1
|
Kawamura K, Fujiwara S. The transcription factor AP2 and downstream genes shared by asexual reproduction and zooidal regeneration in the tunicate, Polyandrocarpa misakiensis. Cells Dev 2024; 177:203885. [PMID: 38007002 DOI: 10.1016/j.cdev.2023.203885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
Epithelial outpocketing, tunic softening, mesenchymal cell death, dedifferentiation/transdifferentiation, and resistance to environmental stress are major events that occur during asexual reproduction by budding in the tunicate, Polyandrocarpa misakiensis. To identify the molecules underlying these events and compare them with those operating in regeneration, differential gene expression profiles were developed in buds and zooids. Among approximately 40,000 contigs, 21 genes were identified as potentially being involved in asexual reproduction. Genes related to tunic softening, phagocytosis-stimulating opsonin, and stress resistance were activated in the very early stage of budding. At the later stage of budding when buds separated from the parent and entered the developmental stage, genes for cell adhesion, cell death, and differentiation were activated. The transcription factor AP2 was spatio-temporally expressed in a similar pattern to the tunic-softening gene endoglucanase (EndoG). AP2 mRNA activated EndoG when introduced into zooids by electroporation. Eight out of 21 budding-related genes were significantly activated by AP2 mRNA. Polyandrocarpa zooids possess regenerative potential other than budding. Zooidal regeneration accompanied cell death/phagocytosis, cell-cell adhesion/communication, and dedifferentiation/redifferentiation. Consistent with morphological features, eight related genes including SP8 transcription factor were activated during zooidal regeneration. Most of these genes were identical to those induced by AP2 mRNA, indicating that asexual reproduction in P. misakiensis shares AP2-regulated downstream genes with zooidal regeneration. The present results suggest that SP8 may be indispensable for both budding and regeneration and that the potential dedifferentiation-related gene SOXB1 plays a minor role in zooidal regeneration.
Collapse
Affiliation(s)
- Kaz Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780, Japan.
| | - Shigeki Fujiwara
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780, Japan; Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi 780, Japan.
| |
Collapse
|
2
|
Caccavale F, Annona G, Subirana L, Escriva H, Bertrand S, D'Aniello S. Crosstalk between nitric oxide and retinoic acid pathways is essential for amphioxus pharynx development. eLife 2021; 10:e58295. [PMID: 34431784 PMCID: PMC8387019 DOI: 10.7554/elife.58295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
During animal ontogenesis, body axis patterning is finely regulated by complex interactions among several signaling pathways. Nitric oxide (NO) and retinoic acid (RA) are potent morphogens that play a pivotal role in vertebrate development. Their involvement in axial patterning of the head and pharynx shows conserved features in the chordate phylum. Indeed, in the cephalochordate amphioxus, NO and RA are crucial for the correct development of pharyngeal structures. Here, we demonstrate the functional cooperation between NO and RA that occurs during amphioxus embryogenesis. During neurulation, NO modulates RA production through the transcriptional regulation of Aldh1a.2 that irreversibly converts retinaldehyde into RA. On the other hand, RA directly or indirectly regulates the transcription of Nos genes. This reciprocal regulation of NO and RA pathways is essential for the normal pharyngeal development in amphioxus and it could be conserved in vertebrates.
Collapse
Affiliation(s)
- Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn NapoliNapoliItaly
| | - Giovanni Annona
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn NapoliNapoliItaly
| | - Lucie Subirana
- Sorbonne Université CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| | - Hector Escriva
- Sorbonne Université CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| | - Stephanie Bertrand
- Sorbonne Université CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn NapoliNapoliItaly
| |
Collapse
|
3
|
Zhong Y, Herrera-Úbeda C, Garcia-Fernàndez J, Li G, Holland PWH. Mutation of amphioxus Pdx and Cdx demonstrates conserved roles for ParaHox genes in gut, anus and tail patterning. BMC Biol 2020; 18:68. [PMID: 32546156 PMCID: PMC7296684 DOI: 10.1186/s12915-020-00796-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The homeobox genes Pdx and Cdx are widespread across the animal kingdom and part of the small ParaHox gene cluster. Gene expression patterns suggest ancient roles for Pdx and Cdx in patterning the through-gut of bilaterian animals although functional data are available for few lineages. To examine evolutionary conservation of Pdx and Cdx gene functions, we focus on amphioxus, small marine animals that occupy a pivotal position in chordate evolution and in which ParaHox gene clustering was first reported. RESULTS Using transcription activator-like effector nucleases (TALENs), we engineer frameshift mutations in the Pdx and Cdx genes of the amphioxus Branchiostoma floridae and establish mutant lines. Homozygous Pdx mutants have a defect in amphioxus endoderm, manifest as loss of a midgut region expressing endogenous GFP. The anus fails to open in homozygous Cdx mutants, which also have defects in posterior body extension and epidermal tail fin development. Treatment with an inverse agonist of retinoic acid (RA) signalling partially rescues the axial and tail fin phenotypes indicating they are caused by increased RA signalling. Gene expression analyses and luciferase assays suggest that posterior RA levels are kept low in wild type animals by a likely direct transcriptional regulation of a Cyp26 gene by Cdx. Transcriptome analysis reveals extensive gene expression changes in mutants, with a disproportionate effect of Pdx and Cdx on gut-enriched genes and a colinear-like effect of Cdx on Hox genes. CONCLUSIONS These data reveal that amphioxus Pdx and Cdx have roles in specifying middle and posterior cell fates in the endoderm of the gut, roles that likely date to the origin of Bilateria. This conclusion is consistent with these two ParaHox genes playing a role in the origin of the bilaterian through-gut with a distinct anus, morphological innovations that contributed to ecological change in the Cambrian. In addition, we find that amphioxus Cdx promotes body axis extension through a molecular mechanism conserved with vertebrates. The axial extension role for Cdx dates back at least to the origin of Chordata and may have facilitated the evolution of the post-anal tail and active locomotion in chordates.
Collapse
Affiliation(s)
- Yanhong Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Carlos Herrera-Úbeda
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.,Department of Genetics, Microbiology & Statistics, and Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology & Statistics, and Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | | |
Collapse
|
4
|
Retinoic Acid Signaling Regulates the Metamorphosis of Feather Stars (Crinoidea, Echinodermata): Insight into the Evolution of the Animal Life Cycle. Biomolecules 2019; 10:biom10010037. [PMID: 31881787 PMCID: PMC7023313 DOI: 10.3390/biom10010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Many marine invertebrates have a life cycle with planktonic larvae, although the evolution of this type of life cycle remains enigmatic. We recently proposed that the regulatory mechanism of life cycle transition is conserved between jellyfish (Cnidaria) and starfish (Echinoderm); retinoic acid (RA) signaling regulates strobilation and metamorphosis, respectively. However, the function of RA signaling in other animal groups is poorly understood in this context. Here, to determine the ancestral function of RA signaling in echinoderms, we investigated the role of RA signaling during the metamorphosis of the feather star, Antedon serrata (Crinoidea, Echinodermata). Although feather stars have different larval forms from starfish, we found that exogenous RA treatment on doliolaria larvae induced metamorphosis, like in starfish. Furthermore, blocking RA synthesis or binding to the RA receptor suppressed metamorphosis. These results suggested that RA signaling functions as a regulator of metamorphosis in the ancestor of echinoderms. Our data provides insight into the evolution of the animal life cycle from the viewpoint of RA signaling.
