1
|
Niu J, Zhang L, Cui L, Liu M. Regulatory T cells in CIDP and the inhibitory effect of rapamycin on them. Hum Immunol 2024; 86:111224. [PMID: 39729692 DOI: 10.1016/j.humimm.2024.111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
We aim to investigate the proportion and function of regulatory T (Treg) cells, as well as mTORC activity in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) patients. Peripheral blood mononuclear cells (PBMCs) from 15 CIDP and healthy controls (HC) were collected. Treg and responsive T (Tresp) cells were isolated. The inhibition rate of Treg cells was analyzed with and without rapamycin. The percentage of CD4 + CD25highFoxP3+ Tregs was higher in CIDP than in HCs (median 3.06 % vs 1.98 %, P = 0.014). The suppressive function of CIDP Tregs was normal compared with that of HCs. The activity of mTORC1 and mTORC2 revealed by pAKT and p4EBP1 in Treg cells was not significantly different between CIDP and HC. The percentage of Treg cells showed no difference in the presence or absence of rapamycin, while the suppressive function of CIDP and HC Tregs was dramatically diminished in the presence of rapamycin. The percentage of P-akt in Tregs was also reduced in the presence of rapamycin. In conclusion, the percentage and suppressive function of Tregs were not impaired in CIDP patients. The presence of rapamycin had no effect on the percentage of Treg cells but could reduce the suppressive function of CIDP and HC Tregs, possibly by reducing P-Akt.
Collapse
Affiliation(s)
- Jingwen Niu
- From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Lei Zhang
- From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Liying Cui
- From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Mingsheng Liu
- From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
2
|
Li Y, Yi JS, Guptill JT, Juel VC, Hobson-Webb L, Raja SM, Karatz T, Gable KL. Immune dysregulation in chronic inflammatory demyelinating polyneuropathy. J Neuroimmunol 2024; 391:578360. [PMID: 38723578 DOI: 10.1016/j.jneuroim.2024.578360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disorder of the peripheral nerves with an incompletely understood underlying pathophysiology. This investigation focused on defining B and T cell frequencies, T cell functional capacity and innate immune system analysis in patients with CIDP. METHODS By using multi-parameter flow cytometry, we examined the phenotype and function of PBMCs in 25 CIDP patients who were relatively clinically stable on treatment who met EFNS/PNS criteria, 21 patients with genetically confirmed hereditary neuropathy and 25 healthy controls. We also evaluated the regulatory T cell (Treg) inhibitory capacity by co-culturing Treg and effector T cells. RESULTS Proinflammatory CD4 T cells, especially type 1 helper T cell (Th1) and CD8 T cells in patients with CIDP were found to have an enhanced capacity to produce inflammatory cytokines. There was no difference in frequency of Th17 regulatory cells in CIDP patients versus healthy controls, however, Treg function was impaired in CIDP patients. There was no remarkable difference in innate immune system measures. Within B cell subsets, transitional cell frequency was decreased in CIDP patients. INTERPRETATION Patients with CIDP clinically stable on treatment continued to show evidence of a proinflammatory state with impaired Treg function. This potentially implies an inadequate suppression of ongoing inflammation not addressed by standard of care therapies as well as persistent activity of disease while on treatment. Targeting T cells, especially inhibiting Th1 and polyfunctional CD8 T cells or improving Treg cell function could be potential targets for future therapeutic research.
Collapse
Affiliation(s)
- Yingkai Li
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey T Guptill
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vern C Juel
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa Hobson-Webb
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shruti M Raja
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Tabitha Karatz
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Karissa L Gable
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Shastri A, Al Aiyan A, Kishore U, Farrugia ME. Immune-Mediated Neuropathies: Pathophysiology and Management. Int J Mol Sci 2023; 24:7288. [PMID: 37108447 PMCID: PMC10139406 DOI: 10.3390/ijms24087288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Dysfunction of the immune system can result in damage of the peripheral nervous system. The immunological mechanisms, which include macrophage infiltration, inflammation and proliferation of Schwann cells, result in variable degrees of demyelination and axonal degeneration. Aetiology is diverse and, in some cases, may be precipitated by infection. Various animal models have contributed and helped to elucidate the pathophysiological mechanisms in acute and chronic inflammatory polyradiculoneuropathies (Guillain-Barre Syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, respectively). The presence of specific anti-glycoconjugate antibodies indicates an underlying process of molecular mimicry and sometimes assists in the classification of these disorders, which often merely supports the clinical diagnosis. Now, the electrophysiological presence of conduction blocks is another important factor in characterizing another subgroup of treatable motor neuropathies (multifocal motor neuropathy with conduction block), which is distinct from Lewis-Sumner syndrome (multifocal acquired demyelinating sensory and motor neuropathy) in its response to treatment modalities as well as electrophysiological features. Furthermore, paraneoplastic neuropathies are also immune-mediated and are the result of an immune reaction to tumour cells that express onconeural antigens and mimic molecules expressed on the surface of neurons. The detection of specific paraneoplastic antibodies often assists the clinician in the investigation of an underlying, sometimes specific, malignancy. This review aims to discuss the immunological and pathophysiological mechanisms that are thought to be crucial in the aetiology of dysimmune neuropathies as well as their individual electrophysiological characteristics, their laboratory features and existing treatment options. Here, we aim to present a balance of discussion from these diverse angles that may be helpful in categorizing disease and establishing prognosis.
Collapse
Affiliation(s)
- Abhishek Shastri
- Central and North West London NHS Foundation Trust, London NW1 3AX, UK
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
4
|
Mohammed SA, Hetta HF, Zahran AM, Tolba MEM, Attia RAH, Behnsawy HM, Algammal AM, Batiha GES, Mohammed AQ, Ahmad AA. T cell subsets, regulatory T, regulatory B cells and proinflammatory cytokine profile in Schistosoma haematobium associated bladder cancer: First report from Upper Egypt. PLoS Negl Trop Dis 2023; 17:e0011258. [PMID: 37068081 PMCID: PMC10109487 DOI: 10.1371/journal.pntd.0011258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND The function of different populations of the immune system in bladder cancer (BCa) is well established. However, the cohesive role of the immune cell profile of schistosomal BCa at systemic and tissue levels is still lacking, especially in endemic countries. The balance hypothesized between protumorigenic and antitumor molecules determines the prognosis of tumor progression. This study aimed to investigate the frequency of T cell subsets at both blood and tumor tissue, regulatory T(Treg), regulatory B cells (Breg) and proinflammatory cytokines in S. haematobium-related BCa patients in Egypt. METHODOLOGY/PRINCIPAL FINDINGS The frequency of T cell subsets at both blood and tumor tissue, regulatory T(Treg), regulatory B cells (Breg) were studied by flow cytometry and proinflammatory cytokines by ELISA in S. haematobium-related BCa patients in Egypt. The results indicated a significant increase in the activity of T-cell populations, particularly CD3+, CD4+, and regulatory T cells (Tregs), and a decrease in cytotoxic CD8+ T cells in the patient group. An increased proportion of CD19+CD24+CD38+ Bregs and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) was also observed. However, T-cell subpopulations in the tumor microenvironment showed a significant reduction in cancer patients compared to controls. Moreover, positive correlations were observed between the frequencies of Bregs and Tregs, suggesting the promotion of cancer progression besides their relation to the intensity of schistosomal infection. CONCLUSIONS/SIGNIFICANCE Trapped Schistosoma haematobium eggs in bladder tissue might lead to persistent inflammation that contributes to immunomodulation and promotes tumor progression, as evidenced by the increase in peripheral T helper, Tregs, Bregs and serum tumor-promoting cytokines. Considering the role and integrated functions of specific immune responses in BCa could help future diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Sara Abdelal Mohammed
- Department of Parasitology, Faculty of veterinary medicine, Assiut University, Assiut, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut Egypt
| | - Mohammed E M Tolba
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rasha A H Attia
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hosny M Behnsawy
- Department of Urology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, Egypt
| | - Ahmed Qasem Mohammed
- Department of Gastroenterology, Hepatology and infectious diseases, Al-Azhar University, Assuit, Egypt
| | | |
Collapse
|
5
|
Olson KE, Mosley RL, Gendelman HE. The potential for treg-enhancing therapies in nervous system pathologies. Clin Exp Immunol 2023; 211:108-121. [PMID: 36041453 PMCID: PMC10019130 DOI: 10.1093/cei/uxac084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
While inflammation may not be the cause of disease, it is well known that it contributes to disease pathogenesis across a multitude of peripheral and central nervous system disorders. Chronic and overactive inflammation due to an effector T-cell-mediated aberrant immune response ultimately leads to tissue damage and neuronal cell death. To counteract peripheral and neuroinflammatory responses, research is being focused on regulatory T cell enhancement as a therapeutic target. Regulatory T cells are an immunosuppressive subpopulation of CD4+ T helper cells essential for maintaining immune homeostasis. The cells play pivotal roles in suppressing immune responses to maintain immune tolerance. In so doing, they control T cell proliferation and pro-inflammatory cytokine production curtailing autoimmunity and inflammation. For nervous system pathologies, Treg are known to affect the onset and tempo of neural injuries. To this end, we review recent findings supporting Treg's role in disease, as well as serving as a therapeutic agent in multiple sclerosis, myasthenia gravis, Guillain-Barre syndrome, Parkinson's and Alzheimer's diseases, and amyotrophic lateral sclerosis. An ever-broader role for Treg in the control of neurologic disease has been shown for traumatic brain injury, stroke, neurotrophic pain, epilepsy, and psychiatric disorders. To such ends, this review serves to examine the role played by Tregs in nervous system diseases with a focus on harnessing their functional therapeutic role(s).
