1
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Shi L, Chen H, Zhang Y, An D, Qin M, Yu W, Wen B, He D, Hao H, Xiong J. SLC13A2 promotes hepatocyte metabolic remodeling and liver regeneration by enhancing de novo cholesterol biosynthesis. EMBO J 2025:10.1038/s44318-025-00362-y. [PMID: 39824985 DOI: 10.1038/s44318-025-00362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025] Open
Abstract
Metabolic requirements of dividing hepatocytes are prerequisite for liver regeneration after injury. In contrast to transcriptional dynamics during liver repair, its metabolic dependencies remain poorly defined. Here, we screened metabolic genes differentially regulated during liver regeneration, and report that SLC13A2, a transporter for TCA cycle intermediates, is decreased in rapid response to partial hepatectomy in mice and recovered along restoration of liver mass and function. Liver-specific overexpression or depletion of SLC13A2 promoted or attenuated liver regeneration, respectively. SLC13A2 increased cleavage of SREBP2, and expression of cholesterol metabolism genes, including LDLR and HMGCR. Mechanistically, SLC13A2 promotes import of citrate into hepatocytes, serving as building block for ACLY-dependent acetyl-CoA formation and de novo synthesis of cholesterol. In line, the pre-administration of the HMGCR inhibitor lovastatin abolished SLC13A2-mediated liver regeneration. Similarly, ACLY inhibition suppressed SLC13A2-promoted cholesterol synthesis for hepatocellular proliferation and liver regeneration in vivo. In sum, this study demonstrates that citrate transported by SLC13A2 acts as an intermediate metabolite to restore the metabolic homeostasis during liver regeneration, suggesting SLC13A2 as a potential drug target after liver damage.
Collapse
Affiliation(s)
- Li Shi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Yuxin Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Donghao An
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Mengyao Qin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Wanting Yu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Bin Wen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Dandan He
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Haiping Hao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
3
|
Deng Y, Zhao Z, Sheldon M, Zhao Y, Teng H, Martinez C, Zhang J, Lin C, Sun Y, Yao F, Curran MA, Zhu H, Ma L. LIFR regulates cholesterol-driven bidirectional hepatocyte-neutrophil cross-talk to promote liver regeneration. Nat Metab 2024; 6:1756-1774. [PMID: 39147934 PMCID: PMC11498095 DOI: 10.1038/s42255-024-01110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Liver regeneration is under metabolic and immune regulation. Despite increasing recognition of the involvement of neutrophils in regeneration, it is unclear how the liver signals to the bone marrow to release neutrophils after injury and how reparative neutrophils signal to hepatocytes to reenter the cell cycle. Here we report that loss of the liver tumour suppressor Lifr in mouse hepatocytes impairs, whereas overexpression of leukaemia inhibitory factor receptor (LIFR) promotes liver repair and regeneration after partial hepatectomy or toxic injury. In response to physical or chemical damage to the liver, LIFR from hepatocytes promotes the secretion of cholesterol and CXCL1 in a STAT3-dependent manner, leading to the efflux of bone marrow neutrophils to the circulation and damaged liver. Cholesterol, via its receptor ERRα, stimulates neutrophils to secrete hepatocyte growth factor to accelerate hepatocyte proliferation. Altogether, our findings reveal a LIFR-STAT3-CXCL1-CXCR2 axis and a LIFR-STAT3-cholesterol-ERRα-hepatocyte growth factor axis that form bidirectional hepatocyte-neutrophil cross-talk to repair and regenerate the liver.
Collapse
Affiliation(s)
- Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
4
|
Li Z, Peng B, Chen S, Li J, Hu K, Liao L, Xie Q, Yao M, Liang L, Tomlinson S, Yuan G, He S. Transcriptome sequencing and metabolome analysis reveal the metabolic reprogramming of partial hepatectomy and extended hepatectomy. BMC Genomics 2023; 24:532. [PMID: 37679685 PMCID: PMC10486020 DOI: 10.1186/s12864-023-09647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Surgical resection remains a critical treatment option for many patients with primary and secondary hepatic neoplasms. Extended hepatectomy (eHx) may be required for some patients with large tumors, which may cause liver failure and death. Partial hepatectomy (pHx) and eHx mouse models were constructed, liver tissues were sampled at 18, 36, and 72 h posthepatectomy. Transcriptome and metabolome analyses were employed to explore the different potential mechanisms in regeneration and injury between pHx and eHx. The results showed that eHx was associated with more severe liver injury and lower survival rates than pHx. Transcriptomics data showed there were 1842, 2129, and 1277 differentially expressed genes (DEGs) in eHx and 962, 1305, and 732 DEGs in pHx at 18, 36, and 72 h posthepatectomy, respectively, compared with the those in the sham groups. Compared with pHx, the number of DEGs in the eHx group reached a maximum of 230 at 18 h after surgery and decreased sequentially to 87 and 43 at 36 and 72 h. Metabolomics analysis identified a total of 1399 metabolites, and 48 significant differentially produced metabolites (DPMs) were screened between eHx and pHx. Combined analysis of DEGs and DPMs indicated that cholesterol metabolism and insulin resistance may be two important pathways for liver regeneration and mouse survival postextended hepatectomy. Our results showed the global influence of pHx and eHx on the transcriptome and metabolome in mouse liver, and revealed cholesterol metabolism and insulin resistance pathways might be involved in regeneration post-pHx and -eHx.
Collapse
Affiliation(s)
- Zeyuan Li
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bo Peng
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shilian Chen
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiaping Li
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kai Hu
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lijuan Liao
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiuli Xie
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Mei Yao
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lixing Liang
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China.
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China.
