1
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
2
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
3
|
Zeng X, Hu K, Chen L, Zhou L, Luo W, Li C, Zong W, Chen S, Gao Q, Zeng G, Jiang D, Li X, Zhou H, Ouyang DS. The Effects of Ginsenoside Compound K Against Epilepsy by Enhancing the γ-Aminobutyric Acid Signaling Pathway. Front Pharmacol 2018; 9:1020. [PMID: 30254585 PMCID: PMC6142013 DOI: 10.3389/fphar.2018.01020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/22/2018] [Indexed: 01/15/2023] Open
Abstract
The imbalance between the GABA-mediated inhibition and the glutamate-mediated excitation is the primary pathological mechanism of epilepsy. GABAergic and glutamatergic neurotransmission have become the most important targets for controlling epilepsy. Ginsenoside compound K (GCK) is a main metabolic production of the ginsenoside Rb1, Rb2, and Rc in the intestinal microbiota. Previous studies show that GCK promoted the release of GABA from the hippocampal neurons and enhanced the activity of GABAA receptors. GCK is shown to reduce the expression of NMDAR and to attenuate the function of the NMDA receptors in the brain. The anti-seizure effects of GCK have not been reported so far. Therefore, this study aimed to investigate the effects of GCK on epilepsy and its potential mechanism. The rat model of seizure or status epilepticus (SE) was established with either Pentylenetetrazole or Lithium chloride-pilocarpine. The Racine's scale was used to evaluate seizure activity. The levels of the amino acid neurotransmitters were detected in the pilocarpine-induced epileptic rats. The expression levels of GABAARα1, NMDAR1, KCC2, and NKCC1 protein in the hippocampus were determined via western blot or immunohistochemistry after SE. We found that GCK had deceased seizure intensity and prolonged the latency of seizures. GCK increased the contents of GABA, while the contents of glutamate remained unchanged. GCK enhanced the expression of GABAARα1 in the brain and exhibited a tendency to decrease the expression of NMDAR1 protein in the hippocampus. The expression of KCC2 protein was elevated by the treatment of GCK after SE, while the expression of NKCC1 protein was reversely down-regulated. These findings suggested that GCK exerted anti-epileptic effects by promoting the hippocampal GABA release and enhancing the GABAAR-mediated inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lulu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Chaopeng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wenjing Zong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Siyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qing Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Dejian Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dong-Sheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
4
|
Szyndler J, Maciejak P, Kołosowska K, Chmielewska N, Skórzewska A, Daszczuk P, Płaźnik A. Altered expression of GABA-A receptor subunits in the hippocampus of PTZ-kindled rats. Pharmacol Rep 2018; 70:14-21. [DOI: 10.1016/j.pharep.2017.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023]
|
5
|
Zolpidem is a potent stoichiometry-selective modulator of α1β3 GABAA receptors: evidence of a novel benzodiazepine site in the α1-α1 interface. Sci Rep 2016; 6:28674. [PMID: 27346730 PMCID: PMC4921915 DOI: 10.1038/srep28674] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Zolpidem is not a typical GABAA receptor hypnotic. Unlike benzodiazepines, zolpidem modulates tonic GABA currents in the rat dorsal motor nucleus of the vagus, exhibits residual effects in mice lacking the benzodiazepine binding site, and improves speech, cognitive and motor function in human patients with severe brain injury. The receptor by which zolpidem mediates these effects is not known. In this study we evaluated binary α1β3 GABAA receptors in either the 3α1:2β3 or 2α1:3β3 subunit stoichiometry, which differ by the existence of either an α1-α1 interface, or a β3-β3 interface, respectively. Both receptor stoichiometries are readily expressed in Xenopus oocytes, distinguished from each other by using GABA, zolpidem, diazepam and Zn2+. At the 3α1:2β3 receptor, clinically relevant concentrations of zolpidem enhanced GABA in a flumazenil-sensitive manner. The efficacy of diazepam was significantly lower compared to zolpidem. No modulation by either zolpidem or diazepam was detected at the 2α1:3β3 receptor, indicating that the binding site for zolpidem is at the α1-α1 interface, a site mimicking the classical α1-γ2 benzodiazepine site. Activating α1β3 (3α1:2β3) receptors may, in part, mediate the physiological effects of zolpidem observed under distinct physiological and clinical conditions, constituting a potentially attractive drug target.
Collapse
|
6
|
Developmental pharmacology of benzodiazepines under normal and pathological conditions. Epileptic Disord 2016; 16 Spec No 1:S59-68. [PMID: 25335485 DOI: 10.1684/epd.2014.0690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Benzodiazepines are allosteric agonists of GABAA receptors (GABAAR), pentameric ligand-gated Cl(-) channels, which serve both an important neurodevelopmental role but are also the principal inhibitory system in the brain. However, their subunit composition, channel properties, and function, as well as their region-specific expression patterns, change through development. These processes have been extensively studied in rodents and to some extent confirmed in higher species. Specifically, GABAARs acquire faster kinetics with age and their pharmacology changes rendering them more sensitive to drugs that have higher affinity for α1 subunit-containing GABAARs, such as benzodiazepines, but also, their inhibitory function becomes more potent as they shift from having depolarising to hyperpolarising responses due to a shift in Cl(-) gradient and cation chloride cotransporter expression. Concerns have been raised about possible pro-apoptotic and paradoxical effects of benzodiazepines in the neonatal normal rat brain, although it is unclear, as yet, whether this extends to brains exposed to seizures. Growing evidence indicates that the pharmacology and physiology of GABAARs may be altered in the brain of rats or humans with seizures or epilepsy, or different aetiologies that predispose to epilepsy. These changes follow different paths, depending on sex, age, region, cell type, aetiology, or time-point specific factors. Identification of dynamic biomarkers that could enable these changes in vivo to be monitored would greatly facilitate the selection of more effective agonists with fewer side effects.
Collapse
|
7
|
Wolfart J, Laker D. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 2015; 6:168. [PMID: 26124723 PMCID: PMC4467176 DOI: 10.3389/fphys.2015.00168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 01/16/2023] Open
Abstract
Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies.
Collapse
Affiliation(s)
- Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| | - Debora Laker
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
8
|
Akman O, Moshé SL, Galanopoulou AS. Early life status epilepticus and stress have distinct and sex-specific effects on learning, subsequent seizure outcomes, including anticonvulsant response to phenobarbital. CNS Neurosci Ther 2014; 21:181-92. [PMID: 25311088 DOI: 10.1111/cns.12335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/25/2022] Open
Abstract
AIMS Neonatal status epilepticus (SE) is often associated with adverse cognitive and epilepsy outcomes. We investigate the effects of three episodes of kainic acid-induced SE (3KA-SE) and maternal separation in immature rats on subsequent learning, seizure susceptibility, and consequences, and the anticonvulsant effects of phenobarbital, according to sex, type, and age at early life (EL) event. METHODS 3KA-SE or maternal separation was induced on postnatal days (PN) 4-6 or 14-16. Rats were tested on Barnes maze (PN16-19), or lithium-pilocarpine SE (PN19) or flurothyl seizures (PN32). The anticonvulsant effects of phenobarbital (20 or 40 mg/kg/rat, intraperitoneally) pretreatment were tested on flurothyl seizures. FluoroJadeB staining assessed hippocampal injury. RESULTS 3KA-SE or separation on PN4-6 caused more transient learning delays in males and did not alter lithium-pilocarpine SE latencies, but aggravated its outcomes in females. Anticonvulsant effects of phenobarbital were preserved and potentiated in specific groups depending on sex, type, and age at EL event. CONCLUSIONS Early life 3KA-SE and maternal separation cause more but transient cognitive deficits in males but aggravate the consequences of subsequent lithium-pilocarpine SE in females. In contrast, on flurothyl seizures, EL events showed either beneficial or no effect, depending on gender, type, and age at EL events.
