichi Hayashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiharu Shirai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryu Terauchi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shinji Tsuchida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Naoki Mizoshiri
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuki Mori
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Seiji Shimomura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kenji Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
30
|
Liu J, Guo C, Li C, Jia Q, Xie Z, Wang Z, Tian H, Li Z, Hao L. Redox/pH-responsive hollow manganese dioxide nanoparticles for thyroid cancer treatment. Front Chem 2023; 11:1249472. [PMID: 37780983 PMCID: PMC10540626 DOI: 10.3389/fchem.2023.1249472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
The nano drug delivery system MnO2/CDDP@PDA-Cy5.5 was synthesized in this study to increase the efficacy of Cisplatin (CDDP) on thyroid cancer and alleviate the damage to normal tissue, with the aim of enhancing the anti-cancer efficacy, increasing the drug load, optimizing the control of drug release, and alleviating the systemic toxicity arising from drug off-target. On that basis, high efficacy and low toxicity win-win can be obtained. In this study, hollow manganese dioxide nanoparticles (MnO2 NPs) were prepared based on the template method. CDDP was loaded into the hollow cavity and then modified with polydopamine (PDA) and Cy5.5, with the aim of obtaining the nano-drug loading system MnO2/CDDP@PDA-Cy5.5 NPs. The NPs precisely delivered drugs by intelligently responding to the tumor microenvironment (TME). As indicated by the release curves, the NPs release CDDP rapidly by inducing the decomposition of PDA and MnO2 under acidic or redox conditions, and Magnetic resonance imaging (MRI) contrast agent Mn2+ was generated. The results of the in vivo MRI studies suggested that T1 contrast at the tumor site was notably enhanced under the Enhanced permeability and retention (EPR) effect. After the intravenous administration, the effective tumor accumulation exhibited by the NPs was confirmed by magnetic resonance imaging as a function of time. Compared with free CDDP, the in vivo therapeutic effect was remarkably increased. As indicated by the above-described results, MnO2/CDDP@PDA-Cy5.5 NPs is a drug delivery system exhibiting diagnostic and therapeutic functions.
Collapse
Affiliation(s)
- Jinren Liu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Changzhi Guo
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Chunxiang Li
- Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Qiushi Jia
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | | | - Ziyue Wang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Hongda Tian
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Zhongyuan Li
- Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
31
|
Zhong T, Yu J, Pan Y, Zhang N, Qi Y, Huang Y. Recent Advances of Platinum-Based Anticancer Complexes in Combinational Multimodal Therapy. Adv Healthc Mater 2023; 12:e2300253. [PMID: 37097737 DOI: 10.1002/adhm.202300253] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/19/2023] [Indexed: 04/26/2023]
Abstract
Platinum drugs with manifest therapeutic effects are widely used, but their systemic toxicity and the drug resistance acquired by cancer cells limit their clinical applications. Thus, the exploration on appropriate methods and strategies to overcome the limitations of traditional platinum drugs becomes extremely necessary. Combination therapy of platinum drugs can inhibit tumor growth and metastasis in an additive or synergistic manner, and can potentially reduce the systemic toxicity of platinum drugs and overcome platinum-resistance. This review summarizes the various modalities and current progress in platinum-based combination therapy. The synthetic strategies and therapeutic effects of some platinum-based anticancer complexes in the combination of platinum drugs with gene editing, ROS-based therapy, thermal therapy, immunotherapy, biological modelling, photoactivation, supramolecular self-assembly and imaging modality are briefly described. Their potential challenges and prospects are also discussed. It is hoped that this review will inspire researchers to have more ideas for the future development of highly effective platinum-based anti-cancer complexes.
