1
|
Drake AW, Jerow LG, Ruksenas JV, McCoy C, Danzer SC. Somatostatin interneuron fate-mapping and structure in a Pten knockout model of epilepsy. Front Cell Neurosci 2024; 18:1474613. [PMID: 39497922 PMCID: PMC11532043 DOI: 10.3389/fncel.2024.1474613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
Disruption of inhibitory interneurons is common in the epileptic brain and is hypothesized to play a pivotal role in epileptogenesis. Abrupt disruption and loss of interneurons is well-characterized in status epilepticus models of epilepsy, however, status epilepticus is a relatively rare cause of epilepsy in humans. How interneuron disruption evolves in other forms of epilepsy is less clear. Here, we explored how somatostatin (SST) interneuron disruption evolves in quadruple transgenic Gli1-CreERT2, Ptenfl/fl, SST-FlpO, and frt-eGFP mice. In these animals, epilepsy develops following deletion of the mammalian target of rapamycin (mTOR) negative regulator phosphatase and tensin homolog (Pten) from a subset of dentate granule cells, while downstream Pten-expressing SST neurons are fate-mapped with green fluorescent protein (GFP). The model captures the genetic complexity of human mTORopathies, in which mutations can be restricted to excitatory neuron lineages, implying that interneuron involvement is later developing and secondary. In dentate granule cell (DGC)-Pten knockouts (KOs), the density of fate-mapped SST neurons was reduced in the hippocampus, but their molecular phenotype was unchanged, with similar percentages of GFP+ cells immunoreactive for SST and parvalbumin (PV). Surviving SST neurons in the dentate gyrus had larger somas, and the density of GFP+ processes in the dentate molecular layer was unchanged despite SST cell loss and expansion of the molecular layer, implying compensatory sprouting of surviving cells. The density of Znt3-immunolabeled puncta, a marker of granule cell presynaptic terminals, apposed to GFP+ processes in the hilus was increased, suggesting enhanced granule cell input to SST neurons. Finally, the percentage of GFP+ cells that were FosB positive was significantly increased, implying that surviving SST neurons are more active. Together, findings suggest that somatostatin-expressing interneurons exhibit a combination of pathological (cell loss) and adaptive (growth) responses to hyperexcitability and seizures driven by upstream Pten KO excitatory granule cells.
Collapse
Affiliation(s)
- Austin W. Drake
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lilian G. Jerow
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Justin V. Ruksenas
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Carlie McCoy
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Steve C. Danzer
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
2
|
Zhou F, Hu R, Wang Y, Wu X, Chen X, Xi Z, Zeng K. Calsyntenin-1 expression and function in brain tissue of lithium-pilocarpine rat seizure models. Synapse 2024; 78:e22307. [PMID: 39171546 DOI: 10.1002/syn.22307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
To present the expression of calsyntenin-1 (Clstn1) in the brain and investigate the potential mechanism of Clstn1 in lithium-pilocarpine rat seizure models. Thirty-five male SD adult rats were induced to have seizures by intraperitoneal injection of lithium chloride pilocarpine. Rats exhibiting spontaneous seizures were divided into the epilepsy (EP) group (n = 15), whereas those without seizures were divided into the control group (n = 14). Evaluate the expression of Clstn1 in the temporal lobe of two groups using Western blotting, immunohistochemistry, and immunofluorescence. Additionally, 55 male SD rats were subjected to status epilepticus (SE) using the same induction method. Rats experiencing seizures exceeding Racine's level 4 (n = 48) were randomly divided into three groups: SE, SE + control lentivirus (lentiviral vector expressing green fluorescent protein [LV-GFP]), and SE + Clstn1-targeted RNA interference lentivirus (LV-Clstn1-RNAi). The LV-GFP group served as a control for the lentiviral vector, whereas the LV-Clstn1-RNAi group received a lentivirus designed to silence Clstn1 expression. These lentiviral treatments were administered via hippocampal stereotactic injection 2 days after SE induction. Seven days after SE, Western blot analysis was performed to evaluate the expression of Clstn1 in the hippocampus and temporal lobe. Meanwhile, we observed the latency of spontaneous seizures and the frequency of spontaneous seizures within 8 weeks among the three groups. The expression of Clstn1 in the cortex and hippocampus of the EP group was significantly increased compared to the control group (p < .05). Immunohistochemistry and immunofluorescence showed that Clstn1 was widely distributed in the cerebral cortex and hippocampus of rats, and colocalization analysis revealed that it was mainly co expressed with neurons in the cytoplasm. Compared with the SE group (11.80 ± 2.17 days) and the SE + GFP group (12.40 ± 1.67 days), there was a statistically significant difference (p < .05) in the latency period of spontaneous seizures (15.14 ± 2.41 days) in the SE + Clstn1 + RNAi group rats. Compared with the SE group (4.60 ± 1.67 times) and the SE + GFP group (4.80 ± 2.05 times), the SE + Clstn1 + RNAi group (2.0 ± .89 times) showed a significant reduction in the frequency of spontaneous seizures within 2 weeks of chronic phase in rats (p < .05). Elevated Clstn1 expression in EP group suggests its role in EP onset. Targeting Clstn1 may be a potential therapeutic approach for EP management.
Collapse
Affiliation(s)
- Fu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Hu
- Department of Neurology, Pizhou People's Hospital, Jiangsu, China
| | - Yuzhu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiqin Xi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kebin Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Cheng Y, Zhai Y, Yuan Y, Wang Q, Li S, Sun H. The Contributions of Thrombospondin-1 to Epilepsy Formation. Neurosci Bull 2024; 40:658-672. [PMID: 38528256 PMCID: PMC11127911 DOI: 10.1007/s12264-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/27/2024] [Indexed: 03/27/2024] Open
Abstract
Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
4
|
Blair RE, Hawkins E, Pinchbeck LR, DeLorenzo RJ, Deshpande LS. Chronic Epilepsy and Mossy Fiber Sprouting Following Organophosphate-Induced Status Epilepticus in Rats. J Pharmacol Exp Ther 2024; 388:325-332. [PMID: 37643794 PMCID: PMC10801751 DOI: 10.1124/jpet.123.001739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Organophosphate (OP) compounds are highly toxic and include pesticides and chemical warfare nerve agents. OP exposure inhibits the acetylcholinesterase enzyme, causing cholinergic overstimulation that can evolve into status epilepticus (SE) and produce lethality. Furthermore, OP-induced SE survival is associated with mood and memory dysfunction and spontaneous recurrent seizures (SRS). In male Sprague-Dawley rats, we assessed hippocampal pathology and chronic SRS following SE induced by administration of OP agents paraoxon (2 mg/kg, s.c.), diisopropyl fluorophosphate (4 mg/kg, s.c.), or O-isopropyl methylphosphonofluoridate (GB; sarin) (2 mg/kg, s.c.), immediately followed by atropine and 2-PAM. At 1-hour post-OP-induced SE onset, midazolam was administered to control SE. Approximately 6 months after OP-induced SE, SRS were evaluated using video and electroencephalography monitoring. Histopathology was conducted using hematoxylin and eosin (H&E), while silver sulfide (Timm) staining was used to assess mossy fiber sprouting (MFS). Across all the OP agents, over 60% of rats that survived OP-induced SE developed chronic SRS. H&E staining revealed a significant hippocampal neuronal loss, while Timm staining revealed extensive MFS within the inner molecular region of the dentate gyrus. This study demonstrates that OP-induced SE is associated with hippocampal neuronal loss, extensive MFS, and the development of SRS, all hallmarks of chronic epilepsy. SIGNIFICANCE STATEMENT: Models of organophosphate (OP)-induced SE offer a unique resource to identify molecular mechanisms contributing to neuropathology and the development of chronic OP morbidities. These models could allow the screening of targeted therapeutics for efficacious treatment strategies for OP toxicities.
Collapse
Affiliation(s)
- Robert E Blair
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Elisa Hawkins
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Lauren R Pinchbeck
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Robert J DeLorenzo
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| | - Laxmikant S Deshpande
- Departments of Neurology (R.E.B., E.H., R.J.D., L.S.D.) and Pharmacology and Toxicology (R.J.D., L.S.D.) School of Medicine, and Department of Biology, College of Humanities & Sciences (L.R.P.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
5
|
Coppolino S, Migliore M. An explainable artificial intelligence approach to spatial navigation based on hippocampal circuitry. Neural Netw 2023; 163:97-107. [PMID: 37030279 DOI: 10.1016/j.neunet.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/30/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Learning to navigate a complex environment is not a difficult task for a mammal. For example, finding the correct way to exit a maze following a sequence of cues, does not need a long training session. Just a single or a few runs through a new environment is, in most cases, sufficient to learn an exit path starting from anywhere in the maze. This ability is in striking contrast with the well-known difficulty that any deep learning algorithm has in learning a trajectory through a sequence of objects. Being able to learn an arbitrarily long sequence of objects to reach a specific place could take, in general, prohibitively long training sessions. This is a clear indication that current artificial intelligence methods are essentially unable to capture the way in which a real brain implements a cognitive function. In previous work, we have proposed a proof-of-principle model demonstrating how, using hippocampal circuitry, it is possible to learn an arbitrary sequence of known objects in a single trial. We called this model SLT (Single Learning Trial). In the current work, we extend this model, which we will call e-STL, to introduce the capability of navigating a classic four-arms maze to learn, in a single trial, the correct path to reach an exit ignoring dead ends. We show the conditions under which the e-SLT network, including cells coding for places, head-direction, and objects, can robustly and efficiently implement a fundamental cognitive function. The results shed light on the possible circuit organization and operation of the hippocampus and may represent the building block of a new generation of artificial intelligence algorithms for spatial navigation.
