1
|
Lee R, Ong J, Waisberg E, Lee AG. Spaceflight associated dry eye syndrome (SADES): Radiation, stressors, and ocular surface health. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:75-81. [PMID: 39521497 DOI: 10.1016/j.lssr.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Crewed spaceflight missions require careful scrutinization of the health risks including alterations to the tear film lipid layer in astronauts. We review the current literature and prior published work on tear film lipid layer biophysics and secondary spaceflight-associated dry eye syndrome (SADES). We define the term spaceflight-associated dry eye syndrome to describe the collection of ocular surface signs and symptoms experienced by astronauts during spaceflight. Our review covers the ocular surface and lipidomics in the spaceflight environment. From our literature review, we extrapolate biophysical principles governing the tear film layer to determine the changes that may arise from the harsh conditions of spaceflight and microgravity. Our findings provide vital information for future long-duration spaceflight, including a return to the Moon and potential missions to Mars.
Collapse
Affiliation(s)
- Ryung Lee
- Touro College of Osteopathic Medicine, New York, NY, United States.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States; University of Texas MD Anderson Cancer Center, Houston, TX, United States; Texas A&M School of Medicine, Bryan, TX, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
2
|
Simulated microgravity reduces quality of ovarian follicles and oocytes by disrupting communications of follicle cells. NPJ Microgravity 2023; 9:7. [PMID: 36690655 PMCID: PMC9870914 DOI: 10.1038/s41526-023-00248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Ovarian follicles are the fundamental structures that support oocyte development, and communications between oocytes and follicle somatic cells are crucial for oogenesis. However, it is unknown that whether exposure to microgravity influences cellular communications and ovarian follicle development, which might be harmful for female fertility. By 3D culturing of ovarian follicles under simulated microgravity (SMG) conditions in a rotating cell culture system, we found that SMG treatment did not affect the survival or general growth of follicles but decreased the quality of cultured follicles released oocytes. Ultrastructure detections by high-resolution imaging showed that the development of cellular communicating structures, including granulosa cell transzonal projections and oocyte microvilli, were markedly disrupted. These abnormalities caused chaotic polarity of granulosa cells (GCs) and a decrease in oocyte-secreted factors, such as Growth Differentiation Factor 9 (GDF9), which led to decreased quality of oocytes in these follicles. Therefore, the quality of oocytes was dramatically improved by the supplementations of GDF9 and NADPH-oxidase inhibitor apocynin. Together, our results suggest that exposure to simulated microgravity impairs the ultrastructure of ovarian follicles. Such impairment may affect female fertility in space environment.
Collapse
|
3
|
Swaminathan V, Bechtel G, Tchantchaleishvili V. Artificial tissue creation under microgravity conditions: Considerations and future applications. Artif Organs 2021; 45:1446-1455. [PMID: 34223657 DOI: 10.1111/aor.14017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
Traditional tissue engineering methods often fail to promote robust cell growth and differentiation, limiting the development of functioning tissues. However, the microgravity conditions created by rotating wall vessel bioreactors minimize shear stress and unload the gravitational force usually placed on cells. In a microgravity environment, cell proliferation, cell differentiation, and the 3D organization of cells are altered, potentially encouraging the formation of more biosimilar artificial tissues for certain cell types. Additionally, cells in these engineered tissues display lowered immunogenicity, pointing to the transplantation potential of tissues engineered in microgravity conditions. However, these benefits are not consistent across all cell types, and the long-term impact of microgravity on tissue development and stability remains an unanswered question. Even so, there is potential that with further research, microgravity tissue engineering will have productive clinical applications for medical and pharmaceutical purposes.