Collapse
Affiliation(s)
- Tianyuan Zhong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Jie Yu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Ning Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics, Harbin, 150000, China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
32
|
Iacobucci I, La Manna S, Cipollone I, Monaco V, Canè L, Cozzolino F. From the Discovery of Targets to Delivery Systems: How to Decipher and Improve the Metallodrugs' Actions at a Molecular Level. Pharmaceutics 2023; 15:1997. [PMID: 37514183 PMCID: PMC10385150 DOI: 10.3390/pharmaceutics15071997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Metals are indispensable for the life of all organisms, and their dysregulation leads to various disorders due to the disruption of their homeostasis. Nowadays, various transition metals are used in pharmaceutical products as diagnostic and therapeutic agents because their electronic structure allows them to adjust the properties of molecules differently from organic molecules. Therefore, interest in the study of metal-drug complexes from different aspects has been aroused, and numerous approaches have been developed to characterize, activate, deliver, and clarify molecular mechanisms. The integration of these different approaches, ranging from chemoproteomics to nanoparticle systems and various activation strategies, enables the understanding of the cellular responses to metal drugs, which may form the basis for the development of new drugs and/or the modification of currently used drugs. The purpose of this review is to briefly summarize the recent advances in this field by describing the technological platforms and their potential applications for identifying protein targets for discovering the mechanisms of action of metallodrugs and improving their efficiency during delivery.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), European School of Chemistry, Polymers and Materials (ECPM), 67087 Strasbourg, France
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Irene Cipollone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Luisa Canè
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| |
Collapse
|
33
|
Zhang L, Wang P, Zhou XQ, Bretin L, Zeng X, Husiev Y, Polanco EA, Zhao G, Wijaya LS, Biver T, Le Dévédec SE, Sun W, Bonnet S. Cyclic Ruthenium-Peptide Conjugates as Integrin-Targeting Phototherapeutic Prodrugs for the Treatment of Brain Tumors. J Am Chem Soc 2023. [PMID: 37379365 DOI: 10.1021/jacs.3c04855] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
To investigate the potential of tumor-targeting photoactivated chemotherapy, a chiral ruthenium-based anticancer warhead, Λ/Δ-[Ru(Ph2phen)2(OH2)2]2+, was conjugated to the RGD-containing Ac-MRGDH-NH2 peptide by direct coordination of the M and H residues to the metal. This design afforded two diastereoisomers of a cyclic metallopeptide, Λ-[1]Cl2 and Δ-[1]Cl2. In the dark, the ruthenium-chelating peptide had a triple action. First, it prevented other biomolecules from coordinating with the metal center. Second, its hydrophilicity made [1]Cl2 amphiphilic so that it self-assembled in culture medium into nanoparticles. Third, it acted as a tumor-targeting motif by strongly binding to the integrin (Kd = 0.061 μM for the binding of Λ-[1]Cl2 to αIIbβ3), which resulted in the receptor-mediated uptake of the conjugate in vitro. Phototoxicity studies in two-dimensional (2D) monolayers of A549, U87MG, and PC-3 human cancer cell lines and U87MG three-dimensional (3D) tumor spheroids showed that the two isomers of [1]Cl2 were strongly phototoxic, with photoindexes up to 17. Mechanistic studies indicated that such phototoxicity was due to a combination of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) effects, resulting from both reactive oxygen species generation and peptide photosubstitution. Finally, in vivo studies in a subcutaneous U87MG glioblastoma mice model showed that [1]Cl2 efficiently accumulated in the tumor 12 h after injection, where green light irradiation generated a stronger tumoricidal effect than a nontargeted analogue ruthenium complex [2]Cl2. Considering the absence of systemic toxicity for the treated mice, these results demonstrate the high potential of light-sensitive integrin-targeted ruthenium-based anticancer compounds for the treatment of brain cancer in vivo.
Collapse
Affiliation(s)
- Liyan Zhang
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Peiyuan Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ludovic Bretin
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Xiaolong Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yurii Husiev
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Ehider A Polanco
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Gangyin Zhao
- Leiden Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Lukas S Wijaya
- Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Sylvia E Le Dévédec
- Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| |
Collapse
|
34
|
Tretyakov BA, Filatova NV, Mumyatova VA, Gadomsky SY, Terent'ev AA. Pyridine Derivative of Succinic Acid Hydroxylamide Enhances the Cytotoxic Effect of Cisplatin and Actinomycin D. Bull Exp Biol Med 2023:10.1007/s10517-023-05803-4. [PMID: 37338757 DOI: 10.1007/s10517-023-05803-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 06/21/2023]
Abstract
We studied the possibility of inhibition of histone deacetylases (HDAC) in the nuclear extract of HeLa cells by N1-hydroxy-N4-(pyridin-4-yl)succinamide (compound 1). Compound 1 inhibits HDAC and showed low toxicity for A-172, HepG2, HeLa, MCF-7, and Vero cells. HeLa cells were most sensitive to the compound. Increasing the interval between administration of compound 1 and the chemotherapeutic agent to 8 h led to an increase in the cytotoxic effect of cisplatin (actinomycin D) on HeLa cells. The combination of compound 1 with cisplatin (actinomycin D) reduced the cytotoxic effect of these drugs for non-tumor Vero cells.