Collapse
|
6
|
Sivakumar S, Ghasemi M, Schachter SC. Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals (Basel) 2022; 15:ph15101297. [PMID: 36297409 PMCID: PMC9609646 DOI: 10.3390/ph15101297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the central nervous system (CNS) and play critical roles in neuronal excitability in the CNS. Both clinical and preclinical studies have revealed that the abnormal expression or function of these receptors can underlie the pathophysiology of seizure disorders and epilepsy. Accordingly, NMDAR modulators have been shown to exert anticonvulsive effects in various preclinical models of seizures, as well as in patients with epilepsy. In this review, we provide an update on the pathologic role of NMDARs in epilepsy and an overview of the NMDAR antagonists that have been evaluated as anticonvulsive agents in clinical studies, as well as in preclinical seizure models.
Collapse
Affiliation(s)
- Shravan Sivakumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Correspondence: (M.G.); (S.C.S.)
| | - Steven C. Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02114, USA
- Consortia for Improving Medicine with Innovation & Technology (CIMIT), Boston, MA 02114, USA
- Correspondence: (M.G.); (S.C.S.)
| |
Collapse
|
7
|
Li Y, Tong F, Zhang Y, Cai Y, Ding J, Wang Q, Wang X. Neuropilin-2 Signaling Modulates Mossy Fiber Sprouting by Regulating Axon Collateral Formation Through CRMP2 in a Rat Model of Epilepsy. Mol Neurobiol 2022; 59:6817-6833. [PMID: 36044155 PMCID: PMC9525442 DOI: 10.1007/s12035-022-02995-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed neural circuit formation constitutes the foundation for normal brain functions. Axon guidance cues play crucial roles in neural circuit establishment during development. Whether or how they contribute to maintaining the stability of networks in mature brains is seldom studied. Upon injury, neural rewiring could happen in adulthood, of which mossy fiber sprouting (MFS) is a canonical example. Here, we uncovered a novel role of axon guidance molecule family Sema3F/Npn-2 signaling in MFS and epileptogenesis in a rat model of epilepsy. Dentate gyrus-specific Npn-2 knockdown increased seizure activity in epileptic animals along with increased MFS. Hippocampal culture results suggested that Npn-2 signaling modulates MFS via regulating axon outgrowth and collateral formation. In addition, we discovered that Sema3F/Npn-2 signal through CRMP2 by regulating its phosphorylation in the process of MFS. Our work illustrated that Npn-2 signaling in adult epilepsy animals could potentially modulate seizure activity by controlling MFS. MFS constitutes the structural basis for abnormal electric discharge of neurons and recurrent seizures. Therapies targeting Npn-2 signaling could potentially have disease-modifying anti-epileptogenesis effects in epilepsy treatment.
Collapse
Affiliation(s)
- Yuxiang Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiying Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiying Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Factors Associated with Refractory Status Epilepticus Termination Following Ketamine Initiation: A Multivariable Analysis Model. Neurocrit Care 2022; 38:235-241. [PMID: 36002634 DOI: 10.1007/s12028-022-01578-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND In this study, we identify factors associated with ketamine success in the treatment of refractory status epilepticus (SE). We also evaluate for adverse events including systemic and cerebral hemodynamic stability and fluid volume overload. METHODS In this retrospective, large, single-center, observational study over a 10-year period, 879 consecutive patients receiving intravenous (IV) ketamine were reviewed, and 81 patients were identified as receiving IV ketamine for the treatment of SE. Descriptive analysis was done to determine treatment response and adverse events in patients receiving IV ketamine for SE. Multivariable logistic regression analyses were fitted to determine prediction models for seizure cessation. RESULTS Permanent cessation of SE was achieved in 49 of 81 (60.5%) of patients for whom ketamine was part of the treatment plan. Of those, 36 (44.4%) were attributed to ketamine as the last drug used (ketamine-associated cessation [AC]). Prior history of epilepsy had an odds ratio of 3.19 (confidence interval 0.83-12.67, p = 0.09) associated with efficacious medication response. Increased latency to ketamine was associated with cessation of SE specifically in patients in the AC group (p = 0.077). Longer SE duration (p = 0.04), administration of ketamine loading dose (bolus; p = 0.03), and anoxia (p = 0.007) were negatively associated with AC. Administration of ketamine loading dose (p = 0.02) and anoxia (p = 0.009) were negatively associated with overall SE cessation. There was no significant impact of ketamine on cerebral hemodynamics, but evidence of fluid volume overload was seen (28.4% of patients). CONCLUSIONS Our cohort is a large observational study showing a high success rate of permanent cessation of SE after the addition of ketamine. Using multivariable analysis, we demonstrate a significant association with seizure cessation in patients with prior history of epilepsy and those with prolonged latency to ketamine initiation. Furthermore, we describe the impact of fluid volume overload as an anticipated complication with ketamine use.
Collapse
|
9
|
Seelman A, Vu K, Buckmaster P, Mackie K, Field C, Johnson S, Wyeth M. Cannabinoid receptor 1-labeled boutons in the sclerotic dentate gyrus of epileptic sea lions. Epilepsy Res 2022; 184:106965. [PMID: 35724601 DOI: 10.1016/j.eplepsyres.2022.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/03/2022]
Abstract
Pathology in the dentate gyrus, including sclerosis, is a hallmark of temporal lobe epilepsy, and reduced inhibition to dentate granule cells may contribute to epileptogenesis. The perisomatic-targeting axonal boutons of parvalbumin-expressing interneurons decrease in proportion with granule cells in temporal lobe epilepsy. In contrast, dendrite-targeting axonal boutons of somatostatin-expressing interneurons sprout exuberantly in temporal lobe epilepsy. A third major class of GABAergic interneurons expresses cannabinoid receptor type 1 (CB1) on their terminal boutons, but there is conflicting evidence as to whether these boutons are increased or decreased in temporal lobe epilepsy. Naturally occurring temporal lobe epilepsy in California sea lions, with unilateral or bilateral sclerosis, offers the benefit of neuroanatomy and neuropathology akin to humans, but with the advantage that the entirety of both hippocampi from control and epileptic brains can be studied. Stereological quantification in the dentate gyrus revealed that sclerotic hippocampi from epileptic sea lions had fewer CB1-labeled boutons than controls. However, the reduction in the number of granule cells was greater, resulting in increased CB1-labeled boutons per granule cell in sclerotic hippocampi at temporal levels. This suggests that although CB1-expressing boutons are decreased in sclerotic dentate gyri, surviving cells have enhanced innervation from these boutons in epileptic sea lions.
Collapse
Affiliation(s)
- Amanda Seelman
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; College of Veterinary Medicine, Western University of Health Sciences, East 2nd Street, Pomona, CA 91766, USA
| | - Kristina Vu
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY 14853, USA
| | - Paul Buckmaster
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405, USA; Gill Centre for Biomolecular Science, Indiana University, 702 North Walnut Grove Avenue, Bloomington, IN 47405, USA
| | - Cara Field
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - Shawn Johnson
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - Megan Wyeth
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Li Y, Tong F, Liu L, Su Z, Ding J, Wang Q, Wang X. CRMP2 modulates mossy fiber sprouting in dentate gyrus of pilocarpine induced rat model of epilepsy. Biochem Biophys Res Commun 2022; 605:141-147. [PMID: 35334412 DOI: 10.1016/j.bbrc.2022.03.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
Abstract
As a hallmark of epilepsy, mossy fiber sprouting was regarded as an ideal mode to study neural rewiring upon injury. The process of mossy fiber sprouting constitutes key steps for neural circuit formation, including axon collateral formation and outgrowth, reversed pathfinding and synapse connection. The canonical function of CRMP2 is to promote neurite/axon outgrowth via binding to tubulin heterodimers, which is mainly regulated by its phosphorylation state. CRMP2 expression and phosphorylation were reported to change in medial temporal epilepsy patients and animal modes of epilepsy. As a novel anti-epilepsy drug, Lacosamide is able to impair CRMP2 mediated tubulin polymerization. Previous studies suggested possible roles of CRMP2 in mossy fiber sprouting. Here, we provide direct evidence to support the role of CRMP2 in the process of mossy fiber sprouting in an animal model of epilepsy. We found that CRMP2 phosphorylation was downregulated specifically in the hippocampus during latent phase of epileptic rats. In addition, with the reduction of CRMP2 expression levels in dentate gyrus by CRMP2 shRNA, we observed decreased mossy fiber sprouting in these CRMP2 knockdown rats. Our results demonstrated that CRMP2 modulates mossy fiber sprouting in dentate gyrus of pilocarpine induced rat model of epilepsy.
Collapse
Affiliation(s)
- Yuxiang Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhongqian Su
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of the State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Puhahn-Schmeiser B, Leicht K, Gessler F, Freiman TM. Aberrant hippocampal mossy fibers in temporal lobe epilepsy target excitatory and inhibitory neurons. Epilepsia 2021; 62:2539-2550. [PMID: 34453315 DOI: 10.1111/epi.17035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The pathoanatomical correlate of temporal lobe epilepsy is hippocampal sclerosis, characterized by selective neuronal death of mossy cells in the hilus and of pyramidal cells in cornu ammonis 1. Although granule cells survive, they lose mossy cells as a target and redirect their axons (mossy fibers) backward into the molecular cell layer. It has been assumed that this process results in excitatory circuits. We therefore examined whether sprouted mossy fibers form synaptic connection not only with excitatory granule cells but also with inhibitory interneurons, such as basket cells. METHODS Resected hippocampal specimens of patients with hippocampal sclerosis were compared to controls of patients with extrahippocampal lesions with only mild sclerosis. Mossy fibers were traced with Neurobiotin or labeled against synaptoporin; inhibitory interneurons were labeled against parvalbumin. Synapses were examined with electron microscopy, labeled with γ-aminobutyric acid immunogold. RESULTS Sprouted mossy fibers of epileptic hippocampi innervate not only excitatory granule cells but also inhibitory parvalbuminergic interneurons. Despite neuronal death in hippocampal sclerosis, the axonal plexus of inhibitory parvalbuminergic interneurons surrounding the granule cells is preserved. Connections of sprouted mossy fibers and inhibitory axon terminals were quantified, showing that the number of inhibitory axon terminals significantly exceeds the number of sprouted excitatory mossy fiber terminals (.03 boutons/µm vs. .11 boutons/µm; p < .001). SIGNIFICANCE Although no definite conclusions regarding the function of our findings may be derived from this anatomical study, the observed aberrant connectivity might lead to an increased inhibition and synchronization of granule cells, because the preserved inhibitory interneurons show an additional innervation through sprouted mossy fibers. This might result in the instability of a previously balanced network.