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - R L Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
6
|
Case Report: Single-stage facial reanimation with bilateral lengthening temporalis myoplasties for immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome related developmental facial palsy. JPRAS Open 2023; 36:19-23. [PMID: 37009631 PMCID: PMC10060169 DOI: 10.1016/j.jpra.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare primary immunodeficiency, typically associated with clinical features of intractable diarrhoea, type 1 diabetes mellitus and eczema. We present a case of IPEX syndrome referred to our regional facial palsy service for smile restoration surgery. The patient presented with dissatisfaction of facial appearance, including mask-like facies and no functional smile. Pre-operative electromyography confirmed normal temporalis muscle activation. Consequently, the patient was offered single-stage bilateral lengthening temporalis myoplasties. The patient reported improved satisfaction with facial appearance. Surgery resulted in good early resting and voluntary symmetry. Oral commissures were elevated at rest improving oral incompetence. This is the first description of facial animation surgery in the context of IPEX syndrome. With careful consideration and patient selection, successful surgical restoration of resting symmetry and dynamic commissural smile can be achieved in this complex cohort of patients.
Collapse
|
7
|
Taheri M, Roustapour S, Gholipour M, Hussen BM, Eslami S, Ghafouri-Fard S, Sayad A. Analysis of expression of regulatory T cell related lncRNAs in inflammatory demyelinating polyneuropathies. Int Immunopharmacol 2022; 112:109188. [PMID: 36041257 DOI: 10.1016/j.intimp.2022.109188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs that regulate function of regulatory T cells can affect pathoetiology of autoimmune disorders, such as inflammatory demyelinating polyneuropathies. In the current case-control study, we compared expression of four of these lncRNAs, namely FLICR, NEST, RMRP and TH2-LCR between patients with inflammatory demyelinating polyneuropathies and healthy subjects. Expressions of RMRP, NEST and FLICR were higher in total patients compared with controls. However, there was no significant difference in their expressions between acute and chronic demyelinating polyneuropathies. In addition, interaction of gender and disease factors had significant effect on expression levels of RMRP and TH2-LCR genes in subgroups. RMRR was superior to other lncRNAs in terms of AUC, sensitivity and specificity values in total patients and both subgroups of patients. This lncRNA could separate total patients, female patients and male patients from corresponding controls with AUC values (±SD) of 0.9 ± 0.03, 0.86 ± 0.07 and 0.93 ± 0.03, respectively. FLICR ranked second in this regard, since it could separate total patients, female patients and male patients from corresponding controls with AUC values (±SD) of 0.81 ± 0.03, 0.72 ± 0.07 and 0.87 ± 0.04, respectively. Therefore, our study provides evidence for participation of regulatory T cells-related lncRNAs in the pathoetiology of inflammatory demyelinating polyneuropathies.
Collapse
Affiliation(s)
- Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Mahdi Gholipour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Cheng AC, Lin TY, Wang NC. Immune Reconstitution Inflammatory Syndrome Induced by Mycobacterium avium Complex Infection Presenting as Chronic Inflammatory Demyelinating Polyneuropathy in a Young AIDS Patient. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010110. [PMID: 35056418 PMCID: PMC8779113 DOI: 10.3390/medicina58010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/26/2022]
Abstract
Antiretroviral therapy (ART) can restore protective immune responses against opportunistic infections (OIs) and reduce mortality in patients with human immunodeficiency virus (HIV) infections. Some patients treated with ART may develop immune reconstitution inflammatory syndrome (IRIS). Mycobacterium avium complex (MAC)-related IRIS most commonly presents as lymphadenitis, soft-tissue abscesses, and deteriorating lung infiltrates. However, neurological presentations of IRIS induced by MAC have been rarely described. We report the case of a 31-year-old man with an HIV infection. He developed productive cough and chronic inflammatory demyelinating polyneuropathy (CIDP) three months after the initiation of ART. He experienced an excellent virological and immunological response. Sputum culture grew MAC. The patient was diagnosed with MAC-related IRIS presenting as CIDP, based on his history and laboratory, radiologic, and electrophysiological findings. Results: Neurological symptoms improved after plasmapheresis and intravenous immunoglobulin (IVIG) treatment. To our knowledge, this is the first reported case of CIDP due to MAC-related IRIS. Clinicians should consider MAC-related IRIS in the differential diagnosis of CIDP in patients with HIV infections following the initiation of ART.
Collapse
Affiliation(s)
- An-Che Cheng
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan;
| | - Te-Yu Lin
- Division of Infectious Disease and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan;
| | - Ning-Chi Wang
- Division of Infectious Disease and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan;
- Correspondence: ; Tel.: +886-2-287927257
| |
Collapse
|
9
|
El-Abassi RN, Soliman M, Levy MH, England JD. Treatment and Management of Autoimmune Neuropathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Gao Y, Kong L, Liu S, Liu K, Zhu J. Impact of Neurofascin on Chronic Inflammatory Demyelinating Polyneuropathy via Changing the Node of Ranvier Function: A Review. Front Mol Neurosci 2021; 14:779385. [PMID: 34975399 PMCID: PMC8716720 DOI: 10.3389/fnmol.2021.779385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
The effective conduction of action potential in the peripheral nervous system depends on the structural and functional integrity of the node of Ranvier and paranode. Neurofascin (NF) plays an important role in the conduction of action potential in a saltatory manner. Two subtypes of NF, NF186, and NF155, are involved in the structure of the node of Ranvier. In patients with chronic inflammatory demyelinating polyneuropathy (CIDP), anti-NF antibodies are produced when immunomodulatory dysfunction occurs, which interferes with the conduction of action potential and is considered the main pathogenic factor of CIDP. In this study, we describe the assembling mechanism and anatomical structure of the node of Ranvier and the necessary cell adhesion molecules for its physiological function. The main points of this study are that we summarized the recent studies on the role of anti-NF antibodies in the changes in the node of Ranvier function and its impact on clinical manifestations and analyzed the possible mechanisms underlying the pathogenesis of CIDP.
Collapse
Affiliation(s)
- Ying Gao
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lingxin Kong
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
11
|
Totzeck A, Ramakrishnan E, Schlag M, Stolte B, Kizina K, Bolz S, Thimm A, Stettner M, Marchesi JR, Buer J, Kleinschnitz C, Verhasselt HL, Hagenacker T. Gut bacterial microbiota in patients with myasthenia gravis: results from the MYBIOM study. Ther Adv Neurol Disord 2021; 14:17562864211035657. [PMID: 34394728 PMCID: PMC8361534 DOI: 10.1177/17562864211035657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint). Methods: Faecal samples were collected from patients with MG (n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers (n = 12). DNA was isolated from these samples, and the variable regions of the 16S rRNA gene were sequenced and statistically analysed. Results: No differences were found in alpha- and beta-diversity indices computed between the MG, NIND and CIDP groups, indicating an unaltered bacterial diversity and structure of the microbial community. However, the alpha-diversity indices, namely Shannon, Chao 1 and abundance-based coverage estimators, were significantly reduced between the MG group and healthy volunteers. Deltaproteobacteria and Faecalibacterium were abundant within the faecal microbiota of patients with MG compared with controls with non-inflammatory diseases. Conclusion: Although the overall diversity and structure of the gut microbiota did not differ between the MG, NIND and CIDP groups, the significant difference in the abundance of Deltaproteobacteria and Faecalibacterium supports the possible role of gut microbiota as a contributor to pathogenesis of MG. Further studies are needed to confirm these findings and to develop possible treatment strategies.
Collapse
Affiliation(s)
- Andreas Totzeck
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr 55, Essen, 45147, Germany
| | - Elakiya Ramakrishnan
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melina Schlag
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Stolte
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Kizina
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Bolz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Thimm
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julian R Marchesi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Lansiaux P, Loisel S, Castilla-Llorente C, Fontenille C, Kabdani S, Marjanovic Z, Pugnet G, Puyade M, Robert E, Terriou L, Ait Abdallah N, Maria ATJ, Michel L, Tréton X, Yakoub-Agha I, Farge D. [Autologous hematopoietic cells for severe autoimmune diseases: Guidelines of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) for immune monitoring and biobanking]. Bull Cancer 2021; 108:S72-S81. [PMID: 34272057 DOI: 10.1016/j.bulcan.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Autologous hematopoietic cell transplantation (AHCT) is a new treatment option for patients with severe autoimmune diseases (AD), based on the use of intensive or myeloablative chemotherapy to eradicate the pathogenic autoreactive immune cells and to allow the installation of a new and tolerant immune system during immune reconstitution process. Immune reconstitution analysis after AHCT is required for patients clinical follow-up and to further identify biological and immunological markers of the clinical response to develop individualized AHCT protocols. These MATHEC-SFGM-TC good clinical practice guidelines were developed by a multidisciplinary group of experts including members of the french reference center for stem Cell Therapy in Auto-immune Diseases (MATHEC), hematologists from the French speaking Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) and experts in immune monitoring and biobanking. The objectives are to provide practical recommandations for immune monitoring and biobanking of samples in patients with AD undergoing AHCT, for routine care purposes and investigational studies.