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
5
|
Wang Q, Long Z, Zhu F, Li H, Xiang Z, Liang H, Wu Y, Dai X, Zhu Z. Integrated analysis of lncRNA/circRNA-miRNA-mRNA in the proliferative phase of liver regeneration in mice with liver fibrosis. BMC Genomics 2023; 24:417. [PMID: 37488484 PMCID: PMC10364436 DOI: 10.1186/s12864-023-09478-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Non-coding RNAs play important roles in liver regeneration; however, their functions and mechanisms of action in the regeneration of fibrotic liver have not been elucidated. We aimed to clarify the expression patterns and regulatory functions of lncRNAs, circRNAs, miRNAs, and mRNAs in the proliferative phase of fibrotic liver regeneration. METHODS Based on a mouse model of liver fibrosis with 70% hepatectomy, whole-transcriptome profiling was performed using high-throughput sequencing on samples collected at 0, 12, 24, 48, and 72 h after hepatectomy. Hub genes were selected by weighted gene co-expression network analysis and subjected to enrichment analysis. Integrated analysis was performed to reveal the interactions of differentially expressed (DE) lncRNAs, circRNAs, miRNAs, and mRNAs, and to construct lncRNA-mRNA cis- and trans-regulatory networks and lncRNA/circRNA-miRNA-mRNA ceRNA regulatory networks. Real-Time quantitative PCR was used to validate part of the ceRNA network. RESULTS A total of 1,329 lncRNAs, 48 circRNAs, 167 miRNAs, and 6,458 mRNAs were differentially expressed, including 812 hub genes. Based on these DE RNAs, we examined several mechanisms of ncRNA regulatory networks, including lncRNA cis and trans interactions, circRNA parental genes, and ceRNA pathways. We constructed a cis-regulatory core network consisting of 64 lncRNA-mRNA pairs (53 DE lncRNAs and 58 hub genes), a trans-regulatory core network consisting of 103 lncRNA-mRNA pairs (18 DE lncRNAs and 85 hub genes), a lncRNA-miRNA-mRNA ceRNA core regulatory network (20 DE lncRNAs, 12 DE miRNAs, and 33 mRNAs), and a circRNA-miRNA-mRNA ceRNA core regulatory network (5 DE circRNAs, 5 DE miRNAs, and 39 mRNAs). CONCLUSIONS These results reveal the expression patterns of lncRNAs, circRNAs, miRNAs, and mRNAs in the proliferative phase of fibrotic liver regeneration, as well as core regulatory networks of mRNAs and non-coding RNAs underlying liver regeneration. The findings provide insights into molecular mechanisms that may be useful in developing new therapeutic approaches to ameliorate diseases that are characterized by liver fibrosis, which would be beneficial for the prevention of liver failure and treatment of liver cancer.
Collapse
Affiliation(s)
- Qian Wang
- The First Affiliated Hospital, Department of Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhangtao Long
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Fengfeng Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huajian Li
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiqiang Xiang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hao Liang
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yachen Wu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoming Dai
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhu Zhu
- The First Affiliated Hospital, Department of Hepatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Department of Education and Training, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
6
|
Deng Y, Zhao Z, Sheldon M, Zhao Y, Teng H, Martinez C, Zhang J, Lin C, Sun Y, Yao F, Zhu H, Ma L. LIFR recruits HGF-producing neutrophils to promote liver injury repair and regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533289. [PMID: 36993315 PMCID: PMC10055204 DOI: 10.1101/2023.03.18.533289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The molecular links between tissue repair and tumorigenesis remain elusive. Here, we report that loss of the liver tumor suppressor Lifr in mouse hepatocytes impairs the recruitment and activity of reparative neutrophils, resulting in the inhibition of liver regeneration after partial hepatectomy or toxic injuries. On the other hand, overexpression of LIFR promotes liver repair and regeneration after injury. Interestingly, LIFR deficiency or overexpression does not affect hepatocyte proliferation ex vivo or in vitro . In response to physical or chemical damage to the liver, LIFR from hepatocytes promotes the secretion of the neutrophil chemoattractant CXCL1 (which binds CXCR2 to recruit neutrophils) and cholesterol in a STAT3-dependent manner. Cholesterol, in turn, acts on the recruited neutrophils to secrete hepatocyte growth factor (HGF) to accelerate hepatocyte proliferation and regeneration. Altogether, our findings reveal a LIFR-STAT3- CXCL1-CXCR2 axis and a LIFR-STAT3-cholesterol-HGF axis that mediate hepatic damage- induced crosstalk between hepatocytes and neutrophils to repair and regenerate the liver.
Collapse
|
7
|
Lamanilao GG, Dogan M, Patel PS, Azim S, Patel DS, Bhattacharya SK, Eason JD, Kuscu C, Kuscu C, Bajwa A. Key hepatoprotective roles of mitochondria in liver regeneration. Am J Physiol Gastrointest Liver Physiol 2023; 324:G207-G218. [PMID: 36648139 PMCID: PMC9988520 DOI: 10.1152/ajpgi.00220.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Treatment of advanced liver disease using surgical modalities is possible due to the liver's innate ability to regenerate following resection. Several key cellular events in the regenerative process converge at the mitochondria, implicating their crucial roles in liver regeneration. Mitochondria enable the regenerating liver to meet massive metabolic demands by coordinating energy production to drive cellular proliferative processes and vital homeostatic functions. Mitochondria are also involved in terminating the regenerative process by mediating apoptosis. Studies have shown that attenuation of mitochondrial activity results in delayed liver regeneration, and liver failure following resection is associated with mitochondrial dysfunction. Emerging mitochondria therapy (i.e., mitotherapy) strategies involve isolating healthy donor mitochondria for transplantation into diseased organs to promote regeneration. This review highlights mitochondria's inherent role in liver regeneration.