Collapse
Affiliation(s)
- Barbara Puhahn-Schmeiser
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Kathrin Leicht
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Florian Gessler
- Department of Neurosurgery, Faculty of Medicine, University of Rostock, Rostock, Germany
| | - Thomas M Freiman
- Department of Neurosurgery, Faculty of Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Santos VR, Melo IS, Pacheco ALD, Castro OWD. Life and death in the hippocampus: What's bad? Epilepsy Behav 2021; 121:106595. [PMID: 31759972 DOI: 10.1016/j.yebeh.2019.106595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/13/2023]
Abstract
The hippocampal formation is crucial for the generation and regulation of several brain functions, including memory and learning processes; however, it is vulnerable to neurological disorders, such as epilepsy. Temporal lobe epilepsy (TLE), the most common type of epilepsy, changes the hippocampal circuitry and excitability, under the contribution of both neuronal degeneration and abnormal neurogenesis. Classically, neurodegeneration affects sensitive areas of the hippocampus, such as dentate gyrus (DG) hilus, as well as specific fields of the Ammon's horn, CA3, and CA1. In addition, the proliferation, migration, and abnormal integration of newly generated hippocampal granular cells (GCs) into the brain characterize TLE neurogenesis. Robust studies over the years have intensely discussed the effects of death and life in the hippocampus, though there are still questions to be answered about their possible benefits and risks. Here, we review the impacts of death and life in the hippocampus, discussing its influence on TLE, providing new perspectives or insights for the implementation of new possible therapeutic targets. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Victor Rodrigues Santos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Igor Santana Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | | | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil.
| |
Collapse
|
13
|
Pérez-Pérez D, Frías-Soria CL, Rocha L. Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy Behav 2021; 121:106430. [PMID: 31378558 DOI: 10.1016/j.yebeh.2019.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/12/2019] [Accepted: 07/06/2019] [Indexed: 01/07/2023]
Abstract
Drug-resistant epilepsy affects approximately one-third of the patients with epilepsy. The pharmacoresistant condition in epilepsy is mainly explained by six hypotheses. In addition, several experimental models have been used to understand the mechanisms involved in pharmacoresistant epilepsy and to identify novel therapies to control this condition. However, the global prevalence of this disease persists without changes. Several factors can explain this situation. First of all, the pharmacoresistant epilepsy is explained by different and independent hypotheses. Each hypothesis indicates specific mechanisms to explain the drug-resistant condition in epilepsy. However, there are different findings suggesting common mechanisms between the different hypotheses. Other important situation is that the experimental models designed for the screening of drugs with potential anticonvulsant effect do not consider factors such as age, gender, type of epilepsy, and comorbid disorders. The present review focuses on indicating the limitations for each hypothesis and the relationships among them. The relevance to consider central and peripheral phenomena associated with the drug-resistant condition in different types of epilepsy is also indicated. The necessity to establish a global hypothesis that integrates all the phenomena associated with the pharmacoresistant epilepsy is proposed. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- PECEM (MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Luisa Rocha
- Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
14
|
Synaptic Reshaping and Neuronal Outcomes in the Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms22083860. [PMID: 33917911 PMCID: PMC8068229 DOI: 10.3390/ijms22083860] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.
Collapse
|
15
|
Li Y, Wang C, Wang P, Li X, Zhou L. Effects of febrile seizures in mesial temporal lobe epilepsy with hippocampal sclerosis on gene expression using bioinformatical analysis. ACTA EPILEPTOLOGICA 2020. [DOI: 10.1186/s42494-020-00027-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractBackgroundTo investigate the effect of long-term febrile convulsions on gene expression in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and explore the molecular mechanism of MTLE-HS.MethodsMicroarray data of MTLE-HS were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between MTLE-HS with and without febrile seizure history were screened by the GEO2R software. Pathway enrichment and gene ontology of the DEGs were analyzed using the DAVID online database and FunRich software. Protein–protein interaction (PPI) networks among DEGs were constructed using the STRING database and analyzed by Cytoscape.ResultsA total of 515 DEGs were identified in MTLE-HS samples with a febrile seizure history compared to MTLE-HS samples without febrile seizure, including 25 down-regulated and 490 up-regulated genes. These DEGs were expressed mostly in plasma membrane and synaptic vesicles. The major molecular functions of those genes were voltage-gated ion channel activity, extracellular ligand-gated ion channel activity and calcium ion binding. The DEGs were mainly involved in biological pathways of cell communication signal transduction and transport. Five genes (SNAP25, SLC32A1, SYN1, GRIN1,andGRIA1) were significantly expressed in the MTLE-HS with prolonged febrile seizures.ConclusionThe pathogenesis of MTLE-HS involves multiple genes, and prolonged febrile seizures could cause differential expression of genes. Thus, investigations of those genes may provide a new perspective into the mechanism of MTLE-HS.
Collapse
|
16
|
Ábrahám H, Molnár JE, Sóki N, Gyimesi C, Horváth Z, Janszky J, Dóczi T, Seress L. Etiology-related Degree of Sprouting of Parvalbumin-immunoreactive Axons in the Human Dentate Gyrus in Temporal Lobe Epilepsy. Neuroscience 2020; 448:55-70. [PMID: 32931846 DOI: 10.1016/j.neuroscience.2020.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/22/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022]
Abstract
In the present study, we examined parvalbumin-immunoreactive cells and axons in the dentate gyrus of surgically resected tissues of therapy-resistant temporal lobe epilepsy (TLE) patients with different etiologies. Based on MRI results, five groups of patients were formed: (1) hippocampal sclerosis (HS), (2) malformation of cortical development, (3) malformation of cortical development + HS, (4) tumor-induced TLE, (5) patients with negative MRI result. Four control samples were also included in the study. Parvalbumin-immunoreactive cells were observed mostly in subgranular location in the dentate hilus in controls, in tumor-induced TLE, in malformation of cortical development and in MR-negative cases. In patients with HS, significant decrease in the number of hilar parvalbumin-immunoreactive cells and large numbers of ectopic parvalbumin-containing neurons were detected in the dentate gyrus' molecular layer. The ratio of ectopic/normally-located cells was significantly higher in HS than in other TLE groups. In patients with HS, robust sprouting of parvalbumin-immunoreactive axons were frequently visible in the molecular layer. The extent of sprouting was significantly higher in TLE patients with HS than in other groups. Strong sprouting of parvalbumin-immunoreactive axons were frequently observed in patients who had childhood febrile seizure. Significant correlation was found between the level of sprouting of axons and the ratio of ectopic/normally-located parvalbumin-containing cells. Electron microscopy demonstrated that sprouted parvalbumin-immunoreactive axons terminate on proximal and distal dendritic shafts as well as on dendritic spines of granule cells. Our results indicate alteration of target profile of parvalbumin-immunoreactive neurons in HS that contributes to the known synaptic remodeling in TLE.
Collapse
Affiliation(s)
- Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary.
| | - Judit E Molnár
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| | - Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - József Janszky
- Department of Neurology, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| |
Collapse
|
17
|
Pottoo FH, Javed MN, Barkat MA, Alam MS, Nowshehri JA, Alshayban DM, Ansari MA. Estrogen and Serotonin: Complexity of Interactions and Implications for Epileptic Seizures and Epileptogenesis. Curr Neuropharmacol 2019; 17:214-231. [PMID: 29956631 PMCID: PMC6425080 DOI: 10.2174/1570159x16666180628164432] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
A burgeoning literature documents the confluence of ovarian steroids and central serotonergic systems in the in-junction of epileptic seizures and epileptogenesis. Estrogen administration in animals reduces neuronal death from seizures by up-regulation of the prosurvival molecule i.e. Bcl-2, anti-oxidant potential and protection of NPY interneurons. Serotonin modulates epileptiform activity in either direction i.e administration of 5-HT agonists or reuptake inhibitors leads to the acti-vation of 5-HT3 and 5-HT1A receptors tending to impede focal and generalized seizures, while depletion of brain 5-HT along with the destruction of serotonergic terminals leads to expanded neuronal excitability hence abatement of seizure threshold in experimental animal models. Serotonergic neurotransmission is influenced by the organizational activity of ster-oid hormones in the growing brain and the actuation effects of steroids which come in adulthood. It is further established that ovarian steroids bring induction of dendritic spine proliferation on serotonin neurons thus thawing a profound effect on sero-tonergic transmission. This review features 5-HT1A and 5-HT3 receptors as potential targets for ameliorating seizure-induced neurodegeneration and recurrent hypersynchronous neuronal activity. Indeed 5-HT3 receptors mediate cross-talk be-tween estrogenic and serotonergic pathways, and could be well exploited for combinatorial drug therapy against epileptogen-esis.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New-Delhi, India
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Javaid Ashraf Nowshehri
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Dhafer Mahdi Alshayban
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
18
|
Cameron S, Lopez A, Glabman R, Abrams E, Johnson S, Field C, Gulland FMD, Buckmaster PS. Proportional loss of parvalbumin-immunoreactive synaptic boutons and granule cells from the hippocampus of sea lions with temporal lobe epilepsy. J Comp Neurol 2019; 527:2341-2355. [PMID: 30861128 DOI: 10.1002/cne.24680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 03/02/2019] [Indexed: 01/10/2023]
Abstract
One in 26 people develop epilepsy and in these temporal lobe epilepsy (TLE) is common. Many patients display a pattern of neuron loss called hippocampal sclerosis. Seizures usually start in the hippocampus but underlying mechanisms remain unclear. One possibility is insufficient inhibition of dentate granule cells. Normally parvalbumin-immunoreactive (PV) interneurons strongly inhibit granule cells. Humans with TLE display loss of PV interneurons in the dentate gyrus but questions persist. To address this, we evaluated PV interneuron and bouton numbers in California sea lions (Zalophus californianus) that naturally develop TLE after exposure to domoic acid, a neurotoxin that enters the marine food chain during harmful algal blooms. Sclerotic hippocampi were identified by the loss of Nissl-stained hilar neurons. Stereological methods were used to estimate the number of granule cells and PV interneurons per dentate gyrus. Sclerotic hippocampi contained fewer granule cells, fewer PV interneurons, and fewer PV synaptic boutons, and the ratio of granule cells to PV interneurons was higher than in controls. To test whether fewer boutons was attributable to loss versus reduced immunoreactivity, expression of synaptotagmin-2 (syt2) was evaluated. Syt2 is also expressed in boutons of PV interneurons. Sclerotic hippocampi displayed proportional losses of syt2-immunoreactive boutons, PV boutons, and granule cells. There was no significant difference in the average numbers of PV- or syt2-positive boutons per granule cell between control and sclerotic hippocampi. These findings do not address functionality of surviving synapses but suggest reduced granule cell inhibition in TLE is not attributable to anatomical loss of PV boutons.
