1
|
Tsolaki E, Corso P, Zboray R, Avaro J, Appel C, Liebi M, Bertazzo S, Heinisch PP, Carrel T, Obrist D, Herrmann IK. Multiscale multimodal characterization and simulation of structural alterations in failed bioprosthetic heart valves. Acta Biomater 2023; 169:138-154. [PMID: 37517619 DOI: 10.1016/j.actbio.2023.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Calcific degeneration is the most frequent type of heart valve failure, with rising incidence due to the ageing population. The gold standard treatment to date is valve replacement. Unfortunately, calcification oftentimes re-occurs in bioprosthetic substitutes, with the governing processes remaining poorly understood. Here, we present a multiscale, multimodal analysis of disturbances and extensive mineralisation of the collagen network in failed bioprosthetic bovine pericardium valve explants with full histoanatomical context. In addition to highly abundant mineralized collagen fibres and fibrils, calcified micron-sized particles previously discovered in native valves were also prevalent on the aortic as well as the ventricular surface of bioprosthetic valves. The two mineral types (fibres and particles) were detectable even in early-stage mineralisation, prior to any macroscopic calcification. Based on multiscale multimodal characterisation and high-fidelity simulations, we demonstrate that mineral occurrence coincides with regions exposed to high haemodynamic and biomechanical indicators. These insights obtained by multiscale analysis of failed bioprosthetic valves serve as groundwork for the evidence-based development of more durable alternatives. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve calcification is a well-known clinically significant phenomenon, leading to valve failure. The nanoanalytical characterisation of bioprosthetic valves gives insights into the highly abundant, extensive calcification and disorganization of the collagen network and the presence of calcium phosphate particles previously reported in native cardiovascular tissues. While the collagen matrix mineralisation can be primarily attributed to a combination of chemical and mechanical alterations, the calcified particles are likely of host cellular origin. This work presents a straightforward route to mineral identification and characterization at high resolution and sensitivity, and with full histoanatomical context and correlation to hemodynamic and biomechanical indicators, hence providing design cues for improved bioprosthetic valve alternatives.
Collapse
Affiliation(s)
- Elena Tsolaki
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Pascal Corso
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland
| | - Robert Zboray
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland
| | - Jonathan Avaro
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland
| | | | - Marianne Liebi
- Center for X-Ray Analytics, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Ueberlandstrasse 129, Duebendorf 8600, Switzerland; Paul Scherrer Institute, PSI, Villigen 5232, Switzerland; Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, WC1E 6BT, UK; London Centre for Nanotechnology, University College London, WC1E 6BT, UK
| | - Paul Philipp Heinisch
- Department of Cardiovascular Surgery, Inselspital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland; Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technische Universität München, Germany
| | - Thierry Carrel
- Department of Cardiovascular Surgery, Inselspital, University of Bern, Freiburgstrasse 18, Bern 3010, Switzerland; Department of Cardiac Surgery, University Hospital Zurich (USZ), Rämistrasse 101, Zürich 8091, Switzerland.
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland.
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Energy and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland.