Collapse
Affiliation(s)
- Ozlem Akman
- Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | | | | |
Collapse
|
9
|
Akman O, Moshé SL, Galanopoulou AS. Sex-specific consequences of early life seizures. Neurobiol Dis 2014; 72 Pt B:153-66. [PMID: 24874547 DOI: 10.1016/j.nbd.2014.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/17/2014] [Indexed: 12/29/2022] Open
Abstract
Seizures are very common in the early periods of life and are often associated with poor neurologic outcome in humans. Animal studies have provided evidence that early life seizures may disrupt neuronal differentiation and connectivity, signaling pathways, and the function of various neuronal networks. There is growing experimental evidence that many signaling pathways, like GABAA receptor signaling, the cellular physiology and differentiation, or the functional maturation of certain brain regions, including those involved in seizure control, mature differently in males and females. However, most experimental studies of early life seizures have not directly investigated the importance of sex on the consequences of early life seizures. The sexual dimorphism of the developing brain raises the question that early seizures could have distinct effects in immature females and males that are subjected to seizures. We will first discuss the evidence for sex-specific features of the developing brain that could be involved in modifying the susceptibility and consequences of early life seizures. We will then review how sex-related biological factors could modify the age-specific consequences of induced seizures in the immature animals. These include signaling pathways (e.g., GABAA receptors), steroid hormones, growth factors. Overall, there are very few studies that have specifically addressed seizure outcomes in developing animals as a function of sex. The available literature indicates that a variety of outcomes (histopathological, behavioral, molecular, epileptogenesis) may be affected in a sex-, age-, region-specific manner after seizures during development. Obtaining a better understanding for the gender-related mechanisms underlying epileptogenesis and seizure comorbidities will be necessary to develop better gender and age appropriate therapies.
Collapse
Affiliation(s)
- Ozlem Akman
- Department of Physiology, Faculty of Medicine, Istanbul Bilim University, 34394 Istanbul, Turkey.
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
10
|
How is homeostatic plasticity important in epilepsy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:123-31. [PMID: 25012372 DOI: 10.1007/978-94-017-8914-1_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Maintaining physiological variables within narrow operating limits by homeostatic mechanisms is a fundamental property of most if not all living cells and organisms. In recent years, research from many laboratories has shown that the activity of neurons and neural circuits are also homeostatically regulated. Here, we attempt to apply concepts of homeostasis in general, and more specifically synaptic homeostatic plasticity, to the study of epilepsy. We hypothesize that homeostatic mechanisms are actively engaged in the epileptic brain. These processes attempt to re-establish normal neuronal and network activity, but are opposed by the concurrent mechanisms underlying epileptogenesis. In forms of intractable epilepsy, seizures are so frequent and intense that homeostatic mechanisms are unable to restore normal levels of neuronal activity. In such cases, we contend that homeostatic plasticity mechanisms nevertheless remain active. However, their continuing attempts to reset neuronal activity become maladaptive and results in dyshomeostasis with neurobehavioral consequences. Using the developing hippocampus as a model system, we briefly review experimental results and present a series of arguments to propose that the cognitive neurobehavioral comorbidities of childhood epilepsy result, at least in part, from unchecked homeostatic mechanisms.
Collapse
|
11
|
Greenfield LJ. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 2013; 22:589-600. [PMID: 23683707 PMCID: PMC3766376 DOI: 10.1016/j.seizure.2013.04.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 02/09/2023] Open
Abstract
The GABAA receptor (GABAAR) is a major target of antiseizure drugs (ASDs). A variety of agents that act at GABAARs s are used to terminate or prevent seizures. Many act at distinct receptor sites determined by the subunit composition of the holoreceptor. For the benzodiazepines, barbiturates, and loreclezole, actions at the GABAAR are the primary or only known mechanism of antiseizure action. For topiramate, felbamate, retigabine, losigamone and stiripentol, GABAAR modulation is one of several possible antiseizure mechanisms. Allopregnanolone, a progesterone metabolite that enhances GABAAR function, led to the development of ganaxolone. Other agents modulate GABAergic "tone" by regulating the synthesis, transport or breakdown of GABA. GABAAR efficacy is also affected by the transmembrane chloride gradient, which changes during development and in chronic epilepsy. This may provide an additional target for "GABAergic" ASDs. GABAAR subunit changes occur both acutely during status epilepticus and in chronic epilepsy, which alter both intrinsic GABAAR function and the response to GABAAR-acting ASDs. Manipulation of subunit expression patterns or novel ASDs targeting the altered receptors may provide a novel approach for seizure prevention.
Collapse
Affiliation(s)
- L John Greenfield
- Dept. of Neurology, University of Arkansas for Medical Sciences, 4301W. Markham St., Slot 500, Little Rock, AR 72205, United States.
| |
Collapse
|
12
|
Abstract
The human brain is a tremendously complex and still enigmatic three-dimensional structure, composed of countless interconnected neurons and glia. The temporal evolution of the brain throughout life provides a fourth dimension, one that influences every element of the brain's function in health and disease. This temporal evolution contributes to the probability of seizure generation and to the type and the nature of these seizures. The age-specific properties of the brain also influence the consequences of seizures on neuronal structure and behavior. These, in turn, govern epileptic activity and cognitive and emotional functions, contributing to the diverse consequences of seizures and epilepsy throughout life.
Collapse
|
13
|
McRae PA, Baranov E, Rogers SL, Porter BE. Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur J Neurosci 2012; 36:3471-82. [PMID: 22934955 DOI: 10.1111/j.1460-9568.2012.08268.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the rodent model of temporal lobe epilepsy, there is extensive synaptic reorganization within the hippocampus following a single prolonged seizure event, after which animals eventually develop epilepsy. The perineuronal net (PN), a component of the neural extracellular matrix (ECM), primarily surrounds inhibitory interneurons and, under normal conditions, restricts synaptic reorganization. The objective of the current study was to explore the effects of status epilepticus (SE) on PNs in the adult hippocampus. The aggrecan component of the PN was studied, acutely (48 h post-SE), sub-acutely (1 week post-SE) and during the chronic period (2 months post-SE). Aggrecan expressing PNs decreased by 1 week, likely contributing to a permissive environment for neuronal reorganization, and remained attenuated at 2 months. The SE-exposed hippocampus showed many PNs with poor structural integrity, a condition rarely seen in controls. Additionally, the decrease in the aggrecan component of the PN was preceded by a decrease in hyaluronan and proteoglycan link protein 1 (HAPLN1) and hyaluronan synthase 3 (HAS3), which are components of the PN known to stabilize the connection between aggrecan and hyaluronan, a major constituent of the ECM. These results were replicated in vitro with the addition of excess KCl to hippocampal cultures. Enhanced neuronal activity caused a decrease in aggrecan, HAPLN1 and HAS3 around hippocampal cells in vivo and in vitro, leaving inhibitory interneurons susceptible to increased synaptic reorganization. These studies are the foundation for future experiments to explore how loss of the PN following SE contributes to the development of epilepsy.