Collapse
Affiliation(s)
- Starr Cameron
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Ariana Lopez
- Department of Comparative Medicine, Stanford University, Stanford, California.,College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Raisa Glabman
- Department of Comparative Medicine, Stanford University, Stanford, California.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily Abrams
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | | - Cara Field
- The Marine Mammal Center, Sausalito, California
| | | | - Paul S Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California.,Department of Neurology & Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
19
|
Zhand A, Sayad A, Ghafouri-Fard S, Arsang-Jang S, Mazdeh M, Taheri M. Expression analysis of GRIN2B, BDNF, and IL-1β genes in the whole blood of epileptic patients. Neurol Sci 2018; 39:1945-1953. [PMID: 30140987 DOI: 10.1007/s10072-018-3533-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
Epilepsy is a brain disorder with a global prevalence of 1%. It has been attributed to genetics and environmental factors. Despite efforts to identify the molecular pathology of epilepsy, the underlying mechanism is not understood yet. This study was carried out to compare GRIN2B, BDNF, and IL-1β gene expressions in 50 patients suffering from generalized epilepsy with tonic-colonic seizures and 50 age- and sex-matched healthy subjects using TaqMan Real-time PCR. Our results demonstrated significant upregulation of these genes in people with epilepsy compared with healthy subjects. We also found a positive correlation between GRIN2B and BDNF expression (r2=0.4619, p < 0.0001), BDNF and IL-1β expression (r2 = 0.515, p < 0.0001), and GRIN2B and IL-1β gene expressions (r2 = 0.666, p < 0.0001) which implies the possibility to estimate the expression level of these genes by assessment of expression of one of them. Considering the results of the previous animal studies which showed upregulation of these genes in brain tissues of epileptic animals, the expression levels of GRIN2B, BDNF, and IL-1β in blood samples might be related to their expression in brain samples. Future studies are needed to assess the role of these genes in the pathogenesis of epilepsy and evaluate whether altered expression of these genes along with imaging methods can facilitate subtyping the epilepsy.
Collapse
Affiliation(s)
- Anoushe Zhand
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran. .,Urogenital Stem Cell Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| |
Collapse
|
20
|
Danzer SC. Contributions of Adult-Generated Granule Cells to Hippocampal Pathology in Temporal Lobe Epilepsy: A Neuronal Bestiary. Brain Plast 2018; 3:169-181. [PMID: 30151341 PMCID: PMC6091048 DOI: 10.3233/bpl-170056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hippocampal neurogenesis continues throughout life in mammals – including humans. During the development of temporal lobe epilepsy, newly-generated hippocampal granule cells integrate abnormally into the brain. Abnormalities include ectopic localization of newborn cells, de novo formation of abnormal basal dendrites, and disruptions of the apical dendritic tree. Changes in granule cell position and dendritic structure fundamentally alter the types of inputs these cells are able to receive, as well as the relative proportions of remaining inputs. Dendritic abnormalities also create new pathways for recurrent excitation in the hippocampus. These abnormalities are hypothesized to contribute to the development of epilepsy, and may underlie cognitive disorders associated with the disease as well. To test this hypothesis, investigators have used pharmacological and genetic strategies in animal models to alter neurogenesis rates, or ablate the newborn cells outright. While findings are mixed and many unanswered questions remain, numerous studies now demonstrate that ablating newborn granule cells can have disease modifying effects in epilepsy. Taken together, findings provide a strong rationale for continued work to elucidate the role of newborn granule cells in epilepsy: both to understand basic mechanisms underlying the disease, and as a potential novel therapy for epilepsy.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
21
|
Godale CM, Danzer SC. Signaling Pathways and Cellular Mechanisms Regulating Mossy Fiber Sprouting in the Development of Epilepsy. Front Neurol 2018; 9:298. [PMID: 29774009 PMCID: PMC5943493 DOI: 10.3389/fneur.2018.00298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 02/04/2023] Open
Abstract
The sprouting of hippocampal dentate granule cell axons, termed mossy fibers, into the dentate inner molecular layer is one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy. Decades of research in animal models have revealed that mossy fiber sprouting creates de novo recurrent excitatory connections in the hippocampus, fueling speculation that the pathology may drive temporal lobe epileptogenesis. Conducting definitive experiments to test this hypothesis, however, has been challenging due to the difficulty of dissociating this sprouting from the many other changes occurring during epileptogenesis. The field has been largely driven, therefore, by correlative data. Recently, the development of powerful transgenic mouse technologies and the discovery of novel drug targets has provided new tools to assess the role of mossy fiber sprouting in epilepsy. We can now selectively manipulate hippocampal granule cells in rodent epilepsy models, providing new insights into the granule cell subpopulations that participate in mossy fiber sprouting. The cellular pathways regulating this sprouting are also coming to light, providing new targets for pharmacological intervention. Surprisingly, many investigators have found that blocking mossy fiber sprouting has no effect on seizure occurrence, while seizure frequency can be reduced by treatments that have no effect on this sprouting. These results raise new questions about the role of mossy fiber sprouting in epilepsy. Here, we will review these findings with particular regard to the contributions of new granule cells to mossy fiber sprouting and the regulation of this sprouting by the mTOR signaling pathway.
Collapse
Affiliation(s)
- Christin M Godale
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
22
|
Punnakkal P, Dominic D. NMDA Receptor GluN2 Subtypes Control Epileptiform Events in the Hippocampus. Neuromolecular Med 2018; 20:90-96. [PMID: 29335819 DOI: 10.1007/s12017-018-8477-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
Abstract
NMDA receptors (NMDARs) play a key role in synaptic plasticity and excitotoxicity. Subtype-specific role of NMDAR in neural disorders is an emerging area. Recent studies have revealed that mutations in NMDARs are a cause for epilepsy. Hippocampus is a known focal point for epilepsy. In hippocampus, expression of the NMDAR subtypes GluN1/GluN2A and GluN1/GluN2B is temporally regulated. However, the pharmacological significance of these subtypes is not well understood in epileptic context/models. To investigate this, epilepsy was induced in hippocampal slices by the application of artificial cerebrospinal fluid that contained high potassium but no magnesium. Epileptiform events (EFEs) were recorded from the CA1 and DG areas of hippocampus with or without subtype-specific antagonists. Irrespective of the age group, CA1 and DG showed epileptiform activity. The NMDAR antagonist AP5 was found to reduce the number of EFEs significantly. However, the application of subtype-specific antagonists (TCN 201 for GluN1/GluN2A and Ro 25-69811 for GluN1/GluN2B) revealed that EFEs had area-specific and temporal components. In slices from neonates, EFEs in CA1 were effectively reduced by Ro 25-69811, but were largely insensitive to TCN 201. In contrast, EFEs in DG were equally sensitive to both of the subtype-specific antagonists. However, the differential sensitivity for the antagonists observed in neonates was absent in later developmental stages. The study provides a functional insight into the NMDAR subtype-dependent contribution of EFEs in hippocampus of young rats, which may have implications in treating childhood epilepsy and avoiding unnecessary side effects of broad spectrum antagonists.
Collapse
Affiliation(s)
- Pradeep Punnakkal
- Molecular Medicine, Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695012, India.
| | - Deity Dominic
- Molecular Medicine, Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695012, India
| |
Collapse
|
23
|
|
24
|
Buckmaster PS, Abrams E, Wen X. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J Comp Neurol 2017; 525:2592-2610. [PMID: 28425097 PMCID: PMC5963263 DOI: 10.1002/cne.24226] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
Abstract
Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31-61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24-36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Paul S. Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California
| | - Emily Abrams
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Xiling Wen
- Department of Comparative Medicine, Stanford University, Stanford, California
| |
Collapse
|
25
|
Hemodynamic Changes Associated with Interictal Spikes Induced by Acute Models of Focal Epilepsy in Rats: A Simultaneous Electrocorticography and Near-Infrared Spectroscopy Study. Brain Topogr 2017; 30:390-407. [DOI: 10.1007/s10548-016-0541-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
|
26
|
Synaptic Reorganization of the Perisomatic Inhibitory Network in Hippocampi of Temporal Lobe Epileptic Patients. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7154295. [PMID: 28116310 PMCID: PMC5237728 DOI: 10.1155/2017/7154295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022]
Abstract
GABAergic inhibition and particularly perisomatic inhibition play a crucial role in controlling the firing properties of large principal cell populations. Furthermore, GABAergic network is a key element in the therapy attempting to reduce epileptic activity. Here, we present a review showing the synaptic changes of perisomatic inhibitory neuronal subtypes in the hippocampus of temporal lobe epileptic patients, including parvalbumin- (PV-) containing and cannabinoid Type 1 (CB1) receptor-expressing (and mainly cholecystokinin-positive) perisomatic inhibitory cells, known to control hippocampal synchronies. We have examined the synaptic input of principal cells in the dentate gyrus and Cornu Ammonis region in human control and epileptic hippocampi. Perisomatic inhibitory terminals establishing symmetric synapses were found to be sprouted in the dentate gyrus. Preservation of perisomatic input was found in the Cornu Ammonis 1 and Cornu Ammonis 2 regions, as long as pyramidal cells are present. Higher density of CB1-immunostained terminals was found in the epileptic hippocampus of sclerotic patients, especially in the dentate gyrus. We concluded that both types of (PV- and GABAergic CB1-containing) perisomatic inhibitory cells are mainly preserved or showed sprouting in epileptic samples. The enhanced perisomatic inhibitory signaling may increase principal cell synchronization and contribute to generation of epileptic seizures and interictal spikes.
