1
|
Abdennadher M, Inati S, Soldatos A, Norato G, Baker EH, Thurm A, Bartolini L, Masvekar R, Theodore W, Bielekova B, Porter FD, Dang Do AN. Seizure phenotype in CLN3 disease and its relation to other neurologic outcome measures. J Inherit Metab Dis 2021; 44:1013-1020. [PMID: 33550636 PMCID: PMC9437865 DOI: 10.1002/jimd.12366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/12/2022]
Abstract
CLN3 disease is a pediatric neurodegenerative condition wherein seizures are common. The most common disease-causing variant is an ~1-kb deletion in CLN3. We investigated seizure phenotype in relation to genotype and to adaptive behavior, MR spectroscopy and CSF biochemical markers in a CLN3 cohort. We performed seizure phenotyping using clinical history, EEG, and the Unified Batten Disease Rating Scale (UBDRS) seizure score. We assessed correlations of seizure severity with disease severity (UBDRS capability), adaptive behavior composite score (ABC; Vineland-3), glutamate+glutamine+GABA and N-acetylaspartate+N-acetylaspartyl glutamate (MR spectroscopy), and CSF neurofilament light chain (NEFL) levels. In 20 participants, median age was 10.7 years (IQR = 7.8). Eighteen completed baseline EEG; 12 had a 1-year follow-up. Seizures were reported in 14 (8 1-kb deletion homozygotes), with median age at onset of 10.0 (IQR = 6.8). Epileptiform discharges were noted in 15 (9 homozygotes). Bilateral tonic clonic (n = 11) and nonmotor seizures (n = 7) were most common. UBDRS seizure score correlated with age (rp = 0.50; [0.08,0.77]; P = .02), UBDRS capability (rp = -0.57; [-0.81,-0.17]; P = .009) and ABC (rp = -0.66; [-0.85,-0.31]; P = .001) scores, glutamate+glutamine+GABA (rp = -0.54; [-0.80,-0.11]; P = .02) and N-acetylaspartate+N-acetylaspartyl glutamate (rp = -0.54; [-0.80,-0.11]; P = .02), and CSF NEFL (rp = 0.65; [0.29,0.85]; P = .002) levels. After controlling for age, correlations with ABC and CSF NEFL remained significant. In our CLN3 cohort, seizures and epileptiform discharges were frequent and often started by age 10 years without significant difference between genotypes. ABC and CSF NEFL correlate with UBDRS seizure score, reflecting the role of seizures in the neurodegenerative process. Longitudinal evaluations in a larger cohort are needed to confirm these findings.
Collapse
Affiliation(s)
- Myriam Abdennadher
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
- Department of Neurology, Boston Medical Center; Boston University School of Medicine, Boston, MA, USA
| | - Sara Inati
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Gina Norato
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Eva H. Baker
- Radiology and Imaging Sciences Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Audrey Thurm
- National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | - Luca Bartolini
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
- Division of Pediatric Neurology, Hasbro Children’s Hospital; The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ruturaj Masvekar
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - William Theodore
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Bibiana Bielekova
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Forbes D. Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - An N. Dang Do
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
- Correspondence: An Ngoc Dang Do, MD PhD, 10 Center Drive, MSC 1103. Bethesda, MD 20892, Phone: 301.496.8849, Fax: 301.402.0574,
| |
Collapse
|
2
|
The value of magnetic resonance spectroscopy as a supplement to MRI of the brain in a clinical setting. PLoS One 2018; 13:e0207336. [PMID: 30440005 PMCID: PMC6237369 DOI: 10.1371/journal.pone.0207336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/30/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There are different opinions of the clinical value of MRS of the brain. In selected materials MRS has demonstrated good results for characterisation of both neoplastic and non-neoplastic lesions. The aim of this study was to evaluate the supplemental value of MR spectroscopy (MRS) in a clinical setting. MATERIAL AND METHODS MRI and MRS were re-evaluated in 208 cases with a clinically indicated MRS (cases with uncertain or insufficient information on MRI) and a confirmed diagnosis. Both single voxel spectroscopy (SVS) and chemical shift imaging (CSI) were performed in 105 cases, only SVS or CSI in 54 and 49 cases, respectively. Diagnoses were grouped into categories: non-neoplastic disease, low-grade tumour, and high-grade tumour. The clinical value of MRS was considered very beneficial if it provided the correct category or location when MRI did not, beneficial if it ruled out suspected diseases or was more specific than MRI, inconsequential if it provided the same level of information, or misleading if it provided less or incorrect information. RESULTS There were 70 non-neoplastic lesions, 43 low-grade tumours, and 95 high-grade tumours. For MRI, the category was correct in 130 cases (62%), indeterminate in 39 cases (19%), and incorrect in 39 cases (19%). Supplemented with MRS, 134 cases (64%) were correct, 23 cases (11%) indeterminate, and 51 (25%) incorrect. Additional information from MRS was beneficial or very beneficial in 31 cases (15%) and misleading in 36 cases (17%). CONCLUSION In most cases MRS did not add to the diagnostic value of MRI. In selected cases, MRS may be a valuable supplement to MRI.
Collapse
|
3
|
Voets NL, Hodgetts CJ, Sen A, Adcock JE, Emir U. Hippocampal MRS and subfield volumetry at 7T detects dysfunction not specific to seizure focus. Sci Rep 2017; 7:16138. [PMID: 29170537 PMCID: PMC5700920 DOI: 10.1038/s41598-017-16046-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/03/2017] [Indexed: 01/06/2023] Open
Abstract
Ultra high-field 7T MRI offers sensitivity to localize hippocampal pathology in temporal lobe epilepsy (TLE), but has rarely been evaluated in patients with normal-appearing clinical MRI. We applied multimodal 7T MRI to assess if focal subfield atrophy and deviations in brain metabolites characterize epileptic hippocampi. Twelve pre-surgical TLE patients (7 MRI-negative) and age-matched healthy volunteers were scanned at 7T. Hippocampal subfields were manually segmented from 600μm isotropic resolution susceptibility-weighted images. Hippocampal metabolite spectra were acquired to determine absolute concentrations of glutamate, glutamine, myo-inositol, NAA, creatine and choline. We performed case-controls analyses, using permutation testing, to identify abnormalities in hippocampal imaging measures in individual patients, for evaluation against clinical evidence of seizure lateralisation and neuropsychological memory test scores. Volume analyses identified hippocampal subfield atrophy in 9/12 patients (75%), commonly affecting CA3. 7/8 patients had altered metabolite concentrations, most showing reduced glutamine levels (62.5%). However, neither volume nor metabolite deviations consistently lateralized the epileptogenic hippocampus. Rather, lower subiculum volumes and glutamine concentrations correlated with impaired verbal memory performance. Hippocampal subfield and metabolic abnormalities detected at 7T appear to reflect pathophysiological processes beyond epileptogenesis. Despite limited diagnostic contributions, these markers show promise to help elucidate mnemonic processing in TLE.
Collapse
Affiliation(s)
- Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK. .,Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Carl J Hodgetts
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Jane E Adcock
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Uzay Emir
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Casseb RF, D'Abreu A, Ruocco HH, Lopes-Cendes I, Cendes F, Castellano G. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy. Braz J Med Biol Res 2013; 46:722-7. [PMID: 23969973 PMCID: PMC3854413 DOI: 10.1590/1414-431x20132332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 05/14/2012] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P<0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence.