Collapse
Affiliation(s)
- Pauline Lansiaux
- AP-HP, hôpital Saint-Louis, unité de médecine interne (UF 04): CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), 75010 Paris, France; Université de Paris, Institut de recherche Saint-Louis, recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France
| | - Séverine Loisel
- CHU de Rennes, établissement français du sang Bretagne, SITI, 35000 Rennes, France
| | - Cristina Castilla-Llorente
- Gustave-Roussy Cancer Center, département d'hématologie, 114, rue Edouard-Vaillant, 94800 Villejuif, France
| | - Claire Fontenille
- Institut Paoli-Calmettes, Association CRYOSTEM, 13009 Marseille, France
| | - Sarah Kabdani
- EFS HFNO site de Lille, unité de thérapie cellulaire, parc Eurasanté, 20, avenue Pierre-Mauroy, 59373 Loos, France
| | - Zora Marjanovic
- AP-HP, hôpital Saint-Antoine, service d'hématologie, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Grégory Pugnet
- CHU de Rangueil, service de médecine interne et immunologie clinique, 1, avenue du Professeur Jean-Poulhès, 31059 Toulouse cedex 9, France
| | - Mathieu Puyade
- CHU de Poitiers, service de médecine interne, 2, rue de la Miletrie, 86021 Poitiers, France; CHU de Poitiers, CIC-1402, 2, rue de la Miletrie, 86021 Poitiers, France
| | - Emilie Robert
- Institut Paoli-Calmettes, Association CRYOSTEM, 13009 Marseille, France
| | - Louis Terriou
- Hôpital Claude-Huriez, CHRU Lille, service de médecine interne et immunologie clinique, rue Michel-Polonovski, 59000 Lille, France
| | - Nassim Ait Abdallah
- AP-HP, hôpital Saint-Louis, unité de médecine interne (UF 04): CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), 75010 Paris, France; Université de Paris, Institut de recherche Saint-Louis, recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France
| | - Alexandre Thibault Jacques Maria
- CHRU de Montpellier, hôpital Saint-Éloi, médecine interne : maladies multi-organiques de l'adulte, Inserm U1183 IRMB, 34295 Montpellier cedex 5, France
| | - Laure Michel
- CHU de Rennes, seervice de neurologie, Rennes, France
| | - Xavier Tréton
- Hôpital Beaujon, université de Paris, service de gastro-entérologie, MICI et Assistance Nutritive, DMU DIGEST, 100, boulevard Leclerc, 92110 Clichy, France
| | | | - Dominique Farge
- AP-HP, hôpital Saint-Louis, unité de médecine interne (UF 04): CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), 75010 Paris, France; Université de Paris, Institut de recherche Saint-Louis, recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France; McGill University, Department of Medicine, H3A 1A1, Montreal, Canada.
| |
Collapse
|
13
|
Urbain F, Labeyrie C, Castilla-Llorente C, Cintas P, Puma A, Maubeuge N, Puyade M, Farge D. [Autologous hematopoietic stem cell transplantation for chronic inflammatory demyelinating polyneuropathy]. Rev Med Interne 2021; 42:639-649. [PMID: 33773849 DOI: 10.1016/j.revmed.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/02/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a dysimmune neuropathy with sensory and/or motor symptoms due to destruction of the myelin sheat secondary to an auto-immune attack. A quarter to a third of patients do not respond to immunomodulatory first line recommended therapies. No second line treatment has shown its effectiveness with a sufficient level of evidence. Autologous hematopoietic stem cell transplantation (AHSCT) is a promising therapy for autoimmune disease, especially for CIDP in recent works. We present in this article an update on the diagnosis of CIDP, its conventional treatments as well as the results of AHSCT in this indication, which was the subject of French recommendations under the aegis of the SFGMTC and neuromuscular disease french faculty (FILNEMUS) as a third line therapy after failure of two first-line and one second-line treatments.
Collapse
Affiliation(s)
- F Urbain
- Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, service de medecine interne, groupe hospitalier universitaire Paris Sud, hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France.
| | - C Labeyrie
- Assistance Publique-Hôpitaux de Paris, centre de reference maladies rares neuropathies amyloïdes familiales et autres neuropathies peripheriques rares, service de neurologie, groupe hospitalier universitaire Paris Sud, hôpital Bicêtre, 94275 Le Kremlin-Bicêtre cedex, France
| | - C Castilla-Llorente
- Institut Gustave-Roussy, service d'hématologie, 114, rue Édouard-Vaillant, 94800 Villejuif, France
| | - P Cintas
- Explorations neurophysiologiques, centre SLA, centre de référence de pathologie neuromusculaire, CHU Toulouse, hôpital Pierre-Paul-Riquet, 31059 Toulouse Cedex, France
| | - A Puma
- Maladies du systeme nerveux peripherique et du muscle, Centre SLA, hôpital Pasteur 2-Zone C, CS 51069, 06001 Nice cedex 1, France
| | - N Maubeuge
- CHU de Poitiers, service de neurologie, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - M Puyade
- CHU de Poitiers, service de médecine interne et maladies infectieuses, 2, rue de la Milétrie, 86021 Poitiers cedex, France; CHU de Poitiers, CIC-1402, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - D Farge
- Unité de médecine interne, maladies auto-immunes et pathologie vasculaire UF04, Centre de référence des maladies auto-immunes systémiques rares d'Île-de-France MATHEC Hôpital Saint-Louis, UF04, Filière 'FAI2R', 1, avenue Claude-Vellefaux, 75475 Paris, France; Université de Paris, EA 3518, Paris, France; Département de Médecine, Université McGill, Montreal, QC, Canada
| |
Collapse
|
14
|
Hagen KM, Ousman SS. The immune response and aging in chronic inflammatory demyelinating polyradiculoneuropathy. J Neuroinflammation 2021; 18:78. [PMID: 33752693 PMCID: PMC7983397 DOI: 10.1186/s12974-021-02113-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) consists of various autoimmune subtypes in which the peripheral nervous system (PNS) is attacked. CIDP can follow a relapsing-remitting or progressive course where the resultant demyelination caused by immune cells (e.g., T cells, macrophages) and antibodies can lead to disability in patients. Importantly, the age of CIDP patients has a role in their symptomology and specific variants have been associated with differing ages of onset. Furthermore, older patients have a decreased frequency of functional recovery after CIDP insult. This may be related to perturbations in immune cell populations that could exacerbate the disease with increasing age. In the present review, the immune profile of typical CIDP will be discussed followed by inferences into the potential role of relevant aging immune cell populations. Atypical variants will also be briefly reviewed followed by an examination of the available studies on the immunology underlying them.
Collapse
Affiliation(s)
- Kathleen M Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
15
|
Wolbert J, Cheng MI, Meyer zu Horste G, Su MA. Deciphering immune mechanisms in chronic inflammatory demyelinating polyneuropathies. JCI Insight 2020; 5:132411. [PMID: 32051341 DOI: 10.1172/jci.insight.132411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease of the peripheral nerves that presents with either chronic progression or relapsing disease. Recent studies in samples from patients with CIDP and mouse models have delineated how defects in central (thymic) and peripheral (extrathymic) immune tolerance mechanisms can cause PNS autoimmunity. Notably, nerve parenchymal cells actively contribute to local autoimmunity and also control disease outcome. Here, we outline how emerging technologies increasingly enable an integrated view of how immune cells and PNS parenchymal cells communicate in CIDP. We also relate the known heterogeneity of clinical presentation with specific underlying mechanisms. For example, a severe subtype of CIDP with tremor is associated with pathogenic IgG4 autoantibodies against nodal and paranodal proteins. An improved understanding of pathogenic mechanisms in CIDP will form the basis for more effective mechanism-based therapies.
Collapse
Affiliation(s)
- Jolien Wolbert
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Mandy I Cheng
- Department of Microbiology Immunology and Medical Genetics and
| | - Gerd Meyer zu Horste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maureen A Su
- Department of Microbiology Immunology and Medical Genetics and.,Department of Pediatrics, UCLA, Los Angeles, California, USA
| |
Collapse
|
16
|
Rodríguez Y, Vatti N, Ramírez-Santana C, Chang C, Mancera-Páez O, Gershwin ME, Anaya JM. Chronic inflammatory demyelinating polyneuropathy as an autoimmune disease. J Autoimmun 2019; 102:8-37. [DOI: 10.1016/j.jaut.2019.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
|
17
|
Schafflick D, Kieseier BC, Wiendl H, Meyer Zu Horste G. Novel pathomechanisms in inflammatory neuropathies. J Neuroinflammation 2017; 14:232. [PMID: 29179723 PMCID: PMC5704548 DOI: 10.1186/s12974-017-1001-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory neuropathies are rare autoimmune-mediated disorders affecting the peripheral nervous system. Considerable progress has recently been made in understanding pathomechanisms of these disorders which will be essential for developing novel diagnostic and therapeutic strategies in the future. Here, we summarize our current understanding of antigenic targets and the relevance of new immunological concepts for inflammatory neuropathies. In addition, we provide an overview of available animal models of acute and chronic variants and how new diagnostic tools such as magnetic resonance imaging and novel therapeutic candidates will benefit patients with inflammatory neuropathies in the future. This review thus illustrates the gap between pre-clinical and clinical findings and aims to outline future directions of development.