Collapse
|
27
|
Alsharafi WA, Xiao B, Li J. MicroRNA-139-5p negatively regulates NR2A-containing NMDA receptor in the rat pilocarpine model and patients with temporal lobe epilepsy. Epilepsia 2016; 57:1931-1940. [PMID: 27731509 DOI: 10.1111/epi.13568] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Regulation of N-methyl-d-aspartate (NMDA) subunits NR2A and NR2B expression during status epilepticus (SE) remains incompletely understood. Here we explored the role of brain-enriched microRNA (miR)-139-5p in this process. METHODS miRNA microarray was performed to examine changes in miRNA expression in the rat pilocarpine model following NMDA-receptor blockade. The dynamic expression patterns of miR-139-5p, NR2A, and NR2B levels were measured in rats during the three phases of temporal lobe epilepsy (TLE) development using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Similar expression methods were applied to hippocampi obtained from patients with TLE and from normal controls. Moreover, miR-139-5p agomir and antagomir were utilized to explore the role of miR-139-5p in determining NMDA-receptor subunit expression patterns. RESULTS We identified 18 miRNAs that were significantly altered in the rat pilocarpine model following NMDA-receptor blockade. Of these, miR-139-5p was significantly up-regulated and Grin2A was predicted as its potential putative target. In patients with TLE, miR-139-5p expression was significantly down-regulated, whereas NR2A and NR2B levels were significantly up-regulated. In the rat model of SE, miR-139-5p expression was down-regulated while NR2A was up-regulated in the acute and chronic phases, but not in the latent phase. NR2B expression was up-regulated during the three phases of TLE development. Overexpression of miR-139-5p decreased, whereas depletion of miR-139-5p enhanced the expression levels of NR2A, but not NR2B, induced by pilocarpine treatment. Of interest, NMDA nonselective antagonist and NR2A selective antagonist enhanced miR-139-5p levels suppressed by pilocarpine treatment, whereas the NR2B selective antagonist was ineffective. SIGNIFICANCE These findings elucidate the potential role of miR-139-5p in NMDA-receptor involvement in TLE development and may provide novel therapeutic targets for the future treatment of TLE.
Collapse
Affiliation(s)
- Walid A Alsharafi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW. Mesial Temporal Lobe Epilepsy: Pathogenesis, Induced Rodent Models and Lesions. Toxicol Pathol 2016; 35:984-99. [PMID: 18098044 DOI: 10.1080/01926230701748305] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE), the most common epilepsy in adults, is generally intractable and is suspected to be the result of recurrent excitation or inhibition circuitry. Recurrent excitation and the development of seizures have been associated with aberrant mossy fiber sprouting in the hippocampus. Of the animal models developed to investigate the pathogenesis of MTLE, post-status epilepticus models have received the greatest acceptance because they are characterized by a latency period, the development of spontaneous motor seizures, and a spectrum of lesions like those of MTLE. Among post-status epilepticus models, induction of systemic kainic acid or pilocarpine-induced epilepsy is less labor-intensive than electrical-stimulation models and these models mirror the clinicopathologic features of MTLE more closely than do kindling, tetanus toxin, hyperthermia, post-traumatic, and perinatal hypoxia/ischemia models. Unfortunately, spontaneous motor seizures do not develop in kindling or adult hyperthermia models and are not a consistent finding in tetanus toxin-induced or perinatal hypoxia/ischemia models. This review presents the mechanistic hypotheses for seizure induction, means of model induction, and associated pathology, especially as compared to MTLE patients. Animal models are valuable tools not only to study the pathogenesis of MTLE, but also to evaluate potential antiepileptogenic drugs.
Collapse
Affiliation(s)
- Alok K. Sharma
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Department of Pathology, Covance Laboratories Inc., Madison, WI, 53704, USA
| | - Rachel Y. Reams
- Department of Pathology, Lilly Research Laboratories, Division of Eli Lilly and Co., Greenfield, IN, 46140, USA
| | - William H. Jordan
- Department of Pathology, Lilly Research Laboratories, Division of Eli Lilly and Co., Greenfield, IN, 46140, USA
| | - Margaret A. Miller
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - H. Leon Thacker
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Paul W. Snyder
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
29
|
Llorens-Martín M, Rábano A, Ávila J. The Ever-Changing Morphology of Hippocampal Granule Neurons in Physiology and Pathology. Front Neurosci 2016; 9:526. [PMID: 26834550 PMCID: PMC4717329 DOI: 10.3389/fnins.2015.00526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022] Open
Abstract
Newborn neurons are continuously added to the hippocampal dentate gyrus throughout adulthood. In this review, we analyze the maturational stages that newborn granule neurons go through, with a focus on their unique morphological features during each stage under both physiological and pathological circumstances. In addition, the influence of deleterious (such as schizophrenia, stress, Alzheimer's disease, seizures, stroke, inflammation, dietary deficiencies, or the consumption of drugs of abuse or toxic substances) and neuroprotective (physical exercise and environmental enrichment) stimuli on the maturation of these cells will be examined. Finally, the regulation of this process by proteins involved in neurodegenerative and neurological disorders such as Glycogen synthase kinase 3β, Disrupted in Schizophrenia 1 (DISC-1), Glucocorticoid receptor, pro-inflammatory mediators, Presenilin-1, Amyloid precursor protein, Cyclin-dependent kinase 5 (CDK5), among others, will be evaluated. Given the recently acquired relevance of the dendritic branch as a functional synaptic unit required for memory storage, a full understanding of the morphological alterations observed in newborn neurons may have important consequences for the prevention and treatment of the cognitive and affective alterations that evolve in conjunction with impaired adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- María Llorens-Martín
- Molecular Neurobiology, Function of Microtubular Proteins, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid)Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Instituto de Salud Carlos III)Madrid, Spain
| | - Alberto Rábano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Instituto de Salud Carlos III)Madrid, Spain; Neuropathology Department, CIEN FoundationMadrid, Spain
| | - Jesús Ávila
- Molecular Neurobiology, Function of Microtubular Proteins, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid)Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (Instituto de Salud Carlos III)Madrid, Spain
| |
Collapse
|
30
|
Miller DL, Yu IJ, Genter MB. Use of Autometallography in Studies of Nanosilver Distribution and Toxicity. Int J Toxicol 2015; 35:47-51. [PMID: 26634628 DOI: 10.1177/1091581815616602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the increasing use of and interest in nanoparticles in medicine and technology, the tissue and cell-specific localization of the particles are important considerations when the nanomaterials find their way into biological systems. This brief communication shows the utility of autometallography in determining the location of metal deposition at the light microscopic level. Although primarily focusing on studies of the toxicity and deposition of silver nanoparticles, use of autometallography to localize zinc and other metals at the tissue and subcellular localization is also recognized.
Collapse
Affiliation(s)
- David L Miller
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Il Je Yu
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | - Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
31
|
McGinnity CJ, Koepp MJ, Hammers A, Riaño Barros DA, Pressler RM, Luthra S, Jones PA, Trigg W, Micallef C, Symms MR, Brooks DJ, Duncan JS. NMDA receptor binding in focal epilepsies. J Neurol Neurosurg Psychiatry 2015; 86:1150-7. [PMID: 25991402 PMCID: PMC4602274 DOI: 10.1136/jnnp-2014-309897] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/16/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [(18)F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. METHODS Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [(18)F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [(18)F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. RESULTS Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [(18)F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [(18)F]GE-179 VT (-29%; p<0.002). There were no focal abnormalities common to the epilepsy group. CONCLUSIONS In patients with focal epilepsies, we detected primarily global increases of [(18)F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [(18)F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy.
Collapse
Affiliation(s)
- C J McGinnity
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK Medical Research Council Clinical Sciences Centre, London, UK Division of Imaging Sciences & Biomedical Engineering, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - M J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK MRI Unit, Epilepsy Society, Chalfont St. Peter, UK
| | - A Hammers
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK Medical Research Council Clinical Sciences Centre, London, UK Division of Imaging Sciences & Biomedical Engineering, Faculty of Life Sciences & Medicine, King's College London, London, UK Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK MRI Unit, Epilepsy Society, Chalfont St. Peter, UK The Neurodis Foundation, CERMEP Imagerie du Vivant, Lyon, France
| | - D A Riaño Barros
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK Medical Research Council Clinical Sciences Centre, London, UK
| | - R M Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - S Luthra
- GE Healthcare plc, The Grove Centre, Amersham, UK
| | - P A Jones
- GE Healthcare plc, The Grove Centre, Amersham, UK
| | - W Trigg
- GE Healthcare plc, The Grove Centre, Amersham, UK
| | - C Micallef
- National Hospital for Neurology and Neurosurgery, London, UK
| | - M R Symms
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK MRI Unit, Epilepsy Society, Chalfont St. Peter, UK
| | - D J Brooks
- Division of Neuroscience, Department of Medicine, Imperial College London, London, UK Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - J S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK MRI Unit, Epilepsy Society, Chalfont St. Peter, UK
| |
Collapse
|
32
|
Huberfeld G, Blauwblomme T, Miles R. Hippocampus and epilepsy: Findings from human tissues. Rev Neurol (Paris) 2015; 171:236-51. [PMID: 25724711 PMCID: PMC4409112 DOI: 10.1016/j.neurol.2015.01.563] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022]
Abstract
Surgical removal of the epileptogenic zone provides an effective therapy for several focal epileptic syndromes. This surgery offers the opportunity to study pathological activity in living human tissue for pharmacoresistant partial epilepsy syndromes including temporal lobe epilepsies with hippocampal sclerosis, cortical dysplasias, epilepsies associated with tumors and developmental malformations. Slices of tissue from patients with these syndromes retain functional neuronal networks and may generate epileptic activities. The properties of cells in this tissue may not be greatly changed, but excitatory synaptic transmission is often enhanced and GABAergic inhibition is preserved. Typically epileptic activity is not generated spontaneously by the neocortex, whether dysplastic or not, but can be induced by convulsants. The initiation of ictal discharges in the neocortex depends on both GABAergic signaling and increased extracellular potassium. In contrast, a spontaneous interictal-like activity is generated by tissues from patients with temporal lobe epilepsies associated with hippocampal sclerosis. This activity is initiated, not in the hippocampus but in the subiculum, an output region, which projects to the entorhinal cortex. Interictal events seem to be triggered by GABAergic cells, which paradoxically excite about 20% of subicular pyramidal cells while simultaneously inhibiting the majority. Interictal discharges thus depend on both GABAergic and glutamatergic signaling. The depolarizing effects of GABA depend on a pathological elevation in levels of chloride in some subicular cells, similar to those of developmentally immature cells. Such defect is caused by a perturbed expression of the cotransporters regulating intracellular chloride concentration, the importer NKCC1 and the extruder KCC2. Blockade of NKCC1 actions by the diuretic bumetanide restores intracellular chloride and thus hyperpolarizing GABAergic actions and consequently suppressing interictal activity.