Collapse
|
5
|
Fonseca ESS, Hiromori Y, Kaite Y, Ruivo R, Franco JN, Nakanishi T, Santos MM, Castro LFC. An Orthologue of the Retinoic Acid Receptor (RAR) Is Present in the Ecdysozoa Phylum Priapulida. Genes (Basel) 2019; 10:genes10120985. [PMID: 31795452 PMCID: PMC6947571 DOI: 10.3390/genes10120985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
Signalling molecules and their cognate receptors are central components of the Metazoa endocrine system. Defining their presence or absence in extant animal lineages is critical to accurately devise evolutionary patterns, physiological shifts and the impact of endocrine disrupting chemicals. Here, we address the evolution of retinoic acid (RA) signalling in the Priapulida worm, Priapulus caudatus Lamarck, 1816, an Ecdysozoa. RA signalling has been shown to be central to chordate endocrine homeostasis, participating in multiple developmental and physiological processes. Priapulids, with their slow rate of molecular evolution and phylogenetic position, represent a key taxon to investigate the early phases of Ecdysozoa evolution. By exploring a draft genome assembly, we show, by means of phylogenetics and functional assays, that an orthologue of the nuclear receptor retinoic acid receptor (RAR) subfamily, a central mediator of RA signalling, is present in Ecdysozoa, contrary to previous perception. We further demonstrate that the Priapulida RAR displays low-affinity for retinoids (similar to annelids), and is not responsive to common endocrine disruptors acting via RAR. Our findings provide a timeline for RA signalling evolution in the Bilateria and give support to the hypothesis that the increase in RA affinity towards RAR is a late acquisition in the evolution of the Metazoa.
Collapse
Affiliation(s)
- Elza S. S. Fonseca
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
- FCUP—Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.H.); (Y.K.)
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Yoshifumi Kaite
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.H.); (Y.K.)
| | - Raquel Ruivo
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
| | - João N. Franco
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.H.); (Y.K.)
- Correspondence: (T.N.); (M.M.S.); (L.F.C.C.)
| | - Miguel M. Santos
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
- FCUP—Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
- Correspondence: (T.N.); (M.M.S.); (L.F.C.C.)
| | - L. Filipe C. Castro
- CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal; (E.S.S.F.); (R.R.); (J.N.F.)
- FCUP—Faculty of Sciences, Department of Biology, U.Porto, 4169-007 Porto, Portugal
- Correspondence: (T.N.); (M.M.S.); (L.F.C.C.)
| |
Collapse
|
6
|
André A, Ruivo R, Fonseca E, Froufe E, Castro LFC, Santos MM. The retinoic acid receptor (RAR) in molluscs: Function, evolution and endocrine disruption insights. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:80-89. [PMID: 30639747 DOI: 10.1016/j.aquatox.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Retinoid acid receptor (RAR)-dependent signalling pathways are essential for the regulation and maintenance of essential biological functions and are recognized targets of disruptive anthropogenic compounds. Recent studies put forward the inability of mollusc RARs to bind and respond to the canonical vertebrate ligand, retinoic acid: a feature that seems to have been lost during evolution. Yet, these studies were carried out in a limited number of molluscs. Therefore, using an in vitro transactivation assay, the present work aimed to characterize phylogenetically relevant mollusc RARs, as monomers or as functional units with RXR, not only in the presence of vertebrate bone fine ligands but also known endocrine disruptors, described to modulate retinoid-dependent pathways. In general, none of the tested mollusc RARs were able to activate reporter gene transcription when exposed to retinoic acid isomers, suggesting that the ability to respond to retinoic acid was lost across molluscs. Similarly, the analysed mollusc RAR were unresponsive towards organochloride pesticides. In contrast, transcriptional repressions were observed with the RAR/RXR unit upon exposure to retinoids or RXR-specific ligands. Loss-of-function and gain-of-function mutations further corroborate the obtained results and suggest that the repressive behaviour, observed with mollusc and human RAR/RXR heterodimers, is possibly mediated by ligand biding to RXR.
Collapse
Affiliation(s)
- Ana André
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal; ICBAS - Institute of biomedical Sciences Abel Salazar, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Raquel Ruivo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Elza Fonseca
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Elsa Froufe
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Miguel M Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
7
|
Ferrández-Roldán A, Martí-Solans J, Cañestro C, Albalat R. Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of Development. Results Probl Cell Differ 2019; 68:63-105. [PMID: 31598853 DOI: 10.1007/978-3-030-23459-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The urochordate Oikopleura dioica is emerging as a nonclassical animal model in the field of evolutionary developmental biology (a.k.a. evo-devo) especially attractive for investigating the impact of gene loss on the evolution of mechanisms of development. This is because this organism fulfills the requirements of an animal model (i.e., has a simple and accessible morphology, a short generation time and life span, and affordable culture in the laboratory and amenable experimental manipulation), but also because O. dioica occupies a key phylogenetic position to understand the diversification and origin of our own phylum, the chordates. During its evolution, O. dioica genome has suffered a drastic process of compaction, becoming the smallest known chordate genome, a process that has been accompanied by exacerbating amount of gene losses. Interestingly, however, despite the extensive gene losses, including entire regulatory pathways essential for the embryonic development of other chordates, O. dioica retains the typical chordate body plan. This unexpected situation led to the formulation of the so-called inverse paradox of evo-devo, that is, when a genetic diversity is able to maintain a phenotypic unity. This chapter reviews the biological features of O. dioica as a model animal, along with the current data on the evolution of its genes and genome. We pay special attention to the numerous examples of gene losses that have taken place during the evolution of this unique animal model, which is helping us to understand to which the limits of evo-devo can be pushed off.
Collapse
Affiliation(s)
- Alfonso Ferrández-Roldán
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Martí-Solans
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristian Cañestro
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ricard Albalat
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Torres-Águila NP, Martí-Solans J, Ferrández-Roldán A, Almazán A, Roncalli V, D'Aniello S, Romano G, Palumbo A, Albalat R, Cañestro C. Diatom bloom-derived biotoxins cause aberrant development and gene expression in the appendicularian chordate Oikopleura dioica. Commun Biol 2018; 1:121. [PMID: 30272001 PMCID: PMC6123688 DOI: 10.1038/s42003-018-0127-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
Investigating environmental hazards than could affect appendicularians is of prime ecological interest because they are among the most abundant components of the mesozooplankton. This work shows that embryo development of the appendicularian Oikopleura dioica is compromised by diatom bloom-derived biotoxins, even at concentrations in the same range as those measured after blooms. Developmental gene expression analysis of biotoxin-treated embryos uncovers an aberrant golf ball-like phenotype affecting morphogenesis, midline convergence, and tail elongation. Biotoxins induce a rapid upregulation of defensome genes, and considerable delay and silencing of zygotic transcription of developmental genes. Upon a possible future intensification of blooms associated with ocean warming and acidification, our work puts an alert on the potential impact that an increase of biotoxins may have on marine food webs, and points to defensome genes as molecular biosensors that marine ecologists could use to monitor the genetic stress of natural populations exposed to microalgal blooms.
Collapse
Affiliation(s)
- Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Josep Martí-Solans
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Alba Almazán
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Vittoria Roncalli
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli, Italy
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Somorjai IML, Martí-Solans J, Diaz-Gracia M, Nishida H, Imai KS, Escrivà H, Cañestro C, Albalat R. Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biol 2018; 19:98. [PMID: 30045756 PMCID: PMC6060547 DOI: 10.1186/s13059-018-1468-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. RESULTS We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. CONCLUSIONS Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates.