Collapse
Affiliation(s)
- Vishal Swaminathan
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
4
|
Lin SC, Gou GH, Hsia CW, Ho CW, Huang KL, Wu YF, Lee SY, Chen YH. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev 2016; 25:1172-93. [PMID: 27269634 DOI: 10.1089/scd.2016.0040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural crest stem cells (NCSCs) are a population of multipotent stem cells that are distributed broadly in many tissues and organs and are capable of differentiating into a variety of cell types that are dispersed throughout three germ layers. We are interested in studying the effects of simulated microgravity on the survival and self-renewal of NCSCs. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro, respectively, in a 2D adherent environment and a 3D suspension environment using the rotatory cell culture system (RCCS) to simulate microgravity. We found that rat NCSCs (rNCSCs) cultured in the RCCS for 24 h showed disrupted organization of filamentous actin, increased globular actin level, formation of plasma membrane blebbing and neurite-like artifact, as well as decreased levels of cortactin and vimentin. Interestingly, ∼70% of RCCS-cultured rNCSCs co-expressed cleaved (active) caspase-3 and neuronal markers microtubule-associated protein 2 (MAP2) and Tuj1 instead of NCSC markers, suggesting stress-induced formation of neurite-like artifact in rNCSCs. In addition, rNCSCs showed increased C-X-C chemokine receptor 4 (CXCR4) expression, RhoA GTPase activation, Rho-associated kinase 1 (ROCK1) and p38 mitogen-activated protein kinase (MAPK) phosphorylation, and p53 expression in the nucleus. Incubation of rNCSCs with the Gα protein inhibitor pertussis toxin or CXCR4 siRNA during RCCS-culturing prevented cytoskeleton disorganization and plasma membrane blebbing, and it suppressed apoptosis of rNCSCs. Taken together, we demonstrate for the first time that simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rNCSCs via upregulating CXCR4 expression and the RhoA-ROCK1-p38 MAPK-p53 signaling pathway.
Collapse
Affiliation(s)
- Shing-Chen Lin
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Guo-Hau Gou
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Ching-Wu Hsia
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Cheng-Wen Ho
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,3 Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital , Longtan Township, Taoyuan County, Taiwan
| | - Kun-Lun Huang
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,4 Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Yung-Fu Wu
- 5 Department of Medical Research, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Shih-Yu Lee
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Yi-Hui Chen
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| |
Collapse
|
5
|
Bauer J, Bussen M, Wise P, Wehland M, Schneider S, Grimm D. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells. Expert Rev Proteomics 2016; 13:697-705. [DOI: 10.1080/14789450.2016.1197775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Johann Bauer
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Markus Bussen
- Lifescience, Elsevier Information System GmbH, Frankfurt am Main, Germany
| | - Petra Wise
- Hematology/Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabine Schneider
- Informationsvermittlung, Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Kumar A, Starly B. Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes. Biofabrication 2015; 7:044103. [DOI: 10.1088/1758-5090/7/4/044103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
DIAO YUMEI, HONG JING. Feasibility and safety of porcine Descemet’s membrane as a carrier for generating tissue-engineered corneal endothelium. Mol Med Rep 2015; 12:1929-34. [DOI: 10.3892/mmr.2015.3665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 12/02/2014] [Indexed: 11/06/2022] Open
|
8
|
Li H, Dai Y, Shu J, Yu R, Guo Y, Chen J. Spheroid cultures promote the stemness of corneal stromal cells. Tissue Cell 2015; 47:39-48. [DOI: 10.1016/j.tice.2014.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
|
9
|
Dai Y, Guo Y, Wang C, Liu Q, Yang Y, Li S, Guo X, Lian R, Yu R, Liu H, Chen J. Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells. PLoS One 2014; 9:e109856. [PMID: 25333522 PMCID: PMC4198143 DOI: 10.1371/journal.pone.0109856] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
Cell fate and function can be regulated and reprogrammed by intrinsic genetic program, extrinsic factors and niche microenvironment. Direct reprogramming has shown many advantages in the field of cellular reprogramming. Here we tried the possibility to generate corneal endothelia (CE) -like cells from human adipose-derived stem cells (ADSCs) by the non-genetic direct reprogramming of recombinant cell-penetrating proteins Oct4/Klf4/Sox2 (PTD-OKS) and small molecules (purmorphamine, RG108 and other reprogramming chemical reagents), as well as biomimetic platforms of simulate microgravity (SMG) bioreactor. Co-cultured with corneal cells and decellularized corneal ECM, Reprogrammed ADSCs revealed spherical growth and positively expressing Nanog for RT-PCR analysis and CD34 for immunofluorescence staining after 7 days-treatment of both purmorphamine and PTD-OKS (P-OKS) and in SMG culture. ADSCs changed to CEC polygonal morphology from spindle shape after the sequential non-genetic direct reprogramming and biomimetic platforms. At the same time, induced cells converted to weakly express CD31, AQP-1 and ZO-1. These findings demonstrated that the treatments were able to promote the stem-cell reprogramming for human ADSCs. Our study also indicates for the first time that SMG rotary cell culture system can be used as a non-genetic means to promote direct reprogramming. Our methods of reprogramming provide an alternative strategy for engineering patient-specific multipotent cells for cellular plasticity research and future autologous CEC replacement therapy that avoids complications associated with the use of human pluripotent stem cells.