Collapse
Affiliation(s)
- G Huberfeld
- Département de neurophysiologie, Sorbonne universités, UPMC - université Paris 06, UPMC, CHU de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France; INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity, University Paris Descartes, Sorbonne Paris Cité, CEA, 12, rue de l'École-de-Médecine, 75006 Paris, France.
| | - T Blauwblomme
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity, University Paris Descartes, Sorbonne Paris Cité, CEA, 12, rue de l'École-de-Médecine, 75006 Paris, France; Neurosurgery Department, Necker-Enfants Malades Hospital, University Paris Descartes, PRES Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France
| | - R Miles
- Inserm U1127, CNRS UMR7225, Sorbonne universités, UPMC - université Paris 6 UMR S1127, Institut du cerveau et de la moelle épinière, 47, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
33
|
Althaus AL, Sagher O, Parent JM, Murphy GG. Intrinsic neurophysiological properties of hilar ectopic and normotopic dentate granule cells in human temporal lobe epilepsy and a rat model. J Neurophysiol 2014; 113:1184-94. [PMID: 25429123 DOI: 10.1152/jn.00835.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hilar ectopic dentate granule cells (DGCs) are a salient feature of aberrant plasticity in human temporal lobe epilepsy (TLE) and most rodent models of the disease. Recent evidence from rodent TLE models suggests that hilar ectopic DGCs contribute to hyperexcitability within the epileptic hippocampal network. Here we investigate the intrinsic excitability of DGCs from humans with TLE and the rat pilocarpine TLE model with the objective of comparing the neurophysiology of hilar ectopic DGCs to their normotopic counterparts in the granule cell layer (GCL). We recorded from 36 GCL and 7 hilar DGCs from human TLE tissue. Compared with GCL DGCs, hilar DGCs in patient tissue exhibited lower action potential (AP) firing rates, more depolarized AP threshold, and differed in single AP waveform, consistent with an overall decrease in excitability. To evaluate the intrinsic neurophysiology of hilar ectopic DGCs, we made recordings from retrovirus-birthdated, adult-born DGCs 2-4 mo after pilocarpine-induced status epilepticus or sham treatment in rats. Hilar DGCs from epileptic rats exhibited higher AP firing rates than normotopic DGCs from epileptic or control animals. They also displayed more depolarized resting membrane potential and wider AP waveforms, indicating an overall increase in excitability. The contrasting findings between disease and disease model may reflect differences between the late-stage disease tissue available from human surgical specimens and the earlier disease stage examined in the rat TLE model. These data represent the first neurophysiological characterization of ectopic DGCs from human hippocampus and prospectively birthdated ectopic DGCs in a rodent TLE model.
Collapse
Affiliation(s)
- A L Althaus
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - O Sagher
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - J M Parent
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - G G Murphy
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; and Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
34
|
Buckmaster PS, Wen X, Toyoda I, Gulland FMD, Van Bonn W. Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus). J Comp Neurol 2014; 522:1691-706. [PMID: 24638960 DOI: 10.1002/cne.23509] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 12/24/2022]
Abstract
California sea lions (Zalophus californianus) are abundant human-sized carnivores with large gyrencephalic brains. They develop epilepsy after experiencing status epilepticus when naturally exposed to domoic acid. We tested whether sea lions previously exposed to DA (chronic DA sea lions) display hippocampal neuropathology similar to that of human patients with temporal lobe epilepsy. Hippocampi were obtained from control and chronic DA sea lions. Stereology was used to estimate numbers of Nissl-stained neurons per hippocampus in the granule cell layer, hilus, and pyramidal cell layer of CA3, CA2, and CA1 subfields. Adjacent sections were processed for somatostatin immunoreactivity or Timm-stained, and the extent of mossy fiber sprouting was measured stereologically. Chronic DA sea lions displayed hippocampal neuron loss in patterns and extents similar but not identical to those reported previously for human patients with temporal lobe epilepsy. Similar to human patients, hippocampal sclerosis in sea lions was unilateral in 79% of cases, mossy fiber sprouting was a common neuropathological abnormality, and somatostatin-immunoreactive axons were exuberant in the dentate gyrus despite loss of immunopositive hilar neurons. Thus, hippocampal neuropathology of chronic DA sea lions is similar to that of human patients with temporal lobe epilepsy.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California, 94305; Department of Neurology & Neurological Sciences, Stanford University, Stanford, California, 94305
| | | | | | | | | |
Collapse
|
35
|
Yamawaki R, Thind K, Buckmaster PS. Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy. J Comp Neurol 2014; 523:281-97. [PMID: 25234294 DOI: 10.1002/cne.23681] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022]
Abstract
Inhibiting the mammalian target of rapamycin (mTOR) signaling pathway with rapamycin blocks granule cell axon (mossy fiber) sprouting after epileptogenic injuries, including pilocarpine-induced status epilepticus. However, it remains unclear whether axons from other types of neurons sprout into the inner molecular layer and synapse with granule cell dendrites despite rapamycin treatment. If so, other aberrant positive-feedback networks might develop. To test this possibility stereological electron microscopy was used to estimate the numbers of excitatory synapses in the inner molecular layer per hippocampus in pilocarpine-treated control mice, in mice 5 days after pilocarpine-induced status epilepticus, and after status epilepticus and daily treatment beginning 24 hours later with rapamycin or vehicle for 2 months. The optical fractionator method was used to estimate numbers of granule cells in Nissl-stained sections so that numbers of excitatory synapses in the inner molecular layer per granule cell could be calculated. Control mice had an average of 2,280 asymmetric synapses in the inner molecular layer per granule cell, which was reduced to 63% of controls 5 days after status epilepticus, recovered to 93% of controls in vehicle-treated mice 2 months after status epilepticus, but remained at only 63% of controls in rapamycin-treated mice. These findings reveal that rapamycin prevented excitatory axons from synapsing with proximal dendrites of granule cells and raise questions about the recurrent excitation hypothesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ruth Yamawaki
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305
| | | | | |
Collapse
|
36
|
Szilágyi T, Száva I, Metz EJ, Mihály I, Orbán-Kis K. Untangling the pathomechanisms of temporal lobe epilepsy—The promise of epileptic biomarkers and novel therapeutic approaches. Brain Res Bull 2014; 109:1-12. [DOI: 10.1016/j.brainresbull.2014.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/30/2022]
|
37
|
Hester MS, Danzer SC. Hippocampal granule cell pathology in epilepsy - a possible structural basis for comorbidities of epilepsy? Epilepsy Behav 2014; 38:105-16. [PMID: 24468242 PMCID: PMC4110172 DOI: 10.1016/j.yebeh.2013.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 01/31/2023]
Abstract
Temporal lobe epilepsy in both animals and humans is characterized by abnormally integrated hippocampal dentate granule cells. Among other abnormalities, these cells make axonal connections with inappropriate targets, grow dendrites in the wrong direction, and migrate to ectopic locations. These changes promote the formation of recurrent excitatory circuits, leading to the appealing hypothesis that these abnormal cells may by epileptogenic. While this hypothesis has been the subject of intense study, less attention has been paid to the possibility that abnormal granule cells in the epileptic brain may also contribute to comorbidities associated with the disease. Epilepsy is associated with a variety of general findings, such as memory disturbances and cognitive dysfunction, and is often comorbid with a number of other conditions, including schizophrenia and autism. Interestingly, recent studies implicate disruption of common genes and gene pathways in all three diseases. Moreover, while neuropsychiatric conditions are associated with changes in a variety of brain regions, granule cell abnormalities in temporal lobe epilepsy appear to be phenocopies of granule cell deficits produced by genetic mouse models of autism and schizophrenia, suggesting that granule cell dysmorphogenesis may be a common factor uniting these seemingly diverse diseases. Disruption of common signaling pathways regulating granule cell neurogenesis may begin to provide mechanistic insight into the cooccurrence of temporal lobe epilepsy and cognitive and behavioral disorders.