Collapse
Affiliation(s)
- David Schafflick
- Department of Neurology, Westfälische Wilhems-University, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Bernd C Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, Westfälische Wilhems-University, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Gerd Meyer Zu Horste
- Department of Neurology, Westfälische Wilhems-University, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
18
|
Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system pathologies. J Neurosci Res 2017; 96:951-968. [DOI: 10.1002/jnr.24073] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Samuel S. Duffy
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Brooke A. Keating
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Chamini J. Perera
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences; University of New South Wales UNSW; Sydney Australia
| |
Collapse
|
19
|
Wei Y, Yu K, Wei H, Su X, Zhu R, Shi H, Sun H, Luo Q, Xu W, Xiao J, Zhong Y, Zeng Q. CD4 + CD25 + GARP + regulatory T cells display a compromised suppressive function in patients with dilated cardiomyopathy. Immunology 2017; 151:291-303. [PMID: 28207945 DOI: 10.1111/imm.12728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/26/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a lethal inflammatory heart disease and closely connected with dysfunction of the immune system. Glycoprotein A repetitions predominant (GARP) expressed on activated CD4+ T cells with suppressive activity has been established. This study aimed to investigate the frequency and function of circulating CD4+ CD25+ GARP+ regulatory T (Treg) cells in DCM. Forty-five DCM patients and 46 controls were enrolled in this study. There was a significant increase in peripheral T helper type 1 (Th1) and Th17 number and their related cytokines [interferon-γ (IFN-γ), interleukin (IL-17)], and an obvious decrease in Treg number, transforming growth factor-β1 (TGF-β1 ) levels and the expression of forkhead box P3 (FOXP3) and GARP in patients with DCM compared with controls. In addition, the suppressive function of CD4+ CD25+ GARP+ Treg cells was impaired in DCM patients upon T-cell receptor stimulation detected using CFSE dye. Lower level of TGF-β1 and higher levels of IFN-γ and IL-17 detected using ELISA were found in supernatants of the cultured CD4+ CD25+ GARP+ Treg cells in DCM patients compared with controls. Together, our results indicate that CD4+ CD25+ GARP+ Treg cells are defective in DCM patients and GARP seems to be a better molecular definition of the regulatory phenotype. Therefore, it might be an attractive stategy to pay more attention to GARP in DCM patients.
Collapse
Affiliation(s)
- Yuzhen Wei
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Kunwu Yu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Hui Wei
- The First Peoples Hospital of Tianmen City, Tianmen, China
| | - Xin Su
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Ruirui Zhu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Huairui Shi
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Haitao Sun
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Quan Luo
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Wenbin Xu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Junhui Xiao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Yucheng Zhong
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, TongJi Medical College, Huahzong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Meyer zu Horste G, Cordes S, Pfaff J, Mathys C, Mausberg AK, Bendszus M, Pham M, Hartung HP, Kieseier BC. Predicting the Response to Intravenous Immunoglobulins in an Animal Model of Chronic Neuritis. PLoS One 2016; 11:e0164099. [PMID: 27711247 PMCID: PMC5053527 DOI: 10.1371/journal.pone.0164099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/20/2016] [Indexed: 11/19/2022] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a disabling autoimmune disorder of the peripheral nervous system (PNS). Intravenous immunoglobulins (IVIg) are effective in CIDP, but the treatment response varies greatly between individual patients. Understanding this interindividual variability and predicting the response to IVIg constitute major clinical challenges in CIDP. We previously established intercellular adhesion molecule (ICAM)-1 deficient non-obese diabetic (NOD) mice as a novel animal model of CIDP. Here, we demonstrate that similar to human CIDP patients, ICAM-1 deficient NOD mice respond to IVIg treatment by clinical and histological measures. Nerve magnetic resonance imaging and histology demonstrated that IVIg ameliorates abnormalities preferentially in distal parts of the sciatic nerve branches. The IVIg treatment response also featured great heterogeneity allowing us to identify IVIg responders and non-responders. An increased production of interleukin (IL)-17 positively predicted IVIg treatment responses. In human sural nerve biopsy sections, high numbers of IL-17 producing cells were associated with younger age and shorter disease duration. Thus, our novel animal model can be utilized to identify prognostic markers of treatment responses in chronic inflammatory neuropathies and we identify IL-17 production as one potential such prognostic marker.
Collapse
Affiliation(s)
- Gerd Meyer zu Horste
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Steffen Cordes
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Johannes Pfaff
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Mathys
- Institute of Neuroradiology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Anne K. Mausberg
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mirko Pham
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Bernd C. Kieseier
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
21
|
Dézsi L, Horváth Z, Vécsei L. Intravenous immunoglobulin: pharmacological properties and use in polyneuropathies. Expert Opin Drug Metab Toxicol 2016; 12:1343-1358. [PMID: 27428464 DOI: 10.1080/17425255.2016.1214715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Intravenous immunoglobulin (IVIg) is increasingly used for the treatment of autoimmune and systemic inflammatory diseases with both licensed and off-label indications. The mechanism of action is complex and not fully understood, involving the neutralization of pathological antibodies, Fc receptor blockade, complement inhibition, immunoregulation of dendritic cells, B cells and T cells and the modulation of apoptosis. Areas covered: First, this review describes the pharmacological properties of IVIg, including the composition, mechanism of action, and adverse events. The second part gives an overview of some of the immune-mediated polyneuropathies, with special focus on the pathomechanism and clinical trials assessing the efficacy of IVIg. A literature search on PubMed was performed using the terms IVIg, IVIg preparations, side effects, mechanism of action, clinical trials, GBS, CIDP. Expert opinion: Challenges associated with IVIg therapy and the treatment possibilities for immune-mediated polyneuropathies are discussed. The availability of IVIg is limited, the expenses are high, and, in several diseases, a chronic therapy is necessary to maintain the immunomodulatory effect. The better understanding of the mechanism of action of IVIg could open the possibility of the development of disease-specific, targeted immune therapies.
Collapse
Affiliation(s)
- Livia Dézsi
- a Department of Neurology , University of Szeged , Szeged , Hungary
| | - Zoltán Horváth
- a Department of Neurology , University of Szeged , Szeged , Hungary
| | - László Vécsei
- a Department of Neurology , University of Szeged , Szeged , Hungary.,b MTA-SZTE Neuroscience Research Group , Szeged , Hungary
| |
Collapse
|
22
|
Dwivedi M, Kumar P, Laddha NC, Kemp EH. Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity. Autoimmun Rev 2016; 15:379-92. [PMID: 26774011 DOI: 10.1016/j.autrev.2016.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. Given the crucial role of Tregs in maintaining immune homeostasis, it is probably not surprising that many microbial species and their metabolites have the potential to induce Tregs. There is now great interest in the therapeutic potential of probiotics and prebiotics based strategies for a range of autoimmune disorders. This review will summarise recent findings concerning the role of probiotics and prebiotics in induction of Tregs to ameliorate the autoimmune conditions. In addition, the article is focused to explain the different mechanisms of Treg induction and function by these probiotics and prebiotics, based on the available studies till date. The article further proposes that induction of Tregs by probiotics and prebiotics could lead to the development of new therapeutic approach towards curbing the autoimmune response and as an alternative to detrimental immunosuppressive drugs.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, Gujarat -394350, India
| | - Prasant Kumar
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, Gujarat -394350, India
| | - Naresh C Laddha
- Department of Molecular Biology, Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat, India
| | - E Helen Kemp
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
23
|
Quan S, Sheng JR, Abraham PM, Soliven B. Regulatory T and B lymphocytes in a spontaneous autoimmune polyneuropathy. Clin Exp Immunol 2016; 184:50-61. [PMID: 26671281 DOI: 10.1111/cei.12756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022] Open
Abstract
B7-2(-/-) non-obese diabetic (NOD) mice develop a spontaneous autoimmune polyneuropathy (SAP) that mimics the progressive form of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). In this study, we focused on the role of regulatory T cells (Tregs ) and regulatory B cells (Bregs ) in SAP. We found that deletion of B7-2 in female NOD mice led to a lower frequency and number of Tregs and Bregs in spleens and lymph nodes. Tregs but not Bregs suppressed antigen-stimulated splenocyte proliferation, whereas Bregs inhibited the T helper type 1 (Th1) cytokine response. Both Tregs and Bregs induced an increase in CD4(+) interleukin (IL)-10(+) cells, although less effectively in the absence of B7-2. Adoptive transfer studies revealed that Tregs , but not Bregs , suppressed SAP, while Bregs attenuated disease severity when given prior to symptom onset. B cell deficiency in B cell-deficient (muMT)/B7-2(-/-) NOD mice prevented the development of SAP, which would indicate that the pathogenic role of B cells predominates over its regulatory role in this model. We conclude that Bregs and Tregs control the immunopathogenesis and progression of SAP in a non-redundant fashion, and that therapies aimed at expansion of Bregs and Tregs may be an effective approach in autoimmune neuropathies.
Collapse
Affiliation(s)
- S Quan
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - J R Sheng
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - P M Abraham
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - B Soliven
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Mathis S, Vallat JM, Magy L. Novel immunotherapeutic strategies in chronic inflammatory demyelinating polyneuropathy. Immunotherapy 2016; 8:165-78. [PMID: 26809024 DOI: 10.2217/imt.15.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a chronic immune-mediated neuropathy: it is clinically heterogeneous (relapsing-remitting form, chronic progressive form, monophasic form or CIDP having a Guillain-Barré syndrome-like onset), but potentially treatable. Although its pathophysiology remains largely unknown, CIDP is considered an immune-mediated neuropathy. Therefore, many immunotherapies have been proposed in this peripheral nervous system disorder, the most known efficient treatments being intravenous immunoglobulin, corticosteroids and plasma exchange. However, these therapies remain unsatisfactory for many patients, so numerous other immunotherapeutic strategies have been evaluated, based on their immunosuppressant or immunomodulatory potency. We have performed a large review of the literature about treatment in CIDP, with a special emphasis on novel and alternative immunotherapeutic strategies.