Collapse
Affiliation(s)
- Ildikó M L Somorjai
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
- Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews, KY16 8LB, Scotland, UK.
| | - Josep Martí-Solans
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Diaz-Gracia
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hector Escrivà
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Cristian Cañestro
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Ricard Albalat
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Yamakawa S, Morino Y, Honda M, Wada H. The role of retinoic acid signaling in starfish metamorphosis. EvoDevo 2018; 9:10. [PMID: 29721256 PMCID: PMC5910596 DOI: 10.1186/s13227-018-0098-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/12/2018] [Indexed: 01/01/2023] Open
Abstract
Background Although retinoic acid (RA) signaling plays a crucial role in the body patterning of chordates, its function in non-chordate invertebrates, other than its mediation of environmental cues triggering metamorphosis in cnidarians, is largely unknown. We investigated the role of RA signaling in the metamorphosis of starfish (Echinodermata). Results We found that exogenous RA treatment induced metamorphosis in starfish larvae. In contrast, inhibitors of RA synthesis and RA receptors suppressed metamorphosis triggered by attachment to a substrate. Gene expressions of the RA signaling component were detected in competent larvae. Conclusions This study provides insight into the ancestral function of RA signaling, which is conserved in the metamorphosis of cnidarians and starfish. Electronic supplementary material The online version of this article (10.1186/s13227-018-0098-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Masanao Honda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
11
|
Blanchoud S, Rutherford K, Zondag L, Gemmell NJ, Wilson MJ. De novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution. Sci Rep 2018; 8:5518. [PMID: 29615780 PMCID: PMC5882950 DOI: 10.1038/s41598-018-23749-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/20/2018] [Indexed: 01/17/2023] Open
Abstract
Tunicates are marine invertebrates that compose the closest phylogenetic group to the vertebrates. These chordates present a particularly diverse range of regenerative abilities and life-history strategies. Consequently, tunicates provide an extraordinary perspective into the emergence and diversity of these traits. Here we describe the genome sequencing, annotation and analysis of the Stolidobranchian Botrylloides leachii. We have produced a high-quality 159 Mb assembly, 82% of the predicted 194 Mb genome. Analysing genome size, gene number, repetitive elements, orthologs clustering and gene ontology terms show that B. leachii has a genomic architecture similar to that of most solitary tunicates, while other recently sequenced colonial ascidians have undergone genome expansion. In addition, ortholog clustering has identified groups of candidate genes for the study of colonialism and whole-body regeneration. By analysing the structure and composition of conserved gene linkages, we observed examples of cluster breaks and gene dispersions, suggesting that several lineage-specific genome rearrangements occurred during tunicate evolution. We also found lineage-specific gene gain and loss within conserved cell-signalling pathways. Such examples of genetic changes within conserved cell-signalling pathways commonly associated with regeneration and development that may underlie some of the diverse regenerative abilities observed in tunicates. Overall, these results provide a novel resource for the study of tunicates and of colonial ascidians.
Collapse
Affiliation(s)
- Simon Blanchoud
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kim Rutherford
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Lisa Zondag
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
12
|
Reporter Analyses Reveal Redundant Enhancers that Confer Robustness on Cis-Regulatory Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542081 DOI: 10.1007/978-981-10-7545-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Reporter analyses of Hox1 and Brachyury (Bra) genes have revealed examples of redundant enhancers that provide regulatory robustness. Retinoic acid (RA) activates through an RA-response element the transcription of Hox1 in the nerve cord of the ascidian Ciona intestinalis. We also found a weak RA-independent neural enhancer within the second intron of Hox1. The Hox1 gene in the larvacean Oikopleura dioica is also expressed in the nerve cord. The O. dioica genome, however, does not contain the RA receptor-encoding gene, and the expression of Hox1 has become independent of RA. We have found that the upstream sequence of the O. dioica Hox1 was able to activate reporter gene expression in the nerve cord of the C. intestinalis embryo, suggesting that an RA-independent regulatory system in the nerve cord might be common in larvaceans and ascidians. This RA-independent redundant regulatory system may have facilitated the Oikopleura ancestor losing RA signaling without an apparent impact on Hox1 expression domains. On the other hand, vertebrate Bra is expressed in the ventral mesoderm and notochord, whereas its ascidian ortholog is exclusively expressed in the notochord. Fibroblast growth factor (FGF) induces Bra in the ventral mesoderm in vertebrates, whereas it induces Bra in the notochord in ascidians. Disruption of the FGF signal does not completely silence Bra expression in ascidians, suggesting that FGF-dependent and independent enhancers might comprise a redundant regulatory system in ascidians. The existence of redundant enhancers, therefore, provides regulatory robustness that may facilitate the acquisition of new expression domains.
Collapse
|
13
|
Pennati R, Manenti R, Stillitano A, Ficetola GF, Scarì G, Mercurio S, Menegola E. Teratogenic potential of nanoencapsulated vitamin A evaluated on an alternative model organism, the tunicate Ciona intestinalis. Int J Food Sci Nutr 2018; 69:805-813. [PMID: 29336191 DOI: 10.1080/09637486.2017.1418843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nano-encapsulation is a technology used to pack substances in order to enhance their stability and bioavailability, but this packing may interact with living systems, causing unexpected toxicity. Vitamin A (vit A) is a substance that has received attention, because in developed countries, the increasing availability of supplements is leading to its excessive intake. This study aims to compare teratogenic effects caused by exposure to the traditional formulation of vit A versus nano-encapsulated vit A. We used ascidian embryos as an alternative model. Ascidians are marine organisms closely related to vertebrates that share with them a body plan and developmental programme, including the morphogenetic role of retinoic acid (RA). Our data showed that the adverse effects of exposure to the same concentration of the two formulations were different, suggesting that the nano-encapsulation increased the bioavailability of the molecule, which could be better absorbed and metabolised to RA, the effective teratogenic substance.
Collapse
Affiliation(s)
- Roberta Pennati
- a Department of Environmental Science and Policy , University of Milan , Milan , Italy
| | - Raoul Manenti
- a Department of Environmental Science and Policy , University of Milan , Milan , Italy
| | - Antonella Stillitano
- a Department of Environmental Science and Policy , University of Milan , Milan , Italy
| | | | - Giorgio Scarì
- b Department of Biosciences , University of Milan , Milan , Italy
| | - Silvia Mercurio
- a Department of Environmental Science and Policy , University of Milan , Milan , Italy
| | - Elena Menegola
- a Department of Environmental Science and Policy , University of Milan , Milan , Italy
| |
Collapse
|
14
|
Bakalenko NI, Poznyak AV, Novikova EL, Kulakova MA. Effect of retinoids on Post2 Нох gene expression in nereid polychaetes. Russ J Dev Biol 2017. [DOI: 10.1134/s106236041703002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Martí-Solans J, Belyaeva OV, Torres-Aguila NP, Kedishvili NY, Albalat R, Cañestro C. Coelimination and Survival in Gene Network Evolution: Dismantling the RA-Signaling in a Chordate. Mol Biol Evol 2016; 33:2401-16. [PMID: 27406791 DOI: 10.1093/molbev/msw118] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The bloom of genomics is revealing gene loss as a pervasive evolutionary force generating genetic diversity that shapes the evolution of species. Outside bacteria and yeast, however, the understanding of the process of gene loss remains elusive, especially in the evolution of animal species. Here, using the dismantling of the retinoic acid metabolic gene network (RA-MGN) in the chordate Oikopleura dioica as a case study, we combine approaches of comparative genomics, phylogenetics, biochemistry, and developmental biology to investigate the mutational robustness associated to biased patterns of gene loss. We demonstrate the absence of alternative pathways for RA-synthesis in O. dioica, which suggests that gene losses of RA-MGN were not compensated by mutational robustness, but occurred in a scenario of regressive evolution. In addition, the lack of drastic phenotypic changes associated to the loss of RA-signaling provides an example of the inverse paradox of Evo-Devo. This work illustrates how the identification of patterns of gene coelimination-in our case five losses (Rdh10, Rdh16, Bco1, Aldh1a, and Cyp26)-is a useful strategy to recognize gene network modules associated to distinct functions. Our work also illustrates how the identification of survival genes helps to recognize neofunctionalization events and ancestral functions. Thus, the survival and extensive duplication of Cco and RdhE2 in O. dioica correlated with the acquisition of complex compartmentalization of expression domains in the digestive system and a process of enzymatic neofunctionalization of the Cco, while the surviving Aldh8 could be related to its ancestral housekeeping role against toxic aldehydes.