| |
Collapse
|
2
|
Gauffenic A, Bazin D, Combes C, Daudon M, Ea HK. Pathological calcifications in the human joint. CR CHIM 2022. [DOI: 10.5802/crchim.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Radvar E, Griffanti G, Tsolaki E, Bertazzo S, Nazhat SN, Addison O, Mata A, Shanahan CM, Elsharkawy S. Engineered In vitro Models for Pathological Calcification: Routes Toward Mechanistic Understanding. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Elham Radvar
- Centre for Oral, Clinical and Translational Sciences Faculty of Dentistry, Oral and Craniofacial Sciences King's College London London SE1 1UL UK
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering Faculty of Engineering McGill University Montreal QC H3A 0C5 Canada
| | - Elena Tsolaki
- Department of Medical Physics and Biomedical Engineering University College London London WC1E 6BT UK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering University College London London WC1E 6BT UK
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering Faculty of Engineering McGill University Montreal QC H3A 0C5 Canada
| | - Owen Addison
- Centre for Oral, Clinical and Translational Sciences Faculty of Dentistry, Oral and Craniofacial Sciences King's College London London SE1 1UL UK
| | - Alvaro Mata
- School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Catherine M. Shanahan
- BHF Centre of Research Excellence Cardiovascular Division James Black Centre King's College London London SE1 1UL UK
| | - Sherif Elsharkawy
- Centre for Oral, Clinical and Translational Sciences Faculty of Dentistry, Oral and Craniofacial Sciences King's College London London SE1 1UL UK
| |
Collapse
|
4
|
Fluid Flow Characteristics of Healthy and Calcified Aortic Valves Using Three-Dimensional Lagrangian Coherent Structures Analysis. FLUIDS 2021. [DOI: 10.3390/fluids6060203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aortic valve calcification is an important cardiovascular disorder that deteriorates the accurate functioning of the valve leaflets. The increasing stiffness due to the calcification prevents the complete closure of the valve and therefore leads to significant hemodynamic alterations. Computational fluid dynamics (CFD) modeling enables the investigation of the entire flow domain by processing medical images from aortic valve patients. In this study, we computationally modeled and simulated a 3D aortic valve using patient-specific dimensions of the aortic root and aortic sinus. Leaflet stiffness is deteriorated in aortic valve disease due to calcification. In order to investigate the influence of leaflet calcification on flow dynamics, three different leaflet-stiffness values were considered for healthy, mildly calcified, and severely calcified leaflets. Time-dependent CFD results were used for applying the Lagrangian coherent structures (LCS) technique by performing finite-time Lyapunov exponent (FTLE) computations along with Lagrangian particle residence time (PRT) analysis to identify unique vortex structures at the front and backside of the leaflets. Obtained results indicated that the peak flow velocity at the valve orifice increased with the calcification rate. For the healthy aortic valve, a low-pressure field was observed at the leaflet tips. This low-pressure field gradually expanded through the entire aortic sinus as the calcification level increased. FTLE field plots of the healthy and calcified valves showed a variety of differences in terms of flow structures. When the number of fluid particles in the healthy valve model was taken as reference, 1.59 and 1.74 times more particles accumulated in the mildly and severely calcified valves, respectively, indicating that the calcified valves were not sufficiently opened to allow normal mass flow rates.
Collapse
|
5
|
In vitro calcification studies on bioprosthetic and decellularized heart valves under quasi-physiological flow conditions. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00110-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Gourgas O, Khan K, Schwertani A, Cerruti M. Differences in mineral composition and morphology between men and women in aortic valve calcification. Acta Biomater 2020; 106:342-350. [PMID: 32092430 DOI: 10.1016/j.actbio.2020.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 01/02/2023]
Abstract
Aortic valve calcification leads to the deposition of calcium phosphate minerals in the extracellular matrix of the aortic valve leaflets. The mineral deposits can severely narrow the opening of the aortic valve, leading to aortic stenosis. There are no therapies to halt or slow down disease progression and the mechanisms governing aortic valve calcification are still poorly understood. Recently, several studies have shown that for the same aortic stenosis severity, women present significantly lower calcification loads than men. The cause of this sex-related difference is unknown. To understand this difference, we analyzed mineral deposits from surgically excised calcified human aortic valves with different material characterization techniques. We find profound differences in mineral composition and morphology between sexes, which strongly suggest that minerals form slower in women than in men and follow a different mineralization pathway. This finding paves the way for new approaches specifically geared towards men or women in the diagnosis and treatment of aortic valve calcification. STATEMENT OF SIGNIFICANCE: Aortic valve calcification is a health disorder with increasing prevalence and high morbidity and mortality. Currently there is no approved effective treatment; the only available therapeutic option is invasive valve replacement, to which not all patients are suited. The main reason for such lack of treatment options is our lack of understanding of the calcification mechanism. In this study, we show profound differences in mineral composition and morphology between sexes, suggesting that aortic valve calcification follows different mineralization pathways in men and women. These findings pave the way for new approaches specifically geared towards men or women in the diagnosis and treatment of aortic valve calcification.