Collapse
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France
| | - Jean-Michel Vallat
- Department of Neurology, Centre de Référence "Neuropathies Périphériques Rares", University Hospital of Limoges, 2 Avenue Martin Luther King, 87042 Limoges, France
| | - Laurent Magy
- Department of Neurology, Centre de Référence "Neuropathies Périphériques Rares", University Hospital of Limoges, 2 Avenue Martin Luther King, 87042 Limoges, France
| |
Collapse
|
25
|
Yalvac ME, Arnold WD, Braganza C, Chen L, Mendell JR, Sahenk Z. AAV1.NT-3 gene therapy attenuates spontaneous autoimmune peripheral polyneuropathy. Gene Ther 2016; 23:95-102. [PMID: 26125608 PMCID: PMC4696906 DOI: 10.1038/gt.2015.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 02/06/2023]
Abstract
The spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7-2 knockout non-obese diabetic mice shares clinical and histological features with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Secondary axonal loss is prominent in the progressive phase of this neuropathy. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulates neurite outgrowth and myelination. The anti-inflammatory and immunomodulatory effects of NT-3 raised considerations of potential efficacy in the SAPP model that could be applicable to CIDP. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of 25-week-old SAPP mice. Measurable NT-3 levels were found in the serum at 7-week postgene delivery. The outcome measures included functional, electrophysiological and histological assessments. At week 32, NT-3-treated mice showed increased hind limb grip strength that correlated with improved compound muscle action potential amplitude. Myelinated fiber density was 1.9 times higher in the NT-3-treated group compared with controls and the number of demyelinated axons was significantly lower. The remyelinated nerve fiber population was significantly increased. These improved histopathological parameters from scAAV1.tMCK.NT-3 treatment occurred in the setting of reduced sciatic nerve inflammation. Collectively, these findings suggest a translational application to CIDP.
Collapse
Affiliation(s)
- M E Yalvac
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - W D Arnold
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - C Braganza
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - L Chen
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - J R Mendell
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Z Sahenk
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Decreased Circulating T Regulatory Cells in Egyptian Patients with Nonsegmental Vitiligo: Correlation with Disease Activity. Dermatol Res Pract 2015; 2015:145409. [PMID: 26788051 PMCID: PMC4693028 DOI: 10.1155/2015/145409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 01/01/2023] Open
Abstract
Background. Vitiligo is an acquired depigmentary skin disorder resulting from autoimmune destruction of melanocytes. Regulatory T cells (Tregs), specifically CD4+CD25+ and Forkhead box P3+ (FoxP3+) Tregs, acquired notable attention because of their role in a variety of autoimmune pathologies. Dysregulation of Tregs may be one of the factors that can break tolerance to melanocyte self-antigens and contribute to vitiligo pathogenesis. Methods. In order to sustain the role of Tregs in pathogenesis and disease activity of vitiligo, surface markers for CD4+CD25+ and FoxP3+ peripheral Tregs were evaluated by flow cytometry in 80 Egyptian patients with nonsegmental vitiligo in addition to 60 healthy control subjects and correlated with clinical findings. Results. Vitiligo patients had significantly decreased numbers of both peripheral CD4+CD25+ and FoxP3+ T cells compared to control subjects (11.49% ± 8.58% of CD4+ T cells versus 21.20% ± 3.08%, and 1.09% ± 0.96% versus 1.44% ± 0.24%, resp., P < 0.05 for both). Peripheral numbers of CD4+CD25+ and FoxP3+ Tregs correlated negatively with VIDA score. Conclusion. Treg depletion with impaired immune downregulatory function might play a key role in the autoimmune conditions beyond nonsegmental vitiligo particularly in active cases. Effective Treg cell-based immunotherapies might be a future hope for patients with progressive vitiligo.
Collapse
|
27
|
Abstract
UNLABELLED Chronic inflammatory demyelinating polyradiculoneuropathy is a chronic progressive or relapsing and remitting disease with a prevalence of up to 8.9 per 100,000. METHODS This review discusses possible mechanisms, none of which are proven, and describes the evidence for its treatment. RESULTS Cochrane Reviews provide evidence that corticosteroids, intravenous immunoglobulin, and plasma exchange are effective short-term treatments. Attempts to confirm the efficacy of other immunosuppressant agents have not been successful, although they are often used in people whose disease is resistant to the first-line treatments. CONCLUSIONS More and better trials are needed.
Collapse
Affiliation(s)
- Richard Hughes
- MRC Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, PO Box 114, Queen Square, London, WC1N 3BG, UK,
| |
Collapse
|
28
|
Huang S, Wang W, Chi L. Feasibility of up-regulating CD4(+)CD25(+) Tregs by IFN-γ in myasthenia gravis patients. BMC Neurol 2015; 15:163. [PMID: 26347149 PMCID: PMC4562356 DOI: 10.1186/s12883-015-0419-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 09/01/2015] [Indexed: 03/06/2023] Open
Abstract
Background In myasthenia gravis (MG) patients, the dysfunction of CD4+CD25+ regulatory T cells (CD4+CD25+ Tregs) may be one of the important pathogenesis of MG. Currently, the role of IFN-γ in autoimmune diseases is still controversial and needs further exploration. In this study, whether IFN-γ can induce CD4+CD25− T cells into CD4+CD25+ Tregs in MG in vitro was investigated systematically. Methods Flow cytometry was used to analyze the number of CD4+CD25+ Tregs in MG patients and healthy controls (HCs). CD4+CD25− T cells were separated from the peripheral blood mononuclear cells of MG patients and HCs, and the CD4+CD25+ Tregs were separated from HCs by Magnetic cell sorting (MACS). IFN-γ with different concentrations was used to stimulate CD4+CD25− T cells. The percentages of the induced CD4+CD25+ T cells were detected by flow cytometry. The FoxP3 expression of the induced CD4+CD25+ T cells in MG patients was detected by real-time PCR at mRNA level. The induced CD4+CD25+ T cells were co-cultured with autologous CD4+CD25− T cells to estimate the suppressive ability of the induced CD4+CD25+ T cells to CD4+CD25− T cells. Results It shows the percentages of CD4+CD25+ T cells among CD4+ T cells have no significant difference in MG patients compared with those in HCs. There is also merely no difference in the percentages of CD4+CD25+ T cells between thymectomized and non-thymectomized MG patients. CD4+CD25− T cells can be induced to CD4+CD25+ T cells after applying IFN-γ in MG patients and HCs. The proportion and FoxP3 expression of the induced CD4+CD25+ T cells are the highest at the level of 40 ng/ml IFN-γ, and the suppressive function of the CD4+CD25+ T cells induced by 40 ng/ml IFN-γ is the strongest in MG patients. Conclusions This subject will further reveal the role of IFN-γ in the pathogenesis of MG from a new perspective. It will also provide the scientific basis for the clinical targeted therapy of MG.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150080, P.R. China.
| | - Weizhi Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P.R. China.
| | - Lijun Chi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150080, P.R. China.
| |
Collapse
|
29
|
Mathey EK, Park SB, Hughes RAC, Pollard JD, Armati PJ, Barnett MH, Taylor BV, Dyck PJB, Kiernan MC, Lin CSY. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry 2015; 86:973-85. [PMID: 25677463 PMCID: PMC4552934 DOI: 10.1136/jnnp-2014-309697] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/04/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory neuropathy, classically characterised by a slowly progressive onset and symmetrical, sensorimotor involvement. However, there are many phenotypic variants, suggesting that CIDP may not be a discrete disease entity but rather a spectrum of related conditions. While the abiding theory of CIDP pathogenesis is that cell-mediated and humoral mechanisms act together in an aberrant immune response to cause damage to peripheral nerves, the relative contributions of T cell and autoantibody responses remain largely undefined. In animal models of spontaneous inflammatory neuropathy, T cell responses to defined myelin antigens are responsible. In other human inflammatory neuropathies, there is evidence of antibody responses to Schwann cell, compact myelin or nodal antigens. In this review, the roles of the cellular and humoral immune systems in the pathogenesis of CIDP will be discussed. In time, it is anticipated that delineation of clinical phenotypes and the underlying disease mechanisms might help guide diagnostic and individualised treatment strategies for CIDP.
Collapse
Affiliation(s)
- Emily K Mathey
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Susanna B Park
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia Neuroscience Research Australia & Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Richard A C Hughes
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - John D Pollard
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Patricia J Armati
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Michael H Barnett
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Bruce V Taylor
- Menzies Research Institute, University of Tasmania, Sydney, New South Wales, Australia
| | - P James B Dyck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew C Kiernan
- Brain and Mind Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Cindy S-Y Lin
- Faculty of Medicine, Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Randwick, New South Wales, Australia
| |
Collapse
|
30
|
Blum S, Csurhes P, McCombe P. The frequencies of Killer immunoglobulin-like receptors and their HLA ligands in chronic inflammatory demyelinating polyradiculoneuropathy are similar to those in Guillian Barre syndrome but differ from those of controls, suggesting a role for NK cells in pathogenesis. J Neuroimmunol 2015. [PMID: 26198918 DOI: 10.1016/j.jneuroim.2015.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an acquired inflammatory neuropathy, which has similar clinical and pathological features to Guillain-Barré Syndrome (GBS), but differs in time course. We investigated the frequency of genes encoding Killer immunoglobulin-like receptors and their HLA ligands in subjects with CIDP, in subjects with GBS and in healthy controls. There were no differences in KIR gene frequency among the 3 groups. The gene frequencies for HLA-B Bw4-I were significantly greater in CIDP than HC, but did not differ from GBS. The frequency of the combination of 3DL1/HLA-B Bw4I was greater in CIDP than HC, but did not differ from that of GBS. These data raise the possibility of NK cell function being an important factor in the pathogenesis of CIDP.