Collapse
Affiliation(s)
- Josep Martí-Solans
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama-Birmingham
| | - Nuria P Torres-Aguila
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama-Birmingham
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Abstract
The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine.
Collapse
|
17
|
|
18
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|
19
|
Gutierrez-Mazariegos J, Schubert M, Laudet V. Evolution of retinoic acid receptors and retinoic acid signaling. Subcell Biochem 2014; 70:55-73. [PMID: 24962881 DOI: 10.1007/978-94-017-9050-5_4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Retinoic acid (RA) is a vitamin A-derived morphogen controlling important developmental processes in vertebrates, and more generally in chordates, including axial patterning and tissue formation and differentiation. In the embryo, endogenous RA levels are controlled by RA synthesizing and degrading enzymes and the RA signal is transduced by two retinoid receptors: the retinoic acid receptor (RAR) and the retinoid X receptor (RXR). Both RAR and RXR are members of the nuclear receptor superfamily of ligand-activated transcription factors and mainly act as heterodimers to activate the transcription of target genes in the presence of their ligand, all-trans RA. This signaling pathway was long thought to be a chordate innovation, however, recent findings of gene homologs involved in RA signaling in the genomes of a wide variety of non-chordate animals, including ambulacrarians (sea urchins and acorn worms) and lophotrochozoans (annelids and mollusks), challenged this traditional view and suggested that the RA signaling pathway might have a more ancient evolutionary origin than previously thought. In this chapter, we discuss the evolutionary history of the RA signaling pathway, and more particularly of the RARs, which might have experienced independent gene losses and duplications in different animal lineages. In sum, the available data reveal novel insights into the origin of the RA signaling pathway as well as into the evolutionary history of the RARs.
Collapse
Affiliation(s)
- Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon Cedex 07, France,
| | | | | |
Collapse
|
20
|
André A, Ruivo R, Gesto M, Castro LFC, Santos MM. Retinoid metabolism in invertebrates: when evolution meets endocrine disruption. Gen Comp Endocrinol 2014; 208:134-45. [PMID: 25132059 DOI: 10.1016/j.ygcen.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/20/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
Abstract
Recent genomic and biochemical evidence in invertebrate species pushes back the origin of the retinoid metabolic and signaling modules to the last common ancestor of all bilaterians. However, the evolution of retinoid pathways are far from fully understood. In the majority of non-chordate invertebrate lineages, the ongoing functional characterization of retinoid-related genes (metabolism and signaling pathways), as well as the characterization of the endogenous retinoid content (precursors and active retinoids), is still incomplete. Despite limited, the available data supports the presence of biologically active retinoid pathways in invertebrates. Yet, the mechanisms controlling the spatial and temporal distribution of retinoids as well as their physiological significance share similarities and differences with vertebrates. For instance, retinol storage in the form of retinyl esters, a key feature for the maintenance of retinoid homeostatic balance in vertebrates, was only recently demonstrated in some mollusk species, suggesting that such ability is older than previously anticipated. In contrast, the enzymatic repertoire involved in this process is probably unlike that of vertebrates. The suggested ancestry of active retinoid pathways implies that many more metazoan species might be potential targets for endocrine disrupting chemicals. Here, we review the current knowledge about the occurrence and functionality of retinoid metabolic and signaling pathways in invertebrate lineages, paying special attention to the evolutionary origin of retinoid storage mechanisms. Additionally, we summarize existing information on the endocrine disruption of invertebrate retinoid modules by environmental chemicals. Research priorities in the field are highlighted.
Collapse
Affiliation(s)
- A André
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - R Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - M Gesto
- Laboratorio de Fisioloxía Animal, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - M M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
21
|
Gutierrez-Mazariegos J, Nadendla EK, Lima D, Pierzchalski K, Jones JW, Kane M, Nishikawa JI, Hiromori Y, Nakanishi T, Santos MM, Castro LFC, Bourguet W, Schubert M, Laudet V. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding. Endocrinology 2014; 155:4275-86. [PMID: 25116705 PMCID: PMC4197984 DOI: 10.1210/en.2014-1181] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022]
Abstract
Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms.
Collapse
Affiliation(s)
- Juliana Gutierrez-Mazariegos
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Eswar Kumar Nadendla
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Daniela Lima
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Keely Pierzchalski
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Jace W. Jones
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Maureen Kane
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Jun-Ichi Nishikawa
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Youhei Hiromori
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Tsuyoshi Nakanishi
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - Miguel M. Santos
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - L. Filipe C. Castro
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | - William Bourguet
- Molecular Zoology Team (J.G.-M., V.L.), Institut de Génomique Fonctionnelle de Lyon, Unité Mixte de Recherche 5242, Université Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France; Institut National de la Santé et de la Recherche Médicale Unité 1054 (E.K.N., W.B.), Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Universités Montpellier 1 and 2, 34967 Montpellier, France; CAS in Crystallography and Biophysics (E.K.N.), University of Madras, 600-005 Chennai, India; Centre of Marine and Environmental Research/Interdisciplinary Centre of Marine and Environmental Research (D.L., M.M.S., L.F.C.C.), FCUP–Department of Biology, Faculty of Sciences, University of Porto, 4050-123 Porto, Portugal; Department of Pharmaceutical Sciences (K.P., J.W.J., M.K.), School of Pharmacy, University of Maryland, Baltimore, Maryland 21201; Laboratory of Health Sciences (J.-I.N.), School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Laboratory of Hygienic Chemistry and Molecular Toxicology (Y.H., T.N.), Gifu Pharmaceutical University, Gifu 501-1196, Japan; and Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Unité Mixte de Recherche 7009, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, Observatoire Océanologique de Villefranche-sur-Mer, 06230 Villefranche-sur-Mer, France
| | | | | |
Collapse
|
22
|
Rothwell CM, Spencer GE. Retinoid signaling is necessary for, and promotes long-term memory formation following operant conditioning. Neurobiol Learn Mem 2014; 114:127-40. [PMID: 24925874 DOI: 10.1016/j.nlm.2014.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Retinoic acid, a metabolite of vitamin A, is proposed to play an important role in vertebrate learning and memory, as well as hippocampal-dependent synaptic plasticity. However, it has not yet been determined whether retinoic acid plays a similar role in learning and memory in invertebrates. In this study, we report that retinoid signaling in the mollusc Lymnaea stagnalis, is required for long-term memory formation following operant conditioning of its aerial respiratory behaviour. Animals were exposed to inhibitors of the RALDH enzyme (which synthesizes retinoic acid), or various retinoid receptor antagonists. Following exposure to these inhibitors, neither learning nor intermediate-term memory (lasting 2 h) was affected, but long-term memory formation (tested at either 24 or 72 h) was inhibited. We next demonstrated that various retinoid receptor agonists promoted long-term memory formation. Using a training paradigm shown only to produce intermediate-term memory (lasting 2 h, but not 24 h) we found that exposure of animals to synthetic retinoids promoted memory formation that lasted up to 30 h. These findings suggest that the role of retinoids in memory formation is ancient in origin, and that retinoid signaling is also important for the formation of implicit memories, in addition to its previously demonstrated role in hippocampal-dependent memories.