Collapse
|
7
|
Bertazzo S, Gentleman E. Aortic valve calcification: a bone of contention. Eur Heart J 2019; 38:1189-1193. [PMID: 26994153 PMCID: PMC5400053 DOI: 10.1093/eurheartj/ehw071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sergio Bertazzo
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Eileen Gentleman
- Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
8
|
Gourgas O, Marulanda J, Zhang P, Murshed M, Cerruti M. Multidisciplinary Approach to Understand Medial Arterial Calcification. Arterioscler Thromb Vasc Biol 2018; 38:363-372. [PMID: 29217507 DOI: 10.1161/atvbaha.117.309808] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/22/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular calcification significantly increases morbidity in life-threatening diseases, and no treatments are available because of lack of understanding of the underlying molecular mechanism. Here, we study the physicochemical details of mineral nucleation and growth in an animal model that faithfully recapitulates medial arterial calcification in humans, to understand how pathological calcification is initiated on the vascular extracellular matrix. APPROACH AND RESULTS MGP (matrix Gla protein) is a potent mineralization inhibitor. We study the evolution of medial calcification in MGP-deficient mice over the course of 5 weeks using a combination of material science techniques and find that mineral composition and crystallinity evolve over time and space. We show that calcium is adsorbed first and then amorphous calcium phosphate and octacalcium phosphate forms, which then transform into hydroxyapatite and carbonated apatite. These events are repeated after each nucleation event, providing a snapshot of the overall mineral evolution at each time point analyzed. CONCLUSIONS Our results show that an interdisciplinary approach combining animal models and materials science can provide insights into the mechanism of vascular calcification and suggest the importance of analyzing mineral phases, rather than just overall mineralization extent, to diagnose and possibly prevent disease development.
Collapse
Affiliation(s)
- Ophélie Gourgas
- From the Materials Engineering (O.G., P.Z., M.C.), Faculty of Dentistry (J.M., M.M.), Department of Medicine (M.M.), and Shriners Hospital for Children (M.M.), McGill University, Montreal, Quebec, Canada
| | - Juliana Marulanda
- From the Materials Engineering (O.G., P.Z., M.C.), Faculty of Dentistry (J.M., M.M.), Department of Medicine (M.M.), and Shriners Hospital for Children (M.M.), McGill University, Montreal, Quebec, Canada
| | - Peng Zhang
- From the Materials Engineering (O.G., P.Z., M.C.), Faculty of Dentistry (J.M., M.M.), Department of Medicine (M.M.), and Shriners Hospital for Children (M.M.), McGill University, Montreal, Quebec, Canada
| | - Monzur Murshed
- From the Materials Engineering (O.G., P.Z., M.C.), Faculty of Dentistry (J.M., M.M.), Department of Medicine (M.M.), and Shriners Hospital for Children (M.M.), McGill University, Montreal, Quebec, Canada
| | - Marta Cerruti
- From the Materials Engineering (O.G., P.Z., M.C.), Faculty of Dentistry (J.M., M.M.), Department of Medicine (M.M.), and Shriners Hospital for Children (M.M.), McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Dybas J, Marzec KM, Pacia MZ, Kochan K, Czamara K, Chrabaszcz K, Staniszewska-Slezak E, Malek K, Baranska M, Kaczor A. Raman spectroscopy as a sensitive probe of soft tissue composition – Imaging of cross-sections of various organs vs. single spectra of tissue homogenates. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions. Sci Rep 2016; 6:27255. [PMID: 27251104 PMCID: PMC4890115 DOI: 10.1038/srep27255] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023] Open
Abstract
Calcium phosphate bions (CPB) are biomimetic mineralo-organic nanoparticles which represent a physiological mechanism regulating the function, transport and disposal of calcium and phosphorus in the human body. We hypothesised that CPB may be pathogenic entities and even a cause of cardiovascular calcification. Here we revealed that CPB isolated from calcified atherosclerotic plaques and artificially synthesised CPB are morphologically and chemically indistinguishable entities. Their formation is accelerated along with the increase in calcium salts-phosphates/serum concentration ratio. Experiments in vitro and in vivo showed that pathogenic effects of CPB are defined by apoptosis-mediated endothelial toxicity but not by direct tissue calcification or functional changes in anti-calcification proteins. Since the factors underlying the formation of CPB and their pathogenic mechanism closely resemble those responsible for atherosclerosis development, further research in this direction may help us to uncover triggers of this disease.