Collapse
Affiliation(s)
- Stefan Blum
- Royal Brisbane and Women's Hospital, Department of Neurology, Butterfield Street, Herston QLD 4029, Australia; University of Queensland, Centre for Clinical Research, Herston Campus, Herston, QLD 4029, Australia
| | - Peter Csurhes
- University of Queensland, Centre for Clinical Research, Herston Campus, Herston, QLD 4029, Australia
| | - Pamela McCombe
- Royal Brisbane and Women's Hospital, Department of Neurology, Butterfield Street, Herston QLD 4029, Australia; University of Queensland, Centre for Clinical Research, Herston Campus, Herston, QLD 4029, Australia
| |
Collapse
|
31
|
Pathogenesis of immune-mediated neuropathies. Biochim Biophys Acta Mol Basis Dis 2015; 1852:658-66. [DOI: 10.1016/j.bbadis.2014.06.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 11/20/2022]
|
32
|
Berger M, Allen JA. Optimizing IgG therapy in chronic autoimmune neuropathies: a hypothesis driven approach. Muscle Nerve 2015; 51:315-26. [PMID: 25418426 PMCID: PMC4357394 DOI: 10.1002/mus.24526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2014] [Indexed: 12/22/2022]
Abstract
Prolonged intravenous immunoglobulin (IVIG) therapy is used for the chronic autoimmune neuropathies chronic idiopathic demyelinating polyneuropathy and multifocal motor neuropathy, but the doses and treatment intervals are usually chosen empirically due to a paucity of data from dose-response studies. Recent studies of the electrophysiology and immunology of these diseases suggest that antibody-induced reversible dysfunction of nodes of Ranvier may play a role in conduction block and disability which responds to immunotherapy more rapidly than would be expected for demyelination or axonal damage per se. Clinical reports suggest that in some cases, the effects of each dose of IVIG may be transient, wearing-off before the next dose is due. These observations lead us to hypothesize that that therapeutic IgG acts by competing with pathologic autoantibodies and that individual patients may require different IgG levels for optimal therapeutic effects. Frequent IVIG dosing and weekly subcutaneous IgG have been tried as ways of continuously maintaining high serum IgG levels, resulting in stabilization of neuromuscular function in small case series. Frequent grip strength and disability measurements, performed by the patient at home and reported electronically, can be used to assess the extent and duration of responses to IgG doses. Individualization of IgG treatment regimens may optimize efficacy, minimize disability, and identify nonresponders.
Collapse
Affiliation(s)
- Melvin Berger
- CSL Behring, LLC., 1040 First Avenue, King of PrussiaPennsylvania, USA 19406
| | - Jeffrey A Allen
- University of MinnesotaMinneapolis, Minnesota, USA
- Northwestern UniversityChicago, Illinois, USA
| |
Collapse
|
33
|
Kerr J, Quinti I, Eibl M, Chapel H, Späth PJ, Sewell WAC, Salama A, van Schaik IN, Kuijpers TW, Peter HH. Is dosing of therapeutic immunoglobulins optimal? A review of a three-decade long debate in europe. Front Immunol 2014; 5:629. [PMID: 25566244 PMCID: PMC4263903 DOI: 10.3389/fimmu.2014.00629] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022] Open
Abstract
The consumption of immunoglobulins (Ig) is increasing due to better recognition of antibody deficiencies, an aging population, and new indications. This review aims to examine the various dosing regimens and research developments in the established and in some of the relevant off-label indications in Europe. The background to the current regulatory settings in Europe is provided as a backdrop for the latest developments in primary and secondary immunodeficiencies and in immunomodulatory indications. In these heterogeneous areas, clinical trials encompassing different routes of administration, varying intervals, and infusion rates are paving the way toward more individualized therapy regimens. In primary antibody deficiencies, adjustments in dosing and intervals will depend on the clinical presentation, effective IgG trough levels and IgG metabolism. Ideally, individual pharmacokinetic profiles in conjunction with the clinical phenotype could lead to highly tailored treatment. In practice, incremental dosage increases are necessary to titrate the optimal dose for more severely ill patients. Higher intravenous doses in these patients also have beneficial immunomodulatory effects beyond mere IgG replacement. Better understanding of the pharmacokinetics of Ig therapy is leading to a move away from simplistic "per kg" dosing. Defective antibody production is common in many secondary immunodeficiencies irrespective of whether the causative factor was lymphoid malignancies (established indications), certain autoimmune disorders, immunosuppressive agents, or biologics. This antibody failure, as shown by test immunization, may be amenable to treatment with replacement Ig therapy. In certain immunomodulatory settings [e.g., idiopathic thrombocytopenic purpura (ITP)], selection of patients for Ig therapy may be enhanced by relevant biomarkers in order to exclude non-responders and thus obtain higher response rates. In this review, the developments in dosing of therapeutic immunoglobulins have been limited to high and some medium priority indications such as ITP, Kawasaki' disease, Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy, myasthenia gravis, multifocal motor neuropathy, fetal alloimmune thrombocytopenia, fetal hemolytic anemia, and dermatological diseases.
Collapse
Affiliation(s)
- Jacqueline Kerr
- Section Poly- and Monoclonal Antibodies, Paul Ehrlich Institut, Langen, Germany
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Helen Chapel
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter J. Späth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Abdulgabar Salama
- Zentrum für Transfusionsmedizin u. Zelltherapie, Charité, Berlin, Germany
| | - Ivo N. van Schaik
- Department of Neurology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious disease, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Hans-Hartmut Peter
- Centrum für chronische Immunodeficienz (CCI), University Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
34
|
Svahn J, Antoine JC, Camdessanché JP. Pathophysiology and biomarkers in chronic inflammatory demyelinating polyradiculoneuropathies. Rev Neurol (Paris) 2014; 170:808-17. [PMID: 25459126 DOI: 10.1016/j.neurol.2014.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an acquired dysimmune disorder characterized by strong heterogeneity in terms of clinical manifestations, prognostic and response to treatment. To date, its pathophysiology and potential target antigens are not totally identified despite substantial progress in the understanding of the involved molecular mechanisms. Recent researches in the field have underlined the importance of cell-mediated immunity (lymphocytesT CD4+, CD8+ and macrophages), the breakdown of blood-nerve barrier, a failure of T-cell regulation, and the disruption of nodal and paranodal organization at the node of Ranvier. This last point is possibly mediated by autoantibodies towards axoglial adhesion molecules which may disrupt sodium and potassium voltage-gated channels clustering leading to a failure of saltatory conduction and the apparition of conduction blocks. The purpose of this article is to overview the main pathophysiologic mechanisms and biomarkers identified in CIDP.
Collapse
Affiliation(s)
- J Svahn
- Inserm 1028 CNRS UMR5292, équipe neuro-oncologie neuro-inflammation, faculté de médecine Jacques-Lisfranc, 42023 Saint-Étienne cedex 2, France; Université Claude-Bernard Lyon 1, 69003 Lyon, France
| | - J-C Antoine
- Inserm 1028 CNRS UMR5292, équipe neuro-oncologie neuro-inflammation, faculté de médecine Jacques-Lisfranc, 42023 Saint-Étienne cedex 2, France; Service de neurologie, hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex 02, France; Centre référent maladies neuromusculaires rares Rhône-Alpes, CHU de Saint-Étienne, 42055 Saint-Étienne cedex 02, France
| | - J-P Camdessanché
- Inserm 1028 CNRS UMR5292, équipe neuro-oncologie neuro-inflammation, faculté de médecine Jacques-Lisfranc, 42023 Saint-Étienne cedex 2, France; Service de neurologie, hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne cedex 02, France; Centre référent maladies neuromusculaires rares Rhône-Alpes, CHU de Saint-Étienne, 42055 Saint-Étienne cedex 02, France.
| |
Collapse
|
35
|
Meyer zu Hörste G, Cordes S, Mausberg AK, Zozulya AL, Wessig C, Sparwasser T, Mathys C, Wiendl H, Hartung HP, Kieseier BC. FoxP3+ regulatory T cells determine disease severity in rodent models of inflammatory neuropathies. PLoS One 2014; 9:e108756. [PMID: 25286182 PMCID: PMC4186754 DOI: 10.1371/journal.pone.0108756] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/25/2014] [Indexed: 01/17/2023] Open
Abstract
Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. Dysfunction or a reduced frequency of Tregs have been associated with different human autoimmune disorders. We here analyzed the functional relevance of Tregs in determining disease manifestation and severity in murine models of autoimmune neuropathies. We took advantage of the DEREG mouse system allowing depletion of Treg with high specificity as well as anti-CD25 directed antibodies to deplete Tregs in mice in actively induced experimental autoimmune neuritis (EAN). Furthermore antibody-depletion was performed in an adoptive transfer model of chronic neuritis. Early Treg depletion increased clinical EAN severity both in active and adoptive transfer chronic neuritis. This was accompanied by increased proliferation of myelin specific T cells and histological signs of peripheral nerve inflammation. Late stage Treg depletion after initial disease manifestation however did not exacerbate inflammatory neuropathy symptoms further. We conclude that Tregs determine disease severity in experimental autoimmune neuropathies during the initial priming phase, but have no major disease modifying function after disease manifestation. Potential future therapeutic approaches targeting Tregs should thus be performed early in inflammatory neuropathies.