Collapse
Affiliation(s)
- Gene G Lamanilao
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Murat Dogan
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Prisha S Patel
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Shafquat Azim
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Disha S Patel
- Department of Legal Studies, Belmont University, Nashville, Tennessee, United States
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - James D Eason
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Canan Kuscu
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Cem Kuscu
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Amandeep Bajwa
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee, United States
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
8
|
Jiang H, Garcia V, Yanum JA, Lee J, Dai G. Circadian clock core component Bmal1 dictates cell cycle rhythm of proliferating hepatocytes during liver regeneration. Am J Physiol Gastrointest Liver Physiol 2021; 321:G389-G399. [PMID: 34431407 PMCID: PMC8560370 DOI: 10.1152/ajpgi.00204.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023]
Abstract
After partial hepatectomy (PH), the majority of remnant hepatocytes synchronously enter and rhythmically progress through the cell cycle for three major rounds to regain lost liver mass. Whether and how the circadian clock core component Bmal1 modulates this process remains elusive. We performed PH on Bmal1+/+ and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) mice and compared the initiation and progression of the hepatocyte cell cycle. After PH, Bmal1+/+ hepatocytes exhibited three major waves of nuclear DNA synthesis. In contrast, in Bmal1hep-/- hepatocytes, the first wave of nuclear DNA synthesis was delayed by 12 h, and the third such wave was lost. Following PH, Bmal1+/+ hepatocytes underwent three major waves of mitosis, whereas Bmal1hep-/- hepatocytes fully abolished mitotic oscillation. These Bmal1-dependent disruptions in the rhythmicity of hepatocyte cell cycle after PH were accompanied by suppressed expression peaks of a group of cell cycle components and regulators and dysregulated activation patterns of mitogenic signaling molecules c-Met and epidermal growth factor receptor. Moreover, Bmal1+/+ hepatocytes rhythmically accumulated fat as they expanded following PH, whereas this phenomenon was largely inhibited in Bmal1hep-/- hepatocytes. In addition, during late stages of liver regrowth, Bmal1 absence in hepatocytes caused the activation of redox sensor Nrf2, suggesting an oxidative stress state in regenerated liver tissue. Collectively, we demonstrated that during liver regeneration, Bmal1 partially modulates the oscillation of S-phase progression, fully controls the rhythmicity of M-phase advancement, and largely governs fluctuations in fat metabolism in replicating hepatocytes, as well as eventually determines the redox state of regenerated livers.NEW & NOTEWORTHY We demonstrated that Bmal1 centrally controls the synchronicity and rhythmicity of the cell cycle and lipid accumulation in replicating hepatocytes during liver regeneration. Bmal1 plays these roles, at least in part, by ensuring formation of the expression peaks of cell cycle components and regulators, as well as the timing and levels of activation of mitogenic signaling molecules.
Collapse
Affiliation(s)
- Huaizhou Jiang
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jennifer Abla Yanum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
9
|
Feng R, Guo X, Kou Y, Xu X, Hong C, Zhang W, An Y, Philips CA, Mancuso A, Qi X. Association of lipid profile with decompensation, liver dysfunction, and mortality in patients with liver cirrhosis. Postgrad Med 2021; 133:626-638. [PMID: 33993838 DOI: 10.1080/00325481.2021.1930560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Lipid metabolism is often disrupted in liver cirrhosis. The present study aimed to evaluate the impact of lipid profile on decompensation events, severity of liver dysfunction, and death in patients with liver cirrhosis. METHODS In a cross-sectional study, 778 patients with lipid profile data were enrolled, and then were divided into 240 and 538 patients with and without liver cirrhosis, respectively. In a cohort study, 314 cirrhotic patients with lipid profile data, who were prospectively followed, were enrolled. Lipid profile included total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-c), low-density lipoprotein-cholesterol (LDL-c), triglycerides (TG), and lipoprotein(a). RESULTS In the cross-sectional study, cirrhotic patients with decompensation events had significantly lower levels of TC and lipoprotein(a) than those without; and cirrhotic patients with Child-Pugh class B and C had significantly lower levels of TC, HDL-c, LDL-c, and lipoprotein(a) than those with Child-Pugh class A. In the cohort study, there was an inverse association of survival with TC, HDL-c, and lipoprotein(a) levels; after adjusting for MELD score, TC (Hazard Ratio [HR] = 1.703, P = 0.034) and HDL-c (HR = 2.036, P = 0.005), but not lipoprotein(a) (HR = 1.377, P = 0.191), remained a significant predictor of death; when TC, HDL-c, lipoprotein(a), and MELD score were included in the multivariate Cox regression analysis, HDL-c (HR = 1.844, P = 0.024) was the only independent predictor of death. CONCLUSIONS Decreased levels in specific components of lipid profile indicate more decompensation events, worse liver function, and reduced survival in liver cirrhosis. MELD score combined with HDL-c should be promising for the assessment of outcomes of cirrhotic patients.