Collapse
|
11
|
Biological Niches within Human Calcified Aortic Valves: Towards Understanding of the Pathological Biomineralization Process. BIOMED RESEARCH INTERNATIONAL 2015; 2015:542687. [PMID: 26509159 PMCID: PMC4609782 DOI: 10.1155/2015/542687] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/07/2015] [Indexed: 12/30/2022]
Abstract
Despite recent advances, mineralization site, its microarchitecture, and composition in calcific heart valve remain poorly understood. A multiscale investigation, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectrometry (EDS), from micrometre up to nanometre, was conducted on human severely calcified aortic and mitral valves, to provide new insights into calcification process. Our aim was to evaluate the spatial relationship existing between bioapatite crystals, their local growing microenvironment, and the presence of a hierarchical architecture. Here we detected the presence of bioapatite crystals in two different mineralization sites that suggest the action of two different growth processes: a pathological crystallization process that occurs in biological niches and is ascribed to a purely physicochemical process and a matrix-mediated mineralized process in which the extracellular matrix acts as the template for a site-directed nanocrystals nucleation. Different shapes of bioapatite crystallization were observed at micrometer scale in each microenvironment but at the nanoscale level crystals appear to be made up by the same subunits.
Collapse
|
12
|
Kheradvar A, Groves EM, Falahatpisheh A, Mofrad MK, Hamed Alavi S, Tranquillo R, Dasi LP, Simmons CA, Jane Grande-Allen K, Goergen CJ, Baaijens F, Little SH, Canic S, Griffith B. Emerging Trends in Heart Valve Engineering: Part IV. Computational Modeling and Experimental Studies. Ann Biomed Eng 2015. [PMID: 26224522 DOI: 10.1007/s10439-015-1394-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this final portion of an extensive review of heart valve engineering, we focus on the computational methods and experimental studies related to heart valves. The discussion begins with a thorough review of computational modeling and the governing equations of fluid and structural interaction. We then move onto multiscale and disease specific modeling. Finally, advanced methods related to in vitro testing of the heart valves are reviewed. This section of the review series is intended to illustrate application of computational methods and experimental studies and their interrelation for studying heart valves.
Collapse
Affiliation(s)
- Arash Kheradvar
- Department of Biomedical Engineering, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2410 Engineering Hall, Irvine, CA, 92697-2730, USA. .,Department of Medicine, Division of Cardiology, University of California, Irvine School of Medicine, Irvine, CA, USA.
| | - Elliott M Groves
- Department of Biomedical Engineering, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2410 Engineering Hall, Irvine, CA, 92697-2730, USA.,Department of Medicine, Division of Cardiology, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Ahmad Falahatpisheh
- Department of Biomedical Engineering, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2410 Engineering Hall, Irvine, CA, 92697-2730, USA
| | - Mohammad K Mofrad
- Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, USA
| | - S Hamed Alavi
- Department of Biomedical Engineering, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2410 Engineering Hall, Irvine, CA, 92697-2730, USA
| | - Robert Tranquillo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Lakshmi P Dasi
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Craig A Simmons
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | | | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Frank Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stephen H Little
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Suncica Canic
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - Boyce Griffith
- Department of Mathematics, Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Perrotta I, Davoli M. Collagen Mineralization in Human Aortic Valve Stenosis: A Field Emission Scanning Electron Microscopy and Energy Dispersive Spectroscopy Analysis. Ultrastruct Pathol 2014; 38:281-4. [DOI: 10.3109/01913123.2014.901468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Martel J, Peng HH, Young D, Wu CY, Young JD. Of nanobacteria, nanoparticles, biofilms and their role in health and disease: facts, fancy and future. Nanomedicine (Lond) 2014; 9:483-99. [DOI: 10.2217/nnm.13.221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nanobacteria have been at the center of a major scientific controversy in recent years owing to claims that they represent not only the smallest living microorganisms on earth but also new emerging pathogens associated with several human diseases. We and others have carefully examined these claims and concluded that nanobacteria are in fact nonliving mineralo-organic nanoparticles (NPs) that form spontaneously in body fluids. We have shown that these mineral particles possess intriguing biomimetic properties that include the formation of cell- and tissue-like morphologies and the possibility to grow, proliferate and propagate by subculture. Similar mineral NPs (bions) have now been found in both physiological and pathological calcification processes and they appear to represent precursors of physiological calcification cycles, which may at times go awry in disease conditions. Furthermore, by functioning at the nanoscale, these mineralo-organic NPs or bions may shed light on the fate of nanomaterials in the body, from both nanotoxicological and nanopathological perspectives.