Collapse
Affiliation(s)
- B A Tretyakov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia.
| | - N V Filatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - V A Mumyatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - S Y Gadomsky
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - A A Terent'ev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
- Scientific and Educational Center of the Moscow State Regional University in Chernogolovka, Medical Biological Institute, Mytishchi, Moscow region, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
35
|
Jeon H, Song IS, Park JG, Lee H, Han E, Park S, Lee Y, Song CM, Hur W, Lee IG, Choi J. Protective effects of esomeprazole against cisplatin-induced ototoxicity: an in vitro and in vivo study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106573. [PMID: 37210931 DOI: 10.1016/j.aquatox.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In this study, we aimed to identify novel compounds that could afford protection against cisplatin-induced ototoxicity by employing both cell- and zebrafish (Danio rerio)-based screening platforms. We screened 923 US Food and Drug Administration-approved drugs to identify potential compounds exhibiting protective effects against cisplatin-induced ototoxicity in HEI-OC1 cells (auditory hair cell line). The screening strategy identified esomeprazole and dexlansoprazole as the primary hit compounds. Subsequently, we examined the effects of these compounds on cell viability and apoptosis. Our results revealed that esomeprazole and dexlansoprazole inhibited organic cation transporter 2 (OCT2), thus providing in vitro evidence that these compounds could ameliorate cisplatin-induced ototoxicity by directly inhibiting OCT2-mediated cisplatin transport. In vivo, the protective effects were validated using zebrafish; esomeprazole was found to decrease cisplatin-induced hair cell damage in neuromasts. Furthermore, the esomeprazole-treated group showed a significantly lower number of TUNEL-positive cells than the cisplatin-treated group. Collectively, our findings revealed that esomeprazole exerts a protective effect against cisplatin-induced hair cell damage in both HEI-OC1 cells and a zebrafish model.
Collapse
Affiliation(s)
- Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - In Sik Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyejin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Eunjung Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yunkyoung Lee
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea
| | - Chi-Man Song
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Wooyoung Hur
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea; Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea.
| |
Collapse
|
36
|
Yang GM, Xu L, Wang RM, Tao X, Zheng ZW, Chang S, Ma D, Zhao C, Dong Y, Wu S, Guo J, Wu ZY. Structures of the human Wilson disease copper transporter ATP7B. Cell Rep 2023; 42:112417. [PMID: 37074913 DOI: 10.1016/j.celrep.2023.112417] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
The P-type ATPase ATP7B exports cytosolic copper and plays an essential role in the regulation of cellular copper homeostasis. Mutants of ATP7B cause Wilson disease (WD), an autosomal recessive disorder of copper metabolism. Here, we present cryoelectron microscopy (cryo-EM) structures of human ATP7B in the E1 state in the apo, the putative copper-bound, and the putative cisplatin-bound forms. In ATP7B, the N-terminal sixth metal-binding domain (MBD6) binds at the cytosolic copper entry site of the transmembrane domain (TMD), facilitating the delivery of copper from the MBD6 to the TMD. The sulfur-containing residues in the TMD of ATP7B mark the copper transport pathway. By comparing structures of the E1 state human ATP7B and E2-Pi state frog ATP7B, we propose the ATP-driving copper transport model of ATP7B. These structures not only advance our understanding of the mechanisms of ATP7B-mediated copper export but can also guide the development of therapeutics for the treatment of WD.
Collapse
Affiliation(s)
- Guo-Min Yang
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lingyi Xu
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Rou-Min Wang
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zi-Wei Zheng
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shenghai Chang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Demin Ma
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Zhao
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Jiangtao Guo
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
37
|
de Maar JS, Zandvliet MMJM, Veraa S, Tobón Restrepo M, Moonen CTW, Deckers R. Ultrasound and Microbubbles Mediated Bleomycin Delivery in Feline Oral Squamous Cell Carcinoma—An In Vivo Veterinary Study. Pharmaceutics 2023; 15:pharmaceutics15041166. [PMID: 37111651 PMCID: PMC10142092 DOI: 10.3390/pharmaceutics15041166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
To investigate the feasibility and tolerability of ultrasound and microbubbles (USMB)-enhanced chemotherapy delivery for head and neck cancer, we performed a veterinary trial in feline companion animals with oral squamous cell carcinomas. Six cats were treated with a combination of bleomycin and USMB therapy three times, using the Pulse Wave Doppler mode on a clinical ultrasound system and EMA/FDA approved microbubbles. They were evaluated for adverse events, quality of life, tumour response and survival. Furthermore, tumour perfusion was monitored before and after USMB therapy using contrast-enhanced ultrasound (CEUS). USMB treatments were feasible and well tolerated. Among 5 cats treated with optimized US settings, 3 had stable disease at first, but showed disease progression 5 or 11 weeks after first treatment. One cat had progressive disease one week after the first treatment session, maintaining a stable disease thereafter. Eventually, all cats except one showed progressive disease, but each survived longer than the median overall survival time of 44 days reported in literature. CEUS performed immediately before and after USMB therapy suggested an increase in tumour perfusion based on an increase in median area under the curve (AUC) in 6 out of 12 evaluated treatment sessions. In this small hypothesis-generating study, USMB plus chemotherapy was feasible and well-tolerated in a feline companion animal model and showed potential for enhancing tumour perfusion in order to increase drug delivery. This could be a forward step toward clinical translation of USMB therapy to human patients with a clinical need for locally enhanced treatment.