Collapse
Affiliation(s)
- Ruirui Feng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, P.R. China
- Postgraduate College, Jinzhou Medical University, Jinzhou, Liaoning P R. China
| | - Xiaozhong Guo
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, P.R. China
| | - Yun Kou
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, P.R. China
- Department of Ultrasound, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, P.R. China
| | - Xiangbo Xu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, P.R. China
| | - Cen Hong
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, P.R. China
- Postgraduate College, Jinzhou Medical University, Jinzhou, Liaoning P R. China
| | - Wenwen Zhang
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, P.R. China
- Department of Nuclear Medicine, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, P.R. China
| | - Yang An
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, P.R. China
| | - Cyriac Abby Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala, India
| | - Andrea Mancuso
- Medicina Interna 1, ARNAS Civico - Di Cristina - Benfratelli, Palermo, Italy
| | - Xingshun Qi
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, P.R. China
| |
Collapse
|
10
|
Delgado-Coello B. Liver regeneration observed across the different classes of vertebrates from an evolutionary perspective. Heliyon 2021; 7:e06449. [PMID: 33748499 PMCID: PMC7970152 DOI: 10.1016/j.heliyon.2021.e06449] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
The liver is a key organ that performs diverse functions such as metabolic processing of nutrients or disposal of dangerous substances (xenobiotics). Accordingly, it seems to be protected by several mechanisms throughout the life of organisms, one of which is compensatory hyperplasia, also known as liver regeneration. This review is a recapitulation of the scientific reports describing the different ways in which the various classes of vertebrates deal with liver injuries, where since mammals have an improved molecular toolkit, exhibit optimized regeneration of the liver compared to lower vertebrates. The main molecules involved in the compensatory process, such as proinflammatory and inhibitory cytokines, are analyzed across vertebrates with an evolutionary perspective. In addition, the possible significance of this mechanism is discussed in the context of the long life span of vertebrates, especially in the case of mammals.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, C.P. 04510, Mexico City, Mexico
| |
Collapse
|
11
|
Žaloudková L, Tichá A, Nekvindová J, Pavlíková L, Zadák Z, Živný P. Different Forms of Ursolic Acid and Their Effect on Liver Regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:4074068. [PMID: 32774413 PMCID: PMC7399780 DOI: 10.1155/2020/4074068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to determine the effect of natural and encapsulated sources of ursolic acid on liver regeneration. Four ursolate sources were tested. Two forms of ursolic acid encapsulates were combined with cyclodextrins, i.e., gamma-CD (gCD) and beta-CD, and two natural sources were adjusted by homogenization (HAP) and micronization of apple peel using Jonagold apples. All ursolate forms were applied intragastrically in daily doses of 20 mg for 7 days. Laboratory rats were fed with standard laboratory diet. Further, gCD and MAP were also tested with a high-fat diet (6 weeks). Partial hepatectomy (PH) was performed 24 hours before the end of the experiment. The concentration of plasma hepatocyte growth factor (HGF) was determined with an immunoassay; simultaneously, the expression of HGF and CYP7A1 in the liver was quantified through qPCR. HGF expression and plasma levels were significantly increased 24 hours after PH in both the HAP (p=0.038) and HFgCD groups (p=0.036), respectively. The correlation between HGF expression and plasma values was significant (p=0.04). The positive effects on liver regeneration were found in both the gCD and HAP forms of ursolic acid, whose effects were confirmed through the upregulation of HGF.
Collapse
Affiliation(s)
- Lenka Žaloudková
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Sokolska Str. 581, Hradec Kralove 500 05, Czech Republic
| | - Alena Tichá
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Sokolska Str. 581, Hradec Kralove 500 05, Czech Republic
| | - Jana Nekvindová
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Sokolska Str. 581, Hradec Kralove 500 05, Czech Republic
| | - Ladislava Pavlíková
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Sokolska Str. 581, Hradec Kralove 500 05, Czech Republic
| | - Zdeněk Zadák
- Department of Research and Development, University Hospital Hradec Kralove, Sokolska Str. 581, Hradec Kralove 500 05, Czech Republic
| | - Pavel Živný
- 2nd Department of Internal Medicine–Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| |
Collapse
|
12
|
Cholesterol Induces Nrf-2- and HIF-1 α-Dependent Hepatocyte Proliferation and Liver Regeneration to Ameliorate Bile Acid Toxicity in Mouse Models of NASH and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5393761. [PMID: 32566088 PMCID: PMC7271232 DOI: 10.1155/2020/5393761] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/12/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is currently one of the most common liver diseases worldwide. The toxic effects of lipids and bile acids contribute to NASH. The regenerative pathway in response to damage to the liver includes activation of the inflammatory process and priming of hepatocytes to proliferate to restore tissue homeostasis. However, the effects of cholesterol on bile acid toxicity, inflammation, and fibrosis remain unknown. We have used two mouse models of bile acid toxicity to induce liver inflammation and fibrosis. A three-week study was conducted using wild-type mice receiving an atherogenic diet (1% (w/w) cholesterol and 0.5% (w/w) cholic acid) and its separate constituents. Mdr2-/- mice were fed a high-cholesterol-enriched diet or standard AIN-93 diet for 6 weeks. We measured serum transaminase levels to assess liver tissue necrosis and fibrosis; iNOS, SAA1, SAA2, and F4/80 levels to determine liver inflammation; PCNA and HGF levels to evaluate proliferative response; and Nrf-2, HIF-1α, and downstream gene expression to establish protective responses. In both studies, high bile acid levels increased serum transaminases and liver fibrosis, whereas cholesterol supplementation attenuated these effects. Cholesterol supplementation activated survival and the robustness of HIF-1α and Nrf-2 gene expression in hepatocytes, induced liver inflammation and hepatocyte proliferation, and inhibited stellate cell hyperplasia and fibrosis. In conclusion, our data show for the first time that cholesterol intake protects against bile acid liver toxicity. The balance between hepatic cholesterol and bile acid levels may be of prognostic value in liver disease progression and trajectory.