Collapse
Affiliation(s)
- R F Casseb
- Universidade Estadual de Campinas, Departamento de Raios Cósmicos e Cronologia, Instituto de Física "Gleb Wataghin", CampinasSP, Brasil
| | | | | | | | | | | |
Collapse
|
5
|
Aydin H, Oktay NA, Kizilgoz V, Altin E, Tatar IG, Hekimoglu B. Value of Proton-MR-Spectroscopy in the Diagnosis of Temporal Lobe Epilepsy; Correlation of Metabolite Alterations With Electroencephalography. IRANIAN JOURNAL OF RADIOLOGY 2013; 9:1-11. [PMID: 23329953 PMCID: PMC3522336 DOI: 10.5812/iranjradiol.6686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 12/10/2011] [Accepted: 12/19/2011] [Indexed: 11/18/2022]
Abstract
Background Epilepsy, a well-known mostly idiopathic neurologic disorder, has to be correctly diagnosed and properly treated. Up to now, several diagnostic approaches have been processed to determine the epileptic focus. Objectives The aim of this study was to discover whether proton-MR-spectroscopic imaging (MRSI) aids in the diagnosis of temporal lobe epilepsy in conjunction with classical electroencephalography (EEG) findings. Patients and Methods Totally, 70 mesial temporal zones consisting of 39 right hippocampi and 31 left hippocampi of 46 patients (25 male, 21 female) were analyzed by proton MRSI. All patients underwent a clinical neurologic examination, scalp EEG recording and prolonged video EEG monitoring. Partial seizures on the right, left or both sides were recorded in all patients. All patients were under medical treatment and none of the patients underwent amygdalohippocampectomy and similar surgical procedures. Results The normal average lactate (Lac), phosphocreatine, N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), myo-inositol, glutamate and glutamine (Glx) peaks and Nacetyl aspartate/Cr, NAA/ Cho + Cr, Cho/Cr ratios were measured from the healthy opposite hippocampi or from the control subjects. The Lac, glutamate and glutamine (Glx), myo-inositol, phosphocreatine and NAA metabolites plus Cho/Cr ratio showed statistical difference between the normal and the epileptic hippocampi. Cho, Cr metabolites plus NAA/Cr, NAA/ Cho + Cr ratios were almost the same between the groups. The sensitivity of Proton-MR-Spectroscopy for lateralization of the epileptic foci in all patients was 96% and the specificity was 50%. Conclusions Proton-MRSI can easily be considered as an alternative modality of choice in the diagnosis of temporal lobe epilepsy and in the future; Proton-MR-Spectroscopy may become the most important technique used in epilepsy centers.
Collapse
Affiliation(s)
- Hasan Aydin
- MRI Department, S.B. Ankara Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Nilay Aydin Oktay
- MRI Department, S.B. Ankara Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Volkan Kizilgoz
- MRI Department, S.B. Ankara Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
- Corresponding author: Volkan Kizilgoz, MRI Department, S.B. Ankara Diskapi Yildirim Beyazit Education and Research Hospital, Irfan Bastug St., Ankara, Turkey. Tel.: +90-5057994013, Fax: +90-3123220006, E-mail:
| | - Elif Altin
- MRI Department, S.B. Ankara Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Idil Gunes Tatar
- MRI Department, S.B. Ankara Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Baki Hekimoglu
- Vascular Interventional Department, S.B. Ankara Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
6
|
|
7
|
Fountas KN, Tsougos I, Gotsis ED, Giannakodimos S, Smith JR, Kapsalaki EZ. Temporal pole proton preoperative magnetic resonance spectroscopy in patients undergoing surgery for mesial temporal sclerosis. Neurosurg Focus 2012; 32:E3. [PMID: 22380857 DOI: 10.3171/2012.1.focus11327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of this prospective study was to compare the results of proton MR spectroscopy (MRS) in temporal poles in patients with unilateral mesial temporal sclerosis (MTS) with the histopathological findings of the resected temporal poles. METHODS A total of 23 patients (14 male and 9 female) with a mean age of 25.2 years (range 17-45 years) were included in this study, which was conducted over a 4-year period. All patients suffered medically refractory epilepsy due to unilateral, MRI-proven MTS, with no other imaging abnormalities. All participants underwent preoperative single-voxel proton MRS using a 3-T MRI unit. The hippocampi and temporal poles were examined bilaterally. The concentrations of N-acetyl-aspartate (NAA), choline (Cho), and creatine (Cr) were measured, and the NAA/Cho, NAA/Cr, and NAA/Cho+Cr ratios were calculated. All patients underwent anterior temporal lobectomy and ipsilateral amygdalohippocampectomy, and surgical specimens from the temporal poles were sent for histopathological examination. Comparisons of the spectroscopic and histopathological results of the resected temporal poles were performed. The modified Engel classification system was used for evaluating seizure outcome in the cohort. RESULTS The preoperative spectroscopic profiles of the sclerotic hippocampi were abnormal in all patients, and the contralateral hippocampus showed altered spectroscopic findings in 12 patients (52.2%). Spectroscopy of the temporal poles demonstrated severely decreased concentrations of NAA, markedly increased concentrations of Cho, and increased concentrations of Cr in the temporal pole ipsilateral to the MTS in 15 patients (65.2%). Similarly, the NAA/Cho, NAA/Cr, and NAA/Cho+Cr ratios were severely decreased in the temporal pole ipsilateral to the MTS in 16 patients (69.6%). Histopathological examination of the resected temporal poles demonstrated ischemic changes in 5 patients (21.7%), gliotic changes in 4 (17.4%), demyelinating changes in 3 (13.0%), and microdysplastic changes in 1 patient (4.3%). Comparisons of the spectroscopic and histopathological findings showed that the sensitivity of proton MRS was 100%, its specificity was 80%, its positive predictive value was 87%, and its negative predictive value was 100%. The mean follow-up time in this study was 3.4 years. At the end of the 2nd postoperative year, 17 patients (73.9%) were in Engel Class I, 5 (21.7%) were in Class II, and 1 (4.3%) was in Class III. CONCLUSIONS Proton MRS detected altered ipsilateral temporal pole metabolism in patients with unilateral MTS. These metabolic changes were associated with permanent histological abnormalities of the temporal pole. This finding demonstrates that MTS may be a more diffuse histological process, and exact preoperative knowledge of its temporal extent becomes of paramount importance in the selection of the best surgical approach in these patients. Further validation of the observations is necessary for defining the role of temporal pole proton MRS in cases of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Kostas N Fountas
- Department of Neurosurgery, University Hospital of Larissa, University of Thessady, School of Medicine, Greece.
| | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Sebastian Bauer
- Department of Neurology, UKGM Marburg, Philipps University, Marburg, Germany.
| | | |
Collapse
|
9
|
Frontal lobe epilepsy. J Clin Neurosci 2011; 18:593-600. [DOI: 10.1016/j.jocn.2010.08.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/18/2010] [Accepted: 08/07/2010] [Indexed: 11/19/2022]
|
10
|
Maudsley AA, Domenig C, Ramsay RE, Bowen BC. Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy. Epilepsy Res 2009; 88:127-38. [PMID: 19926450 DOI: 10.1016/j.eplepsyres.2009.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/07/2009] [Accepted: 10/15/2009] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to evaluate volumetric proton magnetic resonance spectroscopic imaging (MRSI) for localization of epileptogenic foci in neocortical epilepsy. METHODS Twenty-five subjects reporting seizures considered to be of neocortical origin were recruited to take part in a 3-T MR study that included high-resolution structural MRI and a whole-brain MRSI acquisition. Using a fully automated MRSI processing protocol, maps for signal intensity normalized N-acetylaspartate (NAA), creatine, and choline were created, together with the relative volume fraction of grey-matter, white-matter, and CSF within each MRSI voxel. Analyses were performed using visual observation of the metabolite and metabolite ratio maps; voxel-based calculation of differences in these metabolite maps relative to normal controls; comparison of average grey-matter and white-matter metabolite values over each lobar volume; and examination of relative left-right asymmetry factors by brain region. RESULTS Data from 14 subjects were suitable for inclusion in the analysis. Eight subjects had MRI-visible pathologies that were associated with decreases in NAA/creatine, which extended beyond the volume indicated by the MRI. Five subjects demonstrated no significant metabolic alterations using any of the analysis methods, and one subject had no findings on MRI or MRSI. CONCLUSIONS This proof of principle study supports previous evidence that alterations of MR-detected brain metabolites can be detected in tissue areas affected by neocortical seizure activity, while additionally demonstrating advantages of the volumetric MRSI approach.