Collapse
Affiliation(s)
- Josanne S. de Maar
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Maurice M. J. M. Zandvliet
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Stefanie Veraa
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Mauricio Tobón Restrepo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Chrit T. W. Moonen
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Roel Deckers
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
38
|
Shahbazi M, Zhang X, Dinh PC, Sanchez VA, Trendowski MR, Shuey MM, Nguyen T, Feldman DR, Vaughn DJ, Fung C, Kollmannsberger C, Martin NE, Einhorn LH, Cox NJ, Frisina RD, Travis LB, Dolan ME. Comprehensive association analysis of speech recognition thresholds after cisplatin-based chemotherapy in survivors of adult-onset cancer. Cancer Med 2023; 12:2999-3012. [PMID: 36097363 PMCID: PMC9939144 DOI: 10.1002/cam4.5218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Deficits in speech understanding constitute one of the most severe consequences of hearing loss. Here we investigate the clinical and genetic risk factors for symmetric deterioration of speech recognition thresholds (SRT) among cancer survivors treated with cisplatin. METHODS SRT was measured using spondaic words and calculating the mean of measurements for both ears with symmetric SRT values. For clinical associations, SRT-based hearing disability (SHD) was defined as SRT≥15 dB hearing loss and clinical variables were derived from the study dataset. Genotyped blood samples were used for GWAS with rank-based inverse normal transformed SRT values as the response variable. Age was used as a covariate in association analyses. RESULTS SHD was inversely associated with self-reported health (p = 0.004). Current smoking (p = 0.002), years of smoking (p = 0.02), BMI (p < 0.001), and peripheral motor neuropathy (p = 0.003) were positively associated with SHD, while physical activity was inversely associated with SHD (p = 0.005). In contrast, cumulative cisplatin dose, peripheral sensory neuropathy, hypertension, and hypercholesterolemia were not associated with SHD. Although no genetic variants had an association p value < 5 × 10-8 , 22 genetic variants were suggestively associated (p < 10-5 ) with SRT deterioration. Three of the top variants in 10 respective linkage disequilibrium regions were either positioned within the coding sequence or were eQTLs for genes involved in neuronal development (ATE1, ENAH, and ZFHX3). CONCLUSION Current results improve our understanding of risk factors for SRT deterioration in cancer survivors. Higher BMI, lower physical activity, and smoking are associated with SHD. Larger samples would allow for expansion of the current findings on the genetic architecture of SRT.
Collapse
Affiliation(s)
| | - Xindi Zhang
- Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
| | - Paul C. Dinh
- Department of Medical OncologyIndiana UniversityIndianapolisIndianaUSA
| | - Victoria A. Sanchez
- Department of Otolaryngology—Head and Neck SurgeryUniversity of South FloridaTampaFloridaUSA
| | | | - Megan M. Shuey
- Department of Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tessa Nguyen
- Center for Audiology, Speech, Language and LearningNorthwesthern UniversityChicagoIllinoisUSA
| | | | - Darren R. Feldman
- Department of Medical Oncology, Memorial Sloan‐Kettering Cancer CenterNew YorkNew YorkUSA
| | - David J. Vaughn
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical CenterRochesterNew YorkUSA
| | | | - Neil E. Martin
- Department of Radiation OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Nancy J. Cox
- Department of Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Robert D. Frisina
- Departments of Medical Engineering and Communication Sciences and Disorders, Global Center for Hearing and Speech ResearchUniversity of South FloridaTampaFloridaUSA
| | - Lois B. Travis
- Department of Medical OncologyIndiana UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
39
|
Arjmand A, Faizi M, Rezaei M, Pourahmad J. The Effect of Donor Rat Gender in Mitochondrial Transplantation Therapy of Cisplatin-Induced Toxicity on Rat Renal Proximal Tubular Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e135666. [PMID: 38148888 PMCID: PMC10750785 DOI: 10.5812/ijpr-135666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 12/28/2023]
Abstract
Background Cisplatin-induced nephrotoxicity has been linked to a fundamental mechanism of mitochondrial dysfunction. A treatment called mitochondrial transplantation therapy can be used to replace damaged mitochondria with healthy mitochondria. Mitochondrial-related diseases may benefit from this approach. Objectives We investigated the effect of mitochondrial transplantation on cisplatin-induced nephrotoxicity using freshly isolated mitochondria obtained from renal proximal tubular cells (RPTCs). Methods Based on our previous findings, we hypothesized that direct exposure of healthy mitochondria to cisplatin-affected RPTCs might improve cytotoxicity markers and restore mitochondrial function. Therefore, the primary objective of this study was to determine whether newly