Collapse
Affiliation(s)
- Ying Dai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yonglong Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Chan Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Qing Liu
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yan Yang
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shanyi Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Xiaoling Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Ruiling Lian
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Rongjie Yu
- Bioengineering Institute of Jinan University, Guangzhou, China
| | - Hongwei Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
- * E-mail:
| |
Collapse
|
10
|
Dai Y, Chen J, Li H, Li S, Chen J, Ding Y, Wu J, Wang C, Tan M. Characterizing the effects of VPA, VC and RCCS on rabbit keratocytes onto decellularized bovine cornea. PLoS One 2012; 7:e50114. [PMID: 23209652 PMCID: PMC3510233 DOI: 10.1371/journal.pone.0050114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022] Open
Abstract
To investigate the morphological and growth characteristics of rabbit keratocytes when cultured on decellularized cornea under simulate microgravity (SMG) rotary cell culture system (RCCS) and static culture or in plastic culture supplemented with small molecules of valproic acid (VPA) and vitamin C (VC). Bovine corneas were firstly decellularized with Triton X-100 and NH(4)OH and through short-term freezing process. Then cell count kit-8 (CCK-8) and flow cytometry were used to test the effects of VPA and VC on the proliferation, cell cycle and apoptosis of rabbit keratocytes. Hematoxylin-eosin (H&E) staining and scanning electron microscopy (SEM) imaging showed that cells were eliminated in the decellularized bovine corneas. The proliferation of cultured keratocytes was promoted by VPA and VC in the cell proliferation assay. VPA and VC moderately decreased the number of apoptotic cells and obviously promoted cell-cycle entrance of keratocytes. Rabbit keratocytes in plastic displayed spindle shape and rare interconnected with or without VPA and VC. Cells revealed dendritic morphology and reticular cellular connections when cultured on the carriers of decellularized corneas supplemented with VPA and VC even in the presence of 10% fetal bovine serum (FBS). When cultured in RCCS supplemented with VPA, VC and 10% FBS, keratocytes displayed round shape with many prominences and were more prone to grow into the pores of carriers with aggregation. Reverse transcription-polymerase chain reaction (RT-PCR) analysis proved that the keratocytes cultured on decellularized bovine cornea under SMG with VPA and VC expressed keratocan and lumican. Keratocytes cultured on plastic expressed lumican but not keratocan. Immunofluorescence identification revealed that cells in all groups were positively immunostained for vimentin. Keratocytes on decellularized bovine cornea under SMG or in static culture were positively immunostained for keratocan and lumican. Thus, we reasonably made a conclusion that the combination of VPA, VC, RCCS and decellularized corneal carriers provide a good condition for keratocytes to well grow. Keratocytes can be manipulated to be aggregates or physiological morphological growth in vitro, which are important for the research of corneal stem cells and corneal tissue engineering.
Collapse
Affiliation(s)
- Ying Dai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, People's Republic of China
| | - Hongyang Li
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Shanyi Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Jian Chen
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Yong Ding
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Jing Wu
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, People's Republic of China
| | - Chan Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Meihua Tan
- Ophthalmology Department, First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Chiang MC, Lin H, Cheng YC, Yen CH, Huang RN, Lin KH. Beta-adrenoceptor pathway enhances mitochondrial function in human neural stem cells via rotary cell culture system. J Neurosci Methods 2012; 207:130-6. [DOI: 10.1016/j.jneumeth.2012.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 11/30/2022]
|
12
|
NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One 2011. [PMID: 22096490 DOI: 10.1371/journal.pone.0026603.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The skin is susceptible to different injuries and diseases. One major obstacle in skin tissue engineering is how to develop functional three-dimensional (3D) substitute for damaged skin. Previous studies have proved a 3D dynamic simulated microgravity (SMG) culture system as a "stimulatory" environment for the proliferation and differentiation of stem cells. Here, we employed the NASA-approved rotary bioreactor to investigate the proliferation and differentiation of human epidermal stem cells (hEpSCs). hEpSCs were isolated from children foreskins and enriched by collecting epidermal stem cell colonies. Cytodex-3 micro-carriers and hEpSCs were co-cultured in the rotary bioreactor and 6-well dish for 15 days. The result showed that hEpSCs cultured in rotary bioreactor exhibited enhanced proliferation and viability surpassing those cultured in static conditions. Additionally, immunostaining analysis confirmed higher percentage of ki67 positive cells in rotary bioreactor compared with the static culture. In contrast, comparing with static culture, cells in the rotary bioreactor displayed a low expression of involucrin at day 10. Histological analysis revealed that cells cultured in rotary bioreactor aggregated on the micro-carriers and formed multilayer 3D epidermis structures. In conclusion, our research suggests that NASA-approved rotary bioreactor can support the proliferation of hEpSCs and provide a strategy to form multilayer epidermis structure.