Collapse
Affiliation(s)
- Paulette A McRae
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
14
|
McRae PA, Porter BE. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem Int 2012; 61:963-72. [PMID: 22954428 DOI: 10.1016/j.neuint.2012.08.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 12/20/2022]
Abstract
During development the extracellular matrix (ECM) of the central nervous system (CNS) facilitates proliferation, migration, and synaptogenesis. In the mature nervous system due to changes in the ECM it provides structural stability and impedes proliferation, migration, and synaptogensis. The perineuronal net (PN) is a specialized ECM structure found primarily surrounding inhibitory interneurons where it forms a mesh-like structure around points of synaptic contact. The PN organizes the extracellular space by binding multiple components of the ECM and bringing them into close proximity to the cell membrane, forming dense aggregates surrounding synapses. The PN is expressed late in postnatal development when the nervous system is in the final stages of maturation and the critical periods are closing. Once fully expressed the PN envelopes synapses and leads to decreased plasticity and increases synaptic stability in the CNS. Disruptions in the PN have been studied in a number of disease states including epilepsy. Epilepsy is one of the most common neurologic disorders characterized by excessive neuronal activity which results in recurrent spontaneous seizures. A shift in the delicate balance between excitation and inhibition is believed to be one of the underlying mechanisms in the development of epilepsy. During epileptogenesis, the brain undergoes numerous changes including synaptic rearrangement and axonal sprouting, which require structural plasticity. Because of the PNs location around inhibitory cells and its role in limiting plasticity, the PN is an important candidate for altering the progression of epilepsy. In this review, an overview of the ECM and PN in the CNS will be presented with special emphasis on potential roles in epileptogenesis.
Collapse
Affiliation(s)
- Paulette A McRae
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | |
Collapse
|
15
|
Swijsen A, Brône B, Rigo JM, Hoogland G. Long-lasting enhancement of GABA(A) receptor expression in newborn dentate granule cells after early-life febrile seizures. Dev Neurobiol 2012; 72:1516-27. [PMID: 22378685 DOI: 10.1002/dneu.22016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/06/2012] [Accepted: 02/23/2012] [Indexed: 02/05/2023]
Abstract
Febrile seizures (FS) are the most common type of seizures in childhood and are suggested to play a role in the development of temporal lobe epilepsy (TLE). Animal studies demonstrated that experimental FS induce a long-lasting change in hippocampal excitability, resulting in enhanced seizure susceptibility. Hippocampal neurogenesis and altered ion channel expression have both been proposed as mechanisms underlying this decreased seizure threshold. The present study aimed to analyze whether dentate gyrus (DG) cells that were born after FS and matured for 8 weeks display an altered repertoire of ligand-gated ion channels. To this end, we applied an established model, in which FS are elicited in 10-day-old rat pups by hyperthermia (HT). Normothermia littermates served as controls. From postnatal day 11 (P11) to P16, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells immediately following FS. At P66, we evaluated BrdU-labeled DG cells for coexpression with γ-aminobutyric acid-type A receptors (GABA(A)Rs) and N-methyl-D-aspartate receptors (NMDARs). In control animals, 40% of BrdU-labeled cells coexpressed GABA(A)R β2/3, whereas in rats that had experienced FS, 60% of BrdU-labeled cells also expressed GABA(A)R β2/3. The number of BrdU-NMDAR NR2A/B coexpressing cells was in both groups about 80% of BrdU-labeled cells. The results demonstrate that developmental seizures cause a long-term increase in GABA(A)R β2/3 expression in newborn DG cells. This may affect hippocampal physiology.
Collapse
Affiliation(s)
- Ann Swijsen
- Research Group Cell Physiology, BIOMED Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | | | | |
Collapse
|
16
|
Schwartzkroin PA. Cellular bases of focal and generalized epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:13-33. [PMID: 22938962 DOI: 10.1016/b978-0-444-52898-8.00002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
17
|
Galanopoulou AS, Moshé SL. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies. Biomark Med 2011; 5:615-28. [PMID: 22003910 PMCID: PMC3227685 DOI: 10.2217/bmm.11.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epilepsy and seizures are very common in the early years of life and are often associated with significant morbidity and mortality. Identification of biomarkers for the early detection of epileptogenicity, epileptogenesis, comorbidities, disease progression and treatment implementation will be very important in implementing more effective therapies. This article summarizes the current needs in the search for new early life epilepsy-related biomarkers and discusses the candidate biomarkers that are under investigation, as well as the challenges associated with the identification and validation of these biomarkers.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R Korey Department of Neurology, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center, Room 306, Bronx, NY 10461, USA.
| | | |
Collapse
|
18
|
Altered GABA signaling in early life epilepsies. Neural Plast 2011; 2011:527605. [PMID: 21826277 PMCID: PMC3150203 DOI: 10.1155/2011/527605] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/04/2011] [Accepted: 05/27/2011] [Indexed: 01/13/2023] Open
Abstract
The incidence of seizures is particularly high in the early ages of life. The immaturity of inhibitory systems, such as GABA, during normal brain development and its further dysregulation under pathological conditions that predispose to seizures have been speculated to play a major role in facilitating seizures. Seizures can further impair or disrupt GABAA signaling by reshuffling the subunit composition of its receptors or causing aberrant reappearance of depolarizing or hyperpolarizing GABAA receptor currents. Such effects may not result in epileptogenesis as frequently as they do in adults. Given the central role of GABAA signaling in brain function and development, perturbation of its physiological role may interfere with neuronal morphology, differentiation, and connectivity, manifesting as cognitive or neurodevelopmental deficits. The current GABAergic antiepileptic drugs, while often effective for adults, are not always capable of stopping seizures and preventing their sequelae in neonates. Recent studies have explored the therapeutic potential of chloride cotransporter inhibitors, such as bumetanide, as adjunctive therapies of neonatal seizures. However, more needs to be known so as to develop therapies capable of stopping seizures while preserving the age- and sex-appropriate development of the brain.
Collapse
|
19
|
Brooks-Kayal A. Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia 2011; 52 Suppl 1:13-20. [PMID: 21214535 DOI: 10.1111/j.1528-1167.2010.02906.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intellectual and developmental disabilities (IDDs) such as autistic spectrum disorders (ASDs) and epilepsies are heterogeneous disorders that have diverse etiologies and pathophysiologies. The high rate of co-occurrence of these disorders, however, suggests potentially shared underlying mechanisms. A number of well-known genetic disorders share epilepsy, intellectual disability, and autism as prominent phenotypic features, including tuberous sclerosis complex, Rett syndrome, and fragile X syndrome. In addition, mutations of several genes involved in neurodevelopment, including ARX, DCX, neuroligins, and neuropilin 2 have been identified in children with epilepsy, IDDs, ASDs, or a combination of thereof. Finally, in animal models, early life seizures can result in cellular and molecular changes that could contribute to learning and behavioral disabilities. Increased understanding of the common genetic, molecular, and cellular mechanisms of IDDs, ASDs, and epilepsy may provide insight into their underlying pathophysiology and elucidate new therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Amy Brooks-Kayal
- Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, USA.
| |
Collapse
|
20
|
Baram TZ, Jensen FE, Brooks-Kayal A. Does acquired epileptogenesis in the immature brain require neuronal death. Epilepsy Curr 2011; 11:21-6. [PMID: 21461261 PMCID: PMC3063568 DOI: 10.5698/1535-7511-11.1.21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because epilepsy often occurs during development, understanding the mechanisms by which this process takes place (epileptogenesis) is important. In addition, the age-specificity of seizures and epilepsies of the neonatal, infancy, and childhood periods suggests that the processes and mechanisms that culminate in epilepsy might be age specific as well. Here we provide an updated review of recent and existing literature and discuss evidence that neuronal loss may occur during epileptogenesis in the developing brain, but is not required for the epileptogenic process. We speculate about the mechanisms for the resilience of neurons in immature limbic structures to epileptogenic insults, and propose that the type, duration and severity of these insults influence the phenomenology of the resulting spontaneous seizures.