Collapse
Affiliation(s)
- Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
11
|
Campos BAG, Yasuda CL, Castellano G, Bilevicius E, Li LM, Cendes F. Proton MRS may predict AED response in patients with TLE. Epilepsia 2009; 51:783-8. [DOI: 10.1111/j.1528-1167.2009.02379.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Yu JM, Tyvaert L, Levan P, Zelmann R, Dubeau F, Gotman J, Kobayashi E. EEG spectral changes underlying BOLD responses contralateral to spikes in patients with focal epilepsy. Epilepsia 2009; 50:1804-9. [PMID: 19389143 DOI: 10.1111/j.1528-1167.2009.02080.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Simultaneous electroencephalogram and functional magnetic resonance imaging (EEG-fMRI) in patients with focal epilepsy and unilateral spikes often shows positive blood oxygenation level-dependent (BOLD) responses (activations), not only ipsilateral but also contralateral to the spikes. We aimed to investigate whether minimal EEG changes could underlie these contralateral BOLD responses by using EEG spectral analysis. METHODS We studied 19 patients with focal epilepsy and unilateral spikes. According to the pattern of BOLD activation, patients were divided into Group 1 (ipsi- and contralateral to the spikes) or Group 2 (only ipsilateral). EEG from outside the scanner was used to mark spikes similar to those recorded in the scanner. Epochs of 640 ms before and after the peak of the spikes were chosen as baseline and spike epochs. Spectral analysis was performed in referential montage (FCz reference), and differences between baselines and spikes were analyzed by paired t-test. RESULTS Significant EEG changes in electrodes contralateral to the spikes were seen in 9 of 10 patients in Group 1 and in only 2 of 10 patients in Group 2 (one patient had two types of spikes that were analyzed separately). Spectral changes were seen in delta and/or theta bands in all patients except one (in Group 1) who had changes in all bands. DISCUSSION Significant contralateral EEG changes occurred in 90% of contralateral BOLD activations and in only 20% of patients without contralateral BOLD responses. The reason why these changes predominate in lower frequencies rather than in higher frequencies is unclear. These spectral changes in areas corresponding to contralateral activations might reflect poorly synchronized but possibly intense neuronal activity.
Collapse
Affiliation(s)
- Juming M Yu
- Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Simister RJ, McLean MA, Barker GJ, Duncan JS. Proton MR spectroscopy of metabolite concentrations in temporal lobe epilepsy and effect of temporal lobe resection. Epilepsy Res 2008; 83:168-76. [PMID: 19118980 DOI: 10.1016/j.eplepsyres.2008.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 10/21/2008] [Accepted: 11/02/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To use proton Magnetic Resonance Spectroscopy (MRS) to measure in vivo temporal lobe GABA and glutamate plus glutamine (GLX) concentrations in patients with temporal lobe epilepsy (TLE) attributable to unilateral hippocampal sclerosis (HS) before and following anterior temporal lobe resection (ATLR). METHODS We obtained quantitative short echo time MRS in both temporal lobes of 15 controls and 16 patients with TLE and HS, and repeat spectra in 10 patients after ATLR. We measured the concentrations of N-acetyl aspartate+N-acetyl aspartyl-glutamate (NAAt), creatine plus phosphocreatine (Cr), and glutamate+glutamine (GLX) using a metabolite-nulled sequence designed to minimize macromolecule artifact. GABA concentrations were measured using a previously described double quantum filter. RESULTS In patients with TLE, NAAt/Cr was reduced in ipsilateral and contralateral temporal lobes. No significant variation in GLX/Cr or GABA+/Cr was evident in any group although GABA+/Cr was highest in the ipsilateral temporal lobe in TLE. After ATLR there was a trend to normalization of NAAt/Cr in the contralateral temporal lobe but no change in individual metabolite concentrations, GLX/Cr or GABA+/Cr compared to pre-surgery levels. DISCUSSION Temporal lobe epilepsy was associated with bilateral reduction in NAAt/Cr but not significant abnormality in GABA+/Cr or GLX/Cr. Normalization of NAAt/Cr in the contralateral temporal lobe was seen following successful ATLR.
Collapse
Affiliation(s)
- Robert J Simister
- Department of Clinical and Experimental Epilepsy, MRI Unit, The National Society for Epilepsy, The Institute of Neurology, University College London, Gerrards Cross, Bucks, UK
| | | | | | | |
Collapse
|
14
|
Single-voxel magnetic resonance spectroscopy of brain tissue adjacent to arachnoid cysts of epileptic patients. Neurologist 2008; 14:382-9. [PMID: 19008744 DOI: 10.1097/nrl.0b013e318177819c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intracranial arachnoid cysts (ACs) are usually asymptomatic, benign developmental anomalies. The most frequent clinical manifestations are cranial expansion, hydrocephaly, headache, epileptic seizures, psychomotor retardation, and aphasia. It is unknown whether there is a correlation between intracranial AC and epileptic seizures without obvious intracranial pressure signs. In vivo magnetic resonance spectroscopy is a technique used for the noninvasive investigation of the various metabolites of cerebral biochemical reactions. Magnetic resonance spectroscopy is also being used increasingly commonly in epileptogenic situations as a noninvasive technique. The purpose of this study was to evaluate the proton magnetic resonance spectroscopic pattern of the contents of tissue adjacent to AC and to determine whether there are any characteristic spectral patterns that may be helpful in evaluating whether these lesions are epileptogenic foci. In conclusion, although the number of cases was limited, this finding may be seen as indicating that there is no association between AC and epilepsy.
Collapse
|
15
|
The effect of epileptic seizures on proton MRS visible neurochemical concentrations. Epilepsy Res 2008; 81:36-43. [DOI: 10.1016/j.eplepsyres.2008.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 04/06/2008] [Accepted: 04/13/2008] [Indexed: 11/19/2022]
|
16
|
Juhász C, Asano E, Shah A, Chugani DC, Batista CEA, Muzik O, Sood S, Chugani HT. Focal decreases of cortical GABAA receptor binding remote from the primary seizure focus: what do they indicate? Epilepsia 2008; 50:240-50. [PMID: 18637829 DOI: 10.1111/j.1528-1167.2008.01721.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine the electroclinical significance and histopathological correlates of cortical gamma-aminobutyric acid(A)(GABA(A)) receptor abnormalities detected in and remote from human neocortical epileptic foci. METHODS Cortical areas with decreased(11)C-flumazenil (FMZ) binding were objectively identified on positron emission tomography (PET) images and correlated to intracranial electroencephalography (EEG) findings, clinical seizure variables, histology findings, and surgical outcome in 20 patients (mean age, 9.9 years) with intractable partial epilepsy of neocortical origin and nonlocalizing magnetic resonance imaging (MRI). RESULTS Focal decrease of cortical FMZ binding was detected in the lobe of seizure onset in 17 (85%) patients. Eleven patients (55%) had 17 remote cortical areas with decreased FMZ binding outside the lobe of seizure onset. Thirteen of those 16 (81%) of the 17 remote cortical regions that were covered by subdural EEG were around cortex showing rapid seizure spread on intracranial EEG. Remote FMZ PET abnormalities were associated with high seizure frequency and, when resected, showed gliosis in all six cases where material was available. Higher number of unresected cortical regions with decreased FMZ binding was associated with poorer surgical outcome. CONCLUSIONS Focal decreases of cortical GABA(A) receptor binding on PET may include cortical regions remote from the primary focus, particularly in patients with high seizure frequency, and these regions are commonly involved in rapid seizure propagation. Although these regions may not always need to be resected to achieve seizure freedom, a careful evaluation of cortex with decreased GABA(A) receptor binding prior to resection using intracranial EEG may facilitate optimal surgical outcome in patients with intractable neocortical epilepsy.