Collapse
Affiliation(s)
- Michael S Hester
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesia, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
38
|
Peret A, Christie LA, Ouedraogo DW, Gorlewicz A, Epsztein J, Mulle C, Crépel V. Contribution of aberrant GluK2-containing kainate receptors to chronic seizures in temporal lobe epilepsy. Cell Rep 2014; 8:347-54. [PMID: 25043179 DOI: 10.1016/j.celrep.2014.06.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 05/08/2014] [Accepted: 06/19/2014] [Indexed: 02/01/2023] Open
Abstract
Kainate is a potent neurotoxin known to induce acute seizures. However, whether kainate receptors (KARs) play any role in the pathophysiology of temporal lobe epilepsy (TLE) is not known. In TLE, recurrent mossy fiber (rMF) axons form abnormal excitatory synapses onto other dentate granule cells that operate via KARs. The present study explores the pathophysiological implications of KARs in generating recurrent seizures in chronic epilepsy. In an in vitro model of TLE, seizure-like activity was minimized in mice lacking the GluK2 subunit, which is a main component of aberrant synaptic KARs at rMF synapses. In vivo, the frequency of interictal spikes and ictal discharges was strongly reduced in GluK2(-/-) mice or in the presence of a GluK2/GluK5 receptor antagonist. Our data show that aberrant GluK2-containing KARs play a major role in the chronic seizures that characterize TLE and thus constitute a promising antiepileptic target.
Collapse
Affiliation(s)
- Angélique Peret
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - Louisa A Christie
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - David W Ouedraogo
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - Adam Gorlewicz
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, 33000 Bordeaux, France
| | - Jérôme Epsztein
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, 33000 Bordeaux, France
| | - Valérie Crépel
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France.
| |
Collapse
|
39
|
Abstract
BACKGROUND Marijuana appears to have anti-epileptic effects in animals. It is not currently known if it is effective in patients with epilepsy. Some states in the United States of America have explicitly approved its use for epilepsy. OBJECTIVES To assess the efficacy and safety of cannabinoids when used as monotherapy or add-on treatment for people with epilepsy. SEARCH METHODS We searched the Cochrane Epilepsy Group Specialized Register (9 September 2013), Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (2013, Issue 8), MEDLINE (Ovid) (9 September 2013), ISI Web of Knowledge (9 September 2013), CINAHL (EBSCOhost) (9 September 2013), and ClinicalTrials.gov (9 September 2013). In addition, we included studies we personally knew about that were not found by the searches, as well as searched the references in the identified studies. SELECTION CRITERIA Randomized controlled trials (RCTs) whether blinded or not. DATA COLLECTION AND ANALYSIS Two authors independently selected trials for inclusion and extracted the data. The primary outcome investigated was seizure freedom at one year or more, or three times the longest interseizure interval. Secondary outcomes included responder rate at six months or more, objective quality of life data, and adverse events. MAIN RESULTS We found four randomized trial reports that included a total of 48 patients, each of which used cannabidiol as the treatment agent. One report was an abstract and another was a letter to the editor. Anti-epileptic drugs were continued in all studies. Details of randomisation were not included in any study report. There was no investigation of whether the control and treatment participant groups were the same or different. All the reports were low quality.The four reports only answered the secondary outcome about adverse effects. None of the patients in the treatment groups suffered adverse effects. AUTHORS' CONCLUSIONS No reliable conclusions can be drawn at present regarding the efficacy of cannabinoids as a treatment for epilepsy. The dose of 200 to 300 mg daily of cannabidiol was safely administered to small numbers of patients generally for short periods of time, and so the safety of long term cannabidiol treatment cannot be reliably assessed.
Collapse
Affiliation(s)
- David Gloss
- Neurology MC14‐05100 N Academy AveGeisinger Medical CenterDanvilleUSAPA 17821
| | - Barbara Vickrey
- University of CaliforniaDepartment of NeurologyReed Neurologic Research Center710 Westwood Plaza, Suite 1‐250Los AngelesCaliforniaUSA90095‐1769
| | | |
Collapse
|
40
|
Scharfman HE, Brooks-Kayal AR. Is plasticity of GABAergic mechanisms relevant to epileptogenesis? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:133-50. [PMID: 25012373 DOI: 10.1007/978-94-017-8914-1_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Numerous changes in GABAergic neurons, receptors, and inhibitory mechanisms have been described in temporal lobe epilepsy (TLE), either in humans or in animal models. Nevertheless, there remains a common assumption that epilepsy can be explained by simply an insufficiency of GABAergic inhibition. Alternatively, investigators have suggested that there is hyperinhibition that masks an underlying hyperexcitability. Here we examine the status epilepticus (SE) models of TLE and focus on the dentate gyrus of the hippocampus, where a great deal of data have been collected. The types of GABAergic neurons and GABAA receptors are summarized under normal conditions and after SE. The role of GABA in development and in adult neurogenesis is discussed. We suggest that instead of "too little or too much" GABA there is a complexity of changes after SE that makes the emergence of chronic seizures (epileptogenesis) difficult to understand mechanistically, and difficult to treat. We also suggest that this complexity arises, at least in part, because of the remarkable plasticity of GABAergic neurons and GABAA receptors in response to insult or injury.
Collapse
Affiliation(s)
- Helen E Scharfman
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA,
| | | |
Collapse
|
41
|
Buckmaster PS. Does mossy fiber sprouting give rise to the epileptic state? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:161-8. [PMID: 25012375 DOI: 10.1007/978-94-017-8914-1_13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many patients with temporal lobe epilepsy display structural changes in the seizure initiating zone, which includes the hippocampus. Structural changes in the hippocampus include granule cell axon (mossy fiber) sprouting. The role of mossy fiber sprouting in epileptogenesis is controversial. A popular view of temporal lobe epileptogenesis contends that precipitating brain insults trigger transient cascades of molecular and cellular events that permanently enhance excitability of neuronal networks through mechanisms including mossy fiber sprouting. However, recent evidence suggests there is no critical period for mossy fiber sprouting after an epileptogenic brain injury. Instead, findings from stereological electron microscopy and rapamycin-delayed mossy fiber sprouting in rodent models of temporal lobe epilepsy suggest a persistent, homeostatic mechanism exists to maintain a set level of excitatory synaptic input to granule cells. If so, a target level of mossy fiber sprouting might be determined shortly after a brain injury and then remain constant. Despite the static appearance of synaptic reorganization after its development, work by other investigators suggests there might be continual turnover of sprouted mossy fibers in epileptic patients and animal models. If so, there may be opportunities to reverse established mossy fiber sprouting. However, reversal of mossy fiber sprouting is unlikely to be antiepileptogenic, because blocking its development does not reduce seizure frequency in pilocarpine-treated mice. The challenge remains to identify which, if any, of the many other structural changes in the hippocampus are epileptogenic.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Departments of Comparative Medicine and Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA,
| |
Collapse
|
42
|
Chai X, Münzner G, Zhao S, Tinnes S, Kowalski J, Häussler U, Young C, Haas CA, Frotscher M. Epilepsy-induced motility of differentiated neurons. ACTA ACUST UNITED AC 2013; 24:2130-40. [PMID: 23505288 DOI: 10.1093/cercor/bht067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs become motile following the induction of epileptiform activity, resulting in GCD. Hippocampal slice cultures from transgenic mice expressing green fluorescent protein in differentiated, but not in newly generated GCs, were incubated with the glutamate receptor agonist kainate (KA), which induced GC burst activity and GCD. Using real-time microscopy, we observed that KA-exposed, differentiated GCs translocated their cell bodies and changed their dendritic organization. As found in human TLE, KA application was associated with decreased expression of the extracellular matrix protein Reelin, particularly in hilar interneurons. Together these findings suggest that KA-induced motility of differentiated GCs contributes to the development of GCD and establish slice cultures as a model to study neuronal changes induced by epileptiform activity.
Collapse
Affiliation(s)
- Xuejun Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gert Münzner
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Shanting Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Tinnes
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Janina Kowalski
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christina Young
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Enhanced synaptic connectivity in the dentate gyrus during epileptiform activity: network simulation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2013; 2013:949816. [PMID: 23431287 PMCID: PMC3575676 DOI: 10.1155/2013/949816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/06/2012] [Accepted: 12/20/2012] [Indexed: 11/18/2022]
Abstract
Structural rearrangement of the dentate gyrus has been described as the underlying cause of many types of epilepsies, particularly temporal lobe epilepsy. It is said to occur when aberrant connections are established in the damaged hippocampus, as described in human epilepsy and experimental models. Computer modelling of the dentate gyrus circuitry and the corresponding structural changes has been used to understand how abnormal mossy fibre sprouting can subserve seizure generation observed in experimental models when epileptogenesis is induced by status epilepticus. The model follows the McCulloch-Pitts formalism including the representation of the nonsynaptic mechanisms. The neuronal network comprised granule cells, mossy cells, and interneurons. The compensation theory and the Hebbian and anti-Hebbian rules were used to describe the structural rearrangement including the effects of the nonsynaptic mechanisms on the neuronal activity. The simulations were based on neuroanatomic data and on the connectivity pattern between the cells represented. The results suggest that there is a joint action of the compensation theory and Hebbian rules during the inflammatory process that accompanies the status epilepticus. The structural rearrangement simulated for the dentate gyrus circuitry promotes speculation about the formation of the abnormal mossy fiber sprouting and its role in epileptic seizures.
Collapse
|
44
|
Knight LS, Wenzel HJ, Schwartzkroin PA. Inhibition and interneuron distribution in the dentate gyrus of p35 knockout mice. Epilepsia 2012; 53 Suppl 1:161-70. [PMID: 22612821 DOI: 10.1111/j.1528-1167.2012.03487.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The p35 knockout (p35-/-) mouse is an animal model of temporal lobe epilepsy that recapitulates key neuroanatomic abnormalities-granule cell dispersion and mossy fiber sprouting-observed in the hippocampal formation of humans, as well as spontaneous seizure activity. It is a useful model in which to study the relationship between the abnormal neuronal structure and seizure activity to further our understanding of cortical dysplasia in epileptogenesis. Our previous work using this mouse model characterized the anatomic features of the dentate granule cells and the functional implications of these abnormalities on increased recurrent excitation. These data also suggested that there might be compromised inhibition in this animal model. We pursued this possibility, focusing our investigation on inhibitory circuitry. In preliminary investigations using neuroanatomic tools (immunocytochemistry, camera lucida reconstructions of individually labeled interneurons, and electron microscopy) combined with intracellular electrophysiology, we observed no significant reduction in the number of symmetric versus asymmetric synaptic contacts on dentate granule cell somata, and no statistically significant changes in evoked early or late inhibition. Although there were some abnormalities in the morphology/distribution of inhibitory interneurons (as well as a larger population of dentate granule cells) of the dentate gyrus, overall inhibition in the p35 knockout mouse appeared to be largely intact.