Collapse
Affiliation(s)
- Cailin M Rothwell
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
23
|
Kawamura K, Shiohara M, Kanda M, Fujiwara S. Retinoid X receptor-mediated transdifferentiation cascade in budding tunicates. Dev Biol 2013; 384:343-55. [PMID: 24120377 DOI: 10.1016/j.ydbio.2013.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
In the budding tunicate, Polyandrocarpa misakiensis, retinoic acid (RA) applied to buds promotes transdifferentiation of somatic cells to form the secondary body axis. This study investigated the gene cascade regulating such RA-triggered transdifferentiation in tunicates. Genes encoding retinoic acid receptor (RAR) and retinoid X receptor (RXR) were induced during transdifferentiation, and they responded to all-trans RA or 13-cis RA in vivo, whereas 9-cis RA had the least effects, demonstrating differences in the ligand preference between budding tunicates and vertebrates. In contrast to RAR mRNA, RXR mRNA could induce transdifferentiation-related genes such as RXR itself, ERK, and MYC in an RA-dependent manner and also induced β-catenin (β-CTN) RA-independently when it was introduced in vitro into tunicate cell lines that do not express endogenous RAR or RXR. Small interfering RNA (siRNA) of RXR dramatically attenuated not only RXR but also ERK and β-CTN gene activities. An ERK inhibitor severely blocked wound healing and dedifferentiation. β-CTN siRNA suppressed morphogenesis and redifferentiation, similar to RXR siRNA. These results indicate that in P. misakiensis, the main function of RA is to trigger positive feedback regulation of RXR rather than to activate RAR for unlocking downstream pathways for transdifferentiation. Our results may reflect an ancient mode of RA signaling in chordates.
Collapse
Affiliation(s)
- Kaz Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, 2-5-1 Akebono-Cho, Kochi 780-8520, Japan.
| | | | | | | |
Collapse
|
24
|
Blum N, Begemann G. The roles of endogenous retinoid signaling in organ and appendage regeneration. Cell Mol Life Sci 2013; 70:3907-27. [PMID: 23479131 PMCID: PMC11113817 DOI: 10.1007/s00018-013-1303-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/29/2013] [Accepted: 02/14/2013] [Indexed: 12/20/2022]
Abstract
The ability to regenerate injured or lost body parts has been an age-old ambition of medical science. In contrast to humans, teleost fish and urodele amphibians can regrow almost any part of the body with seeming effortlessness. Retinoic acid is a molecule that has long been associated with these impressive regenerative capacities. The discovery 30 years ago that addition of retinoic acid to regenerating amphibian limbs causes "super-regeneration" initiated investigations into the presumptive roles of retinoic acid in regeneration of appendages and other organs. However, the evidence favoring or dismissing a role for endogenous retinoids in regeneration processes remained sparse and ambiguous. Now, the availability of genetic tools to manipulate and visualize the retinoic acid signaling pathway has opened up new routes to dissect its roles in regeneration. Here, we review the current understanding on endogenous functions of retinoic acid in regeneration and discuss key questions to be addressed in future research.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
25
|
Rodríguez-Marí A, Cañestro C, BreMiller RA, Catchen JM, Yan YL, Postlethwait JH. Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One 2013; 8:e73951. [PMID: 24040125 PMCID: PMC3769385 DOI: 10.1371/journal.pone.0073951] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
To help understand the elusive mechanisms of zebrafish sex determination, we studied the genetic machinery regulating production and breakdown of retinoic acid (RA) during the onset of meiosis in gonadogenesis. Results uncovered unexpected mechanistic differences between zebrafish and mammals. Conserved synteny and expression analyses revealed that cyp26a1 in zebrafish and its paralog Cyp26b1 in tetrapods independently became the primary genes encoding enzymes available for gonadal RA-degradation, showing lineage-specific subfunctionalization of vertebrate genome duplication (VGD) paralogs. Experiments showed that zebrafish express aldh1a2, which encodes an RA-synthesizing enzyme, in the gonad rather than in the mesonephros as in mouse. Germ cells in bipotential gonads of all zebrafish analyzed were labeled by the early meiotic marker sycp3, suggesting that in zebrafish, the onset of meiosis is not sexually dimorphic as it is in mouse and is independent of Stra8, which is required in mouse but was lost in teleosts. Analysis of dead-end knockdown zebrafish depleted of germ cells revealed the germ cell-independent onset and maintenance of gonadal aldh1a2 and cyp26a1 expression. After meiosis initiated, somatic cell expression of cyp26a1 became sexually dimorphic: up-regulated in testes but not ovaries. Meiotic germ cells expressing the synaptonemal complex gene sycp3 occupied islands of somatic cells that lacked cyp26a1 expression, as predicted by the hypothesis that Cyp26a1 acts as a meiosis-inhibiting factor. Consistent with this hypothesis, females up-regulated cyp26a1 in oocytes that entered prophase-I meiotic arrest, and down-regulated cyp26a1 in oocytes resuming meiosis. Co-expression of cyp26a1 and the pluripotent germ cell stem cell marker pou5f1(oct4) in meiotically arrested oocytes was consistent with roles in mouse to promote germ cell survival and to prevent apoptosis, mechanisms that are central for tipping the sexual fate of gonads towards the female pathway in zebrafish.
Collapse
Affiliation(s)
- Adriana Rodríguez-Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (JHP); (CC)
| | - Ruth A. BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Julian M. Catchen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (JHP); (CC)
| |
Collapse
|
26
|
Cañestro C, Albalat R, Irimia M, Garcia-Fernàndez J. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin Cell Dev Biol 2013; 24:83-94. [DOI: 10.1016/j.semcdb.2012.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/25/2012] [Indexed: 02/06/2023]
|
27
|
Kanda M, Ikeda T, Fujiwara S. Identification of a retinoic acid-responsive neural enhancer in the Ciona intestinalis Hox1 gene. Dev Growth Differ 2013; 55:260-9. [PMID: 23302037 DOI: 10.1111/dgd.12033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 12/16/2022]
Abstract
The Hox1 gene in the urochordate ascidian Ciona intestinalis (Ci-Hox1) is expressed in the nerve cord and epidermis. We identified a nerve cord enhancer in the second intron of Ci-Hox1, and demonstrated that retinoic acid (RA) plays a major role in activating this enhancer. The enhancer contained a putative retinoic acid-response element (RARE). Mutation of the RARE in the Ci-Hox1 nerve cord enhancer only partially abolished the enhancer activity. Genes encoding RA synthase and the RA receptor were knocked down using specific antisense morpholino oligos (MOs), and injection of embryos with these MOs resulted in the complete disappearance of epidermal expression of Ci-Hox1 and reduction of neural expression. However, nerve cord expression was not completely repressed. These results suggest that the nerve cord enhancer is activated by two partially redundant pathways; one RA-dependent and one RA-independent.
Collapse
Affiliation(s)
- Miyuki Kanda
- Department of Applied Science, Kochi University, 2-5-1 Akebono-cho, Kochi, 780-8520, Japan.
| | | | | |
Collapse
|
28
|
Pasini A, Manenti R, Rothbächer U, Lemaire P. Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate Ciona intestinalis. PLoS One 2012; 7:e46193. [PMID: 23049976 PMCID: PMC3458022 DOI: 10.1371/journal.pone.0046193] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.
Collapse
Affiliation(s)
- Andrea Pasini
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR7288, CNRS/Université Aix-Marseille, Marseille, France.
| | | | | | | |
Collapse
|
29
|
Albalat R, Brunet F, Laudet V, Schubert M. Evolution of retinoid and steroid signaling: vertebrate diversification from an amphioxus perspective. Genome Biol Evol 2011; 3:985-1005. [PMID: 21856648 PMCID: PMC3184775 DOI: 10.1093/gbe/evr084] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although the physiological relevance of retinoids and steroids in vertebrates is very well established, the origin and evolution of the genetic machineries implicated in their metabolic pathways is still very poorly understood. We investigated the evolution of these genetic networks by conducting an exhaustive survey of components of the retinoid and steroid pathways in the genome of the invertebrate chordate amphioxus (Branchiostoma floridae). Due to its phylogenetic position at the base of chordates, amphioxus is a very useful model to identify and study chordate versus vertebrate innovations, both on a morphological and a genomic level. We have characterized more than 220 amphioxus genes evolutionarily related to vertebrate components of the retinoid and steroid pathways and found that, globally, amphioxus has orthologs of most of the vertebrate components of these two pathways, with some very important exceptions. For example, we failed to identify a vertebrate-like machinery for retinoid storage, transport, and delivery in amphioxus and were also unable to characterize components of the adrenal steroid pathway in this invertebrate chordate. The absence of these genes from the amphioxus genome suggests that both an elaboration and a refinement of the retinoid and steroid pathways took place at the base of the vertebrate lineage. In stark contrast, we also identified massive amplifications in some amphioxus gene families, most extensively in the short-chain dehydrogenase/reductase superfamily, which, based on phylogenetic and genomic linkage analyses, were likely the result of duplications specific to the amphioxus lineage. In sum, this detailed characterization of genes implicated in retinoid and steroid signaling in amphioxus allows us not only to reconstruct an outline of these pathways in the ancestral chordate but also to discuss functional innovations in retinoid homeostasis and steroid-dependent regulation in both cephalochordate and vertebrate evolution.