Collapse
Affiliation(s)
- Csaba Juhász
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan and Harper University Hospital, Detroit Medical Center, Wayne State University School of Medcine, Detroit, Michigan, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hammen T, Schwarz M, Doelken M, Kerling F, Engelhorn T, Stadlbauer A, Ganslandt O, Nimsky C, Doerfler A, Stefan H. 1H-MR spectroscopy indicates severity markers in temporal lobe epilepsy: correlations between metabolic alterations, seizures, and epileptic discharges in EEG. Epilepsia 2007; 48:263-9. [PMID: 17295619 DOI: 10.1111/j.1528-1167.2006.00856.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE In this study, hippocampal metabolite alterations in (1)H-MR spectroscopy ((1)H-MRS) were correlated to the findings of intensive video-EEG monitoring and duration of seizure symptoms in patients with temporal lobe epilepsy (TLE). METHODS The 14 patients with mesial TLE and no pathological findings in imaging were investigated by (1)H-MRS. Seizures were analyzed by: number of clinical seizures in 24 h, exact duration of clinical symptoms in 24 h, frequency of interictal epileptiform discharges (IEDs) and ictal activity, duration of ictal activity, and IEDs occurring within 24 h in intensive EEG monitoring. Pearson Correlation Coefficient (PCC) was calculated between spectral metabolite alterations and the parameters mentioned above. RESULTS In the analysis, a negative correlation was found between total (t) NAA values and degree of IEDs in EEG (p = 0.04); a positive correlation was found between Cr levels and duration of seizure symptoms registered by video monitoring (p = 0.01). CONCLUSIONS Our study shows that, in some patients, (1)H-MRS is able to refer the severity of TLE. The degree of tNAA reduction in (1)H-MRS, probably indicating neuronal dysfunction, is associated with interictal spiking in intensive EEG monitoring. Duration of seizure symptoms associated with increased Cr peaks probably reflects increased gliosis.
Collapse
Affiliation(s)
- Thilo Hammen
- Center Epilepsy Erlangen, Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Haki C, Gümüştaş OG, Bora I, Gümüştaş AU, Parlak M. Proton magnetic resonance spectroscopy study of bilateral thalamus in juvenile myoclonic epilepsy. Seizure 2007; 16:287-95. [PMID: 17391993 DOI: 10.1016/j.seizure.2007.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 10/29/2006] [Accepted: 02/20/2007] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate neuronal dysfunction in the thalami of juvenile myoclonic epilepsy (JME) by using proton magnetic resonance spectroscopy (MRS). METHODS We performed single-voxel proton MRS over the right and the left thalami of 15 consecutive patients (10 women, 5 men) with JME (mean age 20.3 years) and 16 healthy volunteers (10 women, 6 men) (mean age 24.5 years). All patients had seizure onset in late childhood-teenage, normal neurologic examination, typical electroencephalogram (EEG) of JME and normal magnetic resonance imaging (MRI). We determined N-acetylaspartate (NAA) values and NAA over creatine-phosphocreatine (Cr) values. Mann-Whitney U-test was used to evaluate group differences. RESULTS Group analysis showed that echo time (TE) 270 integral value of NAA over left thalamus were significantly decreased in JME patients as compared with controls (34.6033+/-15.8386; 48.0362+/-22.2407, respectively, P=0.019). Also group analysis showed that thalami NAA/Cr ratios were significantly decreased in JME patients (right side, 2.21+/-1.07; left side 2.00+/-0.72) as compared with controls (right side, 3.45+/-1.50; left side, 3.08+/-1.60; P=0.011 and P=0.030, respectively). CONCLUSION In the previous studies, NAA values in patients with JME found that they were not statistically lower in thalami than control group. But, in our study, NAA value was found low as well. It has been known that NAA is a neuronal marker and hence it is a valuable metabolite in the neuron physiopathology. As a result, in the patients with JME we tried to support the theory that the underlying mechanism of the generalized seizures was the abnormal thalamocortical circuity, determining the thalamic neuronal dysfunction in MRS statistically.
Collapse
Affiliation(s)
- Cemile Haki
- Department of Neurology, Uludag University Medical Faculty, Gorukle Campus, Bursa, Turkey
| | | | | | | | | |
Collapse
|
19
|
Bonilha L, Rorden C, Appenzeller S, Coan AC, Cendes F, Li LM. Gray matter atrophy associated with duration of temporal lobe epilepsy. Neuroimage 2006; 32:1070-9. [PMID: 16872843 DOI: 10.1016/j.neuroimage.2006.05.038] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/28/2006] [Accepted: 05/17/2006] [Indexed: 11/30/2022] Open
Abstract
Hippocampal sclerosis is the most common abnormality associated with medial temporal lobe epilepsy (MTLE). Converging evidence supports that hippocampal sclerosis progresses with time. However, it is unclear whether extrahippocampal atrophy in patients with MTLE, similarly to hippocampal sclerosis, is an unremitting progressive process. In this article, we investigate the relationship between duration of epilepsy and gray matter concentration reduction in patients with MTLE within and outside the hippocampus. We employed a voxel-based morphometry study of MRI of the entire brain of 36 patients with drug refractory MTLE and 49 neurologically healthy age-matched controls. We performed a voxel-based parametric and nonparametric investigation of the association between gray matter concentration, age and duration of epilepsy. We complemented the investigation by extracting the gray matter concentration of regions of interest (ROIs) within the limbic system, and we investigated the association between the gray matter concentration on the ROIs and duration of epilepsy. Patients with MTLE exhibited gray matter concentration reduction that is negatively correlated with the duration of epilepsy within the ipsilateral hippocampus, temporal lobes as well as extratemporal limbic structures that are closely connected with the hippocampus. In conclusion, longer duration of refractory epilepsy was associated with a more intense hippocampal and extrahippocampal atrophy in patients with MTLE. The mechanism of progressive neuronal damage in MTLE may be related to active seizure activity within a limbic network, and early seizure control may prevent further brain atrophy in patients with refractory MTLE.