Collapse
Affiliation(s)
- Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - Hsin-Hsin Peng
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - David Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Primordia Institute of New Sciences & Medicine, Florham Park, NJ 07932, USA
| | - Cheng-Yeu Wu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | - John D Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
- Laboratory of Cellular Physiology & Immunology, The Rockefeller University, New York, NY 10021, USA
- Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan
| |
Collapse
|
15
|
Bertazzo S, Gentleman E, Cloyd KL, Chester AH, Yacoub MH, Stevens MM. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. NATURE MATERIALS 2013; 12:576-83. [PMID: 23603848 PMCID: PMC5833942 DOI: 10.1038/nmat3627] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/11/2013] [Indexed: 05/16/2023]
Abstract
The accumulation of calcified material in cardiovascular tissue is thought to involve cytochemical, extracellular matrix and systemic signals; however, its precise composition and nanoscale architecture remain largely unexplored. Using nano-analytical electron microscopy techniques, we examined valves, aortae and coronary arteries from patients with and without calcific cardiovascular disease and detected spherical calcium phosphate particles, regardless of the presence of calcific lesions. We also examined lesions after sectioning with a focused ion beam and found that the spherical particles are composed of highly crystalline hydroxyapatite that crystallographically and structurally differs from bone mineral. Taken together, these data suggest that mineralized spherical particles may play a fundamental role in calcific lesion formation. Their ubiquitous presence in varied cardiovascular tissues and from patients with a spectrum of diseases further suggests that lesion formation may follow a common process. Indeed, applying materials science techniques to ectopic and orthotopic calcification has great potential to lend critical insights into pathophysiological processes underlying calcific cardiovascular disease.
Collapse
Affiliation(s)
- Sergio Bertazzo
- Department of Materials, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
16
|
Cloyd KL, El-Hamamsy I, Boonrungsiman S, Hedegaard M, Gentleman E, Sarathchandra P, Colazzo F, Gentleman MM, Yacoub MH, Chester AH, Stevens MM. Characterization of porcine aortic valvular interstitial cell 'calcified' nodules. PLoS One 2012; 7:e48154. [PMID: 23110195 PMCID: PMC3482191 DOI: 10.1371/journal.pone.0048154] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/20/2012] [Indexed: 11/19/2022] Open
Abstract
Valve interstitial cells populate aortic valve cusps and have been implicated in aortic valve calcification. Here we investigate a common in vitro model for aortic valve calcification by characterizing nodule formation in porcine aortic valve interstitial cells (PAVICs) cultured in osteogenic (OST) medium supplemented with transforming growth factor beta 1 (TGF-β1). Using a combination of materials science and biological techniques, we investigate the relevance of PAVICs nodules in modeling the mineralised material produced in calcified aortic valve disease. PAVICs were grown in OST medium supplemented with TGF-β1 (OST+TGF-β1) or basal (CTL) medium for up to 21 days. Murine calvarial osteoblasts (MOBs) were grown in OST medium for 28 days as a known mineralizing model for comparison. PAVICs grown in OST+TGF-β1 produced nodular structures staining positive for calcium content; however, micro-Raman spectroscopy allowed live, noninvasive imaging that showed an absence of mineralized material, which was readily identified in nodules formed by MOBs and has been identified in human valves. Gene expression analysis, immunostaining, and transmission electron microscopy imaging revealed that PAVICs grown in OST+TGF-β1 medium produced abundant extracellular matrix via the upregulation of the gene for Type I Collagen. PAVICs, nevertheless, did not appear to further transdifferentiate to osteoblasts. Our results demonstrate that 'calcified' nodules formed from PAVICs grown in OST+TGF-β1 medium do not mineralize after 21 days in culture, but rather they express a myofibroblast-like phenotype and produce a collagen-rich extracellular matrix. This study clarifies further the role of PAVICs as a model of calcification of the human aortic valve.