Collapse
|
13
|
Srisowanna N, Choijookhuu N, Yano K, Batmunkh B, Ikenoue M, Nhat Huynh Mai N, Yamaguchi Y, Hishikawa Y. The Effect of Estrogen on Hepatic Fat Accumulation during Early Phase of Liver Regeneration after Partial Hepatectomy in Rats. Acta Histochem Cytochem 2019; 52:67-75. [PMID: 31592200 PMCID: PMC6773610 DOI: 10.1267/ahc.19018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Fatty liver is common in men and post-menopausal women, suggesting that estrogen may be involved in liver lipid metabolism. The aim of this study is to be clear the role of estrogen and estrogen receptor alpha (ERα) in fat accumulation during liver regeneration using the 70% partial hepatectomy (PHX) model in male, female, ovariectomized (OVX) and E2-treated OVX (OVX-E2) rats. Liver tissues were sampled at 0–48 hr after PHX and fat accumulation, fatty acid translocase (FAT/CD36), sterol regulatory element-binding protein (SREBP1c), peroxisome proliferator-activated receptor α (PPARα), proliferative cell nuclear antigen (PCNA) and ERα were examined by Oil Red O, qRT-PCR and immunohistochemistry, respectively. Hepatic fat accumulation was abundant in female and OVX-E2 compared to male and OVX rats. FAT/CD36 expression was observed in female, OVX and OVX-E2 at 0–12 hr after PHX, but not in male rats. At 0 hr, SREBP1c and PPARα were elevated in female and male rats, respectively, but were decreased after PHX in all rats. The PCNA labeling index reached a maximum at 36 hr and 48 hr in OVX-E2 and OVX rats, respectively. ERα expression in OVX-E2 was higher than OVX at 0–36 hr after PHX. In conclusion, these results indicated that estrogen and ERα might play an important role in fat accumulation related to FAT/CD36 during early phase of rat liver regeneration.
Collapse
Affiliation(s)
- Naparee Srisowanna
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Baatarsuren Batmunkh
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
- Department of Surgery, Mongolian National University of Medical Sciences
| | - Makoto Ikenoue
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Nguyen Nhat Huynh Mai
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yuya Yamaguchi
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
14
|
Recruitment of macrophages and bone marrow stem cells to regenerating liver promoted by sodium phthalhydrazide in mice. Biomed Pharmacother 2019; 110:594-601. [DOI: 10.1016/j.biopha.2018.07.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
|
15
|
Wan H, Li J, Liao H, Liao M, Luo L, Xu L, Yuan K, Zeng Y. Nicotinamide induces liver regeneration and improves liver function by activating SIRT1. Mol Med Rep 2018; 19:555-562. [PMID: 30483782 DOI: 10.3892/mmr.2018.9688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/21/2018] [Indexed: 02/05/2023] Open
Affiliation(s)
- Hai‑Feng Wan
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jia‑Xin Li
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hao‑Tian Liao
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming‑Heng Liao
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Luo
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Xu
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ke‑Fei Yuan
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yong Zeng
- Department of Liver Surgery, Liver Transplantation Division, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Sun J, Wang S, Gao F. Covalent Surface Functionalization of Semiconducting Polymer Dots with β-Cyclodextrin for Fluorescent Ratiometric Assay of Cholesterol through Host-Guest Inclusion and FRET. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12725-12731. [PMID: 27934535 DOI: 10.1021/acs.langmuir.6b03002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Special functionalization of semiconducting polymer dots (Pdots) is highly desired to expand their applications in chemo/biosening. Herein, carboxyl-functionalized poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)] dots covalently tagged with aminated β-cyclodextrin (NH2-CD) have been designed to construct a ratiometric sensor for cholesterol (Cho). Using CD-Pdots as energy donors with rhodamine B (RB) as energy acceptors, a fluorescence resonance energy transfer (FRET) pair has been built because the host-guest interaction between RB and CD attached to Pdots brings donors and acceptors into close proximity. In the presence of Cho, the acceptors will depart from the donors because of the competitive inclusion interaction between Cho and RB with CD, resulting in the hindering of the FRET process between CD-Pdots and RB. On the basis of the turn-on fluorescence of CD-Pdots and turn-off fluorescence of RB, a sensitive ratiometric method for the determination of Cho in the concentration range from 25 to 350 nM with a detection limit of 4.9 nM was achieved. The proposed method was validated to determine free Cho in human serum samples with satisfactory results.
Collapse
Affiliation(s)
- Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis, College of Chemistry and Materials Science, Anhui Normal University , Wuhu, Anhui 241000, China
| | - Sufan Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis, College of Chemistry and Materials Science, Anhui Normal University , Wuhu, Anhui 241000, China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis, College of Chemistry and Materials Science, Anhui Normal University , Wuhu, Anhui 241000, China
| |
Collapse
|
17
|
Lu X, Ji C, Tong W, Lian X, Wu Y, Fan X, Gao Y. Integrated analysis of microRNA and mRNA expression profiles highlights the complex and dynamic behavior of toosendanin-induced liver injury in mice. Sci Rep 2016; 6:34225. [PMID: 27703232 PMCID: PMC5050432 DOI: 10.1038/srep34225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/01/2016] [Indexed: 01/04/2023] Open
Abstract