Collapse
Affiliation(s)
- Leonardo Bonilha
- Department of Neuropsychiatry, University of South Carolina, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hammen T, Kerling F, Schwarz M, Stadlbauer A, Ganslandt O, Keck B, Tomandl B, Dörfler A, Stefan H. Identifying the affected hemisphere by (1)H-MR spectroscopy in patients with temporal lobe epilepsy and no pathological findings in high resolution MRI. Eur J Neurol 2006; 13:482-90. [PMID: 16722973 DOI: 10.1111/j.1468-1331.2006.01293.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Up to 30% of patients with temporal lobe epilepsy (TLE) remain without remarkable changes in MRI. In this study we investigated the role of (1)H-MR spectroscopy ((1)H-MRS) in lateralizing the affected hemisphere in the mentioned patient group. Twenty-two consecutive patients diagnosed with TLE were investigated by high resolution MRI and (1)H-MRS. We examined the incidence and diagnostic accuracy of temporal metabolite alterations determined by Linear Combination of Model Spectra (L C Model) via water reference. Metabolite values of each hemisphere of TLE patients were compared with healthy controls. Results of metabolite alterations were related to intensive video EEG focus localization. Reduction of N-acetylaspartate + N-acetylaspartyl-glutamate (tNAA) in the affected hemisphere revealed identification in six of nine patients (66%) with unilateral TLE. Group comparison revealed a significant reduction of tNAA (6.1+/-0.8*) in the involved temporal lobe compared with controls (6.67+/-0.4*, P=0.026). Choline levels were significantly increased in the affected hemisphere (1.42+/-0.17*) compared with healthy controls (1.22+/-0.17*, P=0.035). The results of our study show that (1)H-MRS is able to identify the affected hemisphere of MRI negative TLE patients and can be used as an additive tool in multimodal focus localization.
Collapse
Affiliation(s)
- T Hammen
- Clinics of Neurology, Epilepsy Center (ZEE), University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kobayashi E, Bagshaw AP, Bénar CG, Aghakhani Y, Andermann F, Dubeau F, Gotman J. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia 2006; 47:343-54. [PMID: 16499759 DOI: 10.1111/j.1528-1167.2006.00427.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Simultaneous EEG and functional MRI (fMRI) allows measuring metabolic changes related to interictal spikes. Our objective was to investigate blood oxygenation level-dependent (BOLD) responses to temporal lobe (TL) spikes by using EEG-fMRI recording. METHODS We studied 35 patients who had a diagnosis of temporal lobe epilepsy (TLE) and active TL spiking on routine scalp EEG recording. Two-hour sessions of continuous EEG-fMRI were recorded, and spikes were identified after offline artifact removal and used as events in the fMRI analysis. Each type of spike was analyzed separately, as one EEG-fMRI study. We determined significant (p < 0.05) positive (activation) and negative (deactivation) BOLD responses for each study. RESULTS Twenty-seven patients had spikes during scanning (19 unilateral and eight bilateral). From a total of 35 fMRI studies, 29 (83%) showed BOLD responses: 14 had both activations and deactivations; 12, activations only; and three, deactivations only. Six (17%) showed no responses. Nineteen studies had mainly neocortical TL activation: Sixteen (84%) of 19 concordant with spikes, 12 of 16 with concomitant activation of the contralateral TL, and 16 of 19 with additional extratemporal activation; few showed exclusively mesial TL activation. Seventeen studies showed deactivation, either extratemporal plus temporal (n = 8) or exclusively extratemporal (n = 9). CONCLUSIONS BOLD responses to TL spikes occurred in 83% of studies, predominated in the spiking temporal lobe, and manifested as activation or deactivation. Responses often involved the contralateral homologous cortex at the time of unilateral spikes and were frequently observed in extratemporal regions, suggesting that TL epileptic spikes can affect neuronal activity at a distance through synaptic connections.
Collapse
Affiliation(s)
- Eliane Kobayashi
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| | | | | | | | | | | | | |
Collapse
|
22
|
Flügel D, McLean MA, Simister RJ, Duncan JS. Magnetisation transfer ratio of choline is reduced following epileptic seizures. NMR IN BIOMEDICINE 2006; 19:217-22. [PMID: 16485321 DOI: 10.1002/nbm.1023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The purpose of this study was to characterise the concentration and magnetisation transfer ratio (MTR) of brain metabolites following epileptic seizures. Magnetic resonance spectroscopy was performed in 10 patients with temporal or extra-temporal lobe epilepsy as soon as possible after a seizure, with a second interictal scan between 1 and 3 days after the postictal scan and 10 healthy controls were scanned twice. Voxels (26 +/- 2 mL) were placed in the frontal lobe in all patients and controls, on the side of seizure focus in the patient group. Spectra were obtained using a modified PRESS sequence (TE 30 ms, TR 3 s, with three hard pulses offset from the water frequency by 2,500 Hz for MT presaturation). Mean metabolite concentrations and median metabolite MTRs of N-acetylaspartate (NAA), creatine, choline (Cho), myo-inositol (Ins) and glutamate plus glutamine were compared between the first and second scans in each group. A significant decrease in the MTR of Cho was seen postictally in the patient group, but the metabolite concentrations showed no significant difference between interictal and postictal scans and in the control group there was no difference between the two scans. Inter-group comparison showed significantly reduced concentrations of NAA and Ins in the patients. Reduced MTR of Cho indicates a shift from a bound to a more mobile fraction. These changes might indicate membrane perturbation in areas of seizure spread.
Collapse
Affiliation(s)
- Dominique Flügel
- The MRI Unit, National Society for Epilepsy, Chalfont St Peter, Gerrard's Cross, Bucks SL9 0RJ, UK
| | | | | | | |
Collapse
|
23
|
Guye M, Ranjeva JP, Le Fur Y, Bartolomei F, Confort-Gouny S, Regis J, Chauvel P, Cozzone PJ. 1H-MRS imaging in intractable frontal lobe epilepsies characterized by depth electrode recording. Neuroimage 2005; 26:1174-83. [PMID: 15878676 DOI: 10.1016/j.neuroimage.2005.03.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 02/28/2005] [Accepted: 03/09/2005] [Indexed: 12/20/2022] Open
Abstract
Presurgical evaluation of frontal lobe epilepsy (FLE) remains a challenging issue and frequently requires invasive depth electrode recording. In this study, we aimed at evaluating the potential usefulness of a non-invasive technique such as proton magnetic resonance spectroscopic imaging ((1)H-MRSI) in the presurgical evaluation of FLE and at investigating the potential electrophysiological correlates of the metabolic disturbances as defined by (1)H-MRSI. We compared the distribution of (1)H-MRSI abnormalities with the electrophysiological abnormalities defined by stereo-electroencephalography (SEEG) recording in 12 patients presenting with several subtypes of FLE. We also used 12 control subjects in order to obtain normative (1)H-MRSI data. We used a multilevel (1)H-MRSI protocol to better sample the principal regions of the frontal lobe. We also applied a metabolic mapping technique allowing a visual display of metabolic data. A significant decrease of both N-acetyl-aspartate/phosphocreatine-creatine and N-acetyl-aspartate/(choline-compounds + phosphocreatine-creatine) ratios was observed in regions involved in the epileptogenic zone (EZ) and/or the irritative zone (IZ) compared to regions without electrical abnormalities in the same patients (P = 0.044 and P = 0.018, respectively), and also compared to controls (P = 0.004 and P = 0.0001, respectively). No significant differences in metabolic ratios were observed between those regions involved in the EZ and those involved in the IZ only. Our results suggest a link between the relative decrease of N-acetyl-aspartate and the EZ as well as the IZ in FLE. Thus, multilevel (1)H-MRSI protocol may add pertinent information during the non-invasive presurgical evaluation of FLE.