Collapse
Affiliation(s)
- Tallie Z Baram
- Departments of Anatomy/Neurobiology and Pediatrics, University of California Irvine, Irvine, CA
| | - Frances E Jensen
- Children's Hospital Boston and Harvard Medical School, Neurology, Boston, MA
| | - Amy Brooks-Kayal
- Pediatrics and Neurology, University of Colorado Denver School of Medicine and The Children's Hospital Denver and Aurora, CO
| |
Collapse
|
21
|
Brooks-Kayal A. Epilepsy and autism spectrum disorders: are there common developmental mechanisms? Brain Dev 2010; 32:731-8. [PMID: 20570072 DOI: 10.1016/j.braindev.2010.04.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/27/2010] [Indexed: 12/12/2022]
Abstract
Autistic spectrum disorders (ASD) and epilepsies are heterogeneous disorders that have diverse etiologies and pathophysiologies. The high rate of co-occurrence of these disorders suggest potentially shared underlying mechanisms. A number of well-known genetic disorders share epilepsy and autism as prominent phenotypic features, including tuberous sclerosis, Rett syndrome, and fragile X. In addition, mutations of several genes involved in neurodevelopment, including ARX, DCX, neuroligins and neuropilin2 have been identified in children with epilepsy, ASD or often both. Finally, in animal models, early-life seizures can result in cellular and molecular changes that could contribute to learning and behavioral disabilities as seen in ASD. Increased understanding of the common genetic, molecular and cellular mechanisms of ASD and epilepsy may provide insight into their underlying pathophysiology and elucidate new therapeutic approaches of both conditions.
Collapse
Affiliation(s)
- Amy Brooks-Kayal
- Department of Pediatrics, University of Colorado Denver School of Medicine, The Children's Hospital Denver, 13123 E 16th Avenue, B155, Aurora, CO 80045, United States.
| |
Collapse
|
22
|
Mao X, Guo F, Yu J, Min D, Wang Z, Xie N, Chen T, Shaw C, Cai J. Up-regulation of GABA transporters and GABA(A) receptor α1 subunit in tremor rat hippocampus. Neurosci Lett 2010; 486:150-5. [PMID: 20851161 DOI: 10.1016/j.neulet.2010.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 09/01/2010] [Accepted: 09/11/2010] [Indexed: 12/15/2022]
Abstract
The loss of GABAergic neurotransmission has been closely linked with epileptogenesis. The modulation of the synaptic activity occurs both via the removal of GABA from the synaptic cleft and by GABA transporters (GATs) and by modulation of GABA receptors. The tremor rat (TRM; tm/tm) is the parent strain of the spontaneously epileptic rat (SER; zi/zi, tm/tm), which exhibits absence-like seizure after 8 weeks of age. However, there are no reports that can elucidate the effects of GATs and GABA(A) receptors (GABARs) on TRMs. The present study was conducted to detect GATs and GABAR α1 subunit in TRMs hippocampus at mRNA and protein levels. In this study, total synaptosomal GABA content was significantly decreased in TRMs hippocampus compared with control Wistar rats by high performance liquid chromatography (HPLC); mRNA and protein expressions of GAT-1, GAT-3 and GABAR α1 subunit were all significantly increased in TRMs hippocampus by real time PCR and Western blot, respectively; GAT-1 and GABAR α1 subunit proteins were localized widely in TRMs and control rats hippocampus including CA1, CA3 and dentate gyrus (DG) regions whereas only a wide distribution of GAT-3 was observed in CA1 region by immunohistochemistry. These data demonstrate that excessive expressions of GAT-1 as well as GAT-3 and GABAR α1 subunit in TRMs hippocampus may provide the potential therapeutic targets for genetic epilepsy.
Collapse
Affiliation(s)
- Xiaoyuan Mao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boison D. Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol 2010; 5:115-25. [PMID: 18615179 DOI: 10.2174/157015907780866938] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances in the development of antiepileptic drugs, refractory epilepsy remains a major clinical problem affecting up to 35% of patients with partial epilepsy. Currently, there are few therapies that affect the underlying disease process. Therefore, novel therapeutic concepts are urgently needed. The recent development of experimental cell and gene therapies may offer several advantages compared to conventional systemic pharmacotherapy: (i) Specificity to underlying pathogenetic mechanisms by rational design; (ii) specificity to epileptogenic networks by focal delivery; and (iii) avoidance of side effects. A number of naturally occurring brain substances, such as GABA, adenosine, and the neuropeptides galanin and neuropeptide Y, may function as endogenous anticonvulsants and, in addition, may interact with the process of epileptogenesis. Unfortunately, the systemic application of these compounds is compromised by limited bioavailability, poor penetration of the blood-brain barrier, or the widespread systemic distribution of their respective receptors. Therefore, in recent years a new field of cell and gene-based neuropharmacology has emerged, aimed at either delivering endogenous anticonvulsant compounds by focal intracerebral transplantation of bioengineered cells (ex vivo gene therapy), or by inducing epileptogenic brain areas to produce these compounds in situ (in vivo gene therapy). In this review, recent efforts to develop GABA-, adenosine-, galanin-, and neuropeptide Y- based cell and gene therapies are discussed. The neurochemical rationales for using these compounds are discussed, the advantages of focal applications are highlighted and preclinical cell transplantation and gene therapy studies are critically evaluated. Although many promising data have been generated recently, potential problems, such as long-term therapeutic efficacy, long-term safety, and efficacy in clinically relevant animal models, need to be addressed before clinical applications can be contemplated.
Collapse
Affiliation(s)
- Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
| |
Collapse
|
24
|
Li C, Xu B, Wang WW, Yu XJ, Zhu J, Yu HM, Han D, Pei DS, Zhang GY. Coactivation of GABA receptors inhibits the JNK3 apoptotic pathway via disassembly of GluR6-PSD-95-MLK3 signaling module in KA-induced seizure. Epilepsia 2010; 51:391-403. [PMID: 19694794 DOI: 10.1111/j.1528-1167.2009.02270.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
PURPOSE Past work has demonstrated that kainic acid (KA)-induced seizures could cause the enhancement of excitation and lead to neuronal death in rat hippocampus. To counteract such an imbalance between excitation and inhibition, we designed experiments by activating the inhibitory gamma-aminobutyric acid (GABA) receptor to investigate whether such activation suppresses the excitatory glutamate signaling induced by KA and to elucidate the underlying molecular mechanisms. METHODS Muscimol coapplied with baclofen was intraperitoneally administrated to the rats 40 min before KA injection by intracerebroventricular infusion. Subsequently we used a series of methods including immunoprecipitation, immunoblotting, histologic analysis, and immunohistochemistry to analyze the interaction, expression, and phosphorylation of relevant proteins as well as the survival of the CA1/CA3 pyramidal neurons. RESULTS Coadministration of muscimol and baclofen exerted neuroprotection against neuron death induced by KA; inhibited the increased assembly of the GluR6-PSD-95-MLK3 module induced by KA; and suppressed the activation of MLK3, MKK7, and JNK3. DISCUSSION Taken together, we demonstrate that coactivation of the inhibitory GABA receptors can attenuate the excitatory JNK3 apoptotic signaling pathway via inhibiting the increased assembly of the GluR6-PSD-95-MLK3 signaling module induced by KA. This provides a new insight into the therapeutic approach to epileptic seizure.