Collapse
Affiliation(s)
- Gerd Meyer zu Hörste
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
- * E-mail:
| | - Steffen Cordes
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Anne K. Mausberg
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Alla L. Zozulya
- Department of Neurology, Julius-Maximilians-University, Würzburg, Germany
| | - Carsten Wessig
- Department of Neurology, Julius-Maximilians-University, Würzburg, Germany
| | - Tim Sparwasser
- Institute for Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Christian Mathys
- Department of Diagnostic and Interventional Radiology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Bernd C. Kieseier
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
36
|
VIP-expressing dendritic cells protect against spontaneous autoimmune peripheral polyneuropathy. Mol Ther 2014; 22:1353-1363. [PMID: 24762627 DOI: 10.1038/mt.2014.77] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/21/2014] [Indexed: 12/20/2022] Open
Abstract
The spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7-2 knockout nonobese diabetic mice mimics a progressive and unremitting course of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). In this study, bone marrow-derived dendritic cells (DCs) were transduced to express vasoactive intestinal polypeptide (VIP) using a lentiviral vector (LV-VIP). These transduced DCs (LV-VIP-DCs) were then injected intravenously (i.v.) into 16-week-old (before disease onset) and 21-week-old (after disease onset) SAPP mice in order to prevent or attenuate the disease. Outcome measures included behavioral tests, clinical and histological scoring, electrophysiology, real-time PCR, flow cytometry analyses, and enzyme-linked immunosorbent assay. LV-VIP-DCs were recruited to the inflamed sciatic nerve and reduced the expression of inflammatory cytokines. A single injection of LV-VIP-DC delayed the onset of disease, stabilized, and attenuated clinical signs correlating with ameliorated behavioral functions, reduced nerve demyelination, and improved nerve conduction. This proof-of-principle study is an important step potentially leading to a clinical translational study using DCs expressing VIP in cases of CIDP refractory to standard immunosuppressive therapy.
Collapse
|
37
|
Dalakas MC. Pathophysiology of autoimmune polyneuropathies. Presse Med 2013; 42:e181-92. [DOI: 10.1016/j.lpm.2013.01.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/14/2013] [Indexed: 11/16/2022] Open
|
38
|
Van den Bergh PY, Rajabally YA. Chronic inflammatory demyelinating polyradiculoneuropathy. Presse Med 2013; 42:e203-15. [DOI: 10.1016/j.lpm.2013.01.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/12/2022] Open
|
39
|
Dimachkie MM, Barohn RJ. Chronic inflammatory demyelinating polyneuropathy. Curr Treat Options Neurol 2013; 15:350-66. [PMID: 23564314 DOI: 10.1007/s11940-013-0229-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Chronic Inflammatory polyneuropathies are an important group of neuromuscular disorders that present chronically and progress over more than 8 weeks, being referred to as chronic inflammatory demyelinating polyneuropathy (CIDP). Despite tremendous progress in elucidating disease pathogenesis, the exact triggering event remains unknown. Our knowledge regarding diagnosis and management of CIDP and its variants continues to expand, resulting in improved opportunities for identification and treatment. Most clinical neurologists will be involved in the management of patients with these disorders, and should be familiar with available therapies for CIDP. We review the distinctive clinical, laboratory, and electro-diagnostic features that aid in diagnosis. We emphasize the importance of clinical patterns that define treatment responsiveness and the most appropriate therapies in order to improve prognosis.
Collapse
Affiliation(s)
- Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, 3599 Rainbow Blvd., Mail Stop 2012, Kansas City, KS, 66160, USA,
| | | |
Collapse
|
40
|
Riekhoff AGM, Jadoul C, Mercelis R, Cras P, Ceulemans BPGM. Childhood chronic inflammatory demyelinating polyneuroradiculopathy--three cases and a review of the literature. Eur J Paediatr Neurol 2012; 16:315-31. [PMID: 22225859 DOI: 10.1016/j.ejpn.2011.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 11/30/2011] [Accepted: 12/03/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic inflammatory demyelinating polyneuroradiculopathy (CIDP) is an autoimmune disease of the peripheral nervous system, causing demyelination and even axonal degeneration. In children, abnormal gait as a first sign of muscle weakness is a frequent reason to seek medical attention. Diagnosis is made on the basis of clinical characteristics, electromyography and nerve conduction studies, and elevated protein in cerebrospinal fluid. AIMS We present three new cases of CIDP. The literature was reviewed in order to obtain more information on presentation, outcome and treatment strategies world-wide. RESULTS The course of disease can be relapsing-remitting or chronic-progressive. From case series it is known that first-line immunotherapy (intravenously administered immunoglobulin, corticosteroids or plasmapheresis) is initially of benefit in most children with CIDP. There is little evidence, however, on second-line therapies as azathioprine, cyclosporine A, mycophenolate mofetil, methothrexate, cyclophosphamide and IFN alpha. Although the outcome of children with CIDP is generally regarded to be good, disease related disability can be severe. CONCLUSION Childhood CIDP is rare. In general and in comparison to adults, children tend to have a more acute progressive onset, with more severe symptoms. Showing a higher tendency towards a relapsing-remitting course, children often show a better and faster improvement after therapy, and a more favorable outcome. Swift recognition of CIDP and empiric start of treatment are considered important to avoid potentially irreversible axonal damage and associated disability. Response to first-line therapies is usually favorable, however recommendations regarding the choice of second-line therapy can only be made on the basis of current practice described in case reports. Safety and efficacy data are insufficient. The cases described show that trial and error are often involved in finding an optimal treatment strategy, especially in those patients refractory to first-line treatment or with a prolonged course. Clinical experience with immunomodulatory treatment is paramount when treating children with CIDP.
Collapse
Affiliation(s)
- Antoinetta G M Riekhoff
- Department of Neurology - Child Neurology, Antwerp University Hospital, University of Antwerp, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
41
|
Lili Y, Yi W, Ji Y, Yue S, Weimin S, Ming L. Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One 2012; 7:e37513. [PMID: 22649532 PMCID: PMC3359382 DOI: 10.1371/journal.pone.0037513] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/23/2012] [Indexed: 12/19/2022] Open
Abstract
Melanocyte-specific CD8+ cytotoxic T lymphocytes (CTLs) play a pivotal role in vitiligo-induced depigmentation. Yet, the mechanisms underlying the high frequency of generalized autoimmune disorders associated with generalized vitiligo (GV) are unknown. We hypothesized that an imbalance between activated CD8+ CTLs and regulatory T cells (Tregs) exists in patients with GV . Assessment of the circulating CD8+ CTLs and Tregs by flow cytometric analysis revealed an obvious expansion of CD8+ CTLs and a concomitant decrease in Treg cells in GV patients. The percentages of skin infiltrating CD8+ CTLs and Tregs were evaluated by immunohistochemistry and revealed dramatically increased numbers of both CD8+ CTLs and Tregs in the perilesional skin of GV patients. However, peripheral Tregs were impaired in their ability to suppress the proliferation and cytolytic capacity of autologous CD8+ T cells, suggesting that a functional failure of Tregs and the hyper-activation of CD8+ CTLs may contribute to progressive GV. Our data indicate that reduced numbers and impaired function of natural Tregs fail to control the widespread activation of CD8+ CTLs, which leads to the destruction of melanocytes and contributes to the elevated frequency of various associated autoimmune diseases. This knowledge furthers our understanding of the mechanisms of immune tolerance that are impaired in GV patients and may aid in the future development of effective immunotherapy for GV patients.
Collapse
Affiliation(s)
- Yang Lili
- Departments of dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Yi
- Departments of dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Ji
- Departments of dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sun Yue
- Departments of dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shi Weimin
- Departments of dermatology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Li Ming
- Departments of dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
42
|
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune disease affecting the peripheral nervous system (PNS) and is thought to involve both cellular and humoral immunity. Although its etiology remains to be fully elucidated, the use of animal models has provided some important information regarding its pathogenetic mechanisms. The development of a spontaneous autoimmune polyneuropathy (SAP) in B7-2 knockout non-obese diabetic (NOD) mice underscores the importance of co-stimulatory pathways such as B7-1/B7-2:CD28/CTLA-4 molecules in inflammatory neuropathies. These co-stimulatory molecules regulate the balance between pathogenic and regulatory T cells (Tregs). In SAP, pathogenic T cells are directed against myelin protein zero (P0), the most prominent PNS myelin protein that is a member of immunoglobulin gene superfamily.