Collapse
Affiliation(s)
- M Guye
- Service de Neurophysiologie Clinique et Laboratoire de Neurophysiologie et Neuropsychologie, INSERM EMI 9926, Faculté de Médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille cedex 05, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Spencer DC, Szumowski J, Kraemer DF, Wang PY, Burchiel KJ, Spielman DM. Temporal lobe magnetic resonance spectroscopic imaging following selective amygdalohippocampectomy for treatment-resistant epilepsy. Acta Neurol Scand 2005; 112:6-12. [PMID: 15932349 DOI: 10.1111/j.1600-0404.2005.00439.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Magnetic resonance spectroscopic imaging (MRSI) may show circumscribed or extensive decreased brain N-acetyl aspartate (NAA)/creatine and phosphocreatine (Cr) in epilepsy patients. We compared temporal lobe MRSI in patients seizure-free (SzF) or with persistent seizures (PSz) following selective amygdalohippocampectomy (SAH) for medically intractable mesial temporal lobe epilepsy (mTLE). We hypothesized that PSz patients had more extensive temporal lobe metabolite abnormalities than SzF patients. MATERIALS AND METHODS MRSI was used to study six regions of interest (ROI) in the bilateral medial and lateral temporal lobes in 14 mTLE patients following SAH and 11 controls. RESULTS PSz patients had more temporal lobe ROI with abnormally low NAA/Cr than SzF patients, including the unoperated hippocampus and ipsilateral lateral temporal lobe. CONCLUSION Postoperative temporal lobe MRSI abnormalities are more extensive if surgical outcome following SAH is poor. MRSI may be a useful tool to improve selection of appropriate candidates for SAH by identifying patients requiring more intensive investigation prior to epilepsy surgery. Future prospective studies are needed to evaluate the utility of MRSI, a predictor of successful outcome following SAH.
Collapse
Affiliation(s)
- D C Spencer
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Grant AC, Henry TR, Fernandez R, Hill MA, Sathian K. Somatosensory processing is impaired in temporal lobe epilepsy. Epilepsia 2005; 46:534-9. [PMID: 15816947 DOI: 10.1111/j.0013-9580.2005.54604.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Growing evidence suggests that temporal lobe epilepsy (TLE) is a network disease. In this view, the seizure focus may produce measurable deficits in specific cortical functions. METHODS A tactile grating orientation (GrOr) discrimination task associated with parietal lobe function was administered at the index fingertip to 15 subjects with medically intractable TLE and to 19 neurologically normal controls. TLE subjects were tested bilaterally at baseline while taking their usual antiepileptic drugs (AEDs), and off AEDs during inpatient video-EEG monitoring (n = 9). Three subjects also were tested after temporal lobectomy. t Tests were used to compare baseline performance between TLE subjects and controls, and between hands ipsilateral and contralateral to side of seizure onset, with Bonferroni correction for multiple comparisons. TLE subjects' baseline thresholds were compared with those obtained off AEDs by using a repeated measures analysis of variance. RESULTS TLE subjects were severely impaired bilaterally on the GrOr task, with mean discrimination thresholds nearly twice those of controls (p </= 0.001 for each hand). No significant difference was found in baseline performance between hands (p = 0.37), or between baseline and off-AED testing (p = 0.42). The three subjects tested after temporal lobectomy demonstrated improved performance compared with baseline, but statistics were not performed because of the small subject number. CONCLUSIONS Patients with medically intractable TLE have impaired tactile GrOr discrimination bilaterally that is not due to nonspecific effects of AEDs. This impaired perceptual ability may be reversible with surgical removal of the seizure focus.
Collapse
Affiliation(s)
- Arthur C Grant
- Department of Neurology, University of California, Irvine, Irvine, California, USA.
| | | | | | | | | |
Collapse
|
26
|
Mueller SG, Laxer KD, Cashdollar N, Flenniken DL, Matson GB, Weiner MW. Identification of abnormal neuronal metabolism outside the seizure focus in temporal lobe epilepsy. Epilepsia 2004; 45:355-66. [PMID: 15030498 PMCID: PMC2744694 DOI: 10.1111/j.0013-9580.2004.27603.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE The aim of this study was to identify metabolically abnormal extrahippocampal brain regions in patients with temporal lobe epilepsy with (TLE-MTS) and without (TLE-no) magnetic resonance imaging (MRI) evidence for mesial-temporal sclerosis (MTS) and to assess their value for focus lateralization by using multislice 1H magnetic resonance spectroscopic imaging (MRSI). METHODS MRSI in combination with tissue segmentation was performed on 14 TLE-MTS and seven TLE-no and 12 age-matched controls. In controls, N-acetylaspartate/(creatine + choline) [NAA/(Cr+Cho)] of all voxels of a given lobe was expressed as a function of white matter content to determine the 95% prediction interval for any additional voxel of a given tissue composition. Voxels with NAA/(Cr+Cho) below the lower limit of the 95% prediction interval were defined as "pathological" in patients and controls. Z-scores were used to identify regions with a higher percentage of pathological voxels than those in controls. RESULTS Reduced NAA/(Cr+Cho) was found in ipsilateral temporal and parietal lobes and bilaterally in insula and frontal lobes. Temporal abnormalities identified the epileptogenic focus in 70% in TLE-MTS and 83% of TLE-no. Extratemporal abnormalities identified the epileptogenic focus in 78% of TLE-MTS but in only 17% of TLE-no. CONCLUSIONS TLE is associated with extrahippocampal reductions of NAA/(Cr+Cho) in several lobes consistent with those brain areas involved in seizure spread. Temporal and extratemporal NAA/(Cr+Cho) reductions might be helpful for focus lateralization.
Collapse
Affiliation(s)
- Suzanne G Mueller
- Department of Veterans Affairs Medical Center, Magnetic Resonance Spectroscopy Unit, California Pacific Medical Center, Pacific Epilespy Program, University of California, San Francisco, 94115, USA
| | | | | | | | | | | |
Collapse
|
27
|
Brown ES, J Woolston D, Frol A, Bobadilla L, Khan DA, Hanczyc M, Rush AJ, Fleckenstein J, Babcock E, Cullum CM. Hippocampal volume, spectroscopy, cognition, and mood in patients receiving corticosteroid therapy. Biol Psychiatry 2004; 55:538-45. [PMID: 15023583 DOI: 10.1016/j.biopsych.2003.09.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 09/19/2003] [Accepted: 09/24/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND Hippocampal volume reduction, declarative memory deficits, and cortisol elevations are reported in persons with major depressive disorder; however, data linking cortisol elevations with hippocampal atrophy are lacking. Prescription corticosteroid-treated patients offer an opportunity to examine corticosteroid effects on hippocampal volume and biochemistry and memory in humans. METHODS Seventeen patients on long-term prescription corticosteroid therapy and 15 controls of similar age, gender, ethnicity, education, height, and medical history were assessed with magnetic resonance imaging and proton magnetic resonance spectroscopy, the Rey Auditory Verbal Learning Test, Stroop Color Word Test and other neurocognitive measures, the Hamilton Rating Scale for Depression, Young Mania Rating Scale, and Brief Psychiatric Rating Scale. RESULTS Compared with controls, corticosteroid-treated patients had smaller hippocampal volumes and lower N-acetyl aspartate ratios, lower scores on the Rey Auditory Verbal Learning Test and Stroop Color Word Test, and higher Hamilton Rating Scale for Depression and Brief Psychiatric Rating Scale scores. CONCLUSIONS Patients receiving chronic corticosteroid therapy have smaller hippocampal volumes, lower N-acetyl aspartate ratios, and declarative memory deficits compared with controls. These findings support the idea that corticosteroid exposure appears to be associated with changes in hippocampal volume and functioning in humans.