Collapse
Affiliation(s)
- Chong Li
- Research Center of Biochemistry and Molecular Biology, Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jansen LA, Peugh LD, Roden WH, Ojemann JG. Impaired maturation of cortical GABA(A) receptor expression in pediatric epilepsy. Epilepsia 2010; 51:1456-67. [PMID: 20132297 DOI: 10.1111/j.1528-1167.2009.02491.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Expression of the protein subunits that make up the γ-aminobutyric acid (GABA)(A) receptor pentamer is known to change during postnatal brain development in animal models. In the present study, analysis of cortical GABA(A) subunit expression was performed in control human tissue obtained from infancy through adolescence, and was compared to that from similarly aged children with intractable focal epilepsy. METHODS Twenty frozen pediatric control and 25 epileptic neocortical specimens were collected. The membrane fractions were isolated and subjected to quantitative western blot analysis. Subunit expression was correlated with clinical factors including age, pathology, and medication exposure. RESULTS In control cortical samples, α₁ and γ₂ GABA(A) receptor subunits exhibited low expression in infancy, which increased over the first several years of life and then stabilized through adolescence. In contrast, α₄ subunit expression was higher in infants than in older children. The level of the chloride transporter KCC2 increased markedly with age, whereas that of NKCC1 decreased. These patterns were absent in the children with epilepsy, both in those with focal cortical dysplasia and in those with cortical gliosis. Although there was marked variability in GABA(A) receptor subunit expression among the children with epilepsy, identifiable patterns of subunit expression were found in each individual child. DISCUSSION Maturation of cortical GABA(A) receptor subunit expression continues over the first several years of postnatal human development. Intractable focal epilepsy in children is associated with disruption of this normal developmental pattern. These findings have significant implications for the treatment of children with medications that modulate GABA(A) receptor function.
Collapse
Affiliation(s)
- Laura A Jansen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
26
|
Potential role for ligand-gated ion channels after seizure-induced neurogenesis. Biochem Soc Trans 2009; 37:1419-22. [DOI: 10.1042/bst0371419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epileptic seizures result in an increased generation of new neurons in the dentate gyrus of the adult mammalian hippocampus. The role of these seizure-induced newborn neurons in the process of epileptogenesis remains largely unknown. Recent work, however, suggests an aberrant incorporation of newborn cells into the existing hippocampal network in such a way that they promote hippocampal hyperexcitability. In the present review, we discuss current knowledge about the possible role of seizure-induced newly generated neurons and the putative involvement of ligand-gated ion channels in the process of epileptogenesis.
Collapse
|
27
|
Fritsch B, Qashu F, Figueiredo TH, Aroniadou-Anderjaska V, Rogawski MA, Braga MF. Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis. Neuroscience 2009; 163:415-29. [PMID: 19540312 PMCID: PMC2733834 DOI: 10.1016/j.neuroscience.2009.06.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/11/2009] [Accepted: 06/15/2009] [Indexed: 11/18/2022]
Abstract
An acute brain insult such as traumatic head/brain injury, stroke, or an episode of status epilepticus can trigger epileptogenesis, which, after a latent, seizure-free period, leads to epilepsy. The discovery of effective pharmacological interventions that can prevent the development of epilepsy requires knowledge of the alterations that occur during epileptogenesis in brain regions that play a central role in the induction and expression of epilepsy. In the present study, we investigated pathological alterations in GABAergic interneurons in the rat basolateral amygdala (BLA), and the functional impact of these alterations on inhibitory synaptic transmission, on days 7 to 10 after status epilepticus induced by kainic acid. Using design-based stereology combined with glutamic acid decarboxylase (GAD) 67 immunohistochemistry, we found a more extensive loss of GABAergic interneurons compared to the loss of principal cells. Fluoro-Jade C staining showed that neuronal degeneration was still ongoing. These alterations were accompanied by an increase in the levels of GAD and the alpha1 subunit of the GABA(A) receptor, and a reduction in the GluK1 (previously known as GluR5) subunit, as determined by Western blots. Whole-cell recordings from BLA pyramidal neurons showed a significant reduction in the frequency and amplitude of action potential-dependent spontaneous inhibitory postsynaptic currents (IPSCs), a reduced frequency but not amplitude of miniature IPSCs, and impairment in the modulation of IPSCs via GluK1-containing kainate receptors (GluK1Rs). Thus, in the BLA, GABAergic interneurons are more vulnerable to seizure-induced damage than principal cells. Surviving interneurons increase their expression of GAD and the alpha1 GABA(A) receptor subunit, but this does not compensate for the interneuronal loss; the result is a dramatic reduction of tonic inhibition in the BLA circuitry. As activation of GluK1Rs by ambient levels of glutamate facilitates GABA release, the reduced level and function of these receptors may contribute to the reduction of tonic inhibitory activity. These alterations at a relatively early stage of epileptogenesis may facilitate the progress towards the development of epilepsy.
Collapse
Affiliation(s)
- Brita Fritsch
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felicia Qashu
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Taiza H. Figueiredo
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Vassiliki Aroniadou-Anderjaska
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Michael A. Rogawski
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Maria F.M. Braga
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| |
Collapse
|
28
|
Hubert P, Parain D, Vallée L. Prise en charge d’un état de mal épileptique de l’enfant (nouveau-né exclu). Rev Neurol (Paris) 2009; 165:390-7. [DOI: 10.1016/j.neurol.2008.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 11/26/2008] [Indexed: 11/27/2022]
|
29
|
Thibeault-Eybalin MP, Lortie A, Carmant L. Neonatal seizures: do they damage the brain? Pediatr Neurol 2009; 40:175-80. [PMID: 19218030 DOI: 10.1016/j.pediatrneurol.2008.10.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 01/10/2023]
Abstract
Seizures are an early sign of brain injury in newborns. These seizures are in most cases repetitive or associated with asymptomatic electrographic seizures. Despite the relative resistance of the immature brain to seizure-induced brain damage, there is more and more evidence that neonatal seizures impair normal brain development. This review addresses the changes associated with neonatal seizures and discusses current and future potential neuroprotective strategies.
Collapse
|
30
|
Lund IV, Hu Y, Raol YH, Benham RS, Faris R, Russek SJ, Brooks-Kayal AR. BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci Signal 2008; 1:ra9. [PMID: 18922788 DOI: 10.1126/scisignal.1162396] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The gamma-aminobutyric acid (GABA) type A receptor (GABA(A)R) is the major inhibitory neurotransmitter receptor in the brain. Its multiple subunits show regional, developmental, and disease-related plasticity of expression; however, the regulatory networks controlling GABA(A)R subunit expression remain poorly understood. We report that the seizure-induced decrease in GABA(A)R alpha1 subunit expression associated with epilepsy is mediated by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway regulated by brain-derived neurotrophic factor (BDNF). BDNF- and seizure-dependent phosphorylation of STAT3 cause the adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB) family member ICER (inducible cAMP early repressor) to bind with phosphorylated CREB at the Gabra1:CRE site. JAK/STAT pathway inhibition prevents the seizure-induced decrease in GABA(A)R alpha1 abundance in vivo and, given that BDNF is known to increase the abundance of GABA(A)R alpha4 in a JAK/STAT-independent manner, indicates that BDNF acts through at least two distinct pathways to influence GABA(A)R-dependent synaptic inhibition.