isolated mitochondrial transplantation protected RPTCs from cisplatin-induced cytotoxicity. The supply of exogenous rat kidney mitochondria to cisplatin-affected RPTCs was also a goal of this study to investigate the possibility of gender differences. After the addition of cisplatin (100 µM), rat RPTCs (106 cells/mL) were suspended in Earle's solution (pH = 7.4) at 37°C for two hours. Freshly isolated mitochondria were extracted at 4°C and diluted in 100 and 200 µg/mL mitochondrial protein. Results Statistical analysis revealed that transplantation of healthy mitochondria decreased ROS level, mitochondrial membrane potential (MMP) collapse, MDA level, glutathione depletion, lysosomal membrane damage, and caspase-3 activity induced by cisplatin in rat RPTCs. In addition, our results demonstrated that transplantation of female rat kidney mitochondria has higher protective activity at reducing toxicity parameters than male mitochondria. Conclusions The findings reaffirmed that mitochondrial transplantation is a novel, potential, and promising therapeutic strategy for xenobiotic-induced nephrotoxicity.
Collapse
Affiliation(s)
- Abdollah Arjmand
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Qiao H, Chen Z, Fu S, Yu X, Sun M, Zhai Y, Sun J. Emerging platinum(0) nanotherapeutics for efficient cancer therapy. J Control Release 2022; 352:276-287. [PMID: 36273531 DOI: 10.1016/j.jconrel.2022.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Platinum (Pt)-based chemotherapy has been necessary for clinical cancer treatment. However, traditional bivalent drugs are hindered by poor physicochemical properties, severe toxic side effects, and drug resistance. Currently, elemental Pt(0) nanotherapeutics (NTs) have emerged to tackle the dilemma. The inherent acid-responsiveness of Pt(0) NTs could help to improve tumor selectivity and alleviate toxic effects. Moreover, the metal nature of Pt facilitates the great combination of Pt(0) NTs with photothermal and photodynamic therapy and imaging-guided diagnosis. Based on recent important researches, this review provides an updated introduction to Pt(0) NTs. First, the challenges of traditional Pt-based chemotherapy have been outlined. Then, Pt(0) NTs with multiple applications of tumor theranostics have been overviewed. Furthermore, the combinations of Pt(0) NTs with other therapeutical modalities are introduced. Last but not least, we envision the possible challenges and prospects associated with Pt(0) NTs.
Collapse
Affiliation(s)
- Han Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhichao Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shuwen Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiang Yu
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Mengchi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yinglei Zhai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
41
|
Larasati L, Lestari WW, Firdaus M. Dual-Action Pt(IV) Prodrugs and Targeted Delivery in Metal-Organic Frameworks: Overcoming Cisplatin Resistance and Improving Anticancer Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Larasati Larasati
- Master of Chemistry Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| | - Witri Wahyu Lestari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| |
Collapse
|
42
|
Hassanein EH, Saleh FM, Ali FE, Rashwan EK, Atwa AM, Abd El-Ghafar OA. Neuroprotective effect of canagliflozin against cisplatin-induced cerebral cortex injury is mediated by regulation of HO-1/PPAR-γ, SIRT1/FOXO-3, JNK/AP-1, TLR4/iNOS, and Ang II/Ang 1-7 signals. Immunopharmacol Immunotoxicol 2022; 45:304-316. [PMID: 36326099 DOI: 10.1080/08923973.2022.2143371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Emad H.M. Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Fares E.M. Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Eman K. Rashwan
- Department of Physiology, College of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Omnia A.M. Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
43
|
Chen J, Ren H, Zhou P, Zheng S, Du B, Liu X, Xiao F. Microneedle-mediated drug delivery for cutaneous diseases. Front Bioeng Biotechnol 2022; 10:1032041. [PMID: 36324904 PMCID: PMC9618658 DOI: 10.3389/fbioe.2022.1032041] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Microneedles have garnered significant interest as transdermal drug delivery route owing to the advantages of nonselective loading capacity, minimal invasiveness, simple operation, and good biocompatibility. A number of therapeutics can be loaded into microneedles, including hydrophilic and hydrophobic small molecular drugs, and macromolecular drugs (proteins, mRNA, peptides, vaccines) for treatment of miscellaneous diseases. Microneedles feature with special benefits for cutaneous diseases owing to the direct transdermal delivery of therapeutics to the skin. This review mainly introduces microneedles fabricated with different technologies and transdermal delivery of various therapeutics for cutaneous diseases, such as psoriasis, atopic dermatitis, skin and soft tissue infection, superficial tumors, axillary hyperhidrosis, and plantar warts.