Collapse
Affiliation(s)
- Ricard Albalat
- Departament de Genètica, Facultat de Biologia and Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Spain.
| | | | | | | |
Collapse
|
30
|
Onimaru K, Shoguchi E, Kuratani S, Tanaka M. Development and evolution of the lateral plate mesoderm: comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Dev Biol 2011; 359:124-136. [PMID: 21864524 DOI: 10.1016/j.ydbio.2011.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 12/28/2022]
Abstract
Possession of paired appendages is regarded as a novelty that defines crown gnathostomes and allows sophisticated behavioral and locomotive patterns. During embryonic development, initiation of limb buds in the lateral plate mesoderm involves several steps. First, the lateral plate mesoderm is regionalized into the cardiac mesoderm (CM) and the posterior lateral plate mesoderm (PLPM). Second, in the PLPM, Hox genes are expressed in a collinear manner to establish positional values along the anterior-posterior axis. The developing PLPM splits into somatic and splanchnic layers. In the presumptive limb field of the somatic layer, expression of limb initiation genes appears. To gain insight into the evolutionary sequence leading to the emergence of paired appendages in ancestral vertebrates, we examined the embryonic development of the ventral mesoderm in the cephalochordate amphioxus Branchiostoma floridae and of the lateral plate mesoderm in the agnathan lamprey Lethenteron japonicum, and studied the expression patterns of cognates of genes known to be expressed in these mesodermal layers during amniote development. We observed that, although the amphioxus ventral mesoderm posterior to the pharynx was not regionalized into CM and posterior ventral mesoderm, the lateral plate mesoderm of lampreys was regionalized into CM and PLPM, as in gnathostomes. We also found nested expression of two Hox genes (LjHox5i and LjHox6w) in the PLPM of lamprey embryos. However, histological examination showed that the PLPM of lampreys was not separated into somatic and splanchnic layers. These findings provide insight into the sequential evolutionary changes that occurred in the ancestral lateral plate mesoderm leading to the emergence of paired appendages.
Collapse
Affiliation(s)
- Koh Onimaru
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, 1919-1 Tancha, Onna, Okinawa 904-0412, Japan.
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, Riken, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Mikiko Tanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
31
|
Kurtenbach S, Mayer C, Pelz T, Hatt H, Leese F, Neuhaus EM. Molecular evolution of a chordate specific family of G protein-coupled receptors. BMC Evol Biol 2011; 11:234. [PMID: 21827690 PMCID: PMC3238225 DOI: 10.1186/1471-2148-11-234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/09/2011] [Indexed: 11/23/2022] Open
Abstract
Background Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success. Results We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C) in vertebrates, and a fourth homologue present only in mammals (GPRC5D). Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A in vivo, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling. Conclusions GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non-chordates to become chordates.
Collapse
Affiliation(s)
- Stefan Kurtenbach
- 1Department of Cell Physiology, Ruhr University Bochum, Universitaetsstrasse150, 44801 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Samarut E, Amal I, Markov GV, Stote R, Dejaegere A, Laudet V, Rochette-Egly C. Evolution of Nuclear Retinoic Acid Receptor Alpha (RAR ) Phosphorylation Sites. Serine Gain Provides Fine-Tuned Regulation. Mol Biol Evol 2011; 28:2125-37. [DOI: 10.1093/molbev/msr035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans. Proc Natl Acad Sci U S A 2010; 108:226-31. [PMID: 21169504 DOI: 10.1073/pnas.1011223108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.
Collapse
|
34
|
Cañestro C, Albalat R, Postlethwait JH. Oikopleura dioica alcohol dehydrogenase class 3 provides new insights into the evolution of retinoic acid synthesis in chordates. Zoolog Sci 2010; 27:128-33. [PMID: 20141418 DOI: 10.2108/zsj.27.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enzymes that synthesize retinoic acid (RA) constitute the first level of regulation of RA action. In vertebrates, enzymes of the medium-chain alcohol dehydrogenase (MDR-Adh) family catalyze the first step of the RA synthetic pathway by oxidizing retinol. Among MDR-Adh enzymes, Adh3 is the only member present in non-vertebrates, and whether Adh3 is actually involved in RA biosynthesis remains uncertain. Here, we investigate the MDR-Adh family in Oikopleura dioica, a urochordate representing the sister group to vertebrates. Oikopleura is of special interest because it has lost the classical RA role in development, which relaxed evolutionary constraints to preserve the RA-genetic machinery, leading to the loss of RA-system components. The hypothesis that Adh3 plays a role in RA synthesis predicts that the relaxation of selection in Oikopleura should have led to the loss of Adh3, or changes in residues related to retinol oxidation. The hypothesis also predicts changes in the expression pattern of Oikopleura Adh3 compared to other chordates that preserved RA-signaling. Our results, however, revealed the presence of a highly conserved Adh3 gene in Oikopleura, with no significant changes in functional residues. Our results also revealed that the Oikopleura Adh3 expression remains unchanged in comparison to other non-vertebrate chordates, restricted to specific compartments of the digestive system. Because Adh3 has been highly conserved in an animal that has dismantled the RA system, we conclude that Adh3 preservation is not due to a conserved role in RA synthesis. Thereby, if Adh3 plays a role in RA synthesis in vertebrates, it might be a lineage-specific neofunctionalization.
Collapse
Affiliation(s)
- Cristian Cañestro
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
35
|
Gibert Y, Bernard L, Debiais-Thibaud M, Bourrat F, Joly JS, Pottin K, Meyer A, Retaux S, Stock DW, Jackman WR, Seritrakul P, Begemann G, Laudet V. Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling. FASEB J 2010; 24:3298-309. [PMID: 20445074 DOI: 10.1096/fj.09-147488] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the goals of evolutionary developmental biology is to link specific adaptations to changes in developmental pathways. The dentition of cypriniform fishes, which in contrast to many other teleost fish species possess pharyngeal teeth but lack oral teeth, provides a suitable model to study the development of feeding adaptations. Here, we have examined the involvement of retinoic acid (RA) in tooth development and show that RA is specifically required to induce the pharyngeal tooth developmental program in zebrafish. Perturbation of RA signaling at this stage abolished tooth induction without affecting the development of tooth-associated ceratobranchial bones. We show that this inductive event is dependent on RA synthesis from aldh1a2 in the ventral posterior pharynx. Fibroblast growth factor (FGF) signaling has been shown to be critical for tooth induction in zebrafish, and its loss has been associated with oral tooth loss in cypriniform fishes. Pharmacological treatments targeting the RA and FGF pathways revealed that both pathways act independently during tooth induction. In contrast, we find that in Mexican tetra and medaka, species that also possess oral teeth, both oral and pharyngeal teeth are induced independently of RA. Our analyses suggest an evolutionary scenario in which the gene network controlling tooth development obtained RA dependency in the lineage leading to the cypriniforms. The loss of pharyngeal teeth in this group was cancelled out through a shift in aldh1a2 expression, while oral teeth might have been lost ultimately due to deficient RA signaling in the oral cavity.