Collapse
Affiliation(s)
- Ingrid V Lund
- Neuroscience Graduate Group and Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhao Q, Raghavendra M, Holmes GL. Effect of TTX suppression of hippocampal activity following status epilepticus. Seizure 2008; 17:637-45. [PMID: 18486497 DOI: 10.1016/j.seizure.2008.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 01/21/2008] [Accepted: 04/10/2008] [Indexed: 11/17/2022] Open
Abstract
Status epilepticus (SE) is a severe neurological condition that can result in brain damage. In animals, SE is associated with cell loss and aberrant synaptogenesis. These pathological processes appear to be activity-dependent and may continue after the SE has ended. We postulated that suppression of electrical activity following SE at the site of the epileptic focus will reduce seizure-induced damage. To achieve this goal, tetrodotoxin (TTX) was used to suppress electrical activity in the hippocampi bilaterally following SE. Adult rats experienced lithium-pilocarpine-induced SE for 2h while controls underwent sham-SE with saline injections. Starting 12h after the SE or sham-SE rats received either continuous TTX (1 microM) or saline infusions through cannulas implanted in the bilateral hippocampi for 5h daily for 4 days. TTX resulted in significant EEG suppression and reduction in spikes and sharp waves. Rats were sacrificed 2 weeks after SE and the brains examined for cell loss and sprouting. Rats receiving TTX following SE had significantly more cell loss as well as a trend toward more mossy fiber sprouting than saline-treated rats following SE. TTX injection in sham-SE rats caused no cell loss or mossy fiber sprouting. These results suggest that suppression of electrical activity following SE is detrimental.
Collapse
Affiliation(s)
- Qian Zhao
- Neuroscience Center at Dartmouth, Department of Neurology, Dartmouth Medical School, Hanover, NH 03756, USA.
| | | | | |
Collapse
|
32
|
Kharlamov EA, Downey KL, Jukkola PI, Grayson DR, Kelly KM. Expression of GABA A receptor alpha1 subunit mRNA and protein in rat neocortex following photothrombotic infarction. Brain Res 2008; 1210:29-38. [PMID: 18407248 PMCID: PMC2587253 DOI: 10.1016/j.brainres.2008.02.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/29/2008] [Accepted: 02/18/2008] [Indexed: 11/20/2022]
Abstract
Photothrombotic infarcts of the neocortex result in structural and functional alterations of cortical networks, including decreased GABAergic inhibition, and can generate epileptic seizures within 1 month of lesioning. In our study, we assessed the involvement and potential changes of cortical GABA A receptor (GABA AR) alpha1 subunits at 1, 3, 7, and 30 days after photothrombosis. Quantitative competitive reverse transcription-polymerase chain reaction (cRT-PCR) and semi-quantitative Western blot analysis were used to investigate GABA AR alpha1 subunit mRNA and protein levels in proximal and distal regions of perilesional cortex and in homotopic areas of young adult Sprague-Dawley rats. GABA AR alpha1 subunit mRNA levels were decreased ipsilateral and contralateral to the infarct at 7 days, but were increased bilaterally at 30 days. GABA AR alpha1 subunit protein levels revealed no significant change in neocortical areas of both hemispheres of lesioned animals compared with protein levels of sham-operated controls at 1, 3, 7, and 30 days. At 30 days, GABA AR alpha1 subunit protein expression was significantly increased in lesioned animals within proximal and distal regions of perilesional cortex compared with distal neocortical areas contralaterally (Student's t-test, p<0.05). Short- and long-term alterations of mRNA and protein levels of the GABA AR alpha1 subunit ipsilateral and contralateral to the lesion may influence alterations in cell surface receptor subtype expression and GABA AR function following ischemic infarction and may be associated with formative mechanisms of poststroke epileptogenesis.
Collapse
Affiliation(s)
- Elena A Kharlamov
- Department of Neurology, Center for Neuroscience Research, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Gregory L Holmes
- Neuroscience Center at Dartmouth, Dartmouth Medical School, Lebanon, New Hampshire 03856, USA.
| |
Collapse
|
34
|
Galanopoulou AS. GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol 2008; 6:1-20. [PMID: 19305785 PMCID: PMC2645547 DOI: 10.2174/157015908783769653] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/24/2007] [Accepted: 08/05/2007] [Indexed: 12/26/2022] Open
Abstract
GABA(A) receptors have an age-adapted function in the brain. During early development, they mediate excitatory effects resulting in activation of calcium sensitive signaling processes that are important for the differentiation of the brain. In more mature stages of development and in adults, GABA(A) receptors transmit inhibitory signals. The maturation of GABA(A) signaling follows sex-specific patterns, which appear to also be important for the sexual differentiation of the brain. The inhibitory effects of GABA(A) receptor activation have been widely exploited in the treatment of conditions where neuronal silencing is necessary. For instance, drugs that target GABA(A) receptors are the mainstay of treatment of seizures. Recent evidence suggests however that the physiology and function of GABA(A) receptors changes in the brain of a subject that has epilepsy or status epilepticus.This review will summarize the physiology of and the developmental factors regulating the signaling and function of GABA(A) receptors; how these may change in the brain that has experienced prior seizures; what are the implications for the age and sex specific treatment of seizures and status epilepticus. Finally, the implications of these changes for the treatment of certain forms of medically refractory epilepsies and status epilepticus will be discussed.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Albert Einstein College of Medicine, Saul R Korey Department of Neurology & Dominick P Purpura, Department of Neuroscience, Bronx NY, USA.
| |
Collapse
|
35
|
Dissociated gender-specific effects of recurrent seizures on GABA signaling in CA1 pyramidal neurons: role of GABA(A) receptors. J Neurosci 2008; 28:1557-67. [PMID: 18272677 DOI: 10.1523/jneurosci.5180-07.2008] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Early in development, the depolarizing GABA(A)ergic signaling is needed for normal neuronal differentiation. It is shown here that hyperpolarizing reversal potentials of GABA(A)ergic postsynaptic currents (E(GABA)) appear earlier in female than in male rat CA1 pyramidal neurons because of increased potassium chloride cotransporter 2 (KCC2) expression and decreased bumetanide-sensitive chloride transport in females. Three episodes of neonatal kainic acid-induced status epilepticus (3KA-SE), each elicited at postnatal days 4 (P4)-P6, reverse the direction of GABA(A)ergic responses in both sexes. In males, 3KA-SE trigger a premature appearance of hyperpolarizing GABA(A)ergic signaling at P9, instead of P14. This is driven by an increase in KCC2 expression and decrease in bumetanide-sensitive chloride cotransport. In 3KA-SE females, E(GABA) transiently becomes depolarizing at P8-P13 because of increase in the activity of a bumetanide-sensitive NKCC1 (sodium potassium chloride cotransporter 1)-like chloride cotransporter. However, females regain their hyperpolarizing GABA(A)ergic signaling at P14 and do not manifest spontaneous seizures in adulthood. In maternally separated stressed controls, a hyperpolarizing shift in E(GABA) was observed in both sexes, associated with decreased bumetanide-sensitive chloride cotransport, whereas KCC2 immunoreactivity was increased in males only. GABA(A) receptor blockade at the time of 3KA-SE or maternal separation reversed their effects on E(GABA). These data suggest that the direction of GABA(A)-receptor signaling may be a determining factor for the age and sex-specific effects of prolonged seizures in the hippocampus, because they relate to normal brain development and possibly epileptogenesis. These effects differ from the consequences of severe stress.