Collapse
Affiliation(s)
- E Sherwood Brown
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8849, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shih JJ, Weisend MP, Lewine J, Sanders J, Dermon J, Lee R. Areas of Interictal Spiking Are Associated with Metabolic Dysfunction in MRI‐negative Temporal Lobe Epilepsy. Epilepsia 2004; 45:223-9. [PMID: 15009223 DOI: 10.1111/j.0013-9580.2004.13503.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The objective of our study was to determine noninvasively whether metabolic dysfunction is present in focal areas of interictal electrophysiologic abnormality and whether metabolic dysfunction correlates with frequency of spiking. METHODS We used a prospective, power analysis-driven, age-matched design to study 20 subjects with nonlesional temporal lobe epilepsy by using magnetoencephalography (MEG) and proton magnetic resonance spectroscopy (1H-MRS). MEG was used to localize the source area of interictal spikes. 1H-MRS measured integrated peak areas for N-acetyl compounds (NAA) and choline-containing compounds (Cho) in both hippocampi, the MEG spike zone, and the region contralateral to the MEG spike zone in all subjects. 1H-MRS was performed in seven controls. RESULTS Fifteen of 20 subjects had a lower NAA/Cho ratio in the MEG spike zone compared with the contralateral homologous region. NAA/Cho was significantly decreased in the MEG spike zone (p < 0.01). NAA/Cho ratios were not significantly different between the hippocampus ipsilateral and contralateral to the spike activity, or from control hippocampi. NAA/Cho ratios did not correlate with spike frequency. CONCLUSIONS Metabolic dysfunction is present in focal areas of interictal spiking in nonlesional temporal lobe epilepsy. These findings confirm that functional abnormalities can be detected in vivo in radiographically normal-appearing cortex exhibiting abnormal excitability.
Collapse
Affiliation(s)
- Jerry J Shih
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque 87131-0001, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Feichtinger M, Holl A, Körner E, Schröttner O, Eder H, Unger F, Pendl G, Wurst L, Golaszewski S, Payer F, Fazekas F, Ott E. Future aspects of the presurgical evaluation in epilepsy. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 84:17-26. [PMID: 12379001 DOI: 10.1007/978-3-7091-6117-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Epilepsy surgery is a successful therapeutic approach in patients with medically intractable epilepsy. The presurgical evaluation aims to detect the epileptogenic brain area by use of different diagnostic techniques. In this review article the current diagnostic procedures applied for this purpose are described. The diagnostic armamentarium can be divided conceptually into three different groups: assessment of function/dysfunction, structural/morphologic imaging methods and functional neuroimaging techniques. Properties, diagnostic power and limits of all diagnostic tools used in the diagnostic evaluation are discussed. In addition, future perspectives and the diagnostic value of new technologies are mentioned. Some are increasingly gaining acceptance in the routine preoperative diagnostic procedure like MR volumetry or MR spectroscopy of the hippocampus in patients with temporal lobe epilepsy. Some, on the other hand, like MEG and 11C-flumazenil PET, still remain experimental diagnostic tools as they are technically demanding and cost intensive. Besides the refinement of established techniques, co-registration of different modalities like spike-triggered functional MRI will play an important role in the non-invasive detection of the epileptic seizure focus and may change the regimen of the preoperative diagnostic work up of epilepsy patients in the future.
Collapse
Affiliation(s)
- M Feichtinger
- Department of Neurology, Karl-Franzens University, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lundberg S, Weis J, Eeg-Olofsson O, Raininko R. Hippocampal region asymmetry assessed by 1H-MRS in rolandic epilepsy. Epilepsia 2003; 44:205-10. [PMID: 12558575 DOI: 10.1046/j.1528-1157.2003.26802.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE In a previous study, we reported hippocampal abnormalities on magnetic resonance imaging (MRI) in six of 18 children with rolandic epilepsy (RE). In this study, metabolic changes were analyzed in the hippocampal region with proton magnetic resonance spectroscopy (1H-MRS). METHODS In 13 children with electroclinically typical RE and 15 healthy controls, 1H-MRS results of both hippocampal regions were analyzed. The voxels, 2 x 2 x 4-cm each, were placed to include the head and body of the hippocampus. A PRESS sequence with TR 2,000 ms and TE 32 ms was used. Total N-acetylaspartate (tNAA), glutamine and glutamate (Glx), and choline compounds (tCho) were related to total creatine (tCr), and asymmetry indices (AIs) were calculated. MRI was performed in all 13 patients and in 13 controls. RESULTS The tNAA/tCr AI of the hippocampal region was significantly higher in children with RE than in control children (z = 4.49; p < 0.001). The AIs of Glx/tCr and tCho/tCr did not show a significant difference between the groups. Lateralization of the interictal epileptiform activity corresponded with the lower tNAA/tCr ratio in 10 of 13 patients. MRI revealed a hippocampal asymmetry in four of 13 in the RE group, three of them showed concordance between the lateralization of the lower tNAA/tCr ratio and the smaller hippocampus. In the control group, a subtle asymmetry in four of 13 children was found. CONCLUSIONS A significant asymmetry of the hippocampal regions, measured by tNAA/tCr ratios, indicates an abnormal neuronal function in children with RE.
Collapse
Affiliation(s)
- Staffan Lundberg
- Department of Women's and Children's Health, Section for Pediatrics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
31
|
Vermathen P, Laxer KD, Schuff N, Matson GB, Weiner MW. Evidence of neuronal injury outside the medial temporal lobe in temporal lobe epilepsy: N-acetylaspartate concentration reductions detected with multisection proton MR spectroscopic imaging--initial experience. Radiology 2003; 226:195-202. [PMID: 12511690 PMCID: PMC2753262 DOI: 10.1148/radiol.2261011668] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine whether magnetic resonance (MR) spectroscopic imaging reveals metabolic changes, especially decreased N-acetylaspartate (NAA) concentrations outside the medial temporal lobe in patients with mesial temporal lobe epilepsy (TLE), consistent with neuropathologic findings of extratemporal neuronal impairment. MATERIALS AND METHODS Eleven patients with mesial TLE and 13 control subjects were examined with multisection MR spectroscopic imaging. Three MR spectroscopic imaging sections were acquired. Thirteen brain regions in each hemisphere and the midbrain were analyzed in each patient, and the NAA to creatine-phosphocreatine (Cr) plus choline-containing compounds (Ch) (NAA/[Cr + Ch]) ratios were determined. In addition, hemispheric and whole-brain values were calculated and statistically analyzed. RESULTS The NAA/(Cr + Ch) ratio in the ipsilateral hippocampus was significantly reduced, compared with that in the contralateral hippocampus (P <.002) and compared with that in control subjects (P <.03), confirming findings in previous studies. In patients, whole-brain NAA/(Cr + Ch) ratio outside the hippocampus was significantly lower than that in control subjects (P <.002). For the ipsilateral hemisphere in patients, NAA/(Cr + Ch) ratio was significantly lower than that in control subjects (P <.0002). Comparisons between individual brain regions revealed trends toward lower NAA/(Cr + Ch) ratios in many areas of the ipsilateral and, to a lesser extent, the contralateral hemisphere outside the hippocampus and temporal lobe, suggesting diffuse impairment. CONCLUSION Results suggest that repeated seizure activity damages neurons outside of the seizure focus.
Collapse
Affiliation(s)
- Peter Vermathen
- MR Unit, Department of Veterans Affairs Medical Center, University of California, San Francisco, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Neuroimaging is one of the most important advances made in the past decade in the management of seizure disorders. Magnetic resonance imaging (MRI) has increased substantially the ability to detect causes of seizure disorders, to plan medical or surgical therapy, and to prognosticate the outcome of disorders and therapy. However, MRI must be performed with techniques that will maximize the detection of potentially epileptogenic lesions, especially in candidates for epilepsy surgery. Functional imaging has an established role in evaluating patients for epilepsy surgery. It is relied on when results from standard diagnostic methods, such as clinical information, electroencephalography, and MRI, are insufficient to localize the seizure focus. Also, functional imaging is a reportedly reliable alternative to invasive methods for identifying language, memory, and sensorimotor areas of the cerebral cortex. Despite the availability of multimodality imaging, the epileptogenic zone is not determined solely by a single imaging modality. Evidence and experience have shown that concordance of results from clinical, electrophysiologic, and neuroimaging studies is needed to identify the epileptogenic zone accurately. With modern techniques in image processing, multimodality imaging can integrate the location of abnormal electroencephalographic, structural, and functional imaging foci on a "map" of the patient's brain. Computer image-guided surgery allows surgically exact implantation of intracranial electrodes and resection of abnormal structural or functional imaging foci. These techniques decrease the risk of morbidity associated with epilepsy surgery and enhance the probability of postsurgical seizure control.