Collapse
Affiliation(s)
- Leena S Knight
- Department of Biology, Whitman College, 345 Boyer Ave., Walla Walla, WA 99362, U.S.A.
| | | | | |
Collapse
|
45
|
Houser CR, Zhang N, Peng Z, Huang CS, Cetina Y. Neuroanatomical clues to altered neuronal activity in epilepsy: from ultrastructure to signaling pathways of dentate granule cells. Epilepsia 2012; 53 Suppl 1:67-77. [PMID: 22612811 DOI: 10.1111/j.1528-1167.2012.03477.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The dynamic aspects of epilepsy, in which seizures occur sporadically and are interspersed with periods of relatively normal brain function, present special challenges for neuroanatomical studies. Although numerous morphologic changes can be identified during the chronic period, the relationship of many of these changes to seizure generation and propagation remains unclear. Mossy fiber sprouting is an example of a frequently observed morphologic change for which a functional role in epilepsy continues to be debated. This review focuses on neuroanatomically identified changes that would support high levels of activity in reorganized mossy fibers and potentially associated granule cell activation. Early ultrastructural studies of reorganized mossy fiber terminals in human temporal lobe epilepsy tissue have identified morphologic substrates for highly efficacious excitatory connections among granule cells. If similar connections in animal models contribute to seizure activity, activation of granule cells would be expected. Increased labeling with two activity-related markers, Fos and phosphorylated extracellular signal-regulated kinase, has suggested increased activity of dentate granule cells at the time of spontaneous seizures in a mouse model of epilepsy. However, neuroanatomical support for a direct link between activation of reorganized mossy fiber terminals and increased granule cell activity remains elusive. As novel activity-related markers are developed, it may yet be possible to demonstrate such functional links and allow mapping of seizure activity throughout the brain. Relating patterns of neuronal activity during seizures to the underlying morphologic changes could provide important new insights into the basic mechanisms of epilepsy and seizure generation.
Collapse
Affiliation(s)
- Carolyn R Houser
- Department of Neurobiology, David Geffen School of Medicine at the University of California-Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095-1763, U.S.A.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Cortical dysplasia of various types, reflecting abnormalities of brain development, have been closely associated with epileptic activities. Yet, there remains considerable discussion about if/how these structural lesions give rise to seizure phenomenology. Animal models have been used to investigate the cause-effect relationships between aberrant cortical structure and epilepsy. In this article, we discuss three such models: (1) the Eker rat model of tuberous sclerosis, in which a gene mutation gives rise to cortical disorganization and cytologically abnormal cellular elements; (2) the p35 knockout mouse, in which the genetic dysfunction gives rise to compromised cortical organization and lamination, but in which the cellular elements appear normal; and (3) the methylazoxymethanol-exposed rat, in which time-specific chemical DNA disruption leads to abnormal patterns of cell formation and migration, resulting in heterotopic neuronal clusters. Integrating data from studies of these animal models with related clinical observations, we propose that the neuropathologic features of these cortical dysplastic lesions are insufficient to determine the seizure-initiating process. Rather, it is their interaction with a more subtly disrupted cortical "surround" that constitutes the circuitry underlying epileptiform activities as well as seizure propensity and ictogenesis.
Collapse
Affiliation(s)
- Philip A Schwartzkroin
- Department of Neurological Surgery, University of California-Davis, One Shields Ave., Davis, CA 95616, U.S.A.
| | | |
Collapse
|
47
|
Abstract
BACKGROUND Marijuana appears to have anti-epileptic effects in animals. It is not currently known if it is effective in patients with epilepsy. Some states in the United States of America have explicitly approved its use for epilepsy. OBJECTIVES To assess the efficacy of marijuana, or one of marijuana's constituents in the treatment of people with epilepsy. SEARCH METHODS We searched the Cochrane Epilepsy Group Specialized Register (May 15, 2012), the Cochrane Central Register of Controlled Trials (CENTRAL issue 4 of 12, The Cochrane Library 2012),MEDLINE (PubMed, searched on May 15, 2012), ISI Web of Knowledge (May 15, 2012), CINAHL (EBSCOhost, May 15, 2012), and ClinicalTrials.gov (May 15, 2012). In addition, we included studies we personally knew about that were not found by the searches, as well as references in the identified studies. SELECTION CRITERIA Randomized controlled trials (RCTs), whether blinded or not. DATA COLLECTION AND ANALYSIS Two authors independently selected trials for inclusion and extracted data. The primary outcome investigated was seizure freedom at one year or more, or three times the longest interseizure interval. Secondary outcomes included: responder rate at six months or more, objective quality of life data, and adverse events. MAIN RESULTS We found four randomized reports which included a total of 48 patients, each of which used cannabidiol as the treatment agent. One report was an abstract, and another was a letter to the editor. Anti-epileptic drugs were continued in all. Details of randomisation were not included in any study. There was no investigation of whether control and treatment groups were the same or different. All the reports were low quality.The four reports only answered the secondary outcome about adverse effects. None of the patients in the treatment groups suffered adverse effects. AUTHORS' CONCLUSIONS No reliable conclusions can be drawn at present regarding the efficacy of cannabinoids as a treatment for epilepsy. The dose of 200 to 300 mg daily of cannabidiol was safely administered to small numbers of patients, for generally short periods of time, and so the safety of long term cannabidiol treatment cannot be reliably assessed.
Collapse
Affiliation(s)
- David Gloss
- Department of Neurology, University of California, Los Angeles, California, USA.
| | | |
Collapse
|
48
|
Jiang M, Zhu J, Liu Y, Yang M, Tian C, Jiang S, Wang Y, Guo H, Wang K, Shu Y. Enhancement of asynchronous release from fast-spiking interneuron in human and rat epileptic neocortex. PLoS Biol 2012; 10:e1001324. [PMID: 22589699 PMCID: PMC3348166 DOI: 10.1371/journal.pbio.1001324] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/27/2012] [Indexed: 11/19/2022] Open
Abstract
Down-regulation of GABAergic inhibition may result in the generation of epileptiform activities. Besides spike-triggered synchronous GABA release, changes in asynchronous release (AR) following high-frequency discharges may further regulate epileptiform activities. In brain slices obtained from surgically removed human neocortical tissues of patients with intractable epilepsy and brain tumor, we found that AR occurred at GABAergic output synapses of fast-spiking (FS) neurons and its strength depended on the type of connections, with FS autapses showing the strongest AR. In addition, we found that AR depended on residual Ca²⁺ at presynaptic terminals but was independent of postsynaptic firing. Furthermore, AR at FS autapses was markedly elevated in human epileptic tissue as compared to non-epileptic tissue. In a rat model of epilepsy, we found similar elevation of AR at both FS autapses and synapses onto excitatory neurons. Further experiments and analysis showed that AR elevation in epileptic tissue may result from an increase in action potential amplitude in the FS neurons and elevation of residual Ca²⁺ concentration. Together, these results revealed that GABAergic AR occurred at both human and rat neocortex, and its elevation in epileptic tissue may contribute to the regulation of epileptiform activities.
Collapse
Affiliation(s)
- Man Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaping Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingpo Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cuiping Tian
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yonghong Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Guo
- Department of Neurosurgery, Shanghai Quyang Hospital, Tongji University, Shanghai, China
| | - Kaiyan Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yousheng Shu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
49
|
Increased excitatory synaptic input to granule cells from hilar and CA3 regions in a rat model of temporal lobe epilepsy. J Neurosci 2012; 32:1183-96. [PMID: 22279204 DOI: 10.1523/jneurosci.5342-11.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One potential mechanism of temporal lobe epilepsy is recurrent excitation of dentate granule cells through aberrant sprouting of their axons (mossy fibers), which is found in many patients and animal models. However, correlations between the extent of mossy fiber sprouting and seizure frequency are weak. Additional potential sources of granule cell recurrent excitation that would not have been detected by markers of mossy fiber sprouting in previous studies include surviving mossy cells and proximal CA3 pyramidal cells. To test those possibilities in hippocampal slices from epileptic pilocarpine-treated rats, laser-scanning glutamate uncaging was used to randomly and focally activate neurons in the granule cell layer, hilus, and proximal CA3 pyramidal cell layer while measuring evoked EPSCs in normotopic granule cells. Consistent with mossy fiber sprouting, a higher proportion of glutamate-uncaging spots in the granule cell layer evoked EPSCs in epileptic rats compared with controls. In addition, stimulation spots in the hilus and proximal CA3 pyramidal cell layer were more likely to evoke EPSCs in epileptic rats, despite significant neuron loss in those regions. Furthermore, synaptic strength of recurrent excitatory inputs to granule cells from CA3 pyramidal cells and other granule cells was increased in epileptic rats. These findings reveal substantial levels of excessive, recurrent, excitatory synaptic input to granule cells from neurons in the hilus and proximal CA3 field. The aberrant development of these additional positive-feedback circuits might contribute to epileptogenesis in temporal lobe epilepsy.
Collapse
|
50
|
Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 2011; 22:617-40. [PMID: 22056342 DOI: 10.1016/j.yebeh.2011.07.024] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 01/02/2023]
Abstract
A substantial amount of research has shown that N-methyl-D-aspartate receptors (NMDARs) may play a key role in the pathophysiology of several neurological diseases, including epilepsy. Animal models of epilepsy and clinical studies demonstrate that NMDAR activity and expression can be altered in association with epilepsy and particularly in some specific seizure types. NMDAR antagonists have been shown to have antiepileptic effects in both clinical and preclinical studies. There is some evidence that conventional antiepileptic drugs may also affect NMDAR function. In this review, we describe the evidence for the involvement of NMDARs in the pathophysiology of epilepsy and provide an overview of NMDAR antagonists that have been investigated in clinical trials and animal models of epilepsy.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|