Collapse
Affiliation(s)
- Betty Soliven
- Department of Neurology, University of Chicago, 5841S. Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
43
|
Ben Ahmed M, Zaraa I, Rekik R, Elbeldi-Ferchiou A, Kourda N, Belhadj Hmida N, Abdeladhim M, Karoui O, Ben Osman A, Mokni M, Louzir H. Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo. Pigment Cell Melanoma Res 2011; 25:99-109. [DOI: 10.1111/j.1755-148x.2011.00920.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common chronic autoimmune neuropathy. Despite clinical challenges in diagnosis-owing in part to the existence of disease variants, and different views on how many electrophysiological abnormalities are needed to document demyelination-consensus criteria seem to have been reached for research or clinical practice. Current standard of care involves corticosteroids, intravenous immunoglobulin (IVIg) and/or plasmapheresis, which provide short-term benefits. Maintenance therapy with IVIg can induce sustained remission, increase quality of life and prevent further axonal loss, but caution is needed to avoid overtreatment. Commonly used immunosuppressive drugs offer minimal benefit, necessitating the development of new therapies for treatment-refractory patients. Advances in our understanding of the underlying immunopathology in CIDP have identified new targets for future therapeutic efforts, including T cells, B cells, and transmigration and transduction molecules. New biomarkers and scoring systems represent emerging tools with the potential to predict therapeutic responses and identify patients with active disease for enrollment into clinical trials. This Review highlights the recent advances in diagnosing CIDP, provides an update on the immunopathology including new target antigens, and discusses current treatments, ongoing challenges and future therapeutic directions.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Neuroimmunology Unit, Department of Pathophysiology, National University of Athens Medical School, Building 16, Room 39, 75 Mikras Asias Street, Athens 11527, Greece.
| | | |
Collapse
|
45
|
Chi LJ, Xu WH, Zhang ZW, Huang HT, Zhang LM, Zhou J. Distribution of Th17 cells and Th1 cells in peripheral blood and cerebrospinal fluid in chronic inflammatory demyelinating polyradiculoneuropathy. J Peripher Nerv Syst 2011; 15:345-56. [PMID: 21199106 DOI: 10.1111/j.1529-8027.2010.00294.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated demyelinating disease of the peripheral nervous system. Th17 and Th1 cells contribute to the pathogenesis of most autoimmune diseases, but little is known about their distribution and reciprocal relationship in CIDP. In this study, we analyzed the distribution of Th17, Th1, and Th17/Th1 cells in the peripheral blood and cerebrospinal fluid (CSF). The results showed that the frequency of Th17 cells was significantly higher in the peripheral blood mononuclear cell (PBMCs) and CSF of active CIDP in comparison with remitting CIDP or to other non-inflammatory neurological diseases (ONDs), accompanied by similar findings for Th17/Th1 cells. Both active and remitting CIDP have higher percentage of Th1 cells in the CSF than OND. CSF protein levels positively correlated with the frequencies of Th17 cells either in the PBMCs or CSF of active CIDP, while there was no significant correlation with Th1 cells. In line with these observations, the levels of interleukin-17 (IL-17) in plasma and transcript factors retinoic acid receptor-related orphan receptor (ROR)γt expressed by PBMCs were significantly higher in the active CIDP than remitting CIDP or OND. In summary, our preliminary findings suggest that elevated numbers of inflammatory T cells, especially for Th17 cells, might be an important determinant in the evolution of CIDP.
Collapse
Affiliation(s)
- Li Jun Chi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
46
|
Chi LJ, Lu HT, Li GL, Wang XM, Su Y, Xu WH, Shen BZ. Involvement of T helper type 17 and regulatory T cell activity in tumour immunology of bladder carcinoma. Clin Exp Immunol 2011; 161:480-9. [PMID: 20646003 DOI: 10.1111/j.1365-2249.2010.04215.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T helper type 17 (Th17) and regulatory T cells (T(reg) ) play an important role in the pathogenesis of inflammation and autoimmune disorders. Recent studies have suggested that they also had an impact on tumour immunology. However, the relationship between Th17 and T(reg) cells in the pathogenesis of bladder carcinoma is still unclear. Flow cytometry was used to analyse the numbers, phenotype and cytokine production of Th17 cells in peripheral blood and tumour tissue from bladder carcinoma patients, in parallel with analysis of T(reg) cells. The suppressor capacity of T(reg) and the potential effects of interleukin (IL)-2 on the differentiation of Th17 and T(reg) cells in vitro were studied in a T cell stimulation and suppression assays. The results were as follows: Th17 cells were enriched in the tumours of patients with bladder carcinoma compared with the peripheral blood of patients and controls; patients with bladder carcinoma had a higher proportion of T(reg) cells in peripheral blood compared with healthy controls and nearly all patients examined showed a relative enrichment of tumour-infiltrating T(reg) with respect to peripheral blood; there appeared to be an inverse relationship between tumour-infiltrating Th17 and T(reg) cells; IL-2 could convert tumour-infiltrating T(reg) cells cultured in the presence of the autologous irradiated CD3(-) fraction into Th17 cells, down-regulate forkhead box P2 expression and suppressive capacity of T(reg) cells. This study is the first to define the frequency and characteristics of Th17 cells in bladder carcinoma. We suggest that the balance between Th17 and T(reg) cells may be involved in the development or progression of bladder carcinoma.
Collapse
Affiliation(s)
- L J Chi
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Sanvito L, Makowska A, Gregson N, Nemni R, Hughes RAC. Circulating subsets and CD4(+)CD25(+) regulatory T cell function in chronic inflammatory demyelinating polyradiculoneuropathy. Autoimmunity 2010; 42:667-77. [PMID: 19886739 DOI: 10.3109/08916930903140907] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory disease of the peripheral nervous system that is probably autoimmune in origin. Different components of the adaptive and innate immunity may be responsible for the aberrant response towards nerve antigens. To investigate this, we examined lymphocyte subsets and regulatory T cell (Treg) function in the blood of CIDP patients, healthy controls (HC) and subjects with non-immune mediated neuropathies (other neuropathies, ON). We used flow cytometry to determine the frequency of monocytes, B cells, natural killer (NK) and NK-T cells, total and activated CD4(+) and CD8(+) T cells, effector memory and central memory CD4(+) and CD8(+) T cells, and CD4(+)CD25(high)Foxp3(+) Tregs. Treg function was studied after polyclonal stimulation and antigen specific stimulation with myelin protein peptides in CIDP and HC. There was an increased frequency of monocytes (p = 0.02) and decreased frequency of NK cells (p = 0.02) in CIDP compared with HC but not ON. There were no significant differences in other populations. Treg function was impaired in CIDP compared to HC (p = 0.02), whilst T cell proliferation to myelin protein peptides before and after depletion of Tregs was not different between patients and controls. This study shows increased circulating monocytes and reduced NK cells in CIDP. Although Treg frequency was not altered, we confirm that Tregs display a defect of suppressive function. Myelin protein peptides were not the target of the altered peripheral regulation of the immune response. The mechanisms of peripheral immune tolerance in CIDP and their relevance to the pathogenesis deserve further exploration.
Collapse
Affiliation(s)
- Lara Sanvito
- Department of Clinical Neuroscience, King's College London, Guy's Hospital, London, UK.
| | | | | | | | | |
Collapse
|
48
|
Abstract
This review focuses on recent developments in the treatment of inflammatory neuropathies arising from immune dysregulation, rather than from infectious causes. The dysimmune inflammatory neuropathies are diseases of the peripheral nerves that have varying etiologies and may respond to immunomodulatory therapies. They are characterized by inflammatory changes in the nerve with associated destruction of myelin and axons. The underlying immune mechanisms are better understood in some of these conditions than others. Correct diagnosis and treatment is important to prevent clinical progression. Randomized controlled trials of some treatments in the more common inflammatory neuropathies have clarified their effectiveness; however, there are still groups of patients who are resistant to currently available treatments and for whom little effective treatment is available. Newer, targeted biologics and larger controlled trials of existing and novel therapies in these conditions offer promise of improved morbidity and mortality in this group of diseases.
Collapse
Affiliation(s)
- Elspeth J Hutton
- Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
49
|
Vallat JM, Sommer C, Magy L. Chronic inflammatory demyelinating polyradiculoneuropathy: diagnostic and therapeutic challenges for a treatable condition. Lancet Neurol 2010; 9:402-12. [PMID: 20298964 DOI: 10.1016/s1474-4422(10)70041-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a chronic neuropathy of supposed immune origin. Understanding of its pathophysiology has recently improved, although its causes remain unclear. The classic presentation of CIDP includes sensory and motor symptoms in the distal and proximal segments of the four limbs with areflexia, evolving over more than 8 weeks. Raised protein concentrations in CSF and heterogeneous slowing of nerve conduction are typical of the condition. In addition to this usual phenotype, distribution of symptoms, disease course, and disability can be heterogeneous, leading to underdiagnosis of the disorder. Diagnosis is sometimes challenging and can require use of imaging and nerve biopsy. Steroids and intravenous immunoglobulin are effective, and plasma exchange can be helpful as rescue therapy. The usefulness of immunosuppressants needs to be established. The identification of specific diagnostic markers and new therapeutic strategies with conventional or targeted immunotherapy are needed to improve the outlook for patients with CIDP.
Collapse
Affiliation(s)
- Jean-Michel Vallat
- Service de Neurologie, Centre de Référence Neuropathies périphériques rares, CHU Limoges, France
| | | | | |
Collapse
|
50
|
Huang S, Li L, Liang S, Wang W. Conversion of peripheral CD4+CD25− T cells to CD4+CD25+ regulatory T cells by IFN-γ in patients with Guillain-Barré syndrome. J Neuroimmunol 2009; 217:80-4. [DOI: 10.1016/j.jneuroim.2009.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/27/2009] [Accepted: 10/02/2009] [Indexed: 11/27/2022]
|