Collapse
|
13
|
Lei XH, Ning LN, Cao YJ, Liu S, Zhang SB, Qiu ZF, Hu HM, Zhang HS, Liu S, Duan EK. NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One 2011; 6:e26603. [PMID: 22096490 PMCID: PMC3212516 DOI: 10.1371/journal.pone.0026603] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/29/2011] [Indexed: 12/12/2022] Open
Abstract
The skin is susceptible to different injuries and diseases. One major obstacle in skin tissue engineering is how to develop functional three-dimensional (3D) substitute for damaged skin. Previous studies have proved a 3D dynamic simulated microgravity (SMG) culture system as a “stimulatory” environment for the proliferation and differentiation of stem cells. Here, we employed the NASA-approved rotary bioreactor to investigate the proliferation and differentiation of human epidermal stem cells (hEpSCs). hEpSCs were isolated from children foreskins and enriched by collecting epidermal stem cell colonies. Cytodex-3 micro-carriers and hEpSCs were co-cultured in the rotary bioreactor and 6-well dish for 15 days. The result showed that hEpSCs cultured in rotary bioreactor exhibited enhanced proliferation and viability surpassing those cultured in static conditions. Additionally, immunostaining analysis confirmed higher percentage of ki67 positive cells in rotary bioreactor compared with the static culture. In contrast, comparing with static culture, cells in the rotary bioreactor displayed a low expression of involucrin at day 10. Histological analysis revealed that cells cultured in rotary bioreactor aggregated on the micro-carriers and formed multilayer 3D epidermis structures. In conclusion, our research suggests that NASA-approved rotary bioreactor can support the proliferation of hEpSCs and provide a strategy to form multilayer epidermis structure.
Collapse
Affiliation(s)
- Xiao-hua Lei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-na Ning
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-jing Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Shou-bing Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Zhi-fang Qiu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui-min Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Hui-shan Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Shu Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - En-kui Duan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Zhang W, Xiao J, Li C, Wan P, Liu Y, Wu Z, Huang M, Wang X, Wang Z. Rapidly constructed scaffold-free cornea epithelial sheets for ocular surface reconstruction. Tissue Eng Part C Methods 2011; 17:569-77. [PMID: 21214400 DOI: 10.1089/ten.tec.2010.0529] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To develop a centrifugal cell seeding method for rapid and efficient reconstruction of ocular surface with limbal stem cell deficiency (LSCD) in rabbits. METHODS The orthogonal design method was used to optimize centrifugation parameters for cell seeding. Methylthiazol tetrazolium proliferation assay, colony-forming efficiency, and flow cytometry were used to study cell viability. Histology, electron microscopy, and immunocytochemistry were evaluated for centrifugation-constructed cornea epithelial sheets (CCCESs). The rabbit eyes with LSCD were treated with or without CCCES for in vivo evaluation. RESULTS The 80.04% attached cells with 98.04% viability were achieved using optimal cell seeding density at 9 × 10(5) cm(-2) with centrifugation at 1800 rpm for 4 min. The 0.4% glycerin was added in the medium to increase the surface tension and osmotic pressure to optimal condition for obtaining higher cell density. The three-layer epithelial sheets were rapid constructed, which displayed the characteristics of normal corneal epithelium. In vivo transplantation, labeled cells of CCCES were detected at 30 days. CCCES reconstructed the LSCD corneal epithelia without conjunctivalization and neovascularation, evidenced by positive K3 and negative K4, Muc5AC. CONCLUSION The scaffold-free corneal epithelial sheets were rapidly constructed using optimal centrifugation procedure, which was demonstrated to reconstruct ocular surface with LSCD.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li J, Zhang S, Chen J, Du T, Wang Y, Wang Z. Modeled microgravity causes changes in the cytoskeleton and focal adhesions, and decreases in migration in malignant human MCF-7 cells. PROTOPLASMA 2009; 238:23-33. [PMID: 19730978 DOI: 10.1007/s00709-009-0068-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/08/2009] [Indexed: 05/28/2023]
Abstract