Collapse
Affiliation(s)
- Jian Chen
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Ren
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Pan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shuai Zheng
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bin Du
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Bin Du, ; Xiaowen Liu, ; Fei Xiao,
| | - Xiaowen Liu
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Bin Du, ; Xiaowen Liu, ; Fei Xiao,
| | - Fei Xiao
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Bin Du, ; Xiaowen Liu, ; Fei Xiao,
| |
Collapse
|
44
|
Sharifi-Rad J, Herrera-Bravo J, Kamiloglu S, Petroni K, Mishra AP, Monserrat-Mesquida M, Sureda A, Martorell M, Aidarbekovna DS, Yessimsiitova Z, Ydyrys A, Hano C, Calina D, Cho WC. Recent advances in the therapeutic potential of emodin for human health. Biomed Pharmacother 2022; 154:113555. [PMID: 36027610 DOI: 10.1016/j.biopha.2022.113555] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 01/01/2023] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier molecules to the target, thus opening up new therapeutic perspectives.
Collapse
Affiliation(s)
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Gorukle, Bursa, Turkey; Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
| | - Katia Petroni
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174, India.
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health and Health Research Institute of Balearic Islands (IdISBa), University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University Research Institute of Health and Health Research Institute of Balearic Islands (IdISBa), University of the Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Miquel Martorell
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile; Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile.
| | - Dossymbetova Symbat Aidarbekovna
- Almaty Tecnological University, Kazakh-Russian Medical University, Almaty 050012, str. Tole bi 100, Str. Torekulova 71, Kazakhstan.
| | - Zura Yessimsiitova
- Department of Biodiversity and Bioresource, Al-Farabi Kazakh National University, al-Farabi av. 71, 050040 Almaty, Kazakhstan.
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, al-Farabi av. 71, 050040 Almaty, Kazakhstan.
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, 28000 Chartres, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
45
|
Saroya S, Asija S, Deswal Y, Kumar N, Kumar D, Jindal DK, Puri P, Kumar S. Pentacoordinated diorganotin(IV) complexes of Schiff base ligands: synthesis, characterization, antimicrobial and anticancer studies. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
46
|
Cui Z, Ruan Z, Zeng J, Sun J, Ye W, Xu W, Guo X, Zhang L, Song L. Lung‐specific exosomes for co‐delivery of
CD47
blockade and cisplatin for the treatment of non–small cell lung cancer. Thorac Cancer 2022; 13:2723-2731. [PMID: 36054073 PMCID: PMC9527158 DOI: 10.1111/1759-7714.14606] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022] Open
Abstract
A cluster of differentiation 47 (CD47) and immune‐modulatory protein for myeloid cells has been implicated in cisplatin (CDDP) resistance. Exosome delivery of drugs has shown great potential for targeted drug delivery in the treatment of various diseases. In the current study, we explored the approach of co‐delivering CDDP and CD47 antibody with MDA‐MB‐231 cell‐derived exosome 231‐exo (CaCE) and assessed the phagocytosis activity of bone marrow flow cytometry derived macrophages (BMDM) against co‐cultured A549 cells. CD8+ T‐cell proliferation was examined with flow cytometry analysis. In vivo, we used the Lewis lung carcinoma (LLC) tumor‐bearing mouse model and assessed survival rate, tumor weight, phagocytosis, and T‐cell proliferation, as well as cytokine levels in tumors analyzed by enzyme‐linked immunoassay (ELISA). Although co‐administration of CDDP with anti‐CD47 (CDDP and aCD47) showed a significant antitumor effect, CaCE had an even more dramatic anticancer effect in survival rate and tumor weight. We observed increased phagocytosis activity selectively against lung tumor cells in vivo and in vitro with exosome CaCE treatment. CaCE treatment also increased T‐cell proliferation compared to the vehicle treatment and co‐administration groups. Furthermore, immunostimulatory interleukin (IL)‐12p and interferon (IFN)‐γ were increased, whereas transforming growth factor β (TGF‐β) were decreased, indicating the improved CDDP anticancer effect is related to a tumor microenvironmental change. Our study demonstrates a dramatically improved anticancer effect of CDDP when administered by exosome co‐delivery with anti‐CD47.