Triterpenoid Toosendanin (TSN) exhibits a plenty of pharmacological effects in human and great values in agriculture. However, the hepatotoxicity caused by TSN or Melia-family plants containing TSN used in traditional Chinese medicine has been reported, and the mechanisms of TSN-induced liver injury (TILI) still remain largely unknown. In this study, the dose- and time-dependent effects of TSN on mice liver were investigated by an integrated microRNA-mRNA approach as well as the general toxicological assessments. As the results, the dose- and time-dependent liver injury and alterations in global microRNA and mRNA expressions were detected. Particularly, 9-days 80 mg/kg TSN exposure caused most serious liver injury in mice, and the hepatic adaptation to TILI was unexpectedly observed after 21-days 80 mg/kg TSN administration. Based on the pathway analysis of the intersections between predicted targets of differentially expressed microRNAs and differentially expressed mRNAs at three time points, it revealed that TILI may be caused by glutathione depletion, mitochondrial dysfunction and lipid dysmetabolism, ultimately leading to hepatocytes necrosis in liver, while liver regeneration may play an important role in the hepatic adaptation to TILI. Our results demonstrated that the integrated microRNA-mRNA approach could provide new insight into the complex and dynamic behavior of TILI.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai Ji
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Tong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueping Lian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
18
|
Bartoli D, Piobbico D, Bellet MM, Bennati AM, Roberti R, Della Fazia MA, Servillo G. Impaired cell proliferation in regenerating liver of 3 β-hydroxysterol Δ14-reductase (TM7SF2) knock-out mice. Cell Cycle 2016; 15:2164-2173. [PMID: 27341299 PMCID: PMC4993425 DOI: 10.1080/15384101.2016.1195939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022] Open
Abstract
The liver is the most important organ in cholesterol metabolism, which is instrumental in regulating cell proliferation and differentiation. The gene Tm7sf2 codifies for 3 β-hydroxysterol-Δ14-reductase (C14-SR), an endoplasmic reticulum resident protein catalyzing the reduction of C14-unsaturated sterols during cholesterol biosynthesis from lanosterol. In this study we analyzed the role of C14-SR in vivo during cell proliferation by evaluating liver regeneration in Tm7sf2 knockout (KO) and wild-type (WT) mice. Tm7sf2 KO mice showed no alteration in cholesterol content. However, accumulation and delayed catabolism of hepatic triglycerides was observed, resulting in persistent steatosis at all times post hepatectomy. Moreover, delayed cell cycle progression to the G1/S phase was observed in Tm7sf2 KO mice, resulting in reduced cell division at the time points examined. This was associated to abnormal ER stress response, leading to alteration in p53 content and, consequently, induction of p21 expression in Tm7sf2 KO mice. In conclusion, our results indicate that Tm7sf2 deficiency during liver regeneration alters lipid metabolism and generates a stress condition, which, in turn, transiently unbalances hepatocytes cell cycle progression.
Collapse
Affiliation(s)
- Daniela Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Anna Maria Bennati
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Nemes K, Åberg F, Gylling H, Isoniemi H. Cholesterol metabolism in cholestatic liver disease and liver transplantation: From molecular mechanisms to clinical implications. World J Hepatol 2016; 8:924-932. [PMID: 27574546 PMCID: PMC4976211 DOI: 10.4254/wjh.v8.i22.924] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/07/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to enlighten the critical roles that the liver plays in cholesterol metabolism. Liver transplantation can serve as gene therapy or a source of gene transmission in certain conditions that affect cholesterol metabolism, such as low-density-lipoprotein (LDL) receptor gene mutations that are associated with familial hypercholesterolemia. On the other hand, cholestatic liver disease often alters cholesterol metabolism. Cholestasis can lead to formation of lipoprotein X (Lp-X), which is frequently mistaken for LDL on routine clinical tests. In contrast to LDL, Lp-X is non-atherogenic, and failure to differentiate between the two can interfere with cardiovascular risk assessment, potentially leading to prescription of futile lipid-lowering therapy. Statins do not effectively lower Lp-X levels, and cholestasis may lead to accumulation of toxic levels of statins. Moreover, severe cholestasis results in poor micellar formation, which reduces cholesterol absorption, potentially impairing the cholesterol-lowering effect of ezetimibe. Apolipoprotein B-100 measurement can help distinguish between atherogenic and non-atherogenic hypercholesterolemia. Furthermore, routine serum cholesterol measurements alone cannot reflect cholesterol absorption and synthesis. Measurements of serum non-cholesterol sterol biomarkers - such as cholesterol precursor sterols, plant sterols, and cholestanol - may help with the comprehensive assessment of cholesterol metabolism. An adequate cholesterol supply is essential for liver-regenerative capacity. Low preoperative and perioperative serum cholesterol levels seem to predict mortality in liver cirrhosis and after liver transplantation. Thus, accurate lipid profile evaluation is highly important in liver disease and after liver transplantation.
Collapse
|
20
|
Baughman JM, Rose CM, Kolumam G, Webster JD, Wilkerson EM, Merrill AE, Rhoads TW, Noubade R, Katavolos P, Lesch J, Stapleton DS, Rabaglia ME, Schueler KL, Asuncion R, Domeyer M, Zavala-Solorio J, Reich M, DeVoss J, Keller MP, Attie AD, Hebert AS, Westphall MS, Coon JJ, Kirkpatrick DS, Dey A. NeuCode Proteomics Reveals Bap1 Regulation of Metabolism. Cell Rep 2016; 16:583-595. [PMID: 27373151 PMCID: PMC5546211 DOI: 10.1016/j.celrep.2016.05.096] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/14/2016] [Accepted: 05/28/2016] [Indexed: 12/13/2022] Open
Abstract
We introduce neutron-encoded (NeuCode) amino acid labeling of mice as a strategy for multiplexed proteomic analysis in vivo. Using NeuCode, we characterize an inducible knockout mouse model of Bap1, a tumor suppressor and deubiquitinase whose in vivo roles outside of cancer are not well established. NeuCode proteomics revealed altered metabolic pathways following Bap1 deletion, including profound elevation of cholesterol biosynthetic machinery coincident with reduced expression of gluconeogenic and lipid homeostasis proteins in liver. Bap1 loss increased pancreatitis biomarkers and reduced expression of mitochondrial proteins. These alterations accompany a metabolic remodeling with hypoglycemia, hypercholesterolemia, hepatic lipid loss, and acinar cell degeneration. Liver-specific Bap1 null mice present with fully penetrant perinatal lethality, severe hypoglycemia, and hepatic lipid deficiency. This work reveals Bap1 as a metabolic regulator in liver and pancreas, and it establishes NeuCode as a reliable proteomic method for deciphering in vivo biology.