Because cells are sensitive to mechanical forces,microgravity might act on stress-dependent cell changes. Regulation of focal adhesions (FAs) and cytoskeletal activity plays a role in cell maintenance, cell movement,and migration. Human MCF-7 cells were exposed to modeled microgravity (MMG) to test the hypothesis that migration responsiveness to microgravity is associated with cytoskeleton and FA anomalies. MMG acts on MCF-7 cells by disorganizing cytoskeleton filaments (microfilaments and microtubules). Microfilaments in MMG did not display their typical radial array. Likewise, microtubules were disrupted in MCF-7 cells within 4 h of initiation of MMG and were partly reestablished by 48 h. FAs generated inmicrogravity were less mature than those established in controls, shown by reduced FAs number and clustering. In parallel, MMG decreased kinases activity (such as FAK,PYK2, and ILK) of FAs in MCF-7 cells. The expression of both integrinbeta1 and integrinbeta4 were downregulated by MMG. We conclude that cytoskeletal alterations and FAs changes in MMG are concomitant with cell invasion and migration retardation. We suggest that reduced migration response in MCF-7 cells following MMG is linked to changes of cytoskeleton and FAs.
Collapse
Affiliation(s)
- Jing Li
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
16
|
Li S, Ma Z, Niu Z, Qian H, Xuan D, Hou R, Ni L. NASA-Approved Rotary Bioreactor Enhances Proliferation and Osteogenesis of Human Periodontal Ligament Stem Cells. Stem Cells Dev 2009; 18:1273-82. [PMID: 19327006 DOI: 10.1089/scd.2008.0371] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shi Li
- Department of Endodontics, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
- Center of Oral Disease, 306th Hospital, Beijing, People’s Republic of China
- Department of Orthodontics, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Zhaofeng Ma
- Department of Oral and Maxillofacial Surgery, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
- Department of Implantology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Zhongying Niu
- Department of Endodontics, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
- Center of Oral Disease, 306th Hospital, Beijing, People’s Republic of China
| | - Hong Qian
- Department of Orthodontics, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Dongying Xuan
- Department of Periodontology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Rui Hou
- Department of Oral and Maxillofacial Surgery, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Longxing Ni
- Department of Endodontics, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
17
|
Malchesky PS. Artificial Organs 2007: A Year in Review. Artif Organs 2008. [DOI: 10.1111/j.1525-1594.2007.00536.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Navran S. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. BIOTECHNOLOGY ANNUAL REVIEW 2008; 14:275-96. [PMID: 18606368 DOI: 10.1016/s1387-2656(08)00011-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The practice of cell culture has been virtually unchanged for 100 years. Until recently, life scientists have had to content themselves with two-dimensional cell culture technology. Clearly, living creatures are not constructed in two dimensions and thus it has become widely recognized that in vitro culture systems must become three dimensional to correctly model in vivo biology. Attempts to modify conventional 2-D culture technology to accommodate 3-D cell growth such as embedding cells in extracellular matrix have demonstrated the superiority of concept. Nevertheless, there are serious drawbacks to this approach including limited mass transport and lack of scalability. Recently, a new cell culture technology developed at NASA to study the effects of microgravity on cells has emerged to solve many of the problems of 3-D cell culture. The technology, the Rotating Wall Vessel (RWV) is a single axis clinostat consisting of a fluid-filled, cylindrical, horizontally rotating culture vessel. Cells placed in this environment are suspended by the resolution of the gravitational, centrifugal and Coriolis forces with extremely low mechanical shear. These conditions, which have been called "low shear modeled microgravity", enable cells to assemble into tissue-like aggregates with high mass transport of nutrients, oxygen and wastes. Examples of the use of the RWV for basic cell biology research and tissue engineering applications are discussed.
Collapse
Affiliation(s)
- Stephen Navran
- Synthecon, Inc., 8042 El Rio, Houston, Texas 77054, USA.
| |
Collapse
|