Collapse
Affiliation(s)
- Zhilei Cui
- Department of Respiratory Medicine XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhengshang Ruan
- Department of Infectious Disease XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Junxiang Zeng
- Department of Laboratory Medicine XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jinyuan Sun
- Department of Respiratory Medicine XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Wenjing Ye
- Department of Respiratory Medicine XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Weiguo Xu
- Department of Respiratory Medicine XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xuejun Guo
- Department of Respiratory Medicine XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Linlin Zhang
- Department of Nuclear Medicine Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lin Song
- Department of Respiratory Medicine XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
47
|
Almeida A, Correia T, Pires R, da Silva D, Coqueiro R, Machado M, de Magalhães A, Queiroz R, Soares T, Pereira R. Nephroprotective effect of exercise training in cisplatin-induced renal damage in mice: influence of training protocol. Braz J Med Biol Res 2022; 55:e12116. [PMID: 35976270 PMCID: PMC9377535 DOI: 10.1590/1414-431x2022e12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Cisplatin is an effective antineoplastic agent, but its use is limited by its nephrotoxicity caused by the oxidative stress in tubular epithelium of nephrons. On the other hand, regular exercise provides beneficial adaptations in different tissues and organs. As with many drugs, dosing is extremely important to get the beneficial effects of exercise. Thus, we aimed to investigate the influence of exercise intensity and frequency on cisplatin-induced (20 mg/kg) renal damage in mice. Forty male Swiss mice were divided into five experimental groups (n=8 per group): 1) sedentary; 2) low-intensity forced swimming, three times per week; 3) high-intensity forced swimming, three times per week; 4) low-intensity forced swimming, five times per week; and 5) high-intensity forced swimming, five times per week. Body composition, renal structure, functional indicators (plasma urea), lipid peroxidation, antioxidant enzyme activity, expression of genes related to antioxidant defense, and inflammatory and apoptotic pathways were evaluated. Comparisons considered exercise intensity and frequency. High lipid peroxidation was observed in the sedentary group compared with trained mice, regardless of exercise intensity and frequency. Groups that trained three times per week showed more benefits, as reduced tubular necrosis, plasma urea, expression of CASP3 and Rela (NFkB subunit-p65) genes, and increased total glutathione peroxidase activity. No significant difference in Nfe2l2 (Nrf2) gene expression was observed between groups. Eight weeks of regular exercise training promoted nephroprotection against cisplatin-mediated oxidative injury. Exercise frequency was critical for nephroprotection.
Collapse
Affiliation(s)
- A.A. Almeida
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - T.M.L. Correia
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - R.A. Pires
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Bioquímica e Biologia
Molecular (Sociedade Brasileira de Bioquímica e Biologia Molecular),
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA,
Brasil
| | - D.A. da Silva
- Programa de Pós-Graduação em Biociências, Universidade Federal
da Bahia, Campus Anísio Teixeira, Vitória da Conquista, BA, Brasil
| | - R.S. Coqueiro
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil
| | - M. Machado
- Fundação Universitária de Itaperuna, Itaperuna, RJ, Brasil,Laboratório de Fisiologia e Biocinética, Faculdade de Ciências
Biológicas e da Saúde, Universidade Iguaçu Campus V, Itaperuna, RJ, Brasil
| | - A.C.M. de Magalhães
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - R.F. Queiroz
- Programa de Pós-Graduação Multicêntrico em Bioquímica e Biologia
Molecular (Sociedade Brasileira de Bioquímica e Biologia Molecular),
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA,
Brasil
| | - T.J. Soares
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil
| | - R. Pereira
- Núcelo de Pesquisa em Fisiologia Integrativa, Departamento de
Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA,
Brasil,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas
(Sociedade Brasileira de Fisiologia), Universidade Federal da Bahia, Vitória da
Conquista, BA, Brasil,Programa de Pós-Graduação Multicêntrico em Bioquímica e Biologia
Molecular (Sociedade Brasileira de Bioquímica e Biologia Molecular),
Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, BA,
Brasil,Programa de Pós-Graduação em Enfermagem e Saúde, Universidade
Estadual do Sudoeste da Bahia, Jequié, BA, Brasil
| |
Collapse
|
48
|
Araújo D, Cabral I, Vale N, Amorim I. Canine Gastric Cancer: Current Treatment Approaches. Vet Sci 2022; 9:vetsci9080383. [PMID: 35893776 PMCID: PMC9394467 DOI: 10.3390/vetsci9080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Human gastric cancer is a prevalent cancer worldwide with a high mortality rate. Although sharing many other features, the incidence of gastric cancer is lower in dogs than in humans. Surgery is the first-line treatment; however, it is associated with several complications. Nevertheless, chemotherapy to treat canine gastric cancer has not received much attention, probably due to its late diagnosis, fast progression, low median survival time, and very high mortality rate, along with the lack of publications with concrete scientific results. In this review, we explore the pharmacological approach used in treatment of this often-fatal disease. Abstract Human gastric cancer (GC) ranks as the fifth most prevalent cancer worldwide, and is the third leading cause of cancer-related death. The incidence of GC is lower in dogs than in humans, accounting for less than 1% of all canine malignancies. In recent years, efforts have been made to understand the pathogenesis of GC and in find an appropriate therapy to maximize curative results, such as adjuvant chemotherapy treatments in addition to surgery. Although surgery is the first-line treatment, it is associated with several complications. In terms of chemotherapeutic intervention, canine gastric cancer has not received much attention, probably due to its late diagnosis, fast progression, low median survival time, and very high mortality rate, along with the lack of publications with concrete scientific results. In this review, we explore canine GC and the pharmacological approach used in the treatment of this often-fatal disease.