Collapse
Affiliation(s)
- Kristy L. Cloyd
- Department of Materials, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ismail El-Hamamsy
- Division of Cardiac Surgery, Montreal Heart Institute, Montreal, Canada
| | - Suwimon Boonrungsiman
- Department of Materials, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Martin Hedegaard
- Department of Materials, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Eileen Gentleman
- Department of Materials, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Padmini Sarathchandra
- Harefield Heart Science Centre, Imperial College London, Harefield, Middlesex, United Kingdom
| | - Francesca Colazzo
- Harefield Heart Science Centre, Imperial College London, Harefield, Middlesex, United Kingdom
| | - Molly M. Gentleman
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Magdi H. Yacoub
- Harefield Heart Science Centre, Imperial College London, Harefield, Middlesex, United Kingdom
| | - Adrian H. Chester
- Harefield Heart Science Centre, Imperial College London, Harefield, Middlesex, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, United Kingdom
- Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Acharya G, Hopkins RA, Lee CH. Advanced polymeric matrix for valvular complications. J Biomed Mater Res A 2012; 100:1151-9. [PMID: 22337643 DOI: 10.1002/jbm.a.34055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/06/2011] [Accepted: 10/21/2011] [Indexed: 12/28/2022]
Abstract
Poly(L-lactic acid) (PLLA) matrix systems incorporated with poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing nitric oxide (NO) donors (DETA NONOate) were developed for prevention of heart valve complications through sustained and controlled release of NO. PLLA matrices were prepared using the salt leaching method and the properties and drug release profiles were characterized. For assessment of the effects of PLLA systems on the pharmacological responses and cytotoxicity, various factors, such as calcium content, alkaline phosphatase (ALP) activity, cyclic guanosine monophosphate (cGMP) expression, intercellular adhesion molecule (ICAM-1) expression and cell viability of porcine aortic valve interstitial cells (PAVICs), were evaluated. PLLA matrices embedded with PLGA- NPs demonstrated its usefulness in alleviating the calcification rate of the VICs. The cGMP levels under osteoblastic conditions significantly increased, supporting that anticalcification activity of NO is mediated through NO-cGMP signaling pathway. The level of ICAM-1 expression in cells exposed to NO was lowered, suggesting that NO has an inhibitory activity against tissue inflammation. NO releases from PLLA matrix embedded with PLGA NPs prevented valvular calcification and inflammation without causing any cytotoxic activities. PLLA matrix system loaded with NPs containing NO donors could provide a new platform for sustained and controlled delivery of NO, significantly reducing valvular complications.
Collapse
Affiliation(s)
- Gayathri Acharya
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | | | | |
Collapse
|
18
|
Abstract
In this Editor's Review, articles published in 2010 are organized by category and briefly summarized. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, and the International Society for Rotary Blood Pumps, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level."Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide such meaningful suggestions to the author's work whether eventually accepted or rejected and especially to those whose native tongue is not English. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, Wiley-Blackwell, for their expert attention and support in the production and marketing of Artificial Organs. In this Editor's Review, that historically has been widely received by our readership, we aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. We look forward to recording further advances in the coming years.
Collapse
|