Collapse
Affiliation(s)
- Yann Gibert
- Molecular Zoology Group, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, UCB Lyon 1, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Theodosiou M, Laudet V, Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci 2010; 67:1423-45. [PMID: 20140749 PMCID: PMC11115864 DOI: 10.1007/s00018-010-0268-z] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/06/2010] [Accepted: 01/11/2010] [Indexed: 01/23/2023]
Abstract
Vitamin A is essential for the formation and maintenance of many body tissues. It is also important for embryonic growth and development and can act as a teratogen at critical periods of development. Retinoic acid (RA) is the biologically active form of vitamin A and its signaling is mediated by the RA and retinoid X receptors. In addition to its role as an important molecule during development, RA has also been implicated in clinical applications, both as a potential anti-tumor agent as well as for the treatment of skin diseases. This review presents an overview of how dietary retinoids are converted to RA, hence presenting the major players in RA metabolism and signaling, and highlights examples of treatment applications of retinoids. Moreover, we discuss the origin and diversification of the retinoid pathway, which are important factors for understanding the evolution of ligand-specificity among retinoid receptors.
Collapse
Affiliation(s)
- Maria Theodosiou
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon (Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon), 46 allée d'Italie, 69364 Lyon Cedex 07, France.
| | | | | |
Collapse
|
37
|
Haseba T, Ohno Y. A new view of alcohol metabolism and alcoholism--role of the high-Km Class III alcohol dehydrogenase (ADH3). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1076-92. [PMID: 20617019 PMCID: PMC2872310 DOI: 10.3390/ijerph7031076] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/12/2010] [Accepted: 02/22/2010] [Indexed: 12/13/2022]
Abstract
The conventional view is that alcohol metabolism is carried out by ADH1 (Class I) in the liver. However, it has been suggested that another pathway plays an important role in alcohol metabolism, especially when the level of blood ethanol is high or when drinking is chronic. Over the past three decades, vigorous attempts to identify the enzyme responsible for the non-ADH1 pathway have focused on the microsomal ethanol oxidizing system (MEOS) and catalase, but have failed to clarify their roles in systemic alcohol metabolism. Recently, using ADH3-null mutant mice, we demonstrated that ADH3 (Class III), which has a high K(m) and is a ubiquitous enzyme of ancient origin, contributes to systemic alcohol metabolism in a dose-dependent manner, thereby diminishing acute alcohol intoxication. Although the activity of ADH3 toward ethanol is usually low in vitro due to its very high K(m), the catalytic efficiency (k(cat)/K(m)) is markedly enhanced when the solution hydrophobicity of the reaction medium increases. Activation of ADH3 by increasing hydrophobicity should also occur in liver cells; a cytoplasmic solution of mouse liver cells was shown to be much more hydrophobic than a buffer solution when using Nile red as a hydrophobicity probe. When various doses of ethanol are administered to mice, liver ADH3 activity is dynamically regulated through induction or kinetic activation, while ADH1 activity is markedly lower at high doses (3-5 g/kg). These data suggest that ADH3 plays a dynamic role in alcohol metabolism, either collaborating with ADH1 or compensating for the reduced role of ADH1. A complex two-ADH model that ascribes total liver ADH activity to both ADH1 and ADH3 explains the dose-dependent changes in the pharmacokinetic parameters (beta, CL(T), AUC) of blood ethanol very well, suggesting that alcohol metabolism in mice is primarily governed by these two ADHs. In patients with alcoholic liver disease, liver ADH3 activity increases, while ADH1 activity decreases, as alcohol intake increases. Furthermore, ADH3 is induced in damaged cells that have greater hydrophobicity, whereas ADH1 activity is lower when there is severe liver disease. These data suggest that chronic binge drinking and the resulting liver disease shifts the key enzyme in alcohol metabolism from low-K(m) ADH1 to high-K(m) ADH3, thereby reducing the rate of alcohol metabolism. The interdependent increase in the ADH3/ADH1 activity ratio and AUC may be a factor in the development of alcoholic liver disease. However, the adaptive increase in ADH3 sustains alcohol metabolism, even in patients with alcoholic liver cirrhosis, which makes it possible for them to drink themselves to death. Thus, the regulation of ADH3 activity may be important in preventing alcoholism development.
Collapse
Affiliation(s)
- Takeshi Haseba
- Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; E-Mail:
| | - Youkichi Ohno
- Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; E-Mail:
| |
Collapse
|
38
|
Marotta F, Tiboni GM. Molecular aspects of azoles-induced teratogenesis. Expert Opin Drug Metab Toxicol 2010; 6:461-82. [DOI: 10.1517/17425251003592111] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Kanda M, Wada H, Fujiwara S. Epidermal expression of Hox1 is directly activated by retinoic acid in the Ciona intestinalis embryo. Dev Biol 2009; 335:454-63. [PMID: 19782671 DOI: 10.1016/j.ydbio.2009.09.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/01/2009] [Accepted: 09/18/2009] [Indexed: 11/30/2022]
Abstract
Hox genes play important roles in the specification of spatial identity during development of vertebrate embryos. Retinoic acid regulates the transcription of Hox genes in vertebrates. We identified an epidermal enhancer in the 5' flanking region of an ortholog of Hox1 (Ci-Hox1) in the ascidian Ciona intestinalis. This enhancer element drives the transcription of a lacZ reporter gene in the epidermis in the posterior trunk and the anterior tail region of tailbud-stage embryos. Inhibition of retinoic acid synthesis resulted in inactivation of the expression of the reporter gene. The enhancer contains a putative retinoic acid response element. When this element was mutagenized, the expression of the reporter gene disappeared from the epidermis. This sequence was also required for the response to exogenously administered retinoic acid. A heterodimeric nuclear receptor, consisting of the retinoic acid receptor and retinoid X receptor, bound to this sequence. These results indicate that retinoic acid directly activates the epidermal enhancer of Ci-Hox1. This is the first demonstration that retinoic acid is necessary for endogenous gene expression in ascidian embryos.
Collapse
Affiliation(s)
- Miyuki Kanda
- Department of Applied Science, Kochi University, Akebono-cho, Kochi-shi, Japan.
| | | | | |
Collapse
|
40
|
Belyaeva OV, Lee SA, Kolupaev OV, Kedishvili NY. Identification and characterization of retinoid-active short-chain dehydrogenases/reductases in Drosophila melanogaster. Biochim Biophys Acta Gen Subj 2009; 1790:1266-73. [PMID: 19520149 DOI: 10.1016/j.bbagen.2009.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/19/2009] [Accepted: 06/03/2009] [Indexed: 01/06/2023]
Abstract
BACKGROUND In chordates, retinoid metabolism is an important target of short-chain dehydrogenases/reductases (SDRs). It is not known whether SDRs play a role in retinoid metabolism of protostomes, such as Drosophila melanogaster. METHODS Drosophila genome was searched for genes encoding proteins with approximately 50% identity to human retinol dehydrogenase 12 (RDH12). The corresponding proteins were expressed in Sf9 cells and biochemically characterized. Their phylogenetic relationships were analyzed using PHYLIP software. RESULTS A total of six Drosophila SDR genes were identified. Five of these genes are clustered on chromosome 2 and one is located on chromosome X. The deduced proteins are 300 to 406 amino acids long and are associated with microsomal membranes. They recognize all-trans-retinaldehyde and all-trans-3-hydroxyretinaldehyde as substrates and prefer NADPH as a cofactor. Phylogenetically, Drosophila SDRs belong to the same branch of the SDR superfamily as human RDH12, indicating a common ancestry early in bilaterian evolution, before a protostome-deuterostome split. CONCLUSIONS Similarities in the substrate and cofactor specificities of Drosophila versus human SDRs suggest conservation of their function in retinoid metabolism throughout protostome and deuterostome phyla. GENERAL SIGNIFICANCE The discovery of Drosophila retinaldehyde reductases sheds new light on the conversion of beta-carotene and zeaxantine to visual pigment and provides a better understanding of the evolutionary roots of retinoid-active SDRs.