Collapse
Affiliation(s)
- Diana Araújo
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Inês Cabral
- Fitzpatrick Referrals Oncology and Soft Tissue, 70 Priestley Rd, Guildford GU2 7AJ, UK;
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Associate Laboratory RISE—Health Research Network, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), Universidade do Porto (UP), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
49
|
Xin Q, Ji Q, Zhang Y, Ma W, Tian B, Liu Y, Chen Y, Wang F, Zhang R, Wang X, Yuan J. Aberrant ROS Served as an Acquired Vulnerability of Cisplatin-Resistant Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1112987. [PMID: 35770045 PMCID: PMC9236771 DOI: 10.1155/2022/1112987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022]
Abstract
Lung cancer has become a global health issue in recent decades. Approximately 80-85% of cases are non-small-cell lung cancer (NSCLC). Despite the high rate of resistance, cisplatin-base chemotherapy is still the main treatment for NSCLC patients. Thus, overcoming cisplatin resistance is urgently needed in NSCLC therapy. In this study, we identify NADPH metabolism and reactive oxygen species (ROS) levels as the main causes accounting for cisplatin resistance. Based on a small panel consisting of common chemotherapy drugs or compounds, APR-246 is proved to be an effective compound targeting cisplatin-resistant NSCLC cells. APR-246 specially inhibits proliferation and colony formation of cisplatin-resistant cells. In details, APR-246 can significantly cause G0/G1 accumulation and S phase arrest of cisplatin resistant cells and gives rise to severe mitochondria dysfunction as well as elevated apoptosis. Further study proves that it is the aberrant ROS levels as well as NRF2/SLC7A11/GSH axis dysfunction accounting for the specific antitumor effects of APR-246. Scavenging ROS with N-acetylcysteine (NAC) disrupts the inhibitory effect of APR-246 on cisplatin-resistant cells. Mechanistically, NRF2 is specifically degraded by the proteasome following its own ubiquitylation in APR-246-treated cisplatin-resistant cells, which in turn decreases NRF2/SLC7A11/GSH axis activity. Our study provides new insights into the biology driving cisplatin resistance of lung cancer and highlights APR-246 as a potential therapeutic reagent for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Qian Xin
- Central Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Qinghong Ji
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Ying Zhang
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Weihong Ma
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Baoqing Tian
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanli Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yunsong Chen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ran Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
50
|
Selenium Status in Diet Affects Nephrotoxicity Induced by Cisplatin in Mice. Antioxidants (Basel) 2022; 11:antiox11061141. [PMID: 35740039 PMCID: PMC9220181 DOI: 10.3390/antiox11061141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is one of the most active chemotherapy drugs to treat solid tumors. However, it also causes various side effects, especially nephrotoxicity, in which oxidative stress plays critical roles. Our previous studies found that cisplatin selectively inhibited selenoenzyme thioredoxin reductase1 (TrxR1) in the kidney at an early stage and, subsequently, induced the activation of Nrf2. However, the effects of selenium on cisplatin-induced nephrotoxicity are still unclear. In this study, we established mice models with different selenium intake levels to explore the effects of selenoenzyme activity changes on cisplatin-induced nephrotoxicity. Results showed that feeding with a selenium-deficient diet sensitize the mice to cisplatin-induced damage, whereas selenium supplementation increased the activities of selenoenzymes TrxR and glutathione peroxidase (GPx), changed the renal cellular redox environment to a reduced state, and exhibited protective effects. These results demonstrated the correlation of selenoenzymes with cisplatin-induced side effects and provided a basis for the potential approach to alleviate cisplatin-induced renal injury.
Collapse
|