Collapse
Affiliation(s)
- Joshua M Baughman
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christopher M Rose
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ganesh Kolumam
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Emily M Wilkerson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna E Merrill
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Timothy W Rhoads
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rajkumar Noubade
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paula Katavolos
- Department of Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Justin Lesch
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary E Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kathy L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Raymond Asuncion
- Department of Transgenic Technology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Melanie Domeyer
- Department of Transgenic Technology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jose Zavala-Solorio
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Michael Reich
- Department of Laboratory Animal Resources, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexander S Hebert
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael S Westphall
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Donald S Kirkpatrick
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
21
|
Van den Bossche L, van Steenbeek F. Canine congenital portosystemic shunts: Disconnections dissected. Vet J 2016; 211:14-20. [DOI: 10.1016/j.tvjl.2015.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
|
22
|
Vázquez-Victorio G, Caligaris C, Del Valle-Espinosa E, Sosa-Garrocho M, González-Arenas NR, Reyes-Cruz G, Briones-Orta MA, Macías-Silva M. Novel regulation of Ski protein stability and endosomal sorting by actin cytoskeleton dynamics in hepatocytes. J Biol Chem 2015; 290:4487-99. [PMID: 25561741 DOI: 10.1074/jbc.m114.579532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration.
Collapse
Affiliation(s)
- Genaro Vázquez-Victorio
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Cassandre Caligaris
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Eugenio Del Valle-Espinosa
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Marcela Sosa-Garrocho
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Nelly R González-Arenas
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Guadalupe Reyes-Cruz
- the Departamento de Biología Celular, CINVESTAV-IPN, México, D. F. 07000, México
| | - Marco A Briones-Orta
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| | - Marina Macías-Silva
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. 04510, México and
| |
Collapse
|
23
|
Ginanni Corradini S, Siciliano M, Parlati L, Molinaro A, Cantafora A, Poli E, Mennini G, Melandro F, Vestri AR, Merli M, Bianco P, Corsi A, Toniutto P, Bitetto D, Falleti E, Attili AF, Berloco P, Rossi M. Recipient perioperative cholesterolaemia and graft cholesterol metabolism gene expression predict liver transplant outcome. Liver Int 2014; 34:e290-301. [PMID: 24256518 DOI: 10.1111/liv.12351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/25/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS We analysed for the first time whether recipient perioperative serum total cholesterol (sTC) concentration is associated with liver transplantation outcome. METHODS We studied noncholestatic cirrhotics submitted to primary deceased-donor liver transplantation in a prospective group (n=140) from Rome and in a validation retrospective cohort (n=157) from Udine, Italy. Pre-ischaemia and post-reperfusion cholesterol metabolism gene mRNA was measured by RT-PCR in 74 grafts of the study group. RESULTS At Cox regression analysis, independently from confounders including recipient MELD score, the recipient pre-operative sTC pooled quintiles 2-5, compared with the lowest quintile showed HR (95% CI) and significances for overall graft loss (GL) of 0.215 (0.104-0.444) P<0.001 in the study group and 0.319 (0.167-0.610) P=0.001 in the validation cohort. Analysing sTC as a continuous variable, the risk of overall GL for every 10-mg/dl decrease in pre-operative sTC increased by 13% and by 9% in the study group and in the validation cohort respectively. In the study group, independent associations at multivariate analyses were: (a) high graft pre-ischaemia expression of INSIG-1, which indicates hepatocellular cholesterol depletion, with post-reperfusion graft necrosis; (b) GL with inadequate graft post-reperfusion response to cholesterol depletion, shown by a failure to reduce the PCSK9 to LDLR expression ratio; (c) GL with a relative increase of sTC on post-operative day-7, selectively because of the LDL fraction, which indirectly suggests poor cholesterol uptake from blood. CONCLUSIONS Low recipient pre-transplant sTC concentration, its post-operative day-7 increase and a genetically determined low graft cholesterol availability predict poor liver transplant outcome.
Collapse
Affiliation(s)
- Stefano Ginanni Corradini
- Division of Gastroenterology, Department of Clinical Medicine, University "Sapienza" of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Manka P, Olliges V, Bechmann LP, Schlattjan M, Jochum C, Treckmann JW, Saner FH, Gerken G, Syn WK, Canbay A. Low levels of blood lipids are associated with etiology and lethal outcome in acute liver failure. PLoS One 2014; 9:e102351. [PMID: 25025159 PMCID: PMC4099314 DOI: 10.1371/journal.pone.0102351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Emerging data links different aspects of lipid metabolism to liver regeneration. In patients with acute liver failure (ALF), low levels of lipids may correlate with disease severity. Thus, we determined whether there is an etiology-specific link between lipid levels in patients suffering from ALF and aimed to investigate an effect of lipid levels on the prognosis of ALF. METHODS In this retrospective single center study, we reviewed 89 consecutive ALF patients, who met the criteria of the "Acute Liver Failure Study Group". Patient characteristics, clinical data and laboratory parameters were individually analyzed at admission and correlated with the patients' outcome after a four week follow up. Possible endpoints were either discharge, or death or liver transplantation. RESULTS High-density lipoprotein (HDL), cholesterol and triglyceride levels were significantly lower in patients who died or required a liver transplant. HDL levels were significantly higher in patients with ALF caused by acetaminophen intoxication, compared to fulminant HBV infection or drug induced liver injury. HDL levels correlated with hepatic injury by ALT levels, and Albumin, and inversely correlated with the MELD score, INR, and bilirubin. CONCLUSION In our cohort of patients with ALF, we could show that HDL and cholesterol are suppressed. In addition novel etiology specific patterns between acteminophen and non-acteminophen induced liver failure were detected for serum lipid components. Further studies are needed to address the role of cholesterol and lipid metabolism and the according pathways in different etiologies of ALF.