Collapse
Affiliation(s)
- Elson L So
- Department of Neurology, Mayo Clinic, Rochester, Minn 55905, USA
| |
Collapse
|
33
|
Mueller SG, Suhy J, Laxer KD, Flenniken DL, Axelrad J, Capizzano AA, Weiner MW. Reduced extrahippocampal NAA in mesial temporal lobe epilepsy. Epilepsia 2002; 43:1210-6. [PMID: 12366737 PMCID: PMC2753247 DOI: 10.1046/j.1528-1157.2002.10802.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Structural and metabolic abnormalities in the hippocampal region in medial temporal lobe epilepsy (mTLE) are well described; less is known about extrahippocampal changes. This study was designed to characterize extrahippocampal metabolic abnormalities in mTLE with magnetic resonance spectroscopy in combination with tissue segmentation and volumetry of gray and white matter. METHODS Multislice magnetic resonance spectroscopic imaging (1H-MRSI) in combination with tissue segmentation was performed on 16 patients with mTLE and 12 age-matched healthy volunteers. The data were analyzed by using a regression-analysis model that estimated the metabolite concentrations in 100% cortical gray and 100% white matter in the frontal lobe and nonfrontal brain. The segmented image was used to calculate the fraction of gray and white matter in these regions. RESULTS mTLE had significantly lower N-acetyl aspartate (NAA) in ipsi- and contralateral frontal gray (p = 0.03) and in ipsi- and contralateral nonfrontal white matter (p = 0.008) compared with controls. Although there were no associated volumetric deficits in frontal gray and white matter, ipsilateral nonfrontal gray matter (p = 0.003) was significantly smaller than that in controls. CONCLUSIONS mTLE is associated with extrahippocampal metabolic abnormalities and volumetric deficits, but these do not necessarily affect the same regions.
Collapse
Affiliation(s)
- Susanne G Mueller
- Department of Veterans Affairs (DVA) Medical Center, Magnetic Resonance Spectroscopy Unit, University of California San Francisco, California 94143-0138, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Guye M, Le Fur Y, Confort-Gouny S, Ranjeva JP, Bartolomei F, Régis J, Raybaud CA, Chauvel P, Cozzone PJ. Metabolic and electrophysiological alterations in subtypes of temporal lobe epilepsy: a combined proton magnetic resonance spectroscopic imaging and depth electrodes study. Epilepsia 2002; 43:1197-209. [PMID: 12366736 DOI: 10.1046/j.1528-1157.2002.05102.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE This study compared the metabolic regional alterations, characterized by proton magnetic spectroscopic imaging ((1)H-MRSI), with electrophysiological abnormalities recorded by using depth electrodes and with structural lesions, in patients with several subtypes of temporal lobe epilepsy (TLE). METHODS Twenty-five subjects were investigated, including 15 controls and 10 patients with drug-resistant unilateral TLE, nine of whom had structural abnormalities identified by MRI. All patients underwent noninvasive presurgical evaluation and then stereoelectroencephalography (SEEG). We performed an original metabolic exploration combining two (1)H-MRS imaging acquisitions associated with two single-voxel acquisitions (temporal poles) to map the most informative regions of interest (ROIs) including mesial and neocortical localizations. The N-acetyl aspartate/(choline+creatine) ratio was chosen as a metabolic index. SEEG analysis allowed the classification of each ROI as electrically normal or abnormal (i.e., involved in ictal and/or interictal discharges). Groups were compared by using a nonparametric Mann-Whitney U test. RESULTS N-Acetyl aspartate/(choline+creatine) was significantly lower in all regions involved in SEEG electrophysiological epileptic abnormalities than in controls (p < 0.05). In contrast, the regions without any electrophysiological abnormalities were not metabolically different from those in controls (p > 0.05) except in one ROI. No differences between the metabolic profiles of epileptogenic and irritative zones were found. The metabolic alterations included, but also extended beyond, the lesions. The presence of metabolic abnormalities in mesial structures was not specific for the mesial subtype and generally extended outside the mesial structures. CONCLUSIONS These results indicate that metabolic abnormalities are linked to ictal and interictal epileptiform activities rather than to structural alterations in TLE.
Collapse
Affiliation(s)
- Maxime Guye
- Service de Neurophysiologie Clinique and Laboratoire de Neurophysiologie et Neuropsychologie, EMI-U INSERM 9926, Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Simister RJ, Woermann FG, McLean MA, Bartlett PA, Barker GJ, Duncan JS. A short-echo-time proton magnetic resonance spectroscopic imaging study of temporal lobe epilepsy. Epilepsia 2002; 43:1021-31. [PMID: 12199727 DOI: 10.1046/j.1528-1157.2002.50701.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE We used short-echo-time proton magnetic resonance spectroscopy imaging (MRSI) to study metabolite concentration variation through the temporal lobe in patients with temporal lobe epilepsy (TLE) with and without abnormal MRI. METHODS MRSI was performed at TE = 30 ms to study 10 control subjects, 10 patients with TLE and unilateral hippocampal sclerosis, and 10 patients with TLE and unremarkable MRI (MRI negative). We measured the concentrations of N-acetyl aspartate +N-acetyl aspartyl-glutamate (NAAt), creatine (Cr), choline (Cho), glutamate + glutamine (Glx), and myoinositol, in the anterior, middle, and posterior medial temporal lobe (MTL), and in the posterior lateral temporal lobe. Segmented volumetric T1-weighted MRIs gave the tissue composition of each MRSI voxel. Normal ranges were defined as the control mean +/- 3 SD. RESULTS In the hippocampal sclerosis group, seven of 10 had abnormally low NAAt in the ipsilateral anterior MTL. In the MRI-negative group, four of 10 had low NAAt in the middle MTL voxel ipsilateral to seizure onset. Metabolite ratios were less sensitive to abnormality than was the NAAt concentration. Group analysis showed low NAAt, Cr, and Cho in the anterior MTL in hippocampal sclerosis. Glx was elevated in the anterior voxel contralateral to seizure onset in the MRI-negative group. Metabolite concentrations were influenced by voxel position and tissue composition. CONCLUSIONS (a) Low NAAt, Cr, and Cho were features of the anterior sclerotic hippocampus, whereas low NAAt was observed in the MRI-negative group in the middle MTL region. The posterior temporal lobe regions were not associated with significant metabolite abnormality; (b) The two patient groups demonstrated different metabolite profiles across the temporal lobe, with elevated Glx a feature of the MRI-negative group; and (c) Voxel tissue composition and position influenced obtained metabolite concentrations.
Collapse
Affiliation(s)
- Robert J Simister
- MRI Unit, The National Society for Epilepsy and The Department of Clinical and Experimental Epilepsy, and NMR Research Unit, Department of Neuroinflammation, Institute of Neurology, University College London, England
| | | | | | | | | | | |
Collapse
|
36
|
Cendes F, Knowlton R, Novotny E, Min L, Antel S, Sawrie S, Laxer K, Arnold D. Magnetic Resonance Spectroscopy in Epilepsy: Clinical Issues. Epilepsia 2002. [DOI: 10.1046/j.1528-1157.2002.043s1032.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|