Collapse
|
36
|
Deficits in phosphorylation of GABA(A) receptors by intimately associated protein kinase C activity underlie compromised synaptic inhibition during status epilepticus. J Neurosci 2008; 28:376-84. [PMID: 18184780 DOI: 10.1523/jneurosci.4346-07.2008] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Status epilepticus (SE) is a progressive and often lethal human disorder characterized by continuous or rapidly repeating seizures. Of major significance in the pathology of SE are deficits in the functional expression of GABA(A) receptors (GABA(A)Rs), the major sites of fast synaptic inhibition in the brain. We demonstrate that SE selectively decreases the phosphorylation of GABA(A)Rs on serine residues 408/9 (S408/9) in the beta3 subunit by intimately associated protein kinase C isoforms. Dephosphorylation of S408/9 unmasks a basic patch-binding motif for the clathrin adaptor AP2, enhancing the endocytosis of selected GABA(A)R subtypes from the plasma membrane during SE. In agreement with this, enhancing S408/9 phosphorylation or selectively blocking the binding of the beta3 subunit to AP2 increased GABA(A)R cell surface expression levels and restored the efficacy of synaptic inhibition in SE. Thus, enhancing phosphorylation of GABA(A)Rs or selectively blocking their interaction with AP2 may provide novel therapeutic strategies to ameliorate SE.
Collapse
|
37
|
Changes of cortical epileptic afterdischarges after status epilepticus in immature rats. Epilepsy Res 2008; 78:178-85. [DOI: 10.1016/j.eplepsyres.2007.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/20/2007] [Accepted: 11/22/2007] [Indexed: 11/22/2022]
|
38
|
Stafstrom CE. Neurobiological mechanisms of developmental epilepsy: translating experimental findings into clinical application. Semin Pediatr Neurol 2007; 14:164-72. [PMID: 18070672 DOI: 10.1016/j.spen.2007.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although seizures are very common during early brain development, consequences of seizures during this age period are less severe than in the mature brain. Reasons for this discrepancy relate to both the sequential development of neural elements (ion channels, neurotransmitters, synapses, and circuits) and the effects of seizures on these ongoing processes at different ages. In this review, I critically discuss 2 recent experimental trends in developmental neurobiology that impact seizures and their consequences. First, the paradoxic excitatory effects of gamma-aminobutyric acid early in life are related to seizure susceptibility in this developmental period. Second, the plasticity of immature neuronal circuits and the effects of seizures on subsequent cognition and behavior as a function of age are considered. These topics are relevant to the pediatric neurologist when evaluating and treating a young child with seizures.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, Section of Pediatric Neurology, University of Wisconsin, Madison 53792, USA
| |
Collapse
|
39
|
Seizures in the developing brain: cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. Neurochem Int 2007; 52:935-47. [PMID: 18093696 DOI: 10.1016/j.neuint.2007.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 12/30/2022]
Abstract
Epilepsy is a common neurological disorder that occurs more frequently in children than in adults. The extent that prolonged seizure activity, i.e. status epilepticus (SE), and repeated, brief seizures affect neuronal structure and function in both the immature and mature brain has been the subject of increasing clinical and experimental research. Earlier studies suggest that seizure-induced effects in the immature brain compared with the adult brain are different. This is manifested as differences in neuronal vulnerability, cellular and synaptic reorganization and regenerative processes. The focus of this review is first to give a short overview of currently used experimental models of epilepsy in immature rats, and then discuss more thoroughly seizure-induced acute and sub-acute cellular and molecular alterations, highlight the contribution of inflammatory-like reactions and intracellular cytoskeleton to the insult, and reveal changes in the structure and function of inhibitory GABA(A) and excitatory glutamate receptors. The role of seizure-activated reparative, plastic processes, synaptic remodelling, neurogenesis as well as the long-term consequences of seizures are briefly outlined. The main emphasis is put on studies carried out in experimental animals, and the focus of interest is the hippocampus, the brain area of great vulnerability in epilepsy. In vitro studies are discussed only to limited extent. Collectively, recent studies suggest that the deleterious effects of seizures may not solely be a consequence of neuronal damage and loss per se, but could be due to the fact that seizures interfere with the highly regulated developmental processes in the immature brain.
Collapse
|
40
|
Rocha L, Suchomelová L, Mares P, Kubová H. Effects of LiCl/pilocarpine-induced status epilepticus on rat brain mu and benzodiazepine receptor binding: regional and ontogenetic studies. Brain Res 2007; 1181:104-17. [PMID: 17919468 DOI: 10.1016/j.brainres.2007.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/13/2007] [Accepted: 08/25/2007] [Indexed: 10/22/2022]
Abstract
Neurochemical studies document involvement of benzodiazepine (BDZ) and mu opioid receptors in seizure development and their possible age-related role during epileptogenesis. To study developmental changes of this role LiCl/pilocarpine status epilepticus (SE) was induced in P12, P25 and/or adult rats. This SE leads to epilepsy in all adult and subpopulation of immature rats. Using in vitro autoradiography, benzodiazepine (BDZ) and mu opioid receptor binding was evaluated 1 week (early phase of epileptogenesis) and 3 months (chronic phase) after SE in 27 brain structures involved in seizure generation and spread (amygdala, hippocampus, basal ganglia and thalamic nuclei). The pattern of receptor binding changes was related to the age at SE, interval after SE and to brain structures. Enhanced BDZ binding was found 1 week after SE in many cortical areas in P12 and also in the amygdala complex and dentate gyrus in both P12 and P25. No changes of BDZ binding occurred in adults at that time, but 3 months after SE a decrease of binding appeared in all evaluated areas in both adult and P25 but not P12 rats. This decrease did not reflect neuronal loss. mu opioid receptors were less significantly affected but clear tendency to decrease binding occurred in adult rats in various cortical, amygdala and thalamic regions early after SE. Changes were less expressed in immature rats. Our data support the hypothesis that age-related changes of receptor properties may participate in different functional consequences of SE including epileptogenesis (more common in older age groups) and behavioral changes.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico.