Collapse
Affiliation(s)
- Paul Manka
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Verena Olliges
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Lars P. Bechmann
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Martin Schlattjan
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Christoph Jochum
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Jürgen W. Treckmann
- Department of General, Visceral and Transplantation Surgery, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Fuat H. Saner
- Department of General, Visceral and Transplantation Surgery, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Wing-Kin Syn
- Liver Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Department of Hepatology, Barts Health NHS Trust, London, United Kingdom
| | - Ali Canbay
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
25
|
Lipid overloading during liver regeneration causes delayed hepatocyte DNA replication by increasing ER stress in mice with simple hepatic steatosis. J Gastroenterol 2014; 49:305-16. [PMID: 23512345 PMCID: PMC3925298 DOI: 10.1007/s00535-013-0780-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/11/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Impaired fatty liver regeneration has already been reported in many genetic modification models. However, in diet-induced simple hepatic steatosis, which showed similar phenotype with clinical pathology, whether liver regeneration is impaired or not remains unclear. In this study, we evaluated liver regeneration in mice with diet-induced simple hepatic steatosis, and focused on excess lipid accumulation occurring during liver regeneration. METHODS Mice were fed high fat diet (HFD) or control diet for 9-10 weeks. We analyzed intrahepatic lipid accumulation, DNA replication, and various signaling pathways including cell proliferation and ER stress during liver regeneration after partial hepatectomy. In addition, some of mice were pretreated with tauroursodeoxycholic acid (TUDCA), a chemical chaperone which alleviates ER stress, and then we estimated TUDCA effects on liver regeneration. RESULTS The peak of hepatocyte BrdU incorporation, the expression of proliferation cell nuclear antigen (PCNA) protein, and the expressions of cell cycle-related genes were observed in delayed time in HFD mice. The expression of phosphorylated Erk1/2 was also delayed in HFD mice. The amounts of liver triglyceride were at least twofold higher in HFD mice at each time point. Intrahepatic palmitic acid was increased especially in HFD mice. ER stress induced during liver regeneration was significantly higher in HFD mice. In HFD mice, pretreatment with TUDCA reduced ER stress and resulted in improvement of delayed liver regeneration. CONCLUSION In simple hepatic steatosis, lipid overloading occurring during liver regeneration might be caused ER stress and results in delayed hepatocyte DNA replication.
Collapse
|
26
|
Kumar S, Zou Y, Bao Q, Wang M, Dai G. Proteomic analysis of immediate-early response plasma proteins after 70% and 90% partial hepatectomy. Hepatol Res 2013; 43:876-89. [PMID: 23279269 PMCID: PMC4354878 DOI: 10.1111/hepr.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 02/08/2023]
Abstract
AIM Partial hepatectomy (PH) induces robust hepatic regenerative and metabolic responses that are considered to be triggered by humoral factors. The aim of the study was to identify plasma protein factors that potentially trigger or reflect the body's immediate-early responses to liver mass reduction. METHODS Male C57BL/6 mice were subjected to sham operation, 70% PH or 90% PH. Blood was collected from the inferior vena cava at 20, 60 and 180 min after surgery. RESULTS Using a label-free quantitative mass spectrometry-based proteomics approach, we identified 399 proteins exhibiting significant changes in plasma expression between any two groups. Of the 399 proteins, 167 proteins had multiple unique sequences and high peptide ID confidence (>90%) and were defined as priority 1 proteins. A group of plasma proteins largely associated with metabolism is enriched after 70% PH. Among the plasma proteins that respond to 90% PH are a dominant group of proteins that are also associated with metabolism and one known cytokine (platelet factor 4). Ninety percent PH and 70% PH induces similar changes in plasma protein profile. CONCLUSION Our findings enable us to gain insight into the immediate-early response of plasma proteins to liver mass loss. Our data support the notion that increased metabolic demands of the body after massive liver mass loss may function as a sensor that calibrates hepatic regenerative response.
Collapse
Affiliation(s)
- Sudhanshu Kumar
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| | - Yuhong Zou
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| | - Qi Bao
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indiana
| |
Collapse
|
27
|
Rychtrmoc D, Hubálková L, Víšková A, Libra A, Bunček M, Červinková Z. Transcriptome temporal and functional analysis of liver regeneration termination. Physiol Res 2013; 61:S77-92. [PMID: 23130906 DOI: 10.33549/physiolres.932393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Decades of liver regeneration studies still left the termination phase least elucidated. However regeneration ending mechanisms are clinicaly relevant. We aimed to analyse the timing and transcriptional control of the latest phase of liver regeneration, both controversial. Male Wistar rats were subjected to 2/3 partial hepatectomy with recovery lasting from 1 to 14 days. Time-series microarray data were assessed by innovative combination of hierarchical clustering and principal component analysis and validated by real-time RT-PCR. Hierarchical clustering and principal component analysis in agreement distinguished three temporal phases of liver regeneration. We found 359 genes specifically altered during late phase regeneration. Gene enrichment analysis and manual review of microarray data suggested five pathways worth further study: PPAR signalling pathway; lipid metabolism; complement, coagulation and fibrinolytic cascades; ECM remodelling and xenobiotic biotransformation. Microarray findings pertinent for termination phase were substantiated by real-time RT-PCR. In conclusion, transcriptional profiling mapped late phase of liver regeneration beyond 5(th) day of recovery and revealed 5 pathways specifically acting at this time. Inclusion of longer post-surgery intervals brought improved coverage of regeneration time dynamics and is advisable for further works. Investigation into the workings of suggested pathways might prove helpful in preventing and managing liver tumours.
Collapse
Affiliation(s)
- D Rychtrmoc
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|