Collapse
Affiliation(s)
- Olga V Belyaeva
- Division of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama-Birmingham, 720 20th Street South, 466 Kaul Genetics Building, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
41
|
Consequences of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and retinoic acid signaling in vertebrate genomes. PLoS Genet 2009; 5:e1000496. [PMID: 19478994 PMCID: PMC2682703 DOI: 10.1371/journal.pgen.1000496] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/27/2009] [Indexed: 01/03/2023] Open
Abstract
Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss.
Collapse
|
42
|
Sánchez-Guardado LÓ, Ferran JL, Mijares J, Puelles L, Rodríguez-Gallardo L, Hidalgo-Sánchez M. Raldh3gene expression pattern in the developing chicken inner ear. J Comp Neurol 2009; 514:49-65. [DOI: 10.1002/cne.21984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Elinson RP, Walton Z, Nath K. Raldh expression in embryos of the direct developing frog Eleutherodactylus coqui and the conserved retinoic acid requirement for forelimb initiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:588-95. [PMID: 18668545 DOI: 10.1002/jez.b.21229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Embryos of the direct developing frog, Eleutherodactylus coqui, provide opportunities to examine frog early limb development that are not available in species with tadpoles. We cloned two retinaldehyde dehydrogenase genes, EcRaldh1 and EcRaldh2, to see which enzyme likely supplies retinoic acid for limb development. EcRaldh1 is expressed in the dorsal retina, otic vesicle, pronephros, and pronephric duct, but not in the limb. EcRaldh2 is expressed early at the blastoporal lip and then in the mesoderm in the neurula, so this expression could function in forelimb initiation. Later EcRaldh2 is expressed in the mesoderm at the base of the limbs and in the ventral spinal cord where motor neurons innervating the limbs emerge. These observations on a frog support the functional conservation of EcRaldh2 in forelimb initiation in Osteichthyans and in limb patterning and motor neuron specification in tetrapods.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | |
Collapse
|
44
|
Parés X, Farrés J, Kedishvili N, Duester G. Medium- and short-chain dehydrogenase/reductase gene and protein families : Medium-chain and short-chain dehydrogenases/reductases in retinoid metabolism. Cell Mol Life Sci 2008; 65:3936-49. [PMID: 19011747 PMCID: PMC2654207 DOI: 10.1007/s00018-008-8591-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Retinoic acid (RA), the most active retinoid, is synthesized in two steps from retinol. The first step, oxidation of retinol to retinaldehyde, is catalyzed by cytosolic alcohol dehydrogenases (ADHs) of the medium-chain dehydrogenase/reductase (MDR) superfamily and microsomal retinol dehydrogenases (RDHs) of the short-chain dehydrogenase/reductase (SDR) superfamily. The second step, oxidation of retinaldehyde to RA, is catalyzed by several aldehyde dehydrogenases. ADH1 and ADH2 are the major MDR enzymes in liver retinol detoxification, while ADH3 (less active) and ADH4 (most active) participate in RA generation in tissues. Several NAD(+)- and NADP(+)-dependent SDRs are retinoid active. Their in vivo contribution has been demonstrated in the visual cycle (RDH5, RDH12), adult retinoid homeostasis (RDH1) and embryogenesis (RDH10). K(m) values for most retinoid-active ADHs and RDHs are close to 1 microM or lower, suggesting that they participate physiologically in retinol/retinaldehyde interconversion. Probably none of these enzymes uses retinoids bound to cellular retinol-binding protein, but only free retinoids. The large number of enzymes involved in the two directions of this step, also including aldo-keto reductases, suggests that retinaldehyde levels are strictly regulated.
Collapse
Affiliation(s)
- X Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | |
Collapse
|
45
|
White RJ, Schilling TF. How degrading: Cyp26s in hindbrain development. Dev Dyn 2008; 237:2775-90. [PMID: 18816852 DOI: 10.1002/dvdy.21695] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vitamin A derivative retinoic acid performs many functions in vertebrate development and is thought to act as a diffusible morphogen that patterns the anterior-posterior axis of the hindbrain. Recent work in several systems has led to insights into how the spatial distribution of retinoic acid is regulated. These have shown local control of synthesis and degradation, and computational models suggest that degradation by the Cyp26 enzymes plays a critical role in the formation of a morphogen gradient as well as its ability to compensate for fluctuations in RA levels.
Collapse
Affiliation(s)
- Richard J White
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | |
Collapse
|
46
|
Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H. Additional molecular support for the new chordate phylogeny. Genesis 2008; 46:592-604. [DOI: 10.1002/dvg.20450] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
|
48
|
Campo-Paysaa F, Marlétaz F, Laudet V, Schubert M. Retinoic acid signaling in development: Tissue-specific functions and evolutionary origins. Genesis 2008; 46:640-56. [PMID: 19003929 DOI: 10.1002/dvg.20444] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Florent Campo-Paysaa
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242-INRA 1288-ENS-UCBL, IFR128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
49
|
Albalat R, Cañestro C. Identification of Aldh1a, Cyp26 and RAR orthologs in protostomes pushes back the retinoic acid genetic machinery in evolutionary time to the bilaterian ancestor. Chem Biol Interact 2008; 178:188-96. [PMID: 18926806 DOI: 10.1016/j.cbi.2008.09.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/05/2008] [Accepted: 09/09/2008] [Indexed: 12/22/2022]
Abstract
In vertebrates, retinoic acid (RA) is an important morphogenetic signal that controls embryonic development, as well as organ homeostasis in adults. RA action depends on the function of the RA-genetic machinery, which includes a metabolic module and a signaling module. The metabolic module regulates the spatiotemporal distribution of RA by the combined action of the RA-synthesizing Aldh1a enzymes, and the RA-degrading Cyp26 enzymes. The signaling module includes members of the nuclear hormone receptors family RAR and RXR, and controls the transcriptional state of RA-target genes. RA-signaling has been described primarily in chordates, but the recent finding of elements of the RA-genetic machinery in non-chordate deuterostomes has changed our perspective on the evolutionary origin of this morphogenetic signal, challenging previous assumptions that related the invention of the RA-genetic machinery with the origin of the chordate body plan. To illuminate the evolutionary origin of the RA machinery we have conducted an extensive survey of Aldh1a, Cyp26 and RAR orthologs in genomic databases of 13 non-deuterostome metazoans. Our results show for the first time the presence of Aldh1a, Cyp26 and RAR in protostomes, which implies that the components of the RA machinery may be ancient elements of animal genomes, already present in the last common ancestor of bilaterians. Interestingly, our data also reveal that independent losses of the RA toolkit have occurred multiple times during animal evolution, which may have been relevant for the evolution and developmental diversity of the current metazoan lineages.
Collapse
Affiliation(s)
- Ricard Albalat
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
50
|
Bassham S, Cañestro C, Postlethwait JH. Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages. BMC Biol 2008; 6:35. [PMID: 18721460 PMCID: PMC2532684 DOI: 10.1186/1741-7007-6-35] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 08/22/2008] [Indexed: 12/02/2022] Open
Abstract
Background Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates. Results To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial remodeling, and in sensory tissues evokes like functions of Pax2, Pax5 and Pax8 in vertebrate embryos, and may indicate ancient origins for these functions in the chordate common ancestor. Conclusion Comparative analysis of expression patterns of chordate Pax2/5/8 duplicates, rooted on the single-copy Pax2/5/8 gene of amphioxus, whose lineage diverged basally among chordates, provides new insights into the evolution and development of the heart, thyroid, pharynx, stomodeum and placodes in chordates; supports the controversial conclusion that the atrial siphon of ascidians and the otic placode in vertebrates are homologous; and backs the notion that Pax2/5/8 functioned in ancestral chordates to engineer epithelial fusions and perforations, including gill slit openings.
Collapse
Affiliation(s)
- Susan Bassham
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA.
| | | | | |
Collapse
|