| | | | | | | |
Collapse
|
41
|
Holmes GL, Ben-Ari Y. A single episode of neonatal seizures permanently alters glutamatergic synapses. Ann Neurol 2007; 61:379-81. [PMID: 17469115 DOI: 10.1002/ana.21136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Hoepping A, Scheunemann M, Fischer S, Deuther-Conrad W, Hiller A, Wegner F, Diekers M, Steinbach J, Brust P. Radiosynthesis and biological evaluation of an 18F-labeled derivative of the novel pyrazolopyrimidine sedative-hypnotic agent indiplon. Nucl Med Biol 2007; 34:559-70. [PMID: 17591556 DOI: 10.1016/j.nucmedbio.2007.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/19/2007] [Accepted: 03/27/2007] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Gamma amino butyric acid type A (GABA(A)) receptors are involved in a variety of neurological and psychiatric diseases, which have promoted the development and use of radiotracers for positron emission tomography imaging. Radiolabeled benzodiazepine antagonists such as flumazenil have most extensively been used for this purpose so far. Recently, the non-benzodiazepine pyrazolopyrimidine derivative indiplon with higher specificity for the alpha(1) subtype of the GABA(A) receptor has been introduced for treatment of insomnia. The aim of this study was the development and biological evaluation of an (18)F-labeled derivative of indiplon. METHODS Both [(18)F]fluoro-indiplon and its labeling precursor were synthesized by two-step procedures starting from indiplon. The radiosynthesis of [(18)F]fluoro-indiplon was performed using the bromoacetyl precursor followed by multiple-stage purification using semipreparative HPLC and solid phase extraction. Stability, partition coefficients, binding affinities and regional brain binding were determined in vitro. Biodistribution and radiotracer metabolism were studied in vivo. RESULTS [(18)F]Fluoro-indiplon was readily accessible in good yields (38-43%), with high purity and high specific radioactivity (>150 GBq/micromol). It displays high in vitro stability and moderate lipophilicity. [(18)F]Fluoro-indiplon has an affinity to GABA(A) receptors comparable to indiplon (K(i)=8.0 nM vs. 3.4 nM). In vitro autoradiography indicates high [(18)F]fluoro-indiplon binding in regions with high densities of GABA(A) receptors. However, ex vivo autoradiography and organ distribution studies show no evidence of specific binding of [(18)F]fluoro-indiplon. Furthermore, the radiotracer is rapidly metabolized with high accumulation of labeled metabolites in the brain. CONCLUSIONS Although [(18)F]fluoro-indiplon shows good in vitro features, it is not suitable for in vivo imaging studies because of its metabolism. Structural modifications are needed to develop derivatives with higher in vivo stability.
Collapse
|
43
|
Abstract
Laboratory models of prolonged seizures and status epilepticus in developing animals demonstrate age- and model-dependent propensity for brain injury. Even in models without overt brain injury, plasticity, which leads to epileptogenicity as well as to behavioral and cognitive effects, has been demonstrated. Brief, recurrent seizures in the neonatal period not only appear to exhibit plasticity that can be anatomically and physiologically meaningful but also seem to produce cognitive deficits. Translation of these findings into clinical practice is limited by the effects chronic therapy may have on brain development. There is little evidence that available treatments can effectively alter epileptogenesis. However, it is widely agreed that prolonged seizures and status epilepticus can carry negative consequences. Preventing epileptogenesis remains an important goal to modify the development of comorbidities, and it represents an area of research in need of much progress. For now, prevention of prolonged seizures with early intervention is important and is the most effective available option to minimize the potential short- and long-term adverse effects of prolonged seizures and optimize patient outcomes.
Collapse
Affiliation(s)
- Raman Sankar
- David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
| | | |
Collapse
|
44
|
Laurén HB, Lopez-Picon FR, Kukko-Lukjanov TK, Uusi-Oukari M, Holopainen IE. Status epilepticus alters zolpidem sensitivity of [3H]flunitrazepam binding in the developing rat brain. Neuroscience 2007; 146:802-11. [PMID: 17360122 DOI: 10.1016/j.neuroscience.2007.01.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/15/2007] [Accepted: 01/30/2007] [Indexed: 11/19/2022]
Abstract
GABA, the main inhibitory neurotransmitter in the adult brain, exerts its effects through multiple GABA(A) receptor subtypes with different pharmacological profiles, the alpha subunit variant mainly determining the binding properties of benzodiazepine site on the receptor protein. In adult experimental epileptic animals and in humans with epilepsy, increased excitation, i.e. seizures, alters GABA(A) receptor subunit expression leading to changes in the receptor structure, function, and pharmacology. Whether this also occurs in the developing brain, in which GABA has a trophic, excitatory effect, is not known. We have now applied autoradiography to study properties of GABA(A)/benzodiazepine receptors in 9-day-old rats acutely (6 h) and sub-acutely (7 days) after kainic acid-induced status epilepticus by analyzing displacement of [(3)H]flunitrazepam binding by zolpidem, a ligand selective for the alpha1beta2gamma2 receptor subtype. Regional changes in the binding properties were further corroborated at the cellular level by immunocytochemistry. The results revealed that status epilepticus significantly decreased displacement of [(3)H]flunitrazepam binding by zolpidem 6 h after the kainic acid-treatment in the dentate gyrus of the hippocampus, parietal cortex, and thalamus, and in the hippocampal CA3 and CA1 cell layers 1 week after the treatment. Our results suggest that status epilepticus modifies region-specifically the pharmacological properties of GABA(A) receptors, and may thus disturb the normal, strictly developmentally-regulated maturation of zolpidem-sensitive GABA(A) receptors in the immature rat brain. A part of these changes could be due to alterations in the cell surface expression of receptor subtypes.
Collapse
Affiliation(s)
- H B Laurén
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Itäinen Pitkäkatu 4, Turku, FIN-20014, Finland
| | | | | | | | | |
Collapse
|
45
|
Marsh ED, Brooks-Kayal AR, Porter BE. Seizures and Antiepileptic Drugs: Does Exposure Alter Normal Brain Development? Epilepsia 2006; 47:1999-2010. [PMID: 17201696 DOI: 10.1111/j.1528-1167.2006.00894.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Seizures and antiepileptic drugs (AEDs) affect brain development and have long-term neurological consequences. The specific molecular and cellular changes, the precise timing of their influence during brain development, and the full extent of the long-term consequences of seizures and AEDs exposure have not been established. This review critically assesses both the basic and clinical science literature on the effects of seizures and AEDs on the developing brain and finds that evidence exists to support the hypothesis that both seizures and antiepileptic drugs influence a variety of biological process, at specific times during development, which alter long-term cognition and epilepsy susceptibility. More research, both clinical and experimental, is needed before changes in current clinical practice, based on the scientific data, can be recommended.
Collapse
Affiliation(s)
- Eric D Marsh
- Division of Child Neurology and Pediatric Regional Epilepsy Program, Children's Hospital of Philadelphia, and Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
46
|
Raol YH, Lund IV, Bandyopadhyay S, Zhang G, Roberts DS, Wolfe JH, Russek SJ, Brooks-Kayal AR. Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci 2006; 26:11342-6. [PMID: 17079662 PMCID: PMC6674546 DOI: 10.1523/jneurosci.3329-06.2006] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Differential expression of GABA(A) receptor (GABR) subunits has been demonstrated in hippocampus from patients and animals with temporal lobe epilepsy (TLE), but whether these changes are important for epileptogenesis remains unknown. Previous studies in the adult rat pilocarpine model of TLE found reduced expression of GABR alpha1 subunits and increased expression of alpha4 subunits in dentate gyrus (DG) of epileptic rats compared with controls. To investigate whether this altered subunit expression is a critical determinant of spontaneous seizure development, we used adeno-associated virus type 2 containing the alpha4 subunit gene (GABRA4) promoter to drive transgene expression in DG after status epilepticus (SE). This novel use of a condition-dependent promoter upregulated after SE successfully increased expression of GABR alpha1 subunit mRNA and protein in DG at 1-2 weeks after SE. Enhanced alpha1 expression in DG resulted in a threefold increase in mean seizure-free time after SE and a 60% decrease in the number of rats developing epilepsy (recurrent spontaneous seizures) in the first 4 weeks after SE. These findings provide the first direct evidence that altering GABR subunit expression can affect the development of epilepsy and suggest that alpha1 subunit levels are important determinants of inhibitory function in hippocampus.
Collapse
Affiliation(s)
- YogendraSinh H Raol
- Division of Neurology, Pediatric Regional